1
|
Zhou P, Xu HJ, Wang L. Cardiovascular protective effects of natural flavonoids on intestinal barrier injury. Mol Cell Biochem 2025; 480:3343-3362. [PMID: 39820766 DOI: 10.1007/s11010-025-05213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Natural flavonoids may be utilized as an important therapy for cardiovascular diseases (CVDs) caused by intestinal barrier damage. More research is being conducted on the protective properties of natural flavonoids against intestinal barrier injury, although the underlying processes remain unknown. Thus, the purpose of this article is to present current research on natural flavonoids to reduce the incidence of CVDs by protecting intestinal barrier injury, with a particular emphasis on intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression). Furthermore, the mechanisms driving intestinal barrier injury development are briefly explored, as well as natural flavonoids having CVD-protective actions on the intestinal barrier. In addition, natural flavonoids with myocardial protective effects were docked with ZO-1 targets to find natural products with higher activity. These natural flavonoids can improve intestinal mechanical barrier function through anti-oxidant or anti-inflammatory mechanism, and then prevent the occurrence and development of CVDs.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hui-Juan Xu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
2
|
Faysal M, Al Amin M, Zehravi M, Sweilam SH, Arjun UVNV, Gupta JK, Shanmugarajan TS, Prakash SS, Dayalan G, Kasimedu S, Madhuri YB, Reddy KTK, Rab SO, Al Fahaid AAF, Emran TB. Therapeutic potential of flavonoids in neuroprotection: brain and spinal cord injury focus. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03888-4. [PMID: 40014123 DOI: 10.1007/s00210-025-03888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Flavonoids in fruits, vegetables, and plant-based drinks have potential neuroprotective properties, with clinical research focusing on their role in reducing oxidative stress, controlling inflammation, and preventing apoptosis. Some flavonoids, such as quercetin, kaempferol, fisetin, apigenin, luteolin, chrysin, baicalein, catechin, epigallocatechin gallate, naringenin, naringin, hesperetin, genistein, rutin, silymarin, and daidzein, have been presented to help heal damage to the central nervous system by affecting key signaling pathways including PI3K/Akt and NF-κB. This review systematically analyzed articles on flavonoids, neuroprotection, and brain and spinal cord injury from primary medical databases like Scopus, PubMed, and Web of Science. Flavonoids enhance antioxidant defenses, reduce pro-inflammatory cytokine production, and aid cell survival and repair by focusing on specific molecular pathways. Clinical trials are also exploring the application of preclinical results to therapeutic approaches for patients with spinal cord injury and traumatic brain injury. Flavonoids can enhance injury healing, reduce lesion size, and enhance synaptic plasticity and neurogenesis. The full potential of flavonoids lies in their bioavailability, dose, and administration methods, but there are still challenges to overcome. This review explores flavonoid-induced neuroprotection, its clinical implications, future research opportunities, and molecular mechanisms, highlighting the potential for innovative CNS injury therapies and improved patient health outcomes.
Collapse
Affiliation(s)
- Md Faysal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh.
| | - Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Thukani Sathanantham Shanmugarajan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Sarandeep Shanmugam Prakash
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Girija Dayalan
- Department of Pharmaceutics, Technology and Advanced Studies (VISTAS), Vels Institute of Science, PV Vaithiyalingam Rd, Velan Nagar, Krishna Puram, Pallavaram, Chennai, 600117, Tamil Nadu, India
| | - Saravanakumar Kasimedu
- Department of Pharmaceutics, Seven Hills College of Pharmacy (Autonomous), Venkatramapuram, Tirupati, Andhra Pradesh, 517561, India
| | - Y Bala Madhuri
- Piramal Pharma Solutions in Sellersville, Sellersville, PA, USA
| | - Konatham Teja Kumar Reddy
- Department of Pharmacy, University College of Technology, Osmania University, Hyderabad, 500007, Telangana, India
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1216, Bangladesh
| |
Collapse
|
3
|
Lucke-Wold B, Zasler ND, Ruchika FNU, Weisman S, Le D, Brunicardi J, Kong I, Ghumman H, Persad S, Mahan D, Delawan M, Shah S, Aghili-Mehrizi S. Supplement and nutraceutical therapy in traumatic brain injury. Nutr Neurosci 2024:1-35. [DOI: 10.1080/1028415x.2024.2404782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2025]
Affiliation(s)
| | - Nathan D. Zasler
- Founder, CEO & CMO, Concussion Care Centre of Virginia, Ltd., Medical Director, Tree of Life, Richmond, VA, USA
- Professor, affiliate, Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA, USA
- Professor, Visiting, Department of Physical Medicine and Rehabilitation, University of Virginia, Charlottesville, VA, USA
- Vice-Chairperson, IBIA, London, UK
- Chair Emeritus, IBIA, London, UK
| | - FNU Ruchika
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Sydney Weisman
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Dao Le
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Jade Brunicardi
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Iris Kong
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Haider Ghumman
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Sarah Persad
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - David Mahan
- Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Maliya Delawan
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
4
|
Liu Z, Zhu J, Pan E, Pang L, Zhou X, Che Y. Paeonol Alleviates Subarachnoid Hemorrhage Injury in Rats Through Upregulation of SIRT1 and Inhibition of HMGB1/TLR4/MyD88/NF-κB Pathway. J Biochem Mol Toxicol 2024; 38:e70035. [PMID: 39552449 DOI: 10.1002/jbt.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/19/2024]
Abstract
Paeonol is a principle bioactive compound separated from the root bark of Cortex Moutan and has been shown to confer various biological functions, including antineuroinflammation and neuroprotection. Inflammation, blood-brain barrier (BBB), permeability, and apoptosis are three major underlying mechanisms involved in early brain injury (EBI) postsubarachnoid hemorrhage (SAH). This study aimed to detect the roles and mechanisms of paeonol in EBI following SAH. A SAH model was established by an endovascular perforation method in Sprague-Dawley rats. The localizations of HMGB1 and p65 were identified by immunofluorescence staining. Protein levels were measured by western blot analysis. The serum levels of HMGB1 and the levels of inflammatory cytokines in the brain cortex were evaluated by ELISA. Hematoxylin and eosin staining was conducted to detect neuronal degeneration. Brain water content and Evans blue extravasation were assessed to determine EBI. Neuronal apoptosis was examined by TUNEL. Paeonol deacetylated HMGB1 by upregulating SIRT1 level. SIRT1 inhibition attenuated the protective effects of paeonol against neurological dysfunctions, brain edema, and BBB disruption. SIRT1 inhibition rescued the paeonol-induced inhibition in inflammatory response. The paeonol-induced decrease in neuronal apoptosis was restored by SIRT1 inhibitor. The paeonol-mediated deactivated TLR4/MyD88/NF-κB pathway was activated by SIRT1 inhibitor. Paeonol alleviates the SAH injury in rats by upregulating SIRT1 to inactivate the HMGB1/TLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| | - Jun Zhu
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| | - Enyu Pan
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| | - Lujun Pang
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| | - Xiwei Zhou
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| | - Yanjun Che
- Department of Neurosurgery, Jingjiang People's Hospital, Jingjiang, China
| |
Collapse
|
5
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
6
|
Tan J, Zhu H, Zeng Y, Li J, Zhao Y, Li M. Therapeutic Potential of Natural Compounds in Subarachnoid Haemorrhage. Neuroscience 2024; 546:118-142. [PMID: 38574799 DOI: 10.1016/j.neuroscience.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a common and fatal cerebrovascular disease with high morbidity, mortality and very poor prognosis worldwide. SAH can induce a complex series of pathophysiological processes, and the main factors affecting its prognosis are early brain injury (EBI) and delayed cerebral ischemia (DCI). The pathophysiological features of EBI mainly include intense neuroinflammation, oxidative stress, neuronal cell death, mitochondrial dysfunction and brain edema, while DCI is characterized by delayed onset ischemic neurological deficits and cerebral vasospasm (CVS). Despite much exploration in people to improve the prognostic outcome of SAH, effective treatment strategies are still lacking. In recent years, numerous studies have shown that natural compounds of plant origin have unique neuro- and vascular protective effects in EBI and DCI after SAH and long-term neurological deficits, which mainly include inhibition of inflammatory response, reduction of oxidative stress, anti-apoptosis, and improvement of blood-brain barrier and cerebral vasospasm. The aim of this paper is to systematically explore the processes of neuroinflammation, oxidative stress, and apoptosis in SAH, and to summarize natural compounds as potential targets for improving the prognosis of SAH and their related mechanisms of action for future therapies.
Collapse
Affiliation(s)
- Jiacong Tan
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Huaxin Zhu
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yanyang Zeng
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Jiawei Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Yeyu Zhao
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
7
|
Jiang Y, Tang X, Deng P, Jiang C, He Y, Hao D, Yang H. The Neuroprotective Role of Fisetin in Different Neurological Diseases: a Systematic Review. Mol Neurobiol 2023; 60:6383-6394. [PMID: 37453993 DOI: 10.1007/s12035-023-03469-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Neurological diseases place a substantial burden on public health and have a serious impact on the quality of life of patients. Despite the multifaceted pathological process involved in the occurrence and development of these neurological diseases, each disease has its own unique pathological characteristics and underlying molecular mechanisms which trigger their onset. Thus, it is unlikely to achieve effective treatment of neurological diseases by means of a single approach. To this end, we reason that it is pivotal to seek an efficient strategy that implements multitherapeutic targeting and addresses the multifaceted pathological process to overcome the complex issues related to neural dysfunction. In recent years, natural medicinal plant-derived monomers have received extensive attention as new neuroprotective agents for treatment of neurological disorders. Fisetin, a flavonoid, has emerged as a novel potential molecule that enhances neural protection and reverses cognitive abnormalities. The neuroprotective effects of fisetin are attributed to its multifaceted biological activity and multiple therapeutic mechanisms associated with different neurological disorders. In this review article, we summarize recent research progression regarding the pharmacological effects of fisetin in treating several neurological diseases and the potential mechanisms.
Collapse
Affiliation(s)
- Yizhen Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Xiangwen Tang
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Peng Deng
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Chao Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
8
|
Tang X, Deng P, Jiang Y, Zhang L, He Y, Yang H. An Overview of Recent Advances in the Neuroprotective Potentials of Fisetin against Diverse Insults in Neurological Diseases and the Underlying Signaling Pathways. Biomedicines 2023; 11:2878. [PMID: 38001882 PMCID: PMC10669030 DOI: 10.3390/biomedicines11112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
The nervous system plays a leading role in the regulation of physiological functions and activities in the body. However, a variety of diseases related to the nervous system have a serious impact on human health. It is increasingly clear that neurological diseases are multifactorial pathological processes involving multiple cellular systems, and the onset of these diseases usually involves a diverse array of molecular mechanisms. Unfortunately, no effective therapy exists to slow down the progression or prevent the development of diseases only through the regulation of a single factor. To this end, it is pivotal to seek an ideal therapeutic approach for challenging the complicated pathological process to achieve effective treatment. In recent years, fisetin, a kind of flavonoid widely existing in fruits, vegetables and other plants, has shown numerous interesting biological activities with clinical potentials including anti-inflammatory, antioxidant and neurotrophic effects. In addition, fisetin has been reported to have diverse pharmacological properties and neuroprotective potentials against various neurological diseases. The neuroprotective effects were ascribed to its unique biological properties and multiple clinical pharmacological activities associated with the treatment of different neurological disorders. In this review, we summarize recent research progress regarding the neuroprotective potential of fisetin and the underlying signaling pathways of the treatment of several neurological diseases.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Peng Deng
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Yizhen Jiang
- Basic Medical School Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang 712046, China; (P.D.); (Y.J.)
| | - Lingling Zhang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China;
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (X.T.); (L.Z.)
| |
Collapse
|
9
|
Kojder K, Jarosz K, Bosiacki M, Andrzejewska A, Zacha S, Solek-Pastuszka J, Jurczak A. Cerebrolysin in Patients with Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. J Clin Med 2023; 12:6638. [PMID: 37892776 PMCID: PMC10607250 DOI: 10.3390/jcm12206638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Subarachnoid Hemorrhage (SAH) is one of the acute neurological conditions that is associated with high mortality and recovery failure rates. In recent years, due to the development of endovascular and classical techniques, the mortality rate after SAH has decreased. Currently, more research is focused on understanding the molecular mechanisms underlying SAH. Methods of treatment are investigated in order to obtain the best treatment result, not only survival. One of the drugs used in stroke, including SAH, is Cerebrolysin. It is a mixture of neuropeptides that has similar properties to neurotrophic factors. Its positive impact on strokes has been analyzed; however, there are no meta-analyses concerning only the subpopulation of patients diagnosed with SAH in the current literature. Therefore, we conducted a meta-analysis of available clinical trials to evaluate the effect of Cerebrolysin on the treatment outcome. The data suggest a positive effect of Cerebrolysin on the mortality of SAH patients. However, further randomized clinical trials with larger groups of patients are needed to draw final conclusions.
Collapse
Affiliation(s)
- Klaudyna Kojder
- Anesthesiology and Intensive Care Department, Pomeranian Medical University, 70-210 Szczecin, Poland;
| | - Konrad Jarosz
- Department of Specialist Nursing, Pomeranian Medical University, 70-210 Szczecin, Poland;
| | - Mateusz Bosiacki
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University, Zołnierska 54 Str., 71-210 Szczecin, Poland; (M.B.); (A.J.)
| | - Agata Andrzejewska
- Anesthesiology and Intensive Care Department, University Hospital 1, 72-252 Szczecin, Poland;
| | - Sławomir Zacha
- Department of Pediatric Orthopedics and Oncology of the Musculoskeletal System, Pomeranian Medical University, 70-210 Szczecin, Poland;
| | - Joanna Solek-Pastuszka
- Anesthesiology and Intensive Care Department, Pomeranian Medical University, 70-210 Szczecin, Poland;
| | - Anna Jurczak
- Department of Specialist Nursing, Pomeranian Medical University, 70-210 Szczecin, Poland;
| |
Collapse
|
10
|
Silvestro S, Mazzon E. Nrf2 Activation: Involvement in Central Nervous System Traumatic Injuries. A Promising Therapeutic Target of Natural Compounds. Int J Mol Sci 2022; 24:199. [PMID: 36613649 PMCID: PMC9820431 DOI: 10.3390/ijms24010199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Central nervous system (CNS) trauma, such as traumatic brain injury (TBI) and spinal cord injury (SCI), represents an increasingly important health burden in view of the preventability of most injuries and the complex and expensive medical care that they necessitate. These injuries are characterized by different signs of neurodegeneration, such as oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. Cumulative evidence suggests that the transcriptional factor nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial defensive role in regulating the antioxidant response. It has been demonstrated that several natural compounds are able to activate Nrf2, mediating its antioxidant response. Some of these compounds have been tested in experimental models of SCI and TBI, showing different neuroprotective properties. In this review, an overview of the preclinical studies that highlight the positive effects of natural bioactive compounds in SCI and TBI experimental models through the activation of the Nrf2 pathway has been provided. Interestingly, several natural compounds can activate Nrf2 through multiple pathways, inducing a strong antioxidant response against CNS trauma. Therefore, some of these compounds could represent promising therapeutic strategies for these pathological conditions.
Collapse
Affiliation(s)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| |
Collapse
|
11
|
Mitochondrial Aging and Senolytic Natural Products with Protective Potential. Int J Mol Sci 2022; 23:ijms232416219. [PMID: 36555859 PMCID: PMC9784569 DOI: 10.3390/ijms232416219] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Living organisms do not disregard the laws of thermodynamics and must therefore consume energy for their survival. In this way, cellular energy exchanges, which aim above all at the production of ATP, a fundamental molecule used by the cell for its metabolisms, favor the formation of waste products that, if not properly disposed of, can contribute to cellular aging and damage. Numerous genes have been linked to aging, with some favoring it (gerontogenes) and others blocking it (longevity pathways). Animal model studies have shown that calorie restriction (CR) may promote longevity pathways, but given the difficult application of CR in humans, research is investigating the use of CR-mimetic substances capable of producing the same effect. These include some phytonutrients such as oleuropein, hydroxytyrosol, epigallo-catechin-gallate, fisetin, quercetin, and curcumin and minerals such as magnesium and selenium. Some of them also have senolytic effects, which promote the apoptosis of defective cells that accumulate over the years (senescent cells) and disrupt normal metabolism. In this article, we review the properties of these natural elements that can promote a longer and healthier life.
Collapse
|
12
|
Wang L, Geng G, Zhu T, Chen W, Li X, Gu J, Jiang E. Progress in Research on TLR4-Mediated Inflammatory Response Mechanisms in Brain Injury after Subarachnoid Hemorrhage. Cells 2022; 11:cells11233781. [PMID: 36497041 PMCID: PMC9740134 DOI: 10.3390/cells11233781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is one of the common clinical neurological emergencies. Its incidence accounts for about 5-9% of cerebral stroke patients. Even surviving patients often suffer from severe adverse prognoses such as hemiplegia, aphasia, cognitive dysfunction and even death. Inflammatory response plays an important role during early nerve injury in SAH. Toll-like receptors (TLRs), pattern recognition receptors, are important components of the body's innate immune system, and they are usually activated by damage-associated molecular pattern molecules. Studies have shown that with TLR 4 as an essential member of the TLRs family, the inflammatory transduction pathway mediated by it plays a vital role in brain injury after SAH. After SAH occurrence, large amounts of blood enter the subarachnoid space. This can produce massive damage-associated molecular pattern molecules that bind to TLR4, which activates inflammatory response and causes early brain injury, thus resulting in serious adverse prognoses. In this paper, the process in research on TLR4-mediated inflammatory response mechanism in brain injury after SAH was reviewed to provide a new thought for clinical treatment.
Collapse
Affiliation(s)
- Lintao Wang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Guangping Geng
- Henan Technician College of Medicine and Health, Kaifeng 475000, China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng 475001, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Xiaohui Li
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Jianjun Gu
- Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
13
|
Chen J, Zheng ZV, Lu G, Chan WY, Zhang Y, Wong GKC. Microglia activation, classification and microglia-mediated neuroinflammatory modulators in subarachnoid hemorrhage. Neural Regen Res 2021; 17:1404-1411. [PMID: 34916410 PMCID: PMC8771101 DOI: 10.4103/1673-5374.330589] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Subarachnoid hemorrhage is a devastating disease with significant mortality and morbidity, despite advances in treating cerebral aneurysms. There has been recent progress in the intensive care management and monitoring of patients with subarachnoid hemorrhage, but the results remain unsatisfactory. Microglia, the resident immune cells of the brain, are increasingly recognized as playing a significant role in neurological diseases, including subarachnoid hemorrhage. In early brain injury following subarachnoid hemorrhage, microglial activation and neuroinflammation have been implicated in the development of disease complications and recovery. To understand the disease processes following subarachnoid hemorrhage, it is important to focus on the modulators of microglial activation and the pro-inflammatory/anti-inflammatory cytokines and chemokines. In this review, we summarize research on the modulators of microglia-mediated inflammation in subarachnoid hemorrhage, including transcriptome changes and the neuroinflammatory signaling pathways. We also describe the latest developments in single-cell transcriptomics for microglia and summarize advances that have been made in the transcriptome-based classification of microglia and the implications for microglial activation and neuroinflammation.
Collapse
Affiliation(s)
- Junfan Chen
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Zhiyuan Vera Zheng
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Neurosurgery, Hainan Branch of Chinese People's Liberation Army General Hospital, Sanya, Hainan Province, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong; Bioinformatics Unit, SDIVF R&D Centre, Hong Kong Science and Technology Parks, Hong Kong Special Administrative Region, China
| | - Wai Yee Chan
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yisen Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
14
|
Ravula AR, Teegala SB, Kalakotla S, Pasangulapati JP, Perumal V, Boyina HK. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur J Pharmacol 2021; 910:174492. [PMID: 34516952 DOI: 10.1016/j.ejphar.2021.174492] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/04/2021] [Accepted: 09/06/2021] [Indexed: 01/06/2023]
Abstract
Neurodegenerative disorders pose a significant health burden and imprint a debilitative impact on the quality of life. Importantly, aging is intricately intertwined with the progression of these disorders, and their prevalence increases with a rise in the aging population worldwide. In recent times, fisetin emerged as one of the potential miracle molecules to address neurobehavioral and cognitive abnormalities. These effects were attributed to its actions on several macromolecules and multiple molecular mechanisms. Fisetin belongs to a class of flavonoids, which is found abundantly in several fruits and vegetables. Fisetin has manifested several health benefits in preclinical models of neurodegenerative diseases such as Alzheimer's disease, Vascular dementia, and Schizophrenia. Parkinson's disease, Amyotrophic Lateral Sclerosis, Huntington's disease, Stroke, Traumatic Brain Injury (TBI), and age-associated changes. This review aimed to evaluate the potential mechanisms and pharmacological effects of fisetin in treating several neurological diseases. This review also provides comprehensive data on up-to-date recent literature and highlights the various mechanistic pathways pertaining to fisetin's neuroprotective role.
Collapse
Affiliation(s)
- Arun Reddy Ravula
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Rowan University, Graduate School of Biomedical Sciences, Stratford, New Jersey, USA
| | - Suraj Benerji Teegala
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India
| | - Shanker Kalakotla
- Department of Pharmacognosy & Phyto-Pharmacy, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Jagadeesh Prasad Pasangulapati
- Department of Pharmacology, School of Pharmacy, Anurag Group of Institutions (formerly Lalitha College of Pharmacy), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India; Treventis Corporation, Department of Pharmacology, Krembil Discovery Tower, 4th Floor, Suite 4KD472, 60 Leonard Avenue, Toronto, ON, M5T 0S8, Canada
| | - Venkatesan Perumal
- Irma Lerma Rangel College of Pharmacy, Health Science Centre, Texas A&M University (TAMU), Texas, 77843, USA
| | - Hemanth Kumar Boyina
- Department of Pharmacology, School of Pharmacy, Anurag University (formerly Anurag Group of Institutions), Ghatkesar, Medchal, Hyderabad, Telangana, 500088, India.
| |
Collapse
|
15
|
Lua J, Ekanayake K, Fangman M, Doré S. Potential Role of Soluble Toll-like Receptors 2 and 4 as Therapeutic Agents in Stroke and Brain Hemorrhage. Int J Mol Sci 2021; 22:ijms22189977. [PMID: 34576137 PMCID: PMC8470802 DOI: 10.3390/ijms22189977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/29/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Hemolysis is a physiological condition in which red blood cells (RBCs) lyse, releasing their contents into the extracellular environment. Hemolysis can be a manifestation of several diseases and conditions, such as sickle cell disease, hemorrhagic stroke, and trauma. Heme and hemoglobin are among the unique contents of RBCs that are released into the environment. Although these contents can cause oxidative stress, especially when oxidized in the extracellular environment, they can also initiate a proinflammatory response because they bind to receptors such as the Toll-like receptor (TLR) family. This review seeks to clarify the mechanism by which TLRs initiate a proinflammatory response to heme, hemoglobin, and their oxidized derivatives, as well as the possibility of using soluble TLRs (sTLRs) as therapeutic agents. Furthermore, this review explores the possibility of using sTLRs in hemorrhagic disorders in which mitigating inflammation is essential for clinical outcomes, including hemorrhagic stroke and its subtypes, intracerebral hemorrhage (ICH), and subarachnoid hemorrhage (SAH).
Collapse
Affiliation(s)
- Josh Lua
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.L.); (K.E.); (M.F.)
| | - Kanishka Ekanayake
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.L.); (K.E.); (M.F.)
| | - Madison Fangman
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.L.); (K.E.); (M.F.)
| | - Sylvain Doré
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (J.L.); (K.E.); (M.F.)
- Center for Translational Research in Neurodegenerative Disease, Departments of Psychiatry, Pharmaceutics and Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Correspondence: ; Tel.: +1-352-273-9663
| |
Collapse
|
16
|
Ashayeri Ahmadabad R, Mirzaasgari Z, Gorji A, Khaleghi Ghadiri M. Toll-Like Receptor Signaling Pathways: Novel Therapeutic Targets for Cerebrovascular Disorders. Int J Mol Sci 2021; 22:ijms22116153. [PMID: 34200356 PMCID: PMC8201279 DOI: 10.3390/ijms22116153] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Toll-like receptors (TLRs), a class of pattern recognition proteins, play an integral role in the modulation of systemic inflammatory responses. Cerebrovascular diseases (CVDs) are a group of pathological conditions that temporarily or permanently affect the brain tissue mostly via the decrease of oxygen and glucose supply. TLRs have a critical role in the activation of inflammatory cascades following hypoxic-ischemic events and subsequently contribute to neuroprotective or detrimental effects of CVD-induced neuroinflammation. The TLR signaling pathway and downstream cascades trigger immune responses via the production and release of various inflammatory mediators. The present review describes the modulatory role of the TLR signaling pathway in the inflammatory responses developed following various CVDs and discusses the potential benefits of the modulation of different TLRs in the improvement of functional outcomes after brain ischemia.
Collapse
Affiliation(s)
- Rezan Ashayeri Ahmadabad
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
| | - Zahra Mirzaasgari
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Department of Neurology, Iran University of Medical Sciences, Tehran 1593747811, Iran
| | - Ali Gorji
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran 1996835911, Iran; (R.A.A.); (Z.M.)
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149 Münster, Germany
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Department of Neurosurgery, Westfälische Wilhelms-Universität, 48149 Münster, Germany;
- Department of Neurology, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-8355564; Fax: +49-251-8347479
| | | |
Collapse
|
17
|
Abstract
Neurological disorders, including neurodegenerative diseases, have a significant negative impact on both patients and society at large. Since the prevalence of most of these disorders increases with age, the consequences for our aging population are only going to grow. It is now acknowledged that neurological disorders are multi-factorial involving disruptions in multiple cellular systems. While each disorder has specific initiating mechanisms and pathologies, certain common pathways appear to be involved in most, if not all, neurological disorders. Thus, it is becoming increasingly important to identify compounds that can modulate the multiple pathways that contribute to disease development or progression. One of these compounds is the flavonol fisetin. Fisetin has now been shown in preclinical models to be effective at preventing the development and/or progression of multiple neurological disorders including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, stroke (both ischemic and hemorrhagic) and traumatic brain injury as well as to reduce age-associated changes in the brain. These beneficial effects stem from its actions on multiple pathways associated with the different neurological disorders. These actions include its well characterized anti-inflammatory and anti-oxidant effects as well as more recently described effects on the regulated cell death oxytosis/ferroptosis pathway, the gut microbiome and its senolytic activity. Therefore, the growing body of pre-clinical data, along with fisetin’s ability to modulate a large number of pathways associated with brain dysfunction, strongly suggest that it would be worthwhile to pursue its therapeutic effects in humans.
Collapse
Affiliation(s)
- Pamela Maher
- Salk Institute for Biological Studies, 10010 N. Torrey Pines Rd., La Jolla, CA
| |
Collapse
|
18
|
Wang Y, Han Z, Wang B, Luo Y, Zhou S, Wang Z, Tian Y, Zhang J. Gene expression profiles and related immune-inflammatory factors in the cerebral arteries in mouse models of subarachnoid haemorrhage. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1829049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Yi Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, PR China
| | - Zhenfeng Han
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, PR China
| | - Bo Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, PR China
| | - Yuanbo Luo
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, PR China
| | - Shuai Zhou
- Department of ICU, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, PR China
| | - Ye Tian
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, PR China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, PR China
- Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education & Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, PR China
| |
Collapse
|
19
|
Akpa AR, Ayo JO, Mika'il HG, Zakari FO. Protective effect of fisetin against subchronic chlorpyrifos-induced toxicity on oxidative stress biomarkers and neurobehavioral parameters in adult male albino mice. Toxicol Res 2020; 37:163-171. [PMID: 33868974 DOI: 10.1007/s43188-020-00049-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Chlorpyrifos (CPF), a chlorinated organophosphate insecticide that is widely used in agriculture and public health, has neurotoxic effects in animals. In addition to acetylcholinesterase inhibition, CPF has been shown to induce alterations such as oxidative stress and lipid peroxidation. Fisetin is a dietary flavonol that protects the brain tissue against oxidative stress by modulating the activity of antioxidant enzymes. This study was designed to investigate the protective role of fisetin against brain oxidative damages and neurobehavioral parameters induced by subchronic oral exposure to CPF in albino mice. Adult albino mice (males, n = 32, weighing 20 ~ 25 g) were assigned randomly into 4 groups and treated accordingly for 7 weeks as follows: Group 1(S/OIL): served as the control group and were given 2 ml/kg of soya oil; Group 2 (CPF): received CPF (6.6 mg/kg; 1/5th of the LD50); Group 3 (FIS): fisetin (15 mg/kg) and Group 4 (FIS + CPF): received fisetin at 15 mg/kg, followed by CPF (6.6 mg/kg) 30 min later. Co-treatment with FIS + CPF mitigated the increase in brain malondialdehyde concentration (0.28 ± 0.02 nmol/mg) and orchestrated the increase in the activities of catalase (81.35 ± 7.26 µ/mg), superoxide dismutase (93.03 ± 6.63 IU/mL), glutathione peroxidase (68.76 ± 3.554 nmol/mL) and acetylcholinesterase (11.59 ± 0.72 nmol/min/mL) when compared to the CPF group. The result showed that deficits in motor strength and excitability scores induced by subchronic CPF were mitigated by fisetin administration. It was concluded that fisetin has a protective potential in mitigating against oxidative stress and damages in the brain tissues, induced by subchronic exposure to CPF in adult male albino mice.
Collapse
Affiliation(s)
- Amaka Rosita Akpa
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Joseph Olusegun Ayo
- Department of Veterinary Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Hudu Garba Mika'il
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Friday Ocheja Zakari
- Department of Veterinary Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria
| |
Collapse
|
20
|
|
21
|
Li ZG, Shui SF, Han XW, Yan L. NLRP10 ablation protects against ischemia/reperfusion-associated brain injury by suppression of neuroinflammation. Exp Cell Res 2020; 389:111912. [PMID: 32084391 DOI: 10.1016/j.yexcr.2020.111912] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/19/2022]
Abstract
Ischemic stroke leads to neuronal cell death and induces a cascade of inflammatory signals that results in secondary brain damage. Although constant efforts to develop therapeutic strategies and to reveal the molecular mechanism resulting in the physiopathology of this disease, much still remains unclear. Membrane-bound Toll-like receptors (TLRs) and cytosolic nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) are two major families of pattern recognition receptors that initiate pro-inflammatory signaling pathways. In the present study, we explored the role of NLRP10 in regulating inflammatory responses in acute ischemic stroke using the wild type (WT) and NLRP10 knockout (KO) mice by inducing middle cerebral artery occlusion/reperfusion (MCAO) injuries. The study first showed that NLRP10 was over-expressed in the ischemic penumbra of WT mice. Then, the brain infarct volume was significantly decreased, and the moving activity was improved post-MCAO in mice with NLRP10 knockout. Apoptosis was also alleviated by NLRP10-knockout, as evidenced by the decreased number of TUNEL-staining cells. Further, NLRP10 deficiency attenuated the activation of glia cells in hippocampus of mice with MCAO operation. NLRP10 inhibition ameliorated the levels of inflammatory factors in peripheral blood serum and hippocampus of mice after stroke. The activation of toll-like receptor (TLR)-4/nuclear factor-κB (NF-κB) signaling pathways was markedly suppressed by NLRP10 ablation in mice after MCAO treatment. Importantly, inflammasome, including NLRP12, ASC and Caspase-1, induced by MCAO in hippocampus of mice was clearly impeded by the loss of NLRP10. The results above were mainly verified in LPS-incubated astrocytes in the absence of NLRP10. Correspondingly, in LPS-treated astrocytes, NLRP10 knockout-reduced inflammation via impairing TLR-4/NF-κB and NLRP12/ASC/Caspase-1 pathways was evidently restored by over-expressing NLRP10. Therefore, the results above indicated an essential role of NLRP10 in regulating ischemic stroke, presenting NLRP10 as a promising target to protect human against stroke.
Collapse
Affiliation(s)
- Zhi-Guo Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China.
| | - Shao-Feng Shui
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China
| | - Xin-Wei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China
| | - Lei Yan
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, 450052, China
| |
Collapse
|
22
|
Wang Q, Luo Q, Zhao YH, Chen X. Toll-like receptor-4 pathway as a possible molecular mechanism for brain injuries after subarachnoid hemorrhage. Int J Neurosci 2020; 130:953-964. [PMID: 31903827 DOI: 10.1080/00207454.2019.1709845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Subarachnoid hemorrhage (SAH) is known as an acute catastrophic neurological disease that continues to be a serious and significant health problem worldwide. The mechanisms contributing to brain injury after SAH remain unclear despite decades of study focusing on early brain injury (EBI) and delayed brain injury (DBI). Neuroinflammation is a well-recognized consequence of SAH and may be responsible for EBI, cerebral vasospasm, and DBI. Toll-like receptors (TLRs) play a crucial role in the inflammatory response by recognizing damage-associated molecular patterns derived from the SAH. TLR4 is the most studied Toll-like receptor and is widely expressed in the central nervous system (CNS). It can be activated by the extravasated blood components in myeloid differentiation primary response-88/Toll/interleukin-1 receptor-domain-containing adapter-inducing interferon-β (MyD88/TRIF)-dependent pathway after SAH. Transcription factors, such as nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF), that regulate the expression of proinflammatory cytokine genes are initiated by the activation of TLR4, which cause the brain damage after SAH. TLR4 may therefore be a useful therapeutic target for overcoming EBI and DBI in post-SAH neuroinflammation, thereby improving SAH outcome. In the present review, we summarized recent findings from basic and clinical studies of SAH, with a primary focus on the biological characteristics and functions of TLR4 and discussed the mechanisms associated with TLR4 signaling pathway in EBI and DBI following SAH.
Collapse
Affiliation(s)
- Qunhui Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Qi Luo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Yu-Hao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
23
|
Li Y, Wu P, Bihl JC, Shi H. Underlying Mechanisms and Potential Therapeutic Molecular Targets in Blood-Brain Barrier Disruption after Subarachnoid Hemorrhage. Curr Neuropharmacol 2020; 18:1168-1179. [PMID: 31903882 PMCID: PMC7770641 DOI: 10.2174/1570159x18666200106154203] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/04/2020] [Indexed: 01/01/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a subtype of hemorrhagic stroke with significant morbidity and mortality. Aneurysmal bleeding causes elevated intracranial pressure, decreased cerebral blood flow, global cerebral ischemia, brain edema, blood component extravasation, and accumulation of breakdown products. These post-SAH injuries can disrupt the integrity and function of the blood-brain barrier (BBB), and brain tissues are directly exposed to the neurotoxic blood contents and immune cells, which leads to secondary brain injuries including inflammation and oxidative stress, and other cascades. Though the exact mechanisms are not fully clarified, multiple interconnected and/or independent signaling pathways have been reported to be involved in BBB disruption after SAH. In addition, alleviation of BBB disruption through various pathways or chemicals has a neuroprotective effect on SAH. Hence, BBB permeability plays an important role in the pathological course and outcomes of SAH. This review discusses the recent understandings of the underlying mechanisms and potential therapeutic targets in BBB disruption after SAH, emphasizing the dysfunction of tight junctions and endothelial cells in the development of BBB disruption. The emerging molecular targets, including toll-like receptor 4, netrin-1, lipocalin-2, tropomyosin-related kinase receptor B, and receptor tyrosine kinase ErbB4, are also summarized in detail. Finally, we discussed the emerging treatments for BBB disruption after SAH and put forward our perspectives on future research.
Collapse
Affiliation(s)
| | | | - Ji C. Bihl
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| | - Huaizhang Shi
- Address correspondence to these authors at the Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio, 45435, USA; Tel: 011-01-9377755243; Fax: 011-01-9377757221; E-mail: and Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Tel: +86-15545107889; E-mail:
| |
Collapse
|
24
|
Zhang J, Yin J, Zhao D, Wang C, Zhang Y, Wang Y, Li T. Therapeutic effect and mechanism of action of quercetin in a rat model of osteoarthritis. J Int Med Res 2019; 48:300060519873461. [PMID: 31842639 PMCID: PMC7607207 DOI: 10.1177/0300060519873461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Objective To study the therapeutic effect and mechanism of action of quercetin in a rat
model of osteoarthritis (OA). Methods The OA rat model was established by intra-articular injection of papain.
Changes in knee diameter, toe volume and histopathology were measured.
Levels of interleukin (IL)-β and tumor necrosis factor (TNF)-α were assessed
by ELISA. Relative expression of Toll-like receptor (TLR)-4 and nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) was evaluated
by western blotting. Results Compared with rats treated with papain alone, changes in knee diameter, toe
volume and Makin' s score were less apparent in OA rats treated with
quercetin. Levels of serum IL-1β and TNF-α were also reduced in
quercetin-treated OA rats. Expression of TLR-4 and NF-κB was significantly
suppressed in a dose-dependent manner in quercetin-treated OA rats. Conclusion Quercetin exhibited a therapeutic effect in OA rats, which may be related to
inhibition of IL-1β and TNF-α production via the TLR-4/NF-κB pathway.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jing Yin
- Department of Digestive Medicine, The Third People's Hospital of Yunnan Province, Kunming, China
| | - Daohong Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chaoran Wang
- Department of Orthopedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuhao Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yingsong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
25
|
Yang W, Tian ZK, Yang HX, Feng ZJ, Sun JM, Jiang H, Cheng C, Ming QL, Liu CM. Fisetin improves lead-induced neuroinflammation, apoptosis and synaptic dysfunction in mice associated with the AMPK/SIRT1 and autophagy pathway. Food Chem Toxicol 2019; 134:110824. [DOI: 10.1016/j.fct.2019.110824] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/11/2019] [Accepted: 09/16/2019] [Indexed: 01/30/2023]
|
26
|
Zhang H, Zheng W, Feng X, Yang F, Qin H, Wu S, Hou DX, Chen J. Nrf2⁻ARE Signaling Acts as Master Pathway for the Cellular Antioxidant Activity of Fisetin. Molecules 2019; 24:molecules24040708. [PMID: 30781396 PMCID: PMC6413105 DOI: 10.3390/molecules24040708] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Fisetin, a dietary flavonoid, is reported to have cellular antioxidant activity with an unclear mechanism. In this study, we investigated the effect of fisetin on the nuclear factor, erythroid 2-like 2 (Nrf2) signaling pathway in HepG2 cells to explore the cellular antioxidant mechanism. Fisetin upregulated the mRNA expression of heme oxygenase-1 (HO-1), glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase-1 (NQO1), and induced the protein of HO-1 but had no significant effect on the protein of GCLC, GCLM and NQO1. Moreover, nuclear accumulation of Nrf2 was clearly observed by immunofluorescence analysis and western blotting after fisetin treatment, and an enhanced luciferase activity of antioxidant response element (ARE)-regulated transactivation was obtained by dual-luciferase reporter gene assays. In addition, fisetin upregulated the protein level of Nrf2 and downregulated the protein level of Kelch-like ECH-associated protein 1 (Keap1). However, fisetin had no significant effect on Nrf2 mRNA expression. When protein synthesis was inhibited with cycloheximide (CHX), fisetin prolonged the half-life of Nrf2 from 15 min to 45 min. When blocking Nrf2 degradation with proteasome inhibitor MG132, ubiquitinated proteins were enhanced, and fisetin reduced ubiquitination of Nrf2. Taken together, fisetin translocated Nrf2 into the nucleus and upregulated the expression of downstream HO-1 gene by inhibiting the degradation of Nrf2 at the post-transcriptional level. These data provide the molecular mechanism to understand the cellular antioxidant activity of fisetin.
Collapse
Affiliation(s)
- Huihui Zhang
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Wan Zheng
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Fei Yang
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
| | - Shusong Wu
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| | - De-Xing Hou
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
- Course of Biological Science and Technology, The United Graduate School of Agricultural Sciences, Department of Food Science and Biotechnology, Faculty of Agriculture, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-0065, Japan.
| | - Jihua Chen
- Xiangya School of Public Health, Central South University, Changsha 410128, China.
- 1515 Core Research Program, Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China.
| |
Collapse
|
27
|
Mehta P, Pawar A, Mahadik K, Bothiraja C. Emerging novel drug delivery strategies for bioactive flavonol fisetin in biomedicine. Biomed Pharmacother 2018; 106:1282-1291. [DOI: 10.1016/j.biopha.2018.07.079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/09/2018] [Accepted: 07/14/2018] [Indexed: 02/09/2023] Open
|
28
|
Keep RF, Andjelkovic AV, Xiang J, Stamatovic SM, Antonetti DA, Hua Y, Xi G. Brain endothelial cell junctions after cerebral hemorrhage: Changes, mechanisms and therapeutic targets. J Cereb Blood Flow Metab 2018; 38:1255-1275. [PMID: 29737222 PMCID: PMC6092767 DOI: 10.1177/0271678x18774666] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
Abstract
Vascular disruption is the underlying cause of cerebral hemorrhage, including intracerebral, subarachnoid and intraventricular hemorrhage. The disease etiology also involves cerebral hemorrhage-induced blood-brain barrier (BBB) disruption, which contributes an important component to brain injury after the initial cerebral hemorrhage. BBB loss drives vasogenic edema, allows leukocyte extravasation and may lead to the entry of potentially neurotoxic and vasoactive compounds into brain. This review summarizes current information on changes in brain endothelial junction proteins in response to cerebral hemorrhage (and clot-related factors), the mechanisms underlying junction modification and potential therapeutic targets to limit BBB disruption and, potentially, hemorrhage occurrence. It also addresses advances in the tools that are now available for assessing changes in junctions after cerebral hemorrhage and the potential importance of such junction changes. Recent studies suggest post-translational modification, conformational change and intracellular trafficking of junctional proteins may alter barrier properties. Understanding how cerebral hemorrhage alters BBB properties beyond changes in tight junction protein loss may provide important therapeutic insights to prevent BBB dysfunction and restore normal function.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
| | - Anuska V Andjelkovic
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Ann Arbor, MI, USA
| | - Jianming Xiang
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | | | - David A Antonetti
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor, MI, USA
- Department of Ophthalmology & Visual Science Medical School, University of Michigan Ann Arbor, MI, USA
| | - Ya Hua
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
29
|
Biochanin A Reduces Inflammatory Injury and Neuronal Apoptosis following Subarachnoid Hemorrhage via Suppression of the TLRs/TIRAP/MyD88/NF- κB Pathway. Behav Neurol 2018; 2018:1960106. [PMID: 29971136 PMCID: PMC6008698 DOI: 10.1155/2018/1960106] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/23/2018] [Accepted: 03/05/2018] [Indexed: 12/31/2022] Open
Abstract
Inflammatory injury and neuronal apoptosis participate in the period of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Suppression of inflammation has recently been shown to reduce neuronal death and neurobehavioral dysfunction post SAH. Biochanin A (BCA), a natural bioactive isoflavonoid, has been confirmed to emerge the anti-inflammatory pharmacological function. This original study was aimed at evaluating and identifying the neuroprotective role of BCA and the underlying molecular mechanism in an experimental Sprague-Dawley rat SAH model. Neurobehavioral function was evaluated via the modified water maze test and modified Garcia neurologic score system. Thus, we confirmed that BCA markedly decreased the activated level of TLRs/TIRAP/MyD88/NF-κB pathway and the production of cytokines. BCA also significantly ameliorated neuronal apoptosis which correlated with the improvement of neurobehavioral dysfunction post SAH. These results indicated that BCA may provide neuroprotection against EBI through the inhibition of inflammatory injury and neuronal apoptosis partially via the TLRs/TIRAP/MyD88/NF-κB signal pathway.
Collapse
|
30
|
Zhang L, Wang H, Zhou Y, Zhu Y, Fei M. Fisetin alleviates oxidative stress after traumatic brain injury via the Nrf2-ARE pathway. Neurochem Int 2018; 118:304-313. [PMID: 29792955 DOI: 10.1016/j.neuint.2018.05.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 11/30/2022]
Abstract
Fisetin, a natural flavonoid, has neuroprotection properties in many brain injury models. However, its role in traumatic brain injury (TBI) has not been fully explained. In the present study, we aimed to explore the neuroprotective effects of fisetin in a mouse model of TBI. We found that fisetin improved neurological function, reduced cerebral edema, attenuated brain lesion and ameliorated blood-brain barrier (BBB) disruption after TBI. Moreover, the up-regulation of malondialdehyde (MDA) and the activity of glutathione peroxidase (GPx) were reversed by fisetin treatment. Furthermore, administration of fisetin suppressed neuron cell death and apoptosis, increased the expression of B-cell lymphoma 2 (Bcl-2), while decreased the expression of Bcl-2-associated X protein (Bax) and caspase-3 after TBI. In addition, fisetin activated the nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway following TBI. However, fisetin only failed to suppress oxidative stress in Nrf2-/- mice. In conclusion, our data provided the first evidence that fisetin played a critical role in neuroprotection after TBI partly through the activation of the Nrf2-ARE pathway.
Collapse
Affiliation(s)
- Li Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Yali Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Maoxin Fei
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
31
|
Chen C, Yao L, Cui J, Liu B. Fisetin Protects against Intracerebral Hemorrhage-Induced Neuroinflammation in Aged Mice. Cerebrovasc Dis 2018; 45:154-161. [PMID: 29587289 DOI: 10.1159/000488117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/03/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Fisetin is commonly used as an anti-inflammatory and neuroprotective drug. In this study, we aimed to investigate the efficacy of fisetin in alleviating intracerebral hemorrhage (ICH)-induced brain injury. METHODS Mouse ICH models were constructed using the collagenase-induction method. ICH mice received fisetin treatment at the dose of 10-90 mg/kg, followed by the evaluation of neurological deficit through neurologic severity scores (mNSS), brain water content and terminal deoxynucleotidyl transferase dUTP nick end labeling analysis of cell apoptosis. Cytokine levels were also assessed with enzyme-linked immunosorbent assay. The activation of astrocytes and microglia was evaluated through S100 staining and Western blot analysis of ionized calcium-binding adaptor molecule 1 respectively. Nuclear factor kappa-B (NF-κB) signaling was also evaluated by Western blot. RESULTS ICH mice demonstrated dramatic increase in mNSS, brain edema and cell apoptosis, indicating severe brain deficit. Fisetin treatment lowered these parameters, suggesting the alleviation of brain injury. Levels of proinflammatory cytokines were reduced, accompanied by a prominent decrease in activated astrocytes and microglia. NF-κB signaling was also attenuated by fisetin treatment. CONCLUSION Fisetin effectively alleviates ICH by downregulating proinflammatory cytokines and attenuating NF-κB signaling. These data suggest fisetin as a valuable natural flavonol for clinical management of ICH-induced brain injury.
Collapse
Affiliation(s)
- Cheng Chen
- Anhui Medical University, Hefei, China
- Intensive Care Unit, Hefei NO. 2 People's Hospital, Hefei, China
| | - Li Yao
- Intensive Care Unit, Hefei NO. 2 People's Hospital, Hefei, China
| | - Jing Cui
- Intensive Care Unit, Hefei NO. 2 People's Hospital, Hefei, China
| | - Bao Liu
- Anhui Medical University, Hefei, China,
| |
Collapse
|
32
|
Deficiency of Tenascin-C Alleviates Neuronal Apoptosis and Neuroinflammation After Experimental Subarachnoid Hemorrhage in Mice. Mol Neurobiol 2018; 55:8346-8354. [PMID: 29546590 DOI: 10.1007/s12035-018-1006-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/07/2018] [Indexed: 12/21/2022]
Abstract
Tenascin-C (TNC), a matricellular protein, is upregulated in brain parenchyma after experimental subarachnoid hemorrhage (SAH). Recent studies emphasize that early brain injury (EBI) should be overcome to improve post-SAH outcomes. The aim of this study was to investigate effects of TNC knockout (TNKO) on neuronal apoptosis and neuroinflammation, both of which are important constituents of EBI after SAH. C57BL/6 wild-type (WT) mice or TNKO mice underwent sham or filament perforation SAH modeling. Twenty-five WT mice and 25 TNKO mice were randomly divided into sham+WT (n = 10), sham+TNKO (n = 8), SAH+WT (n = 15), and SAH+TNKO (n = 17) groups. Beam balance test, neurological score, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling staining, immunostaining of Toll-like receptor 4 (TLR4), and Western blotting were performed to evaluate neurobehavioral impairments, neuronal apoptosis, and neuroinflammation at 24 h post-SAH. Deficiency of TNC significantly alleviated post-SAH neurobehavioral impairments and neuronal apoptosis. The protective effects of TNKO on neurons were associated with the inhibition of a caspase-dependent apoptotic pathway, which was at least partly mediated by TLR4/nuclear factor-κB/interleukin-1β and interleukin-6 signaling cascades. This study first provided the direct evidence that TNC causes post-SAH neuronal apoptosis and neuroinflammation, potentially leading to the development of a new molecular targeted therapy against EBI.
Collapse
|
33
|
Sun Y, Zheng J, Xu Y, Zhang X. Paraquat-induced inflammatory response of microglia through HSP60/TLR4 signaling. Hum Exp Toxicol 2018; 37:1161-1168. [DOI: 10.1177/0960327118758152] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Previous studies showed that paraquat (PQ) caused the apoptosis of dopaminergic neurons by inducing the generation of oxygen radical. The purpose of this study is to explore PQ-induced microglial inflammatory response and its underlying molecular mechanisms. The murine microglia BV2 cell line was used. After stimulation with PQ and lipopolysaccharides (positive control), the concentrations of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and interleukin 6 (IL-6) in the culture supernatant and mRNA expression of TNF-α and IL-1β were determined by ELISA and quantitative real-time Polymerase Chain Reaction (PCR), respectively. The protein expression of heat shock protein 60 (HSP60) and toll-like receptor 4 (TLR4), along with the mRNA expression of transcription factors of nuclear factor κB-p65 (NF-κB-p65) and activated protein 1 (AP1, c-fos, and c-jun dimer) were evaluated with western blot and quantitative real-time PCR, respectively. The results showed that PQ activated microglia, which was characterized by increasing the generation and upregulated mRNA expression of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6. In addition, PQ significantly enhanced the expressions of HSP60 and TLR4 proteins in BV2 cells, as well as NF-κB-p65, c-fos, and c-jun mRNA. These findings suggest that PQ can activate microglia and enhance the expression and secretion of pro-inflammatory cytokines in a HSP60/TLR4 signaling, leading to the inflammatory response.
Collapse
Affiliation(s)
- Y Sun
- Department of Toxicology, Public Health School, Harbin Medical University, Harbin, China
| | - J Zheng
- Department of Public Health Monitoring, Heilongjiang Provincial Centre for Disease Control and Prevention, Harbin, China
| | - Y Xu
- Department of Toxicology, Public Health School, Harbin Medical University, Harbin, China
| | - X Zhang
- Department of Toxicology, Public Health School, Harbin Medical University, Harbin, China
| |
Collapse
|
34
|
Possible Role of Inflammation and Galectin-3 in Brain Injury after Subarachnoid Hemorrhage. Brain Sci 2018; 8:brainsci8020030. [PMID: 29414883 PMCID: PMC5836049 DOI: 10.3390/brainsci8020030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is known as one of the most devastating diseases in the central nervous system. In the past few decades, research on SAH has focused on cerebral vasospasm to prevent post-SAH delayed cerebral ischemia (DCI) and to improve outcomes. However, increasing evidence has suggested that early brain injury (EBI) is an important mechanism contributing to DCI, cerebral vasospasm as well as poor outcomes. Though the mechanism of EBI is very complex, inflammation is thought to play a pivotal role in EBI. Galectin-3 is a unique chimera type in the galectin family characterized by its β-galactoside-binding lectin, which mediates various pathologies, such as fibrosis, cell adhesion, and inflammation. Recently, two clinical studies revealed galectin-3 to be a possible prognostic biomarker in SAH patients. In addition, our recent report suggested that higher acute-stage plasma galectin-3 levels correlated with subsequent development of delayed cerebral infarction that was not associated with vasospasm in SAH patients. We review the possible role and molecular mechanisms of inflammation as well as galectin-3 in brain injuries, especially focusing on EBI after SAH, and discuss galectin-3 as a potential new therapeutic or research target in post-SAH brain injuries.
Collapse
|
35
|
Chen L, Li J, Ke X, Qu W, Zhang J, Feng F, Liu W. The therapeutic effects of Periploca forrestii Schltr. Stem extracts on collagen-induced arthritis by inhibiting the activation of Src/NF-κB signaling pathway in rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 202:12-19. [PMID: 28286042 DOI: 10.1016/j.jep.2017.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Periploca forrestii Schltr. is a classical traditional Chinese medicine (TCM) called Heilonggu (HLG) in China. According to the theory of TCM, it possesses the efficacy of eliminating wind and removing dampness. In clinical practice, it is commonly used for the treatment of rheumatoid arthritis. The present work aimed to evaluate the anti-rheumatism activity of HLG ethanol extract and reveal the underlying molecular mechanism by employing an animal model of collagen-induced rheumatoid arthritis (CIA) in rats. MATERIALS AND METHODS The CIA was induced in male Sprague-Dawley rats by intradermal injection of bovine collagen-II in complete Freund's adjuvant (CFA) at the base of tail. The rats received oral administration of HLG (200 and 400mg/kg) from day 1, with the treatment lasting for 28 days. A variety of indicators were measured for evaluation of anti-rheumatism effect, including paw swelling, arthritis scores, and histopathological changes. Furthermore, the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and prostaglandin E2 (PGE2), as well as cyclooxygenase-2 (COX-2), nuclear factor NF-κB p65 and Src kinase in joint synovial tissues were detected to explore the possible mechanisms. RESULTS The administration of HLG significantly restored type II collagen-induced arthritis in rats as evidenced by decrease in paw swelling and inflammatory factors in serum. Meanwhile, this treatment also notably reduced NF-κB p65 and COX-2 expression. Surprisingly, the activity of Src kinase was also inhibited demonstrated by downregulation of phosphorylated Src. CONCLUSION Our results revealed that HLG possessed observable therapeutic action on collagen-induced arthritis by inhibiting the activation of Src and nuclear translocation of NF-κB in rats. HLG may serve as a potential candidate for the management of patients with RA.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jinsong Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xuan Ke
- Department of Pharmacology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009 China
| | - Wei Qu
- Key Laboratory of Biomedical Functional Meterials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jie Zhang
- Key Laboratory of Biomedical Functional Meterials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Feng Feng
- Key Laboratory of Biomedical Functional Meterials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
36
|
Li Y, Sun F, Jing Z, Wang X, Hua X, Wan L. Glycyrrhizic acid exerts anti-inflammatory effect to improve cerebral vasospasm secondary to subarachnoid hemorrhage in a rat model. Neurol Res 2017; 39:727-732. [PMID: 28415958 DOI: 10.1080/01616412.2017.1316903] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study aimed to investigate the therapeutic effect of glycyrrhizic acid (GA) on the cerebral vasospasm (CVS) in a rat subarachnoid hemorrhage (SAH) model and to explore the potential mechanism. A total of 44 healthy male rats were randomly assigned into 3 groups: control group (n = 12), SAH group (n = 16) and GA group (n = 16). No treatment was conducted in control group; in SAH group and GA group, experimental CVS was induced using a double-hemorrhage model and then rats were intraperitoneally injected with normal saline and GA at 10 mg/kg, respectively, once daily. Three days later, neurological function was evaluated. Then, animals were sacrificed, and the basilar artery was collected. The inner diameter and vascular wall thickness were determined. Western blotting was employed to detect high mobility group protein B1 (HMGB1) protein expression and RT-PCR to detect the mRNA expression of IL-1β, IL-6, TNF-α, and IL-10 in the basilar artery. GA treatment significantly improved the neurological function following SAH. In GA group, the basilar artery diameter increased markedly and vascular wall thickness reduced significantly when compared with SAH group (p < 0.05). HMGB1 protein expression and mRNA expression of IL-1β, IL-6, TNF-α, and IL-10 in SAH group were significantly higher than in control group (p < 0.05). However, GA dramatically reduced IL-1β, IL-6, and TNF-α, and further elevated IL-10 expression as compared to SAH group (p < 0.05). GA may inhibit HMGB1 expression and subsequent production of inflammatory cytokines to prevent CVS following SAH.
Collapse
Affiliation(s)
- Yi Li
- a Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Fengbin Sun
- b Department of Neurosurgery , Tongren Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Zhaohui Jing
- a Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xuhui Wang
- a Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xuming Hua
- a Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Liang Wan
- a Department of Neurosurgery , Xinhua Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
37
|
Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N, Kasi PD, Nabavi SM. Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Res Rev 2016; 31:55-66. [PMID: 27453478 DOI: 10.1016/j.arr.2016.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/19/2016] [Accepted: 07/15/2016] [Indexed: 12/19/2022]
Abstract
Current ageing research is aimed not only at the promotion of longevity, but also at improving health span through the discovery and development of new therapeutic strategies by investigating molecular and cellular pathways involved in cellular senescence. Understanding the mechanism of action of polyphenolic compounds targeting mTOR (mechanistic target of rapamycin) and related pathways opens up new directions to revolutionize ways to slow down the onset and development of age-dependent degeneration. Herein, we will discuss the mechanisms by which polyphenols can delay the molecular pathogenesis of ageing via manipulation or more specifically inhibition of mTOR-signaling pathways. We will also discuss the implications of polyphenols in targeting mTOR and its related pathways on health life span extension and longevity..
Collapse
|
38
|
Yu X, Jiang X, Zhang X, Chen Z, Xu L, Chen L, Wang G, Pan J. The effects of fisetin on lipopolysaccharide-induced depressive-like behavior in mice. Metab Brain Dis 2016; 31:1011-21. [PMID: 27209403 DOI: 10.1007/s11011-016-9839-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023]
Abstract
Major depressive disorder (MDD) involves a series of pathological changes including the inflammation and increased cytokine levels. Fisetin, a natural flavonoid, has anti-inflammatory and antioxidant, and also has been shown in our previous studies to exert anti-depressant-like properties. The present study aimed to investigate the effect of fisetin on lipopolysaccharide (LPS)-induced depressive-like behavior and inflammation in mice. The results suggested that the immobility time in the forced swimming test (FST) and tail suspension test (TST) were increased at 6 h, 12 h and 24 h after LPS injection (0.83 mg/kg). However, only the group of 24 h treatment did not show any effect on locomotion counts. Pretreatment with fisetin at doses of 20, 40 and 80 mg/kg (p.o.) for 7 days reversed LPS-induced alterations of the immobility time in both of these two tests. Further neurochemical assays suggested that pretreatment with fisetin reversed LPS-induced overexpression of pro-inflammatory cytokine (IL-1β, IL-6 and TNF-α) in the hippocampus and the prefrontal cortex (PFC). Moreover, higher dose of fisetin effectively antagonized iNOS mRNA expression and nitrite levels via the modulation of NF-κB in the hippocampus and PFC. Taken together, fisetin may be an effective therapeutic agent for LPS-induced depressive-like behaviors, which is due to its anti-inflammatory property.
Collapse
Affiliation(s)
- Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China.
| | - Xi Jiang
- Zhejiang University Mingzhou Hospital, Zhejiang Province, 315000, China
| | - Xiangming Zhang
- Department of Neurology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo, Zhejiang Province, 315000, China
| | - Ziwei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Lexing Xu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Lei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Guokang Wang
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Jianchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China.
| |
Collapse
|
39
|
Chen L, Hu L, Zhao J, Hong H, Feng F, Qu W, Liu W. Chotosan improves Aβ1-42-induced cognitive impairment and neuroinflammatory and apoptotic responses through the inhibition of TLR-4/NF-κB signaling in mice. JOURNAL OF ETHNOPHARMACOLOGY 2016; 191:398-407. [PMID: 26994819 DOI: 10.1016/j.jep.2016.03.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Recently, the focus on neuroinflammation is intensified as its complex pathophysiological role has emerged in multiple central nervous system(CNS) disorders. Chotosan (CTS), known as a traditional herbal formula, is often utilized to treat relevant nervous system diseases in China. It was demonstrated effectively to alleviate cognitive deficit associated with aging, diabetes, hypoperfusion and cerebral ischemia. However, the effects of CTS on Aβ1-42-induced cognitive dysfunction remain unclear. Here, we further investigated the effects of chotosan on memory performance, neuroinflammation and apoptotic responses. MATERIALS AND METHODS The learning and memory ability is evaluated by Morris water maze (MWM) task and Y-maze test following intrahippocampal infusion of aggregated Aβ1-42. The expression level of toll-like receptor 4 (TLR-4), NF-κB p65, Bcl-2 and Bax was examined by Western blot. TLR-4 level is also assessed by immunohistochemistry (IHC). Enzyme-linked immunosorbent assay (ELISA) was conducted to determine the generation of inflammatory mediators. The caspase-3 activity is analyzed by commercial kits. RESULTS The repeated treatment with CTS (750mg/kg or 375mg/kg per day) for 3 weeks significantly restored Aβ1-42-induced memory impairment in mice. Meanwhile, this treatment also remarkably reduced TLR-4 and NF-κB p65 expression accompanying with the diminished release of proinflammatory cytokines including TNF-α and IL-1β in hippocampus. The neuronal apoptosis is also inhibited as evidenced by increase in Bcl-2/Bax ratio and decrease in pro-apoptotic protein caspase-3 activity compared to that of the model mice. CONCLUSIONS Our results show for the first time that chotosan can ameliorate Aβ1-2-induced memory dysfunction via inhibiting neuroinflammation and apoptosis at least partially mediated by TLR-4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Lei Chen
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Lejian Hu
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jiaojiao Zhao
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Hao Hong
- Department of Pharmacology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Feng Feng
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Wei Qu
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
40
|
Zhang XS, Li W, Wu Q, Wu LY, Ye ZN, Liu JP, Zhuang Z, Zhou ML, Zhang X, Hang CH. Resveratrol Attenuates Acute Inflammatory Injury in Experimental Subarachnoid Hemorrhage in Rats via Inhibition of TLR4 Pathway. Int J Mol Sci 2016; 17:ijms17081331. [PMID: 27529233 PMCID: PMC5000728 DOI: 10.3390/ijms17081331] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/02/2016] [Accepted: 08/08/2016] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 4 (TLR4) has been proven to play a critical role in neuroinflammation and to represent an important therapeutic target following subarachnoid hemorrhage (SAH). Resveratrol (RSV), a natural occurring polyphenolic compound, has a powerful anti-inflammatory property. However, the underlying molecular mechanisms of RSV in protecting against early brain injury (EBI) after SAH remain obscure. The purpose of this study was to investigate the effects of RSV on the TLR4-related inflammatory signaling pathway and EBI in rats after SAH. A prechiasmatic cistern SAH model was used in our experiment. The expressions of TLR4, high-mobility group box 1 (HMGB1), myeloid differentiation factor 88 (MyD88), and nuclear factor-κB (NF-κB) were evaluated by Western blot and immunohistochemistry. The expressions of Iba-1 and pro-inflammatory cytokines in brain cortex were determined by Western blot, immunofluorescence staining, or enzyme-linked immunosorbent assay. Neural apoptosis, brain edema, and neurological function were further evaluated to investigate the development of EBI. We found that post-SAH treatment with RSV could markedly inhibit the expressions of TLR4, HMGB1, MyD88, and NF-κB. Meanwhile, RSV significantly reduced microglia activation, as well as inflammatory cytokines leading to the amelioration of neural apoptosis, brain edema, and neurological behavior impairment at 24 h after SAH. However, RSV treatment failed to alleviate brain edema and neurological deficits at 72 h after SAH. These results indicated that RSV treatment could alleviate EBI after SAH, at least in part, via inhibition of TLR4-mediated inflammatory signaling pathway.
Collapse
Affiliation(s)
- Xiang-Sheng Zhang
- Department of Neurosurgery, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Wei Li
- Department of Neurosurgery, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Qi Wu
- Department of Neurosurgery, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Ling-Yun Wu
- Department of Neurosurgery, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Zhen-Nan Ye
- Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Jing-Peng Liu
- Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Zong Zhuang
- Department of Neurosurgery, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Meng-Liang Zhou
- Department of Neurosurgery, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Xin Zhang
- Department of Neurosurgery, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
- Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
| | - Chun-Hua Hang
- Department of Neurosurgery, School of Medicine, Nanjing University, Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
- Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Road, Nanjing 210002, China.
| |
Collapse
|
41
|
Gao Y, Li J, Wu L, Zhou C, Wang Q, Li X, Zhou M, Wang H. Tetrahydrocurcumin provides neuroprotection in rats after traumatic brain injury: autophagy and the PI3K/AKT pathways as a potential mechanism. J Surg Res 2016; 206:67-76. [PMID: 27916377 DOI: 10.1016/j.jss.2016.07.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 06/30/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND Tetrahydrocurcumin provides neuroprotection in multiple neurologic disorders by modulating oxidative stress, inflammatory responses, and autophagy. However, in traumatic brain injury (TBI), it is unclear whether a beneficial effect of tetrahydrocurcumin exists. In this study, we hypothesized that administration of tetrahydrocurcumin provides neuroprotection in a rat model of TBI. MATERIAL AND METHODS Behavioral studies were performed by recording and analyzing beam-walking scores. The role of tetrahydrocurcumin on neurons death was assessed via Nissl staining. We then performed Western blot analyses, terminal deoxynucleotidyl transferase 2'-deoxyuridine-5'-triphosphate (dUTP) nick end labeling assays and immunofluorescence staining to evaluate autophagy and apoptosis. Phospho-protein kinase B (p-AKT) was also assessed via Western blotting. RESULTS Our data indicated that administration of tetrahydrocurcumin alleviated brain edema, attenuated TBI-induced neuron cell death, decreased the degree of apoptosis and improved neurobehavioral function, which were accompanied by enhanced autophagy and phospho-AKT after TBI. Moreover, the autophagy inhibitor 3-methyladenine and the PI3K kinase inhibitor LY294002 partially reversed the neuroprotection of tetrahydrocurcumin after TBI. CONCLUSIONS This study indicates that tetrahydrocurcumin protects neurons from TBI-induced apoptotic neuronal death, which may be through modulation autophagy and PI3K/AKT pathways. Thus, tetrahydrocurcumin may be an attractive therapeutic agent for TBI.
Collapse
Affiliation(s)
- Yongyue Gao
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Jie Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Lingyun Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chenhui Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
42
|
Neuroprotective Effect of Fisetin Against Amyloid-Beta-Induced Cognitive/Synaptic Dysfunction, Neuroinflammation, and Neurodegeneration in Adult Mice. Mol Neurobiol 2016; 54:2269-2285. [DOI: 10.1007/s12035-016-9795-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 12/22/2022]
|