1
|
Yi LX, Woon HR, Saw G, Zeng L, Tan EK, Zhou ZD. Induced pluripotent stem cell-related approaches to generate dopaminergic neurons for Parkinson's disease. Neural Regen Res 2025; 20:3193-3206. [PMID: 39665833 PMCID: PMC11881713 DOI: 10.4103/nrr.nrr-d-24-00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease, the second most common human neurodegenerative disease. Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear, the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy. The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons, which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies. The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells. The benefits of induced pluripotent stem cell-based research are highlighted. Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared. The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated. Finally, limitations, challenges, and future directions of induced pluripotent stem cell-based approaches are analyzed and proposed, which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Li Zeng
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Eng King Tan
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
2
|
Dhankhar S, Mujwar S, Garg N, Chauhan S, Saini M, Sharma P, Kumar S, Kumar Sharma S, Kamal MA, Rani N. Artificial Intelligence in The Management of Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:931-940. [PMID: 37861051 DOI: 10.2174/0118715273266095231009092603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023]
Abstract
Neurodegenerative disorders are characterized by a gradual but irreversible loss of neurological function. The ability to detect and treat these conditions successfully is crucial for ensuring the best possible quality of life for people who suffer from them. The development of effective new methods for managing and treating neurodegenerative illnesses has been made possible by recent developments in computer technology. In this overview, we take a look at the prospects for applying computational approaches, such as drug design, AI, ML, and DL, to the treatment of neurodegenerative diseases. To review the current state of the field, this article discusses the potential of computational methods for early disease detection, quantifying disease progression, and understanding the underlying biological mechanisms of neurodegenerative diseases, as well as the challenges associated with these approaches and potential future directions. Moreover, it delves into the creation of computational models for the individualization of care for neurodegenerative diseases. The article concludes with suggestions for future studies and clinical applications, highlighting the advantages and disadvantages of using computational techniques in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Ganpati Institute of Pharmacy, Bilaspur-135102, Haryana, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Ganpati Institute of Pharmacy, Bilaspur-135102, Haryana, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Saini
- Maharishi Markandeshwar (Deemed to be University), Mullana-133207, Ambala, Haryana, India
| | - Prerna Sharma
- Guru Gobind Singh College of Pharmacy, Yamunanagar-135001, Haryana, India
| | - Suresh Kumar
- Ganpati Institute of Pharmacy, Bilaspur-135102, Haryana, India
| | - Satish Kumar Sharma
- Glocal School of Pharmacy, The Glocal University, Saharanpur, Uttar Pradesh, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, Australia
| | - Nidhi Rani
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
3
|
Miguez A, Gomis C, Vila C, Monguió-Tortajada M, Fernández-García S, Bombau G, Galofré M, García-Bravo M, Sanders P, Fernández-Medina H, Poquet B, Salado-Manzano C, Roura S, Alberch J, Segovia JC, Allen ND, Borràs FE, Canals JM. Soluble mutant huntingtin drives early human pathogenesis in Huntington's disease. Cell Mol Life Sci 2023; 80:238. [PMID: 37535170 PMCID: PMC10400696 DOI: 10.1007/s00018-023-04882-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/19/2023] [Accepted: 07/16/2023] [Indexed: 08/04/2023]
Abstract
Huntington's disease (HD) is an incurable inherited brain disorder characterised by massive degeneration of striatal neurons, which correlates with abnormal accumulation of misfolded mutant huntingtin (mHTT) protein. Research on HD has been hampered by the inability to study early dysfunction and progressive degeneration of human striatal neurons in vivo. To investigate human pathogenesis in a physiologically relevant context, we transplanted human pluripotent stem cell-derived neural progenitor cells (hNPCs) from control and HD patients into the striatum of new-born mice. Most hNPCs differentiated into striatal neurons that projected to their target areas and established synaptic connexions within the host basal ganglia circuitry. Remarkably, HD human striatal neurons first developed soluble forms of mHTT, which primarily targeted endoplasmic reticulum, mitochondria and nuclear membrane to cause structural alterations. Furthermore, HD human cells secreted extracellular vesicles containing mHTT monomers and oligomers, which were internalised by non-mutated mouse striatal neurons triggering cell death. We conclude that interaction of mHTT soluble forms with key cellular organelles initially drives disease progression in HD patients and their transmission through exosomes contributes to spread the disease in a non-cell autonomous manner.
Collapse
Affiliation(s)
- Andrés Miguez
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain.
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalunya (Cemcat), Vall d'Hebron Research Institute (VHIR), Vall d'Hebron University Hospital, Barcelona, Spain.
| | - Cinta Gomis
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Cristina Vila
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Marta Monguió-Tortajada
- REMAR-IVECAT Group, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
| | - Sara Fernández-García
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
- Laboratory of Pathophysiology of Neurodegenerative Diseases, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Mireia Galofré
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - María García-Bravo
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Phil Sanders
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Helena Fernández-Medina
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Blanca Poquet
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Cristina Salado-Manzano
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
| | - Santiago Roura
- ICREC Research Program, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Jordi Alberch
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain
- Laboratory of Pathophysiology of Neurodegenerative Diseases, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - José Carlos Segovia
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Nicholas D Allen
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, UK
| | - Francesc E Borràs
- REMAR-IVECAT Group, Germans Trias i Pujol Health Science Research Institute, Can Ruti Campus, Badalona, Spain
- Nephrology Department, Germans Trias i Pujol Universitary Hospital, Badalona, Spain
| | - Josep M Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Creatio, Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
- Networked Biomedical Research Centre for Neurodegenerative Disorders (CIBERNED), Madrid, Spain.
| |
Collapse
|
4
|
Matlock AD, Vaibhav V, Holewinski R, Venkatraman V, Dardov V, Manalo DM, Shelley B, Ornelas L, Banuelos M, Mandefro B, Escalante-Chong R, Li J, Finkbeiner S, Fraenkel E, Rothstein J, Thompson L, Sareen D, Svendsen CN, Van Eyk JE. NeuroLINCS Proteomics: Defining human-derived iPSC proteomes and protein signatures of pluripotency. Sci Data 2023; 10:24. [PMID: 36631473 PMCID: PMC9834231 DOI: 10.1038/s41597-022-01687-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 09/07/2022] [Indexed: 01/13/2023] Open
Abstract
The National Institute of Health (NIH) Library of integrated network-based cellular signatures (LINCS) program is premised on the generation of a publicly available data resource of cell-based biochemical responses or "signatures" to genetic or environmental perturbations. NeuroLINCS uses human inducible pluripotent stem cells (hiPSCs), derived from patients and healthy controls, and differentiated into motor neuron cell cultures. This multi-laboratory effort strives to establish i) robust multi-omic workflows for hiPSC and differentiated neuronal cultures, ii) public annotated data sets and iii) relevant and targetable biological pathways of spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). Here, we focus on the proteomics and the quality of the developed workflow of hiPSC lines from 6 individuals, though epigenomics and transcriptomics data are also publicly available. Known and commonly used markers representing 73 proteins were reproducibly quantified with consistent expression levels across all hiPSC lines. Data quality assessments, data levels and metadata of all 6 genetically diverse human iPSCs analysed by DIA-MS are parsable and available as a high-quality resource to the public.
Collapse
Affiliation(s)
- Andrea D Matlock
- NeuroLINCS, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Vineet Vaibhav
- NeuroLINCS, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ronald Holewinski
- NeuroLINCS, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Vidya Venkatraman
- NeuroLINCS, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Victoria Dardov
- NeuroLINCS, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Danica-Mae Manalo
- NeuroLINCS, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Brandon Shelley
- NeuroLINCS, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Loren Ornelas
- NeuroLINCS, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Maria Banuelos
- NeuroLINCS, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Berhan Mandefro
- NeuroLINCS, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Jonathan Li
- NeuroLINCS, Department of Biological Engineering, MIT, Cambridge, MA, 02142, USA
| | - Steve Finkbeiner
- NeuroLINCS, Gladstone Institute of Neurological Disease and the Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ernest Fraenkel
- NeuroLINCS, Department of Biological Engineering, MIT, Cambridge, MA, 02142, USA
| | - Jeffrey Rothstein
- NeuroLINCS, Department of Neuroscience, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Leslie Thompson
- NeuroLINCS, Departments of Psychiatry and Human Behaviour, Neurobiology and Behaviour and UCI MIND, University of California Irvine, Irvine, CA, 92697, USA
| | - Dhruv Sareen
- NeuroLINCS, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Clive N Svendsen
- NeuroLINCS, Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jennifer E Van Eyk
- NeuroLINCS, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
5
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
6
|
Babi M, Neuman K, Peng CY, Maiuri T, Suart CE, Truant R. Recent Microscopy Advances and the Applications to Huntington’s Disease Research. J Huntingtons Dis 2022; 11:269-280. [PMID: 35848031 PMCID: PMC9484089 DOI: 10.3233/jhd-220536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Huntingtin is a 3144 amino acid protein defined as a scaffold protein with many intracellular locations that suggest functions in these compartments. Expansion of the CAG DNA tract in the huntingtin first exon is the cause of Huntington’s disease. An important tool in understanding the biological functions of huntingtin is molecular imaging at the single-cell level by microscopy and nanoscopy. The evolution of these technologies has accelerated since the Nobel Prize in Chemistry was awarded in 2014 for super-resolution nanoscopy. We are in a new era of light imaging at the single-cell level, not just for protein location, but also for protein conformation and biochemical function. Large-scale microscopy-based screening is also being accelerated by a coincident development of machine-based learning that offers a framework for truly unbiased data acquisition and analysis at very large scales. This review will summarize the newest technologies in light, electron, and atomic force microscopy in the context of unique challenges with huntingtin cell biology and biochemistry.
Collapse
Affiliation(s)
- Mouhanad Babi
- McMaster Centre for Advanced Light Microscopy (CALM) McMaster University, Hamilton, Canada
| | - Kaitlyn Neuman
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Christina Y. Peng
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Tamara Maiuri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Celeste E. Suart
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Ray Truant
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- McMaster Centre for Advanced Light Microscopy (CALM) McMaster University, Hamilton, Canada
| |
Collapse
|
7
|
Pircs K, Drouin-Ouellet J, Horváth V, Gil J, Rezeli M, Garza R, Grassi DA, Sharma Y, St-Amour I, Harris K, Jönsson ME, Johansson PA, Vuono R, Fazal SV, Stoker T, Hersbach BA, Sharma K, Lagerwall J, Lagerström S, Storm P, Hébert SS, Marko-Varga G, Parmar M, Barker RA, Jakobsson J. Distinct subcellular autophagy impairments in induced neurons from Huntington’s disease patients. Brain 2021; 145:3035-3057. [PMID: 34936701 PMCID: PMC9473361 DOI: 10.1093/brain/awab473] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/07/2021] [Accepted: 12/01/2021] [Indexed: 12/09/2022] Open
Abstract
Huntington's disease is a neurodegenerative disorder caused by CAG expansions in the huntingtin (HTT) gene. Modelling Huntington's disease is challenging, as rodent and cellular models poorly recapitulate the disease as seen in ageing humans. To address this, we generated induced neurons through direct reprogramming of human skin fibroblasts, which retain age-dependent epigenetic characteristics. Huntington's disease induced neurons (HD-iNs) displayed profound deficits in autophagy, characterized by reduced transport of late autophagic structures from the neurites to the soma. These neurite-specific alterations in autophagy resulted in shorter, thinner and fewer neurites specifically in HD-iNs. CRISPRi-mediated silencing of HTT did not rescue this phenotype but rather resulted in additional autophagy alterations in control induced neurons, highlighting the importance of wild-type HTT in normal neuronal autophagy. In summary, our work identifies a distinct subcellular autophagy impairment in adult patient derived Huntington's disease neurons and provides a new rationale for future development of autophagy activation therapies.
Collapse
Affiliation(s)
- Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Janelle Drouin-Ouellet
- Faculty of Pharmacy, University of Montreal, Montreal, Quebec, H3 T 1J4, Canada
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
| | - Vivien Horváth
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Jeovanis Gil
- Oncology and Pathology, Kamprad Lab, Department of Clinical Sciences, Lund University, S-221 85, Lund, Sweden
| | - Melinda Rezeli
- Clinical Protein Science and Imaging, Department of Biomedical Engineering, Lund University, S-221 85, Lund, Sweden
| | - Raquel Garza
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Daniela A. Grassi
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Yogita Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Isabelle St-Amour
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, CHUL, Québec, QC G1E 6W2, Canada
- CERVO Brain Research Center – Université Laval, Québec, QC G1E 1T2, Canada
| | - Kate Harris
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Marie E. Jönsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Pia A. Johansson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Romina Vuono
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Shaline V. Fazal
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Thomas Stoker
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Bob A. Hersbach
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Kritika Sharma
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Jessica Lagerwall
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Stina Lagerström
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| | - Petter Storm
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
| | - Sébastien S. Hébert
- Axe Neurosciences, Centre de recherche du CHU de Québec – Université Laval, CHUL, Québec, QC G1E 6W2, Canada
| | - György Marko-Varga
- Oncology and Pathology, Kamprad Lab, Department of Clinical Sciences, Lund University, S-221 85, Lund, Sweden
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
| | - Roger A. Barker
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Division of Neurobiology and Lund Stem Cell Center, BMC A11 and B10, Lund University, S-221 84, Lund, Sweden
- Wellcome-MRC Cambridge Stem Cell Institute & John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK
| | - Johan Jakobsson
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, S-221 84, Lund, Sweden
| |
Collapse
|
8
|
Sawant N, Morton H, Kshirsagar S, Reddy AP, Reddy PH. Mitochondrial Abnormalities and Synaptic Damage in Huntington's Disease: a Focus on Defective Mitophagy and Mitochondria-Targeted Therapeutics. Mol Neurobiol 2021; 58:6350-6377. [PMID: 34519969 DOI: 10.1007/s12035-021-02556-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is a fatal and pure genetic disease with a progressive loss of medium spiny neurons (MSN). HD is caused by expanded polyglutamine repeats in the exon 1 of HD gene. Clinically, HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment, and emotional disturbances. Several years of intense research revealed that multiple cellular changes, including defective axonal transport, protein-protein interactions, defective bioenergetics, calcium dyshomeostasis, NMDAR activation, synaptic damage, mitochondrial abnormalities, and selective loss of medium spiny neurons are implicated in HD. Recent research on mutant huntingtin (mHtt) and mitochondria has found that mHtt interacts with the mitochondrial division protein, dynamin-related protein 1 (DRP1), enhances GTPase DRP1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. Recent research also revealed that failure to remove dead and/or dying mitochondria is an early event in the disease progression. Currently, efforts are being made to reduce abnormal protein interactions and enhance synaptic mitophagy as therapeutic strategies for HD. The purpose of this article is to discuss recent research in HD progression. This article also discusses recent developments of cell and mouse models, cellular changes, mitochondrial abnormalities, DNA damage, bioenergetics, oxidative stress, mitophagy, and therapeutics strategies in HD.
Collapse
Affiliation(s)
- Neha Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hallie Morton
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Neurology, Department of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
- Department of Internal Medicine, Cell Biology & Biochemistry, Public Health and School of Health Professions, Texas Tech University Health Sciences Center, Neuroscience & Pharmacology3601 4th Street, NeurologyLubbock, TX, 79430, USA.
| |
Collapse
|
9
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
10
|
Martinez B, Peplow PV. Altered microRNA expression in animal models of Huntington's disease and potential therapeutic strategies. Neural Regen Res 2021; 16:2159-2169. [PMID: 33818488 PMCID: PMC8354140 DOI: 10.4103/1673-5374.310673] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A review of recent animal models of Huntington's disease showed many microRNAs had altered expression levels in the striatum and cerebral cortex, and which were mostly downregulated. Among the altered microRNAs were miR-9/9*, miR-29b, miR-124a, miR-132, miR-128, miR-139, miR-122, miR-138, miR-23b, miR-135b, miR-181 (all downregulated) and miR-448 (upregulated), and similar changes had been previously found in Huntington's disease patients. In the animal cell studies, the altered microRNAs included miR-9, miR-9*, miR-135b, miR-222 (all downregulated) and miR-214 (upregulated). In the animal models, overexpression of miR-155 and miR-196a caused a decrease in mutant huntingtin mRNA and protein level, lowered the mutant huntingtin aggregates in striatum and cortex, and improved performance in behavioral tests. Improved performance in behavioral tests also occurred with overexpression of miR-132 and miR-124. In the animal cell models, overexpression of miR-22 increased the viability of rat primary cortical and striatal neurons infected with mutant huntingtin and decreased huntingtin -enriched foci of ≥ 2 µm. Also, overexpression of miR-22 enhanced the survival of rat primary striatal neurons treated with 3-nitropropionic acid. Exogenous expression of miR-214, miR-146a, miR-150, and miR-125b decreased endogenous expression of huntingtin mRNA and protein in HdhQ111/HdhQ111 cells. Further studies with animal models of Huntington's disease are warranted to validate these findings and identify specific microRNAs whose overexpression inhibits the production of mutant huntingtin protein and other harmful processes and may provide a more effective means of treating Huntington's disease in patients and slowing its progression.
Collapse
Affiliation(s)
- Bridget Martinez
- Physical Chemistry and Applied Spectroscopy, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Medicine, St. Georges University School of Medicine, Grenada
| | - Philip V. Peplow
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Correspondence to: Philip V. Peplow, .
| |
Collapse
|
11
|
Monk R, Connor B. Cell Replacement Therapy for Huntington's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1266:57-69. [PMID: 33105495 DOI: 10.1007/978-981-15-4370-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder which is characterised by a triad of highly debilitating motor, cognitive, and psychiatric symptoms. While cell death occurs in many brain regions, GABAergic medium spiny neurons (MSNs) in the striatum experience preferential and extensive degeneration. Unlike most neurodegenerative disorders, HD is caused by a single genetic mutation resulting in a CAG repeat expansion and the production of a mutant Huntingtin protein (mHTT). Despite identifying the mutation causative of HD in 1993, there are currently no disease-modifying treatments for HD. One potential strategy for the treatment of HD is the development of cell-based therapies. Cell-based therapies aim to restore neuronal circuitry and function by replacing lost neurons, as well as providing neurotropic support to prevent further degeneration. In order to successfully restore basal ganglia functioning in HD, cell-based therapies would need to reconstitute the complex signalling network disrupted by extensive MSN degeneration. This chapter will discuss the potential use of foetal tissue grafts, pluripotent stem cells, neural stem cells, and somatic cell reprogramming to develop cell-based therapies for treating HD.
Collapse
Affiliation(s)
- Ruth Monk
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, SMS, FMHS, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, SMS, FMHS, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
12
|
Li E, Park HR, Hong CP, Kim Y, Choi J, Lee S, Park HJ, Lee B, Kim TA, Kim SJ, Kim HS, Song J. Neural stem cells derived from the developing forebrain of YAC128 mice exhibit pathological features of Huntington's disease. Cell Prolif 2020; 53:e12893. [PMID: 32865873 PMCID: PMC7574873 DOI: 10.1111/cpr.12893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives Huntington's disease (HD) is a devastating neurodegenerative disease caused by polyglutamine (polyQ) expansion in the huntingtin (HTT) gene. Mutant huntingtin (mHTT) is the main cause of HD and is associated with impaired mitochondrial dynamics, ubiquitin‐proteasome system and autophagy, as well as tauopathy. In this study, we aimed to establish a new neural stem cell line for HD studies. Materials and methods YAC128 mice are a yeast artificial chromosome (YAC)‐based transgenic mouse model of HD. These mice express a full‐length human mutant HTT gene with 128 CAG repeats and exhibit various pathophysiological features of HD. In this study, we isolated a new neural stem cell line from the forebrains of YAC128 mouse embryos (E12.5) and analysed its characteristics using cellular and biochemical methods. Results Compared to wild‐type (WT) NSCs, the YAC128 NSC line exhibited greater proliferation and migration capacity. In addition to mHTT expression, increased intracellular Ca2+ levels and dysfunctional mitochondrial membrane potential were observed in the YAC128 NSCs. YAC128 NSCs had defects in mitochondrial dynamics, including a deficit in mitochondrial axonal transport and unbalanced fusion and fission processes. YAC128 NSCs also displayed decreased voltage response variability and Na+ current amplitude. Additionally, the ubiquitin‐proteasome and autophagy systems were impaired in the YAC128 NSCs. Conclusions We have established a new neural stem line from YAC128 transgenic mice, which may serve as a useful resource for studying HD pathogenesis and drug screening.
Collapse
Affiliation(s)
- Endan Li
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | | | | | - Younghoon Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Jiwoo Choi
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Suji Lee
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Hyun Jung Park
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | - Bomi Lee
- iPS Bio, Inc., Seongnam-si, Korea
| | - Tae Aug Kim
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea
| | | | - Hyun Sook Kim
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam-si, Korea
| | - Jihwan Song
- Department of Biomedical Science, CHA Stem Cell Institute, CHA University, Seongnam-si, Korea.,iPS Bio, Inc., Seongnam-si, Korea
| |
Collapse
|
13
|
Silva MC, Haggarty SJ. Human pluripotent stem cell-derived models and drug screening in CNS precision medicine. Ann N Y Acad Sci 2020; 1471:18-56. [PMID: 30875083 PMCID: PMC8193821 DOI: 10.1111/nyas.14012] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/02/2019] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
Development of effective therapeutics for neurological disorders has historically been challenging partly because of lack of accurate model systems in which to investigate disease etiology and test new therapeutics at the preclinical stage. Human stem cells, particularly patient-derived induced pluripotent stem cells (iPSCs) upon differentiation, have the ability to recapitulate aspects of disease pathophysiology and are increasingly recognized as robust scalable systems for drug discovery. We review advances in deriving cellular models of human central nervous system (CNS) disorders using iPSCs along with strategies for investigating disease-relevant phenotypes, translatable biomarkers, and therapeutic targets. Given their potential to identify novel therapeutic targets and leads, we focus on phenotype-based, small-molecule screens employing human stem cell-derived models. Integrated efforts to assemble patient iPSC-derived cell models with deeply annotated clinicopathological data, along with molecular and drug-response signatures, may aid in the stratification of patients, diagnostics, and clinical trial success, shifting translational science and precision medicine approaches. A number of remaining challenges, including the optimization of cost-effective, large-scale culture of iPSC-derived cell types, incorporation of aging into neuronal models, as well as robustness and automation of phenotypic assays to support quantitative drug efficacy, toxicity, and metabolism testing workflows, are covered. Continued advancement of the field is expected to help fully humanize the process of CNS drug discovery.
Collapse
Affiliation(s)
- M. Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston MA, USA
| |
Collapse
|
14
|
Amin N, Tan X, Ren Q, Zhu N, Botchway BOA, Hu Z, Fang M. Recent advances of induced pluripotent stem cells application in neurodegenerative diseases. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109674. [PMID: 31255650 DOI: 10.1016/j.pnpbp.2019.109674] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 01/30/2023]
Abstract
Stem cell is defined by its ability to self-renewal and generates differentiated functional cell types, which are derived from the embryo and various sources of postnatal animal. These cells can be divided according to their potential development into totipotent, unipotent, multipotent andpluripotent. Pluripotent is considered as the most important type due to its advantageous capability to create different cell types of the body in a similar behavior as embryonic stem cell. Induced pluripotent stem cells (iPSCs) are adult cells that maintain the characteristics of embryonic stem cells because it can be genetically reprogrammed to an embryonic stem cell-like state via express genes and transcription factors. Such cells provide an efficient pathway to explorehuman diseases and their corresponding therapy, particularly, neurodevelopmental disorders. Consequently, iPSCs can be investigated to check the specific mutations of neurodegenerative disease due to their unique ability to differentiate into neural cell types and/or neural organoids. The current review addresses the different neurodegenerative diseases model by using iPSCs approach such as Alzheimer's diseases (AD), Parkinson diseases (PD),multiplesclerosis(MS) and psychiatric disorders. We also highlight the importance of autophagy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nashwa Amin
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Department of Zoology, Faculty of Science, Aswan University, Egypt
| | - Xiaoning Tan
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiannan Ren
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhu
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Hebei North University,Zhangjiakou, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Hu
- Obstetrics & Gynecology Department, Zhejiang Integrated Traditional and Western Medicine Hospital, Hangzhou, China.
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
15
|
Human Huntington's Disease iPSC-Derived Cortical Neurons Display Altered Transcriptomics, Morphology, and Maturation. Cell Rep 2019; 25:1081-1096.e6. [PMID: 30355486 DOI: 10.1016/j.celrep.2018.09.076] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/02/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disease caused by an expanded CAG repeat in the Huntingtin (HTT) gene. Induced pluripotent stem cell (iPSC) models of HD provide an opportunity to study the mechanisms underlying disease pathology in disease-relevant patient tissues. Murine studies have demonstrated that HTT is intricately involved in corticogenesis. However, the effect of mutant Hungtintin (mtHTT) in human corticogenesis has not yet been thoroughly explored. This examination is critical, due to inherent differences in cortical development and timing between humans and mice. We therefore differentiated HD and non-diseased iPSCs into functional cortical neurons. While HD patient iPSCs can successfully differentiate toward a cortical fate in culture, the resulting neurons display altered transcriptomics, morphological and functional phenotypes indicative of altered corticogenesis in HD.
Collapse
|
16
|
Bowles KR, Tcw J, Qian L, Jadow BM, Goate AM. Reduced variability of neural progenitor cells and improved purity of neuronal cultures using magnetic activated cell sorting. PLoS One 2019; 14:e0213374. [PMID: 30917153 PMCID: PMC6436701 DOI: 10.1371/journal.pone.0213374] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/19/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic and epigenetic variability between iPSC-derived neural progenitor cells (NPCs) combined with differences in investigator technique and selection protocols contributes to variability between NPC lines, which subsequently impacts the quality of differentiated neuronal cultures. We therefore sought to develop an efficient method to reduce this variability in order to improve the purity of NPC and neuronal cultures. Here, we describe a magnetic activated cell sorting (MACS) method for enriching NPC cultures for CD271-/CD133+ cells at both early (<2–3) and late (>10) passage. MACS results in a similar sorting efficiency to fluorescence activated cell sorting (FACS), while achieving an increased yield of live cells and reduced cellular stress. Furthermore, neurons derived from MACS NPCs showed greater homogeneity between cell lines compared to those derived from unsorted NPCs. We conclude that MACS is a cheap technique for incorporation into standard NPC differentiation and maintenance protocols in order to improve culture homogeneity and consistency.
Collapse
Affiliation(s)
- Kathryn R Bowles
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Julia Tcw
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Lu Qian
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Benjamin M Jadow
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Alison M Goate
- Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America.,Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| |
Collapse
|
17
|
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded polyglutamine (polyQ)-encoding repeats in the Huntingtin (HTT) gene. Traditionally, HD cellular models consisted of either patient cells not affected by disease or rodent neurons expressing expanded polyQ repeats in HTT. As these models can be limited in their disease manifestation or proper genetic context, respectively, human HD pluripotent stem cells (PSCs) are currently under investigation as a way to model disease in patient-derived neurons and other neural cell types. This chapter reviews embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) models of disease, including published differentiation paradigms for neurons and their associated phenotypes, as well as current challenges to the field such as validation of the PSCs and PSC-derived cells. Highlighted are potential future technical advances to HD PSC modeling, including transdifferentiation, complex in vitro multiorgan/system reconstruction, and personalized medicine. Using a human HD patient model of the central nervous system, hopefully one day researchers can tease out the consequences of mutant HTT (mHTT) expression on specific cell types within the brain in order to identify and test novel therapies for disease.
Collapse
|
18
|
Mathkar PP, Suresh D, Dunn J, Tom CM, Mattis VB. Characterization of Neurodevelopmental Abnormalities in iPSC-Derived Striatal Cultures from Patients with Huntington's Disease. J Huntingtons Dis 2019; 8:257-269. [PMID: 31381521 PMCID: PMC6839479 DOI: 10.3233/jhd-180333] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Huntington's disease (HD) is an inherited neurodegenerative disease and is characterized by atrophy of certain regions of the brain in a progressive manner. HD patients experience behavioral changes and uncontrolled movements which can be primarily attributed to the atrophy of striatal neurons. Previous publications describe the models of the HD striatum using induced pluripotent stem cells (iPSCs) derived from HD patients with a juvenile onset (JHD). In this model, the JHD iPSC-derived striatal cultures had altered neurodevelopment and contained a high number of nestin expressing progenitor cells at 42 days of differentiation. OBJECTIVE To further characterize the altered neurodevelopmental phenotype and evaluate potential phenotypic reversal. METHODS Differentiation of human iPSCs towards striatal fate and characterization by means of immunocytochemistry and stereological quantification. RESULTS Here this study demonstrates a distinct delay in the differentiation of the JHD neural progenitor population. However, reduction of the JHD aberrant progenitor populations can be accomplished either by targeting the canonical Notch signaling pathway or by treatment with HTT antisense oligonucleotides (ASOs). CONCLUSIONS In summary, this data is postulated to reflect a potential overall developmental delay in JHD.
Collapse
Affiliation(s)
- Pranav P. Mathkar
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Divya Suresh
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - James Dunn
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Colton M. Tom
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Virginia B. Mattis
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences; Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
19
|
Yesil-Celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-Hinojosa A, Zhang YS. Mimicking Human Pathophysiology in Organ-on-Chip Devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800109] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ozlem Yesil-Celiktas
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Bioengineering; Faculty of Engineering; Ege University; Bornova-Izmir 35100 Turkey
| | - Shabir Hassan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| | - Amir K. Miri
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Department of Mechanical Engineering Rowan University; 401 North Campus Drive Glassboro NJ 08028 USA
| | - Sushila Maharjan
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Research Institute for Bioscience and Biotechnology; Nakkhu-4 Lalitpur 44600 Nepal
| | - Rawan Al-kharboosh
- Mayo Clinic College of Medicine; Mayo Clinic Graduate School; Neuroscience, NBD Track Rochester MN 55905 USA
- Department of Neurosurgery, Oncology, Neuroscience; Mayo Clinic; Jacksonville FL 32224 USA
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
| |
Collapse
|
20
|
Affiliation(s)
- Virginia B Mattis
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Clive N Svendsen
- The Board of Governors Regenerative Medicine Institute and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
21
|
Tousley A, Kegel-Gleason KB. Induced Pluripotent Stem Cells in Huntington's Disease Research: Progress and Opportunity. J Huntingtons Dis 2017; 5:99-131. [PMID: 27372054 PMCID: PMC4942721 DOI: 10.3233/jhd-160199] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced pluripotent stem cells (iPSCs) derived from controls and patients can act as a starting point for in vitro differentiation into human brain cells for discovery of novel targets and treatments for human disease without the same ethical limitations posed by embryonic stem cells. Numerous groups have successfully produced and characterized Huntington’s disease (HD) iPSCs with different CAG repeat lengths, including cells from patients with one or two HD alleles. HD iPSCs and the neural cell types derived from them recapitulate some disease phenotypes found in both human patients and animal models. Although these discoveries are encouraging, the use of iPSCs for cutting edge and reproducible research has been limited due to some of the inherent problems with cell lines and the technological differences in the way laboratories use them. The goal of this review is to summarize the current state of the HD iPSC field, and to highlight some of the issues that need to be addressed to maximize their potential as research tools.
Collapse
Affiliation(s)
| | - Kimberly B. Kegel-Gleason
- Correspondence to: Kimberly Kegel-Gleason, Assistant Professor in Neurology, Massachusetts General Hospital and Harvard Medical School, 114 16th Street, Room 2001, Charlestown, MA 02129, USA. Tel.: +1 617 724 8754; E-mail:
| |
Collapse
|
22
|
Chaves G, Özel RE, Rao NV, Hadiprodjo H, Costa YD, Tokuno Z, Pourmand N. Metabolic and transcriptomic analysis of Huntington's disease model reveal changes in intracellular glucose levels and related genes. Heliyon 2017; 3:e00381. [PMID: 28920088 PMCID: PMC5576993 DOI: 10.1016/j.heliyon.2017.e00381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 07/02/2017] [Accepted: 08/04/2017] [Indexed: 11/19/2022] Open
Abstract
Huntington's Disease (HD) is a neurodegenerative disorder caused by an expansion in a CAG-tri-nucleotide repeat that introduces a poly-glutamine stretch into the huntingtin protein (mHTT). Mutant huntingtin (mHTT) has been associated with several phenotypes including mood disorders and depression. Additionally, HD patients are known to be more susceptible to type II diabetes mellitus (T2DM), and HD mice model develops diabetes. However, the mechanism and pathways that link Huntington's disease and diabetes have not been well established. Understanding the underlying mechanisms can reveal potential targets for drug development in HD. In this study, we investigated the transcriptome of mHTT cell populations alongside intracellular glucose measurements using a functionalized nanopipette. Several genes related to glucose uptake and glucose homeostasis are affected. We observed changes in intracellular glucose concentrations and identified altered transcript levels of certain genes including Sorcs1, Hh-II and Vldlr. Our data suggest that these can be used as markers for HD progression. Sorcs1 may not only have a role in glucose metabolism and trafficking but also in glutamatergic pathways affecting trafficking of synaptic components.
Collapse
|
23
|
Szlachcic WJ, Wiatr K, Trzeciak M, Figlerowicz M, Figiel M. The Generation of Mouse and Human Huntington Disease iPS Cells Suitable for In vitro Studies on Huntingtin Function. Front Mol Neurosci 2017; 10:253. [PMID: 28848389 PMCID: PMC5550714 DOI: 10.3389/fnmol.2017.00253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/26/2017] [Indexed: 01/24/2023] Open
Abstract
Huntington disease (HD) is an incurable neurodegenerative disorder caused by expansion of CAG repeats in huntingtin (HTT) gene, resulting in expanded polyglutamine tract in HTT protein. Although, HD has its common onset in adulthood, subtle symptoms in patients may occur decades before diagnosis, and molecular and cellular changes begin much earlier, even in cells that are not yet lineage committed such as stem cells. Studies in induced pluripotent stem cell (iPSC) HD models have demonstrated that multiple molecular processes are altered by the mutant HTT protein and suggested its silencing as a promising therapeutic strategy. Therefore, we aimed to generate HD iPS cells with stable silencing of HTT and further to investigate the effects of HTT knock-down on deregulations of signaling pathways e.g., p53 downregulation, present in cells already in pluripotent state. We designed a gene silencing strategy based on RNAi cassette in piggyBAC vector for constant shRNA expression. Using such system we delivered and tested several shRNA targeting huntingtin in mouse HD YAC128 iPSC and human HD109, HD71, and Control iPSC. The most effective shRNA (shHTT2) reagent stably silenced HTT in all HD iPS cells and remained active upon differentiation to neural stem cells (NSC). When investigating the effects of HTT silencing on signaling pathways, we found that in mouse HD iPSC lines expressing shRNA the level of mutant HTT inversely correlated with p53 levels, resulting in p53 level normalization upon silencing of mutant HTT. We also found that p53 deregulation continues into the NSC developmental stage and it was reversed upon HTT silencing. In addition, we observed subtle effects of silencing on proteins of Wnt/β-catenin and ERK1/2 signaling pathways. In summary, we successfully created the first mouse and human shRNA-expressing HD iPS cells with stable and continuous HTT silencing. Moreover, we demonstrated reversal of HD p53 phenotype in mouse HD iPSC, therefore, the stable knockdown of HTT is well-suited for investigation on HD cellular pathways, and is potentially useful as a stand-alone therapy or component of cell therapy. In addition, the total HTT knock-down in our human cells has further implications for mutant allele selective approach in iPSC.
Collapse
Affiliation(s)
- Wojciech J Szlachcic
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznań, Poland
| | - Kalina Wiatr
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznań, Poland
| | - Marta Trzeciak
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznań, Poland
| | - Marek Figlerowicz
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznań, Poland
| | - Maciej Figiel
- Department of Molecular Neurobiology, Institute of Bioorganic Chemistry, Polish Academy of SciencesPoznań, Poland
| |
Collapse
|
24
|
Xu X, Tay Y, Sim B, Yoon SI, Huang Y, Ooi J, Utami KH, Ziaei A, Ng B, Radulescu C, Low D, Ng AYJ, Loh M, Venkatesh B, Ginhoux F, Augustine GJ, Pouladi MA. Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells. Stem Cell Reports 2017; 8:619-633. [PMID: 28238795 PMCID: PMC5355646 DOI: 10.1016/j.stemcr.2017.01.022] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/19/2017] [Accepted: 01/21/2017] [Indexed: 12/31/2022] Open
Abstract
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs.
Collapse
Affiliation(s)
- Xiaohong Xu
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Yilin Tay
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Bernice Sim
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Su-In Yoon
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Singapore
| | - Yihui Huang
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Jolene Ooi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Kagistia Hana Utami
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Amin Ziaei
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Bryan Ng
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Carola Radulescu
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Donovan Low
- Singapore Immunology Network (SIgN), A(∗)STAR, Singapore 138648, Singapore
| | - Alvin Yu Jin Ng
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore 138673, Singapore
| | - Marie Loh
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A(∗)STAR, Biopolis, Singapore 138673, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A(∗)STAR, Singapore 138648, Singapore
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Singapore; Institute of Molecular and Cell Biology (IMCB), Singapore 138673, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore 138648, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
25
|
Ahfeldt T, Litterman NK, Rubin LL. Studying human disease using human neurons. Brain Res 2017; 1656:40-48. [PMID: 27060768 PMCID: PMC5053850 DOI: 10.1016/j.brainres.2016.03.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 01/25/2023]
Abstract
Utilizing patient derived cells has enormous promise for discovering new drugs for diseases of the nervous system, a goal that has been historically quite challenging. In this review, we will outline the potential of human stem cell derived neuron models for assessing therapeutics and high-throughput screening and compare to more traditional drug discovery strategies. We summarize recent successes of the approach and discuss special considerations for developing human stem cell based assays. New technologies, such as genome editing, offer improvements to help overcome the challenges that remain. Finally, human neurons derived from patient cells have advantages for translational research beyond drug screening as they can also be used to identify individual efficacy and safety prior to clinical testing and for dissecting disease mechanisms. This article is part of a Special Issue entitled SI: Exploiting human neurons.
Collapse
Affiliation(s)
- Tim Ahfeldt
- Department of Stem Cells and Regenerative Biology, Harvard University, Cambridge MA , USA, , Fax: 617-495-3961
| | - Nadia K. Litterman
- Department of Stem Cells and Regenerative Biology, Harvard University, Cambridge MA , USA, , Fax: 617-495-3961
| | - Lee L. Rubin
- Department of Stem Cells and Regenerative Biology, Harvard University, Cambridge MA , USA, , Fax: 617-495-3961
| |
Collapse
|
26
|
Cheng C, Fass DM, Folz-Donahue K, MacDonald ME, Haggarty SJ. Highly Expandable Human iPS Cell-Derived Neural Progenitor Cells (NPC) and Neurons for Central Nervous System Disease Modeling and High-Throughput Screening. ACTA ACUST UNITED AC 2017; 92:21.8.1-21.8.21. [PMID: 28075486 DOI: 10.1002/cphg.33] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reprogramming of human somatic cells into induced pluripotent stem (iPS) cells has greatly expanded the set of research tools available to investigate the molecular and cellular mechanisms underlying central nervous system (CNS) disorders. Realizing the promise of iPS cell technology for the identification of novel therapeutic targets and for high-throughput drug screening requires implementation of methods for the large-scale production of defined CNS cell types. Here we describe a protocol for generating stable, highly expandable, iPS cell-derived CNS neural progenitor cells (NPC) using multi-dimensional fluorescence activated cell sorting (FACS) to purify NPC defined by cell surface markers. In addition, we describe a rapid, efficient, and reproducible method for generating excitatory cortical-like neurons from these NPC through inducible expression of the pro-neural transcription factor Neurogenin 2 (iNgn2-NPC). Finally, we describe methodology for the use of iNgn2-NPC for probing human neuroplasticity and mechanisms underlying CNS disorders using high-content, single-cell-level automated microscopy assays. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Chialin Cheng
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kat Folz-Donahue
- Harvard Stem Cell Institute and Center for Regenerative Medicine Flow Cytometry Core Facility, Massachusetts General Hospital, Boston, Massachusetts.,Currently at FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Marcy E MacDonald
- Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Center for Human Genetic Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|