1
|
Kunikullaya U K. An integrated approach to understanding the effects of exposome on neuroplasticity. Behav Brain Res 2025; 485:115516. [PMID: 40024484 DOI: 10.1016/j.bbr.2025.115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/08/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Anthropogenic factors are those that occur due to human activities. The exposome is proposed to complement the genome, wherein an individual's exposure begins before birth. The range of exposures includes physical, chemical, dietary, lifestyle, biological, and occupational sources. Exposome has a positive or negative influence on neuroplasticity during different stages of life. A comprehensive study of the exposome is thus necessary to incorporate these factors and their influence on the individual, community, and the population as a whole. Exposomic research and global health present significant opportunities for interdisciplinary research. This review gives an overview of the exposome and its influence on neuroplasticity. It proposes methods to study the exposome on neuroplasticity across the lifespan of the individual. This is possible with the use of self-reported data, large-scale cohort formation, physiological sensors, neuroimaging, omics, molecular biology, and systems approaches. These approaches aim to provide a holistic understanding of an individual's neurological well-being and its implications for the population at large. This will also enable the designing of novel preventive and treatment strategies for managing neurological disorders.
Collapse
Affiliation(s)
- Kirthana Kunikullaya U
- MeDH, Department of Medicine, Huddinge, Karolinska Universitetssjukhuset Huddinge, Stockholm 14186, Sweden.
| |
Collapse
|
2
|
Carrazoni GS, Mello-Carpes PB. Maternal exercise during pregnancy: Sex-specific impacts on offspring memory and maternal deprivation effects. Neurosci Lett 2025; 856-858:138252. [PMID: 40306568 DOI: 10.1016/j.neulet.2025.138252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/03/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Maternal deprivation (MD) is a well-established paradigm used to study the effects of early-life stress on offspring brain development and behavior, particularly memory. Maternal exercise (ME) during pregnancy has been shown to influence offspring brain development and behavior. Our study examined whether ME protocols-stop, start, reduce, or maintain running during pregnancy-could protect offspring from MD-induced memory deficits and impact hippocampal oxidative balance. Initially, adult Wistar female rats were divided into five groups: non-exercised mothers (NE), mothers who exercised only before pregnancy (PRE), mothers who exercised before and reduced the intensity during pregnancy (RED), mothers who exercised at the same intensity before and during pregnancy (EQUAL), and mothers who started exercise during pregnancy (GEST). After delivery, the groups were subdivided into control (CT) and MD. At 90 days of age, the offspring underwent an object recognition (OR) memory test, and hippocampal lipid peroxidation and catalase (CAT) levels were measured. MD-induced memory deficits in male but not female offspring. Only the male PRE group showed a memory deficit, while all other exercise protocols prevented the MD-induced deficits. MD did not affect hippocampal cell membrane peroxidation, and PRE and EQUAL protocols increased catalase levels compared to NE + CT controls. Our results highlight that maintaining or starting exercise during pregnancy mitigates memory deficits induced by MD, particularly in male offspring.
Collapse
Affiliation(s)
- Guilherme Salgado Carrazoni
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana 97501-970, Brazil.
| | - Pâmela B Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana 97501-970, Brazil.
| |
Collapse
|
3
|
Smith W, Azevedo EP. Hunger Games: A Modern Battle Between Stress and Appetite. J Neurochem 2025; 169:e70006. [PMID: 39936619 DOI: 10.1111/jnc.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 02/13/2025]
Abstract
Stress, an evolutionarily adaptive mechanism, has become a pervasive challenge in modern life, significantly impacting feeding-relevant circuits that play a role in the development and pathogenesis of eating disorders (EDs). Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, disrupts specific neural circuits, and dysregulates key brain regions, including the hypothalamus, hippocampus, and lateral septum. These particular structures are interconnected and key in integrating stress and feeding signals, modulating hunger, satiety, cognition, and emotional coping behaviors. Here we discuss the interplay between genetic predispositions and environmental factors that may exacerbate ED vulnerability. We also highlight the most commonly used animal models to study the mechanisms driving EDs and recent rodent studies that emphasize the discovery of novel cellular and molecular mechanisms integrating stress and feeding signals within the hippocampus-lateral septum-hypothalamus axis. In this review, we discuss the role of gut microbiome, an emerging area of research in the field of EDs and unanswered questions that persist and hinder the scientific progress, such as why some individuals remain resilient to stress while others become at high risk for the development of EDs. We finally discuss the need for future research delineating the impact of specific stressors on neural circuits, clarifying the relevance and functionality of hippocampal-septal-hypothalamic connectivity, and investigating the role of key neuropeptides such as CRH, oxytocin, and GLP-1 in human ED pathogenesis. Emerging tools like single-cell sequencing and advanced human imaging could uncover cellular and circuit-level changes in brain areas relevant for feeding in ED patients. Ultimately, by integrating basic and clinical research, science offers promising avenues for developing personalized, mechanism-based treatments targeting maladaptive eating behavior for patients suffering from EDs.
Collapse
Affiliation(s)
- Whitnei Smith
- Laboratory of Neurobiology of Behavior, Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Estefania P Azevedo
- Laboratory of Neurobiology of Behavior, Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
4
|
Hohoff C, Kerkenberg N, Zhang M, Palkowska W, Wachsmuth L, Peng M, Stiehl L, Schettler C, Zang JCS, Huge A, Ponimaskin E, Faber C, Baune BT, Zhang W. Deficiency of the palmitoyl acyltransferase ZDHHC7 modulates depression-like behaviour in female mice after a mild chronic stress paradigm. Transl Psychiatry 2025; 15:20. [PMID: 39856044 PMCID: PMC11759705 DOI: 10.1038/s41398-025-03240-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/12/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Chronic stress (CS) is a debilitating condition that negatively affects body and brain. In mice, CS effects range from changes in behaviour and brain microstructure down to the level of gene expression. These effects are partly mediated by sex and sex steroid hormones, which in turn are affected by the palmitoyl acyltransferase ZDHHC7. ZDHHC7 might modulate also the response to CS via palmitoylation of sex steroid hormone receptors and other proteins critical for neuronal structure and functions. Therefore, we aimed to investigate the role of ZDHHC7 in response to CS on different system levels in a mouse model of Zdhhc7-deficiency. Female and male Zdhhc7-knockout (KO) and -wildtype (WT) mice underwent a four-week-mild CS paradigm or non-stress control (C) condition. After C or CS, behaviours, hippocampal microstructures (via MRI-based diffusion tensor imaging) and brain gene expression profiles (via mRNA-seq transcriptomics) were investigated. Analyses focused on effects of genotype (KO vs. WT) or condition (C vs. CS) separately in both sexes. Our results revealed significant effects particularly in females. Female KOs displayed increased locomotion and reduced depression-like behaviour after CS (KO vs. WT, C vs. CS: pall < 0.05). Hippocampal fibres were reduced in female KOs after C (KO vs. WT: pall < 0.05) but in female WTs after CS (C vs. CS: pall < 0.05). Furthermore, female KOs showed increased cortistatin expression after CS (C vs. CS: mRNAseq and qPCR pall < 0.05). In sum, Zdhhc7-deficiency reduced depression-like behaviours, prevented hippocampal fibre reduction and upregulated cortistatin after CS. It seemed to be related to a sex-specific stress response and may reveal genetic factors of CS-resilience in female mice.
Collapse
Affiliation(s)
- Christa Hohoff
- Department of Psychiatry, University of Münster, 48149, Münster, Germany.
| | - Nicole Kerkenberg
- Department of Psychiatry, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| | - Mingyue Zhang
- Department of Psychiatry, University of Münster, 48149, Münster, Germany
| | - Weronika Palkowska
- Department of Psychiatry, University of Münster, 48149, Münster, Germany
| | - Lydia Wachsmuth
- Clinic of Radiology, University of Münster, 48149, Münster, Germany
| | - Maja Peng
- Department of Psychiatry, University of Münster, 48149, Münster, Germany
| | - Lena Stiehl
- Department of Psychiatry, University of Münster, 48149, Münster, Germany
| | | | - Johannes C S Zang
- Department of Psychiatry, University of Münster, 48149, Münster, Germany
- Department of General Internal Medicine and Psychosomatics, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Huge
- Core Facility Genomics, University of Münster, 48149, Münster, Germany
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Cornelius Faber
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
- Clinic of Radiology, University of Münster, 48149, Münster, Germany
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Parkville, VIC, 3010, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Weiqi Zhang
- Department of Psychiatry, University of Münster, 48149, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, 48149, Münster, Germany
| |
Collapse
|
5
|
Jamro D, Kociuba M, Lachowicz M, Korytko P, Zurek G. Assessment of Changes in Executive Functions and Attention of Cadets as a Result of Military Parachute Jumping. Brain Sci 2025; 15:85. [PMID: 39851452 PMCID: PMC11763684 DOI: 10.3390/brainsci15010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
OBJECTIVES This study analyzed the effects of parachute jump stress on the executive functions and attention of cadets. Executive functions, which includes processes such as attentional control and cognitive flexibility, are crucial for soldiers, especially in situations requiring rapid decision-making. Parachute jumping, as an intense stressor, mobilizes cognitive resources, which can lead to short-term improvements in executive functions. METHODS A total of 64 cadets divided into control (N = 32) and experimental (N = 32) groups participated in the study. The experimental group performed a parachute jump and then took the Color Trails Test, assessed both before and after the jump. RESULTS The results showed significant improvements in executive functions, in particular, sustained and alternating attention, sequential information processing, and monitoring one's own behavior, suggesting a positive effect of stress on selected executive functions. CONCLUSIONS The results indicate that intense, short-term stress can positively affect executive functions, although this effect may depend on the type of task and the participants' experience of exposure to intense stressful stimuli. The study makes an important contribution to the design of future military training, considering the importance of mobilizing cognitive resources in response to short-term stress.
Collapse
Affiliation(s)
- Dariusz Jamro
- Department of Physical Education and Sport, General Tadeusz Kosciuszko Military University of Land Forces, 51-147 Wroclaw, Poland; (M.K.); (P.K.)
| | - Marek Kociuba
- Department of Physical Education and Sport, General Tadeusz Kosciuszko Military University of Land Forces, 51-147 Wroclaw, Poland; (M.K.); (P.K.)
| | - Maciej Lachowicz
- Department of Biostructure, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland; (M.L.); (G.Z.)
| | - Pawel Korytko
- Department of Physical Education and Sport, General Tadeusz Kosciuszko Military University of Land Forces, 51-147 Wroclaw, Poland; (M.K.); (P.K.)
| | - Grzegorz Zurek
- Department of Biostructure, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland; (M.L.); (G.Z.)
| |
Collapse
|
6
|
Li C, Lu T, Pan C, Hu C. Glucocorticoids Selectively Inhibit Hippocampal CA1 Pyramidal Neurons Activity Through HCN Channels. Int J Mol Sci 2024; 25:11971. [PMID: 39596039 PMCID: PMC11593447 DOI: 10.3390/ijms252211971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glucocorticoids are known to influence hippocampal function, but their rapid non-genomic effects on specific neurons in the hippocampal trisynaptic circuit remain underexplored. This study investigated the immediate effects of glucocorticoids on CA1 and CA3 pyramidal neurons, and dentate gyrus (DG) granule neurons in rats using the patch-clamp technique. We found that a 5 min extracellular application of corticosterone significantly reduced action potential firing frequency in CA1 pyramidal neurons, while no effects were observed in CA3 or DG neurons. The corticosterone-induced inhibition in CA1 was blocked by the glucocorticoid receptor antagonist CORT125281, but remained unaffected by the mineralocorticoid receptor antagonist spironolactone. Notably, membrane-impermeable bovine serum albumin-conjugated dexamethasone mimicked corticosterone's effects on CA1 neurons, which exhibited prominent hyperpolarization-activated cyclic nucleotide-gated (HCN) channel currents. Pyramidal neurons in CA3 and granular neurons in the DG showed little HCN channel currents. Corticosterone enhanced HCN channel activity in CA1 neurons via glucocorticoid receptors, and the HCN channel inhibitor ZD7288 abolished corticosterone's suppressive effects on action potentials. These findings suggest that glucocorticoids selectively inhibit CA1 pyramidal neuron activity through HCN channels, providing new insight into the mechanisms of glucocorticoid action in hippocampal circuits.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
- International Human Phenome Institute (Shanghai), Shanghai 200433, China
| | - Tongchuang Lu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
- International Human Phenome Institute (Shanghai), Shanghai 200433, China
| | - Chengfang Pan
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
- International Human Phenome Institute (Shanghai), Shanghai 200433, China
| | - Changlong Hu
- Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
- International Human Phenome Institute (Shanghai), Shanghai 200433, China
| |
Collapse
|
7
|
Herzberg MP, Nielsen AN, Luby J, Sylvester CM. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacology 2024; 50:124-136. [PMID: 39103496 PMCID: PMC11525577 DOI: 10.1038/s41386-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Neuroplasticity during sensitive periods, the molecular and cellular process of enduring neural change in response to external stimuli during windows of high environmental sensitivity, is crucial for adaptation to expected environments and has implications for psychiatry. Animal research has characterized the developmental sequence and neurobiological mechanisms that govern neuroplasticity, yet gaps in our ability to measure neuroplasticity in humans limit the clinical translation of these principles. Here, we present a roadmap for the development and validation of neuroimaging and electrophysiology measures that index neuroplasticity to begin to address these gaps. We argue that validation of measures to track neuroplasticity in humans will elucidate the etiology of mental illness and inform the type and timing of mental health interventions to optimize effectiveness. We outline criteria for evaluating putative neuroimaging measures of plasticity in humans including links to neurobiological mechanisms shown to govern plasticity in animal models, developmental change that reflects heightened early life plasticity, and prediction of neural and/or behavior change. These criteria are applied to three putative measures of neuroplasticity using electroencephalography (gamma oscillations, aperiodic exponent of power/frequency) or functional magnetic resonance imaging (amplitude of low frequency fluctuations). We discuss the use of these markers in psychiatry, envision future uses for clinical and developmental translation, and suggest steps to address the limitations of the current putative neuroimaging measures of plasticity. With additional work, we expect these markers will significantly impact mental health and be used to characterize mechanisms, devise new interventions, and optimize developmental trajectories to reduce psychopathology risk.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
8
|
Yatagan Sevim G, Alkan E, Taporoski TP, Krieger JE, Pereira AC, Evans SL. Effects of glycaemic control on memory performance, hippocampal volumes and depressive symptomology. Diabetol Metab Syndr 2024; 16:219. [PMID: 39261923 PMCID: PMC11389280 DOI: 10.1186/s13098-024-01429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Diabetes and poor glycaemic control have been shown to negatively impact cognitive abilities, while also raising risk of both mood disorders and brain structural atrophy. Sites of atrophy include the hippocampus, which has been implicated in both memory performance and depression. The current study set out to better characterise the associations between poor glycaemic control, memory performance, and depression symptoms, and investigate whether loss of hippocampal volume could represent a neuropathological mechanism underlying these. METHODS 1331 participants (60.9% female, age range 18-88 (Mean = 44.02), 6.5% with likely diabetes) provided HbA1c data (as an index of glycaemic control), completed a word list learning task, and a validated depression scale. A subsample of 392 participants underwent structural MRI; hippocampal volumes were extracted using FreeSurfer. RESULTS Partial correlation analyses (controlling for age, gender, and education) showed that, in the full sample, poorer glycaemic control was related to lower word list memory performance. In the MRI sub-sample, poorer glycaemic control was related to higher depressive symptoms, and lower hippocampal volumes. Total hippocampus volume partially mediated the association between HbA1c levels and depressive symptoms. CONCLUSIONS Results emphasise the impact of glycaemic control on memory, depression and hippocampal volume and suggest hippocampal volume loss could be a pathophysiological mechanism underlying the link between HbA1c and depression risk; inflammatory and stress-hormone related processes might have a role in this.
Collapse
Affiliation(s)
- Gulin Yatagan Sevim
- Faculty of Health and Medical Sciences, School of Psychology, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Erkan Alkan
- Faculty of Health, Science, Social Care and Education, Kingston University, London, UK
| | - Tamara P Taporoski
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, Massachusetts, USA
| | - Jose E Krieger
- University of São Paulo School of Medicine, São Paulo, Brazil
| | - Alex C Pereira
- University of São Paulo School of Medicine, São Paulo, Brazil
| | - Simon L Evans
- Faculty of Health and Medical Sciences, School of Psychology, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
9
|
Forghani N, Hosseinian S, Akhoond-Ali Z, Gholami AA, Assaran-Darban R, Vafaee F. Effect of acute and chronic stress on memory impairment and hippocampal oxidative stress following global cerebral ischemia in adult male rats. Res Pharm Sci 2024; 19:436-446. [PMID: 39399732 PMCID: PMC11468166 DOI: 10.4103/rps.rps_24_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 11/25/2023] [Accepted: 08/04/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Stress, especially immobility stress, is quite common and one of the most important and influential risk factors in neurological disorders. This study aimed to investigate the effect of acute and chronic immobility stress on the level of cortical and hippocampal oxidative stress indicators and memory impairment following global cerebral ischemia. Experimental approach In this study, 48 male Wistar rats were randomly divided into 6 groups: 1, sham (S); 2, sham-acute stress (SSA); 3, sham-chronic stress (SSC); 4, ischemia (IS); 5, ischemia-acute stress (ISA); 6, ischemia-chronic stress (ISC). The Morris water maze (MWM) test was performed 14 days after surgery, and cortisol levels and oxidative stress factors such as malondialdehyde MDA and total thiol were measured. Findings/Results In the MWM test, the time to find the platform (latency time) in the ISC and IS groups significantly increased compared to the S group. The time spent in the target quarter in these two groups was significantly reduced compared to the S group on the day of the probe. The results showed a significant increase in cortisol levels and malondialdehyde concentration in the ISA, ISC, and IS groups compared to the S group, but there was no significant difference in total thiol concentration. No significant difference was observed in the level of oxidative stress factors in the cortex. Conclusion and implication Chronic immobility stress could reduce antioxidant factors in the hippocampus and exacerbate memory impairment caused by global ischemia.
Collapse
Affiliation(s)
- Nafiseh Forghani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Sara Hosseinian
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Akhoond-Ali
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Abroumand Gholami
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cellular Biology and Anatomical Sciences, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Assaran-Darban
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Farzaneh Vafaee
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Basu T, Antonoudiou P, Weiss GL, Coleman EM, David J, Friedman D, Laze J, Strain MM, Devinsky O, Boychuk CR, Maguire J. Hypothalamic-Pituitary-Adrenal Axis Dysfunction Elevates SUDEP Risk in a Sex-Specific Manner. eNeuro 2024; 11:ENEURO.0162-24.2024. [PMID: 38914464 PMCID: PMC11236591 DOI: 10.1523/eneuro.0162-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/26/2024] Open
Abstract
Epilepsy is often comorbid with psychiatric illnesses, including anxiety and depression. Despite the high incidence of psychiatric comorbidities in people with epilepsy, few studies address the underlying mechanisms. Stress can trigger epilepsy and depression. Evidence from human and animal studies supports that hypothalamic-pituitary-adrenal (HPA) axis dysfunction may contribute to both disorders and their comorbidity ( Kanner, 2003). Here, we investigate if HPA axis dysfunction may influence epilepsy outcomes and psychiatric comorbidities. We generated a novel mouse model (Kcc2/Crh KO mice) lacking the K+/Cl- cotransporter, KCC2, in corticotropin-releasing hormone (CRH) neurons, which exhibit stress- and seizure-induced HPA axis hyperactivation ( Melon et al., 2018). We used the Kcc2/Crh KO mice to examine the impact on epilepsy outcomes, including seizure frequency/burden, comorbid behavioral deficits, and sudden unexpected death in epilepsy (SUDEP) risk. We found sex differences in HPA axis dysfunction's effect on chronically epileptic KCC2/Crh KO mice seizure burden, vulnerability to comorbid behavioral deficits, and SUDEP. Suppressing HPA axis hyperexcitability in this model using pharmacological or chemogenetic approaches decreased SUDEP incidence, suggesting that HPA axis dysfunction may contribute to SUDEP. Altered neuroendocrine markers were present in SUDEP cases compared with people with epilepsy or individuals without epilepsy. Together, these findings implicate HPA axis dysfunction in the pathophysiological mechanisms contributing to psychiatric comorbidities in epilepsy and SUDEP.
Collapse
Affiliation(s)
- Trina Basu
- Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | - Grant L Weiss
- Tufts University School of Medicine, Boston, Massachusetts 02111
| | | | - Julian David
- University of Missouri, Columbia, Missouri 65211
| | - Daniel Friedman
- New York University Langone Medical Center Comprehensive Epilepsy Center, New York, New York 10016
| | - Juliana Laze
- New York University Langone Medical Center Comprehensive Epilepsy Center, New York, New York 10016
| | | | - Orrin Devinsky
- New York University Langone Medical Center Comprehensive Epilepsy Center, New York, New York 10016
| | | | - Jamie Maguire
- Tufts University School of Medicine, Boston, Massachusetts 02111
| |
Collapse
|
11
|
Loewenthal JV, Farkas EJ, McGough K, Tomita B, Wayne PM, Orkaby AR. The impact of yoga on aging physiology: A review. J Nutr Health Aging 2024; 28:100005. [PMID: 38388108 DOI: 10.1016/j.jnha.2023.100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 02/24/2024]
Abstract
Frailty represents diminished reserve across multiple physiologic systems, accompanied by increased vulnerability to stressors and increased morbidity and mortality. With population aging, strategies to prevent and manage frailty are priorities in clinical medicine and public health. Current evidence-based approaches to frailty management are multimodal in nature. Yoga, an increasingly popular and highly adaptable mind-body practice, is multi-component, incorporating physical postures, breathing practices, meditation, and other elements, and may be a strategy for frailty management. Here, we summarize the evidence linking yoga practice to mitigation of age-related degradation across multiple physiologic systems, including cardiovascular, pulmonary, musculoskeletal, and nervous systems. We discuss putative mechanisms of action including modulation of the hypothalamic-pituitary-adrenal axis. Finally, we consider implications for clinical practice and future research.
Collapse
Affiliation(s)
- Julia V Loewenthal
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Eva J Farkas
- Tufts University School of Medicine, Boston, MA, USA
| | - Katherine McGough
- University of Missouri-Columbia School of Medicine, Columbia, MO, USA
| | | | - Peter M Wayne
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA; Osher Center for Integrative Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ariela R Orkaby
- Division of Aging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; New England Geriatric Research, Education, and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
12
|
Du F, Yu Q, Swerdlow RH, Waites CL. Glucocorticoid-driven mitochondrial damage stimulates Tau pathology. Brain 2023; 146:4378-4394. [PMID: 37070763 PMCID: PMC10545530 DOI: 10.1093/brain/awad127] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
Prolonged exposure to glucocorticoids, the main stress hormones, damages the brain and is a risk factor for depression and Alzheimer's disease. Two major drivers of glucocorticoid-related neurotoxicity are mitochondrial dysfunction and Tau pathology; however, the molecular/cellular mechanisms precipitating these events, and their causal relationship, remain unclear. Using cultured murine hippocampal neurons and 4-5-month-old mice treated with the synthetic glucocorticoid dexamethasone, we investigate the mechanisms underlying glucocorticoid-induced mitochondrial damage and Tau pathology. We find that glucocorticoids stimulate opening of the mitochondrial permeability transition pore via transcriptional upregulation of its activating component, cyclophilin D. Inhibition of cyclophilin D is protective against glucocorticoid-induced mitochondrial damage as well as Tau phosphorylation and oligomerization in cultured neurons. We further identify the mitochondrially-targeted compound mito-apocynin as an inhibitor of glucocorticoid-induced permeability transition pore opening, and show that this compound protects against mitochondrial dysfunction, Tau pathology, synaptic loss, and behavioural deficits induced by glucocorticoids in vivo. Finally, we demonstrate that mito-apocynin and the glucocorticoid receptor antagonist mifepristone rescue Tau pathology in cytoplasmic hybrid cells, an ex vivo Alzheimer's disease model wherein endogenous mitochondria are replaced with mitochondria from Alzheimer's subjects. These findings show that mitochondrial permeability transition pore opening is a precipitating factor in glucocorticoid-induced mitochondrial dysfunction, and that this event stimulates Tau pathogenesis. Our data also link glucocorticoids to mitochondrial dysfunction and Tau pathology in the context of Alzheimer's disease and suggest that mitochondria are promising therapeutic targets for mitigating stress- and Tau-related brain damage.
Collapse
Affiliation(s)
- Fang Du
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Qing Yu
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer’s Disease Center, University of Kansas School of Medicine, Landon Center on Aging, Kansas City, KS 66103, USA
| | - Clarissa L Waites
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer’s Disease and Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University, New York, NY 10032, USA
| |
Collapse
|
13
|
Can AT, Mitchell JS, Dutton M, Bennett M, Hermens DF, Lagopoulos J. Insights into the neurobiology of suicidality: explicating the role of glutamatergic systems through the lens of ketamine. Psychiatry Clin Neurosci 2023; 77:513-529. [PMID: 37329495 DOI: 10.1111/pcn.13572] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/16/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Suicidality is a prevalent mental health condition, and managing suicidal patients is one of the most challenging tasks for health care professionals due to the lack of rapid-acting, effective psychopharmacological treatment options. According to the literature, suicide has neurobiological underpinnings that are not fully understood, and current treatments for suicidal tendencies have considerable limitations. To treat suicidality and prevent suicide, new treatments are required; to achieve this, the neurobiological processes underlying suicidal behavior must be thoroughly investigated. Although multiple neurotransmitter systems, particularly serotonergic systems, have been studied in the past, less has been reported in relation to disruptions in glutamatergic neurotransmission, neuronal plasticity, and neurogenesis that result from stress-related abnormalities of the hypothalamic-pituitary-adrenal system. Informed by the literature, which reports robust antisuicidal and antidepressive properties of subanaesthetic doses of ketamine, this review aims to provide an examination of the neurobiology of suicidality (and relevant mood disorders) with implications of pertinent animal, clinical, and postmortem studies. We discuss dysfunctions in the glutamatergic system, which may play a role in the neuropathology of suicidality and the role of ketamine in restoring synaptic connectivity at the molecular levels.
Collapse
Affiliation(s)
- Adem Tevfik Can
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Jules Shamus Mitchell
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Megan Dutton
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | - Maxwell Bennett
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| | | | - Jim Lagopoulos
- Thompson Institute, University of the Sunshine Coast, Birtinya, Queensland, Australia
| |
Collapse
|
14
|
Iqbal J, Bibi M, Huang GD, Xue YX, Khatttak JZK, Yang M, Jia XJ. Differential regulation of hippocampal transcriptome by circulating estrogen. Funct Integr Genomics 2023; 23:309. [PMID: 37735249 DOI: 10.1007/s10142-023-01234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Estrogen (E2) modulates the synaptic structure and plasticity in the hippocampus. Previous studies showed that E2 fluctuations during various phases of the menstrual cycle produce subtle neurosynaptic changes that impact women's behavior, emotion, and cognitive functions. In this study, we explored the transcriptome of the hippocampus via RNA-seq (RNA-sequencing) between proestrus (PE) and diestrus (DE) stages in young female rats to determine the effect of E2 of PE and DE stages on hippocampal gene expression. We identified 238 genes (at 1.5-fold-change selection criteria, FDR adjusted p-value < 0.05) as differentially expressed genes (DEGs) that responded to E2 between PE and DE stages. Functional analysis based on Gene Ontology (GO) revealed that a higher E2 level corresponded to an increase in gene transcription among most of the DEGs, suggesting biological mechanisms operating differentially in the hippocampus of female rats between PE and DE stages in the estrus cycle; while analysis with Kyoto Encyclopedia of Genes and Genomes database (KEGG) found that the DEGs involving neuroactive ligand-receptor interaction, antigen processing, cell adhesion molecules, and presentation were upregulated in PE stage, whereas DEGs in pathways relating to bile secretion, coagulation cascades, osteoclast differentiation, cysteine and methionine metabolism were upregulated in DE stage of the estrus cycle. The high-fold expression of DEGs was confirmed by a follow-up quantitative real-time PCR. Our findings in this current study have provided fundamental information for further dissection of neuro-molecular mechanisms in the hippocampus in response to E2 fluctuation and its relationship with disorders.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Maryam Bibi
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University, Shenzhen, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | | | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, No.77 Zhenbi Road, Pingshan District, Shenzhen, 518118, Guangdong, China.
- Clinical College of Mental Health, Shenzhen University Health Science Center, Shenzhen, China.
- Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
15
|
Furusawa K, Ishii K, Tsuji M, Tokumitsu N, Hasegawa E, Emoto K. Presynaptic Ube3a E3 ligase promotes synapse elimination through down-regulation of BMP signaling. Science 2023; 381:1197-1205. [PMID: 37708280 DOI: 10.1126/science.ade8978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Inactivation of the ubiquitin ligase Ube3a causes the developmental disorder Angelman syndrome, whereas increased Ube3a dosage is associated with autism spectrum disorders. Despite the enriched localization of Ube3a in the axon terminals including presynapses, little is known about the presynaptic function of Ube3a and mechanisms underlying its presynaptic localization. We show that developmental synapse elimination requires presynaptic Ube3a activity in Drosophila neurons. We further identified the domain of Ube3a that is required for its interaction with the kinesin motor. Angelman syndrome-associated missense mutations in the interaction domain attenuate presynaptic targeting of Ube3a and prevent synapse elimination. Conversely, increased Ube3a activity in presynapses leads to precocious synapse elimination and impairs synaptic transmission. Our findings reveal the physiological role of Ube3a and suggest potential pathogenic mechanisms associated with Ube3a dysregulation.
Collapse
Affiliation(s)
- Kotaro Furusawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenichi Ishii
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato Tsuji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nagomi Tokumitsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Eri Hasegawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuo Emoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
16
|
Reorganization of Brain Networks as a Substrate of Resilience: An Analysis of Cytochrome c Oxidase Activity in Rats. Neuroscience 2023; 516:75-90. [PMID: 36805003 DOI: 10.1016/j.neuroscience.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 02/18/2023]
Abstract
The unpredictable chronic mild stress (UCMS) model has been used to induce depressive-like symptoms in animal models, showing adequate predictive validity. Our work aims to evaluate the effects of environmental enrichment (EE) on resilience in this experimental model of depression. We also aim to assess changes in brain connectivity using cytochrome c oxidase histochemistry in cerebral regions related to cognitive-affective processes associated with depressive disorder: dorsal hippocampus, prefrontal cortex, amygdala, accumbens, and habenula nuclei. Five groups of rats were used: UCMS, EE, EE + UCMS (enrichment + stress), BG (basal level of brain activity), and CONT (behavioral tests only). We assessed the hedonic responses elicited by sucrose solution using a consumption test; the anxiety level was evaluated using the elevated zero maze test, and the unconditioned fear responses were assessed by the cat odor test. The behavioral results showed that the UCMS protocol induces elevated anhedonia and anxiety. But these responses are attenuated previous exposure to EE. Regarding brain activity, the UCMS group showed greater activity in the habenula compared to the EE + UCMS group. EE induced a functional reorganization of brain activity. The EE + UCMS and UCMS groups showed different patterns of connections between brain regions. Our results showed that EE favors greater resilience and could reduce vulnerability to disorders such as depression and anxiety, modifying metabolic brain activity.
Collapse
|
17
|
Tseilikman VE, Tseilikman OB, Pashkov AA, Ivleva IS, Karpenko MN, Shatilov VA, Zhukov MS, Fedotova JO, Kondashevskaya MV, Downey HF, Manukhina EB. Mechanisms of Susceptibility and Resilience to PTSD: Role of Dopamine Metabolism and BDNF Expression in the Hippocampus. Int J Mol Sci 2022; 23:ijms232314575. [PMID: 36498900 PMCID: PMC9737079 DOI: 10.3390/ijms232314575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Susceptibility and resilience to post-traumatic stress disorder (PTSD) are recognized, but their mechanisms are not understood. Here, the hexobarbital sleep test (HST) was used to elucidate mechanisms of PTSD resilience or susceptibility. A HST was performed in rats 30 days prior to further experimentation. Based on the HST, the rats were divided into groups: (1) fast metabolizers (FM; sleep duration < 15 min); (2) slow metabolizers (SM; sleep duration ≥ 15 min). Then the SM and FM groups were subdivided into stressed (10 days predator scent, 15 days rest) and unstressed subgroups. Among stressed animals, only SMs developed experimental PTSD, and had higher plasma corticosterone (CORT) than stressed FMs. Thus, resilience or susceptibility to PTSD was consistent with changes in glucocorticoid metabolism. Stressed SMs had a pronounced decrease in hippocampal dopamine associated with increased expressions of catecholamine-O-methyl-transferase and DA transporter. In stressed SMs, a decrease in monoaminoxidase (MAO) A was associated with increased expressions of hippocampal MAO-A and MAO-B. BDNF gene expression was increased in stressed FMs and decreased in stressed SMs. These results demonstrate relationships between the microsomal oxidation phenotype, CORT concentration, and anxiety, and they help further the understanding of the role of the liver−brain axis during PTSD.
Collapse
Affiliation(s)
- Vadim E. Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Olga B. Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Basic Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Anton A. Pashkov
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Federal Neurosurgical Center, 630048 Novosibirsk, Russia
| | - Irina S. Ivleva
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | - Marina N. Karpenko
- Pavlov Department of Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
| | | | - Maxim S. Zhukov
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Julia O. Fedotova
- Laboratory of Neuroendocrinology, Pavlov Institute of Physiology, 199034 Saint Petersburg, Russia
| | - Marina V. Kondashevskaya
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Center of Surgery, 117418 Moscow, Russia
| | - H. Fred Downey
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence:
| | - Eugenia B. Manukhina
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Laboratory for Regulatory Mechanisms of Stress and Adaptation, Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| |
Collapse
|
18
|
Galyamina AG, Smagin DA, Kovalenko IL, Redina OE, Babenko VN, Kudryavtseva NN. The Dysfunction of Carcinogenesis- and Apoptosis-Associated Genes that Develops in the Hypothalamus under Chronic Social Defeat Stress in Male Mice. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1050-1064. [PMID: 36180995 DOI: 10.1134/s0006297922090152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Chronic social stress caused by daily agonistic interactions in male mice leads to a mixed anxiety/depression-like disorder that is accompanied by the development of psychogenic immunodeficiency and stimulation of oncogenic processes concurrently with many neurotranscriptomic changes in brain regions. The aim of the study was to identify carcinogenesis- and apoptosis-associated differentially expressed genes (DEGs) in the hypothalamus of male mice with depression-like symptoms and, for comparison, in aggressive male mice with positive social experience. To obtain two groups of animals with the opposite 20-day social experiences, a model of chronic social conflict was used. Analysis of RNA-Seq data revealed similar expression changes for many DEGs between the aggressive and depressed animals in comparison with the control group; however, the number of DEGs was significantly lower in the aggressive than in the depressed mice. It is likely that the observed unidirectional changes in the expression of carcinogenesis- and apoptosis-associated genes in the two experimental groups may be a result of prolonged social stress (of different severity) caused by the agonistic interactions. In addition, 26 DEGs were found that did not change expression in the aggressive animals and could be considered genes promoting carcinogenesis or inhibiting apoptosis. Akt1, Bag6, Foxp4, Mapk3, Mapk8, Nol3, Pdcd10, and Xiap were identified as genes whose expression most strongly correlated with the expression of other DEGs, suggesting that their protein products play a role in coordination of the neurotranscriptomic changes in the hypothalamus. Further research into functions of these genes may be useful for the development of pharmacotherapies for psychosomatic pathologies.
Collapse
Affiliation(s)
- Anna G Galyamina
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitry A Smagin
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina L Kovalenko
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Olga E Redina
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir N Babenko
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Natalia N Kudryavtseva
- FRC Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, 199034, Russia
| |
Collapse
|
19
|
Tseilikman V, Akulov A, Shevelev O, Khotskina A, Kontsevaya G, Moshkin M, Fedotova J, Pashkov A, Tseilikman O, Agletdinov E, Tseilikman D, Kondashevskaya M, Zavjalov E. Paradoxical Anxiety Level Reduction in Animal Chronic Stress: A Unique Role of Hippocampus Neurobiology. Int J Mol Sci 2022; 23:ijms23169151. [PMID: 36012411 PMCID: PMC9409467 DOI: 10.3390/ijms23169151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
A paradoxical reduction in anxiety levels in chronic predator stress paradigm (PS) in Sprague–Dawley rats has recently been shown in previous works. In this paper, we studied the possible neurobiological mechanism of this phenomenon. We segregated PS-exposed Sprague–Dawley rats into the high- and low-anxiety phenotypes. The long-lasting effects of PS on corticosterone levels, blood flow speed in the carotid arteries, diffusion coefficient, and 1H nuclear magnetic resonance spectra in the hippocampus were compared in the high-anxiety and low-anxiety rats. In addition, we evaluated the gene BDNF expression in the hippocampus which is considered to be a main factor of neuroplasticity. We demonstrated that in low-anxiety rats, the corticosterone level was decreased and carotid blood flow speed was increased. Moreover, in the hippocampus of low-anxiety rats compared to the control group and high-anxiety rats, the following changes were observed: (a) a decrease in N-acetyl aspartate levels with a simultaneous increase in phosphoryl ethanol amine levels; (b) an increase in lipid peroxidation levels; (c) a decrease in apparent diffusion coefficient value; (d) an increase in BDNF gene expression. Based on these findings, we proposed that stress-induced anxiety reduction is associated with the elevation of BDNF gene expression directly. Low corticosterone levels and a rise in carotid blood flow speed might facilitate BDNF gene expression. Meanwhile, the decrease in apparent diffusion coefficient value and decrease in N-acetyl aspartate levels, as well as an increase in the lipid peroxidation levels, in the hippocampus possibly reflected destructive changes in the hippocampus. We suggested that in Sprague–Dawley rats, these morphological alterations might be considered as an impetus for further increase in neuroplasticity in the hippocampus.
Collapse
Affiliation(s)
- Vadim Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Correspondence:
| | - Andrey Akulov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Oleg Shevelev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Anna Khotskina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Galina Kontsevaya
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Mikhail Moshkin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| | - Julia Fedotova
- Laboratory of Neuroendocrinology, Pavlov Institute of Physiology, RAS, 199034 St. Petersburg, Russia
| | - Anton Pashkov
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- FSBI “Federal Neurosurgical Center”, Nemirovich-Danchenko Str. 132/1, 630087 Novosibirsk, Russia
| | - Olga Tseilikman
- School of Medical Biology, South Ural State University, 454080 Chelyabinsk, Russia
- Department of Basic Medicine, Chelyabinsk State University, 454001 Chelyabinsk, Russia
| | - Eduard Agletdinov
- AO Vector-Best, Koltsovo Village, Research and Production Zone, Building 36, Room 211, 630559 Novosibirsk, Russia
| | - David Tseilikman
- Zelman Institute of Medicine and Psychology, Novosibirsk State University, 630090 Novosibirsk, Russia
| | | | - Evgenii Zavjalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia
| |
Collapse
|
20
|
The Impact of Increase in the Vertical Dimension of Occlusion on Nociception in Rats - A Preliminary Report. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022. [DOI: 10.2478/sjecr-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Since the change in vertical dimension of occlusion (VDO) is extremely important in prosthetic dentistry, the aim of the study was to examine the effect of VDO increase on nociception parameters in rodent experimental model. The study was performed on seven experimental groups (6 animals per group) on male Wistaralbino rats: sham; 0.6/3, 0.9/3, and 1.2/3 groups where VDO was increased by 0.6, 0.9, and 1.2 mm (respectively), for three days; 0.6/20, 0.9/20, and 1.2/20 groups where VDO was increased by 0.6, 0.9, and 1.2 mm (respectively), for twenty days. The VDO raising protocols were performed as follows: on a day 1, following anaesthesia, a two-phase impression was taken with addition silicones; on a day 3, the cementing process for both maxillary incisors and inside crowns preparation was performed, and cementing zirconium crowns, manufactured using CAD-CAM technology, were applied. The behavioural testing (the tail flick and hot plate test) was performed on day 3 and 20. The results obtained in the tail flick test suggest that the raise in VDO in the early phase induced increased sensitivity to pain in a stepwise manner, while this hyperalgesic effect was diminished in a timedependent manner. The stepwise increase in VDO also resulted in significant decline in the pain tolerance with the higher VDO (0.9 and 1.2 mm) in the hot plate test that persisted after twenty days in 1.2/20 group. It seems that VDO elevation is sufficient to produce hyperalgesic effect in this experimental model, which may be attenuated in time-dependent manner.
Collapse
|
21
|
Du Preez A, Lefèvre-Arbogast S, González-Domínguez R, Houghton V, de Lucia C, Low DY, Helmer C, Féart C, Delcourt C, Proust-Lima C, Pallàs M, Sánchez-Pla A, Urpi-Sardà M, Ruigrok SR, Altendorfer B, Aigner L, Lucassen PJ, Korosi A, Manach C, Andres-Lacueva C, Samieri C, Thuret S. Impaired hippocampal neurogenesis in vitro is modulated by dietary-related endogenous factors and associated with depression in a longitudinal ageing cohort study. Mol Psychiatry 2022; 27:3425-3440. [PMID: 35794184 PMCID: PMC7613865 DOI: 10.1038/s41380-022-01644-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
Environmental factors like diet have been linked to depression and/or relapse risk in later life. This could be partially driven by the food metabolome, which communicates with the brain via the circulatory system and interacts with hippocampal neurogenesis (HN), a form of brain plasticity implicated in depression aetiology. Despite the associations between HN, diet and depression, human data further substantiating this hypothesis are largely missing. Here, we used an in vitro model of HN to test the effects of serum samples from a longitudinal ageing cohort of 373 participants, with or without depressive symptomology. 1% participant serum was applied to human fetal hippocampal progenitor cells, and changes in HN markers were related to the occurrence of depressive symptoms across a 12-year period. Key nutritional, metabolomic and lipidomic biomarkers (extracted from participant plasma and serum) were subsequently tested for their ability to modulate HN. In our assay, we found that reduced cell death and increased neuronal differentiation were associated with later life depressive symptomatology. Additionally, we found impairments in neuronal cell morphology in cells treated with serum from participants experiencing recurrent depressive symptoms across the 12-year period. Interestingly, we found that increased neuronal differentiation was modulated by increased serum levels of metabolite butyrylcarnitine and decreased glycerophospholipid, PC35:1(16:0/19:1), levels - both of which are closely linked to diet - all in the context of depressive symptomology. These findings potentially suggest that diet and altered HN could subsequently shape the trajectory of late-life depressive symptomology.
Collapse
Affiliation(s)
- Andrea Du Preez
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9NU UK
| | - Sophie Lefèvre-Arbogast
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Raúl González-Domínguez
- grid.5841.80000 0004 1937 0247Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Vikki Houghton
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9NU UK
| | - Chiara de Lucia
- grid.13097.3c0000 0001 2322 6764Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, SE5 9NU UK
| | - Dorrain Y. Low
- Université Clermont Auvergne, INRA, UMR1019, Human Nutrition Unit, F-63000 Clermont Ferrand, France
| | - Catherine Helmer
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Catherine Féart
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Cécile Delcourt
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Cécile Proust-Lima
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Mercè Pallàs
- grid.5841.80000 0004 1937 0247Pharmacology Section, Department of Pharmacology, Toxicology and Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neurosciences, University of Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Alex Sánchez-Pla
- grid.5841.80000 0004 1937 0247Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Mireia Urpi-Sardà
- grid.5841.80000 0004 1937 0247Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Silvie R. Ruigrok
- grid.7177.60000000084992262Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Barbara Altendorfer
- grid.21604.310000 0004 0523 5263Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, 5020 Austria
| | - Ludwig Aigner
- grid.21604.310000 0004 0523 5263Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University, Salzburg, 5020 Austria
| | - Paul J. Lucassen
- grid.7177.60000000084992262Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Aniko Korosi
- grid.7177.60000000084992262Brain Plasticity Group, Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Claudine Manach
- Université Clermont Auvergne, INRA, UMR1019, Human Nutrition Unit, F-63000 Clermont Ferrand, France
| | - Cristina Andres-Lacueva
- grid.5841.80000 0004 1937 0247Nutrition, Food Science and Gastronomy Department, Faculty of Pharmacy and Food Science, University of Barcelona, 08028 Barcelona, Spain ,grid.413448.e0000 0000 9314 1427CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 0828 Barcelona, Spain
| | - Cécilia Samieri
- grid.508062.90000 0004 8511 8605University of Bordeaux, Inserm, Bordeaux Population Health Research Center, UMR 1219, F-33000 Bordeaux, France
| | - Sandrine Thuret
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK. .,Department of Neurology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
| |
Collapse
|
22
|
Vaseghi S, Zarrabian S, Haghparast A. Reviewing the role of the orexinergic system and stressors in modulating mood and reward-related behaviors. Neurosci Biobehav Rev 2021; 133:104516. [PMID: 34973302 DOI: 10.1016/j.neubiorev.2021.104516] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 01/22/2023]
Abstract
In this review study, we aimed to introduce the orexinergic system as an important signaling pathway involved in a variety of cognitive functions such as memory, motivation, and reward-related behaviors. This study focused on the role of orexinergic system in modulating reward-related behavior, with or without the presence of stressors. Cross-talk between the reward system and orexinergic signaling was also investigated, especially orexinergic signaling in the ventral tegmental area (VTA), the nucleus accumbens (NAc), and the hippocampus. Furthermore, we discussed the role of the orexinergic system in modulating mood states and mental illnesses such as depression, anxiety, panic, and posttraumatic stress disorder (PTSD). Here, we narrowed down our focus on the orexinergic signaling in three brain regions: the VTA, NAc, and the hippocampus (CA1 region and dentate gyrus) for their prominent role in reward-related behaviors and memory. It was concluded that the orexinergic system is critically involved in reward-related behavior and significantly alters stress responses and stress-related psychiatric and mood disorders.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Shahram Zarrabian
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19615-1178, Tehran, Iran.
| |
Collapse
|
23
|
Radaghdam S, Karamad V, Nourazarian A, Shademan B, Khaki-Khatibi F, Nikanfar M. Molecular mechanisms of sex hormones in the development and progression of Alzheimer's disease. Neurosci Lett 2021; 764:136221. [PMID: 34500000 DOI: 10.1016/j.neulet.2021.136221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/23/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is a form of brain disorder characterized by various pathological changes in the brain. Numerous studies have shown that sex hormones are involved in the disease. For instance, progesterone, estrogen, and testosterone are well-known steroid sex hormones that play an essential role in AD pathogenesis. The Gender-dependency of AD is attributed to the effect of these hormones on the brain, which plays a neuroprotective role. In recent years, much research has been performed on the protective role of these hormones against nerve cell damage, which are promising for AD management. Hence, in the current review, we aim to decipher the protective role of steroid hormones in AD. Accordingly, we will discuss their functional mechanisms at the genomic and non-genomic scales.
Collapse
Affiliation(s)
- Saeed Radaghdam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahidreza Karamad
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Alireza Nourazarian
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behrouz Shademan
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Turkey
| | - Fatemeh Khaki-Khatibi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Geng X, Wu H, Li Z, Li C, Chen D, Zong J, Liu Z, Wei S, Peng W. Jie-Yu-He-Huan Capsule Ameliorates Anxiety-Like Behaviours in Rats Exposed to Chronic Restraint Stress via the cAMP/PKA/CREB/BDNF Signalling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1703981. [PMID: 34646421 PMCID: PMC8505060 DOI: 10.1155/2021/1703981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 12/13/2022]
Abstract
Chronic stress is a critical factor in the aetiology of anxiety disorders; however, in the clinic, enduring and preventive measures are not available, and therapeutic drugs are associated with inevitable side effects. Our study established an anxiety rat model using chronic restraint stress (CRS) and assessed these animals using the open-field test, elevated plus-maze test, and light-dark box test. Jie-Yu-He-Huan capsule (JYHH), a Chinese medicine formula, was used as a preventative drug. The HPA axis-mediated release of corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone from the hypothalamus was tested. In the hippocampus and prefrontal cortex, concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid, as well as monoamine oxidase A, glucocorticoid receptor, and 5-HT1A receptor expression levels, were measured. Furthermore, we examined protein and mRNA expression of cAMP-PKA-CREB-BDNF pathway components. The results showed that JYHH had a significant preventative effect on the anxiety-like behaviour induced by CRS and prevented abnormal changes in the HPA axis and 5-HT system. Furthermore, CRS inhibited the cAMP-PKA-CREB-BDNF pathway, which returned to normal levels following JYHH treatment. This might be the underlying molecular mechanism of the antianxiety effect of JYHH, which could provide a new clinical target for preventative anxiolytic drugs for chronic stress.
Collapse
Affiliation(s)
- Xiwen Geng
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355 Shandong, China
| | - Hongyun Wu
- No. 3 Department of Encephalopathy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, 250011 Shandong, China
| | - Zifa Li
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355 Shandong, China
| | - Chuanfen Li
- College of Physical Education, Shandong Normal University, Ji'nan, 250014 Shandong, China
| | - Dan Chen
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355 Shandong, China
| | | | - Zimin Liu
- Chenland Nutritionals, Inc., Irvine, 92614 CA, USA
| | - Sheng Wei
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355 Shandong, China
| | - Wei Peng
- No. 3 Department of Encephalopathy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji'nan, 250011 Shandong, China
| |
Collapse
|
25
|
Jacobs B, Rally H, Doyle C, O'Brien L, Tennison M, Marino L. Putative neural consequences of captivity for elephants and cetaceans. Rev Neurosci 2021; 33:439-465. [PMID: 34534428 DOI: 10.1515/revneuro-2021-0100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
The present review assesses the potential neural impact of impoverished, captive environments on large-brained mammals, with a focus on elephants and cetaceans. These species share several characteristics, including being large, wide-ranging, long-lived, cognitively sophisticated, highly social, and large-brained mammals. Although the impact of the captive environment on physical and behavioral health has been well-documented, relatively little attention has been paid to the brain itself. Here, we explore the potential neural consequences of living in captive environments, with a focus on three levels: (1) The effects of environmental impoverishment/enrichment on the brain, emphasizing the negative neural consequences of the captive/impoverished environment; (2) the neural consequences of stress on the brain, with an emphasis on corticolimbic structures; and (3) the neural underpinnings of stereotypies, often observed in captive animals, underscoring dysregulation of the basal ganglia and associated circuitry. To this end, we provide a substantive hypothesis about the negative impact of captivity on the brains of large mammals (e.g., cetaceans and elephants) and how these neural consequences are related to documented evidence for compromised physical and psychological well-being.
Collapse
Affiliation(s)
- Bob Jacobs
- Laboratory of Quantitative Neuromorphology, Neuroscience Program, Colorado College, Colorado Springs, CO, 80903, USA
| | - Heather Rally
- Foundation to Support Animal Protection, Norfolk, VA, 23510, USA
| | - Catherine Doyle
- Performing Animal Welfare Society, P.O. Box 849, Galt, CA, 95632, USA
| | - Lester O'Brien
- Palladium Elephant Consulting Inc., 2408 Pinewood Dr. SE, Calgary, AB, T2B1S4, Canada
| | - Mackenzie Tennison
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
| | - Lori Marino
- Whale Sanctuary Project, Kanab, UT, 84741, USA
| |
Collapse
|
26
|
Ethinyl Estadiol/Progestin Oral Contraceptives Depress Spatial Learning and Dysregulate Hippocampal CA3 Microstructure: Implications for Behavioral-Cognitive Effects of Chronic Contraceptive Use? ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
Combined oral contraceptive pill contains ethinyl estradiol and a synthetic progestin, which prevent ovulation by suppressing the release of the gonadotropins resulting in the inhibition of ovarian follicles’ development. Although advantageous in birth control, the impact on learning and memory is limited necessitating this study on its effect on spatial learning, and hippocampal CA3 microstructure. Thirty two female Wistar rats of average body weight 200 g were equally divided (n = 8) into four groups; 0.002 mg/kg levonorgestrel plus 0.00043 mg/kg ethinyl estradiol (COCP) were administered orally for 21, 42 and 63 days. 24 hours after the last administration the rats underwent Morris water maze test and were sacrificed by transcardial perfusion-fixation. Their hippocampal regions were processed for histological study, and immunolabelled with anti-neuron specific enolase (NSE) and glial fibrillary acidic protein (GFAP). Results showed that the COCP test groups had shorter escape latencies (p ≤ 0.05) in the visible and hidden platform trials. The COCP test groups showed no difference in neuronal population, although some of the hippocampal CA3 pyramidal neurons were either atrophic and/or karyorrhectic, with shrunken and dense nuclei. NSE expression was lower (p ≤ 0.05) in the 21, 42 and 63 days COCP groups, while GFAP expression was lower in the 21 days COCP group, but not different in the 42 and 63 days COCP groups compared with the control. These preliminary results show that COCP influence spatial learning, and may also reduce neuronal metabolic activity, while increasing astrocytic activity in the hippocampal CA3.
Collapse
|
27
|
Klimkiewicz A, Jasionowska J, Schmalenberg A, Klimkiewicz J, Jasińska A, Silczuk A. COVID-19 Pandemic-Related Depression and Insomnia among Psychiatric Patients and the General Population. J Clin Med 2021; 10:3425. [PMID: 34362208 PMCID: PMC8348989 DOI: 10.3390/jcm10153425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/16/2021] [Accepted: 07/28/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic and limited access to healthcare professionals pose a serious risk of worsening mental conditions. This study was designed to examine the changes in symptoms of insomnia and depression during the pandemic as compared to before the pandemic, as well as the factors correlated with abovementioned mental state deterioration. METHODS The study was conducted from 1 April to 15 May 2020, on 212 psychiatric outpatients and 207 healthy controls. Participants completed a survey focused on symptoms during and prior to COVID-19 (the Beck Depression Inventory, the Athens Insomnia Scale). The following correlations were analyzed: demographics, social support, work status, income, and possible participants' and their relatives' COVID-19 diagnoses. RESULTS Insomnia and depression severity intensified during the pandemic in both groups and were associated with age, gender, education, employment, and financial status. No correlations between social support nor becoming sick with COVID-19 and insomnia or depression were observed. Maintaining work and enough money for one's own needs were found to be significant protective factors of depression (OR 0.37 and 0.29, respectively). CONCLUSIONS Exacerbation of insomnia and depression during the pandemic needs to be addressed. Economic crisis seems to influence mental state even more than COVID diagnosis among study subjects/relatives.
Collapse
Affiliation(s)
- Anna Klimkiewicz
- Department of Psychiatry, Medical University of Warsaw, Nowowiejska St. 27, 00-665 Warsaw, Poland;
- Psychomedic Clinic, Jastrzebowskiego St. 24, 02-783 Warsaw, Poland;
- Nowowiejski Psychiatric Hospital, Nowowiejska St. 27, 00-665 Warsaw, Poland;
| | - Joanna Jasionowska
- Nowowiejski Psychiatric Hospital, Nowowiejska St. 27, 00-665 Warsaw, Poland;
| | - Adrianna Schmalenberg
- Psychomedic Clinic, Jastrzebowskiego St. 24, 02-783 Warsaw, Poland;
- Department of Psychology, SWPS University, Chodakowska St. 19/31, 03-815 Warsaw, Poland
| | - Jakub Klimkiewicz
- Military Institute of Medicine, Szaserow St. 128, 04-141 Warsaw, Poland
| | - Agata Jasińska
- Department of Science and Technology Transfer, Medical University of Warsaw, Żwirki i Wigury St. 61, 02-091 Warsaw, Poland;
| | - Andrzej Silczuk
- Institute of Psychiatry and Neurology, Addiction Prevention and Treatment Team, Sobieskiego St. 9, 02-957 Warsaw, Poland;
| |
Collapse
|
28
|
Phan ML, Liu TT, Vollbrecht MS, Mansour MH, Nikodijevic I, Jadav N, Patibanda N, Dang J, Shekaran G, Reisler RC, Kim WS, Zhou X, DiCicco-Bloom E, Samuels BA. Engrailed 2 deficiency and chronic stress alter avoidance and motivation behaviors. Behav Brain Res 2021; 413:113466. [PMID: 34271036 DOI: 10.1016/j.bbr.2021.113466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/18/2021] [Accepted: 07/09/2021] [Indexed: 12/16/2022]
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder characterized by impairments in social interaction, cognition, and communication, as well as the presence of repetitive or stereotyped behaviors and interests. ASD is most often studied as a neurodevelopmental disease, but it is a lifelong disorder. Adults with ASD experience more stressful life events and greater perceived stress, and frequently have comorbid mood disorders such as anxiety and depression. It remains unclear whether adult exposure to chronic stress can exacerbate the behavioral and neurodevelopmental phenotypes associated with ASD. To address this issue, we first investigated whether adult male and female Engrailed-2 deficient (En2-KO, En2-/-) mice, which display behavioral disturbances in avoidance tasks and dysregulated monoaminergic neurotransmitter levels, also display impairments in instrumental behaviors associated with motivation, such as the progressive ratio task. We then exposed adult En2-KO mice to chronic environmental stress (CSDS, chronic social defeat stress), to determine if stress exacerbated the behavioral and neuroanatomical effects of En2 deletion. En2-/- mice showed impaired instrumental acquisition and significantly lower breakpoints in a progressive ratio test, demonstrating En2 deficiency decreases motivation to exert effort for reward. Furthermore, adult CSDS exposure increased avoidance behaviors in En2-KO mice. Interestingly, adult CSDS exposure also exacerbated the deleterious effects of En2 deficiency on forebrain-projecting monoaminergic fibers. Our findings thus suggest that adult exposure to stress may exacerbate behavioral and neuroanatomical phenotypes associated with developmental effects of genetic En2 deficiency.
Collapse
Affiliation(s)
- Mimi L Phan
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Tonia T Liu
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Mallory S Vollbrecht
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mark H Mansour
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Ivana Nikodijevic
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Nikita Jadav
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Neeharika Patibanda
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Jenny Dang
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Gopna Shekaran
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Robert C Reisler
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Won S Kim
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Benjamin A Samuels
- Behavioral and Systems Neuroscience Area, Department of Psychology, Rutgers University-New Brunswick, Piscataway, NJ, 08854, USA.
| |
Collapse
|
29
|
Wang L, Yang W, Li B, Yuan S, Wang F. Response to stress in biological disorders: Implications of stress granule assembly and function. Cell Prolif 2021; 54:e13086. [PMID: 34170048 PMCID: PMC8349659 DOI: 10.1111/cpr.13086] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 12/17/2022] Open
Abstract
It is indispensable for cells to adapt and respond to environmental stresses, in order for organisms to survive. Stress granules (SGs) are condensed membrane‐less organelles dynamically formed in the cytoplasm of eukaryotes cells to cope with diverse intracellular or extracellular stress factors, with features of liquid‐liquid phase separation. They are composed of multiple constituents, including translationally stalled mRNAs, translation initiation factors, RNA‐binding proteins and also non‐RNA‐binding proteins. SG formation is triggered by stress stimuli, viral infection and signal transduction, while aberrant assembly of SGs may contribute to tissue degenerative diseases. Recently, a growing body of evidence has emerged on SG response mechanisms for cells facing high temperatures, oxidative stress and osmotic stress. In this review, we aim to summarize factors affecting SGs assembly, present the impact of SGs on germ cell development and other biological processes. We particularly emphasize the significance of recently reported RNA modifications in SG stress responses. In parallel, we also review all current perspectives on the roles of SGs in male germ cells, with a particular focus on the dynamics of SG assembly.
Collapse
Affiliation(s)
- Lingjuan Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Weina Yang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Bin Li
- Tianjin Medical University General Hospital, Tianjin, China.,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shuiqiao Yuan
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| | - Fengli Wang
- Institute Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China
| |
Collapse
|
30
|
Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol Psychiatry 2021; 89:847-856. [PMID: 33691931 DOI: 10.1016/j.biopsych.2020.12.026] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Brain systems that promote maintenance of homeostasis in the face of stress have significant adaptive value. A growing body of work across species demonstrates a critical role for the amygdala in promoting homeostasis by regulating physiological and behavioral responses to stress. This review focuses on an emerging body of evidence that has begun to delineate the contribution of specific long-range amygdala circuits in mediating the effects of stress. After summarizing the major anatomical features of the amygdala and its connectivity to other limbic structures, we discuss recent findings from rodents showing how stress causes structural and functional remodeling of amygdala neuronal outputs to defined cortical and subcortical target regions. We also consider some of the environmental and genetic factors that have been found to moderate how the amygdala responds to stress and relate the emerging preclinical literature to the current understanding of the pathophysiology and treatment of stress-related neuropsychiatric disorders. Future effort to translate these findings to clinics may help to develop valuable tools for prevention, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Jun-Yu Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institues of Health, Bethesda, Maryland
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
31
|
Cherix A, Sonti R, Lanz B, Lei H. In Vivo Metabolism of [1,6- 13C 2]Glucose Reveals Distinct Neuroenergetic Functionality between Mouse Hippocampus and Hypothalamus. Metabolites 2021; 11:metabo11010050. [PMID: 33445747 PMCID: PMC7828183 DOI: 10.3390/metabo11010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/27/2022] Open
Abstract
Glucose is a major energy fuel for the brain, however, less is known about specificities of its metabolism in distinct cerebral areas. Here we examined the regional differences in glucose utilization between the hypothalamus and hippocampus using in vivo indirect 13C magnetic resonance spectroscopy (1H-[13C]-MRS) upon infusion of [1,6-13C2]glucose. Using a metabolic flux analysis with a 1-compartment mathematical model of brain metabolism, we report that compared to hippocampus, hypothalamus shows higher levels of aerobic glycolysis associated with a marked gamma-aminobutyric acid-ergic (GABAergic) and astrocytic metabolic dependence. In addition, our analysis suggests a higher rate of ATP production in hypothalamus that is accompanied by an excess of cytosolic nicotinamide adenine dinucleotide (NADH) production that does not fuel mitochondria via the malate-aspartate shuttle (MAS). In conclusion, our results reveal significant metabolic differences, which might be attributable to respective cell populations or functional features of both structures.
Collapse
Affiliation(s)
- Antoine Cherix
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (A.C.); (R.S.); (B.L.)
| | - Rajesh Sonti
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (A.C.); (R.S.); (B.L.)
| | - Bernard Lanz
- Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; (A.C.); (R.S.); (B.L.)
| | - Hongxia Lei
- Animal Imaging and Technology (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
- Faculty of Medicine, University of Geneva, CH-1206 Geneva, Switzerland
- Correspondence:
| |
Collapse
|
32
|
Xiao L, Sharma VK, Toulabi L, Yang X, Lee C, Abebe D, Peltekian A, Arnaoutova I, Lou H, Loh YP. Neurotrophic factor-α1, a novel tropin is critical for the prevention of stress-induced hippocampal CA3 cell death and cognitive dysfunction in mice: comparison to BDNF. Transl Psychiatry 2021; 11:24. [PMID: 33414376 PMCID: PMC7791060 DOI: 10.1038/s41398-020-01112-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/15/2020] [Accepted: 10/22/2020] [Indexed: 12/16/2022] Open
Abstract
Stress leads to brain pathology including hippocampal degeneration, cognitive dysfunction, and potential mood disorders. Hippocampal CA3, a most stress-vulnerable region, consists of pyramidal neurons that regulate cognitive functions e.g. learning and memory. These CA3 neurons express high levels of the neuroprotective protein, neurotrophic factor-α1 (NF-α1), also known as carboxypeptidase E (CPE), and receive contacts from granule cell projections that release BDNF which has neuroprotective activity. Whether NF-α1-CPE and/or BDNF are critical in protecting these CA3 neurons against severe stress-induced cell death is unknown. Here we show that social combined with the physical stress of maternal separation, ear tagging, and tail snipping at weaning in 3-week-old mice lacking NF-α1-CPE, led to complete hippocampal CA3 degeneration, despite having BDNF and active phosphorylated TrkB receptor levels similar to WT animals. Mice administered TrkB inhibitor, ANA12 which blocked TrkB phosphorylation showed no degeneration of the CA3 neurons after the weaning stress paradigm. Furthermore, transgenic knock-in mice expressing CPE-E342Q, an enzymatically inactive form, replacing NF-α1-CPE, showed no CA3 degeneration and exhibited normal learning and memory after the weaning stress, unlike NF-α1-CPE-KO mice. Mechanistically, we showed that radio-labeled NF-α1-CPE bound HT22 hippocampal cells in a saturable manner and with high affinity (Kd = 4.37 nM). Subsequently, treatment of the HT22cpe-/- cells with NF-α1-CPE or CPE-E342Q equivalently activated ERK signaling and increased BCL2 expression to protect these neurons against H2O2-or glutamate-induced cytotoxicity. Our findings show that NF-α1-CPE is more critical compared to BDNF in protecting CA3 pyramidal neurons against stress-induced cell death and cognitive dysfunction, independent of its enzymatic activity.
Collapse
Affiliation(s)
- Lan Xiao
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Vinay Kumar Sharma
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Leila Toulabi
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Xuyu Yang
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Cheol Lee
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Daniel Abebe
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Areg Peltekian
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Irina Arnaoutova
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Hong Lou
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| | - Y. Peng Loh
- grid.94365.3d0000 0001 2297 5165Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
33
|
Cushman JD, Drew MR, Krasne FB. The environmental sculpting hypothesis of juvenile and adult hippocampal neurogenesis. Prog Neurobiol 2020; 199:101961. [PMID: 33242572 DOI: 10.1016/j.pneurobio.2020.101961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 10/02/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
We propose that a major contribution of juvenile and adult hippocampal neurogenesis is to allow behavioral experience to sculpt dentate gyrus connectivity such that sensory attributes that are relevant to the animal's environment are more strongly represented. This "specialized" dentate is then able to store a larger number of discriminable memory representations. Our hypothesis builds on accumulating evidence that neurogenesis declines to low levels prior to adulthood in many species. Rather than being necessary for ongoing hippocampal function, as several current theories posit, we argue that neurogenesis has primarily a prospective function, in that it allows experience to shape hippocampal circuits and optimize them for future learning in the particular environment in which the animal lives. Using an anatomically-based simulation of the hippocampus (BACON), we demonstrate that environmental sculpting of this kind would reduce overlap among hippocampal memory representations and provide representation cells with more information about an animal's current situation; consequently, it would allow more memories to be stored and accurately recalled without significant interference. We describe several new, testable predictions generated by the sculpting hypothesis and evaluate the hypothesis with respect to existing evidence. We argue that the sculpting hypothesis provides a strong rationale for why juvenile and adult neurogenesis occurs specifically in the dentate gyrus and why it declines significantly prior to adulthood.
Collapse
Affiliation(s)
- Jesse D Cushman
- Neurobehavioral Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC 27709, United States.
| | - Michael R Drew
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, TX 78712, United States.
| | - Franklin B Krasne
- Department of Psychology, University of California Los Angeles, Box 951563, Los Angeles, CA 90095-1563, United States.
| |
Collapse
|
34
|
Reddaway J, Brydges NM. Enduring neuroimmunological consequences of developmental experiences: From vulnerability to resilience. Mol Cell Neurosci 2020; 109:103567. [PMID: 33068720 PMCID: PMC7556274 DOI: 10.1016/j.mcn.2020.103567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
The immune system is crucial for normal neuronal development and function (neuroimmune system). Both immune and neuronal systems undergo significant postnatal development and are sensitive to developmental programming by environmental experiences. Negative experiences from infection to psychological stress at a range of different time points (in utero to adolescence) can permanently alter the function of the neuroimmune system: given its prominent role in normal brain development and function this dysregulation may increase vulnerability to psychiatric illness. In contrast, positive experiences such as exercise and environmental enrichment are protective and can promote resilience, even restoring the detrimental effects of negative experiences on the neuroimmune system. This suggests the neuroimmune system is a viable therapeutic target for treatment and prevention of psychiatric illnesses, especially those related to stress. In this review we will summarise the main cells, molecules and functions of the immune system in general and with specific reference to central nervous system development and function. We will then discuss the effects of negative and positive environmental experiences, especially during development, in programming the long-term functioning of the neuroimmune system. Finally, we will review the sparse but growing literature on sex differences in neuroimmune development and response to environmental experiences. The immune system is essential for development and function of the central nervous system (neuroimmune system) Environmental experiences can permanently alter neuroimmune function and associated brain development Altered neuroimmune function following negative developmental experiences may play a role in psychiatric illnesses Positive experiences can promote resilience and rescue the effects of negative experiences on the neuroimmune system The neuroimmune system is therefore a viable therapeutic target for preventing and treating psychiatric illnesses
Collapse
Affiliation(s)
- Jack Reddaway
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
35
|
Abstract
The definition of traumatic brain injury (TBI) has expanded to include mild TBI and postconcussive syndrome. This evolution has resulted in difficulty disentangling the physical trauma of mild TBI from the emotional trauma of posttraumatic stress disorder (PTSD). Advances in stress neurobiology and knowledge of brain injury at the macroscopic, microscopic, biochemical, and molecular levels call for a redefinition of TBI that encompasses both physical and emotional TBI. Conceptualizing a spectrum of TBI with both physical and emotional causation resolves the irreconcilable tangle between diagnostic categories and acknowledges overlapping forms of brain injury and shared systemic effects due to hormonal and inflammatory mediators. Recognizing emotional TBI shifts the interpretation of emotional trauma from a confound to a comorbid, related cause of brain injury. The mechanism of emotional TBI includes the intricate actions of stress hormones on diverse brain functions due to changes in synaptic plasticity, where chronically elevated hormone levels reduce neurogenesis, resulting in dendritic atrophy and impaired cognition. The overlapping effects of physical and emotional trauma are seen in neuropathology (ie, reduction of hippocampal volume in TBI and PTSD); fMRI (similar regional activations in physical and emotional pain); and systemic sequelae, including changes in proinflammatory cytokine levels and immune cell function. Accumulating evidence favors a change in the definition of TBI to encompass emotional TBI. The definition of TBI will be strengthened by the inclusion of both physical and emotional trauma that result in diverse and overlapping forms of brain injury with sequelae for physical and mental health.
Collapse
|
36
|
Marijuana and the hippocampus: A longitudinal study on the effects of marijuana on hippocampal subfields. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109897. [PMID: 32119881 DOI: 10.1016/j.pnpbp.2020.109897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 11/20/2022]
Abstract
The psychoactive effects of cannabis, one of the most commonly used narcotics, have been documented extensively. Despite multiple studies being undertaken, there have been only a few longitudinal studies investigating the effect of long term usage of cannabis on various subcortical structures. This study aims at looking deeper into the effects of long term usage of cannabis on different hippocampus subfields.2 Participants were split into two groups, cannabis users and healthy controls. All the test subjects filled out the Cannabis Usage and Disorder Identification Test (CUDIT) and underwent T1-structural MRI scans twice, at a baseline and a followup 3 years later. The subfield volumes were measured using the software package Freesurfer with the LongitudinalHippocampalSubfields (v6.0) Module. Lifetime usage in grams was calculated for each participant until baseline and followup, independently, using linear interpolation. Usage of cannabis (lifetime consumption score) was correlated to increased volumes in certain subfields: the CA3 and CA4 in the right hemisphere and the presubiculum in both, the left and right hemispheres at baseline. Other tests including student's t-test and multivariate analysis of covariance were performed. Tests to understand the effects of varying consumption were also performed. Persistent usage of cannabis, however, did not result in atrophy of the subfields over time. Rather, there were lower growth rates observed in the healthy controls group as compared to that of the cannabis users in certain subfields.
Collapse
|
37
|
Merz EC, He X, Myers B, Noble KG. Socioeconomic Disadvantage, Chronic Stress, and Hippocampal Subfield Development in Children. Neurosci Insights 2020; 15:2633105520931098. [PMID: 32637937 PMCID: PMC7323261 DOI: 10.1177/2633105520931098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
Recent findings indicate that hair cortisol concentrations significantly mediate associations between socioeconomic disadvantage and reduced hippocampal CA3 and dentate gyrus volumes in children. In this commentary, we discuss these results and highlight important future research directions, including focusing on hippocampal subfield structural development in relation to episodic memory and mental health; the mechanistic role of excitatory amino acids, such as glutamate; and how chronic stress and cognitive stimulation may make unique proximal contributions to socioeconomic differences in hippocampal subfield volume. Building on the findings in these ways will contribute to advances in strategies aimed at reducing socioeconomic disparities in academic achievement and mental health.
Collapse
Affiliation(s)
- Emily C Merz
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, NY, USA
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kimberly G Noble
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA
| |
Collapse
|
38
|
Socioeconomic disadvantage, brain morphometry, and attentional bias to threat in middle childhood. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:309-326. [PMID: 30460484 DOI: 10.3758/s13415-018-00670-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Socioeconomic disadvantage is associated with higher rates of psychopathology as well as hippocampus, amygdala and prefrontal cortex structure. However, little is known about how variations in brain morphometry are associated with socio-emotional risks for mood disorders in children growing up in families experiencing low income. In the current study, using structural magnetic resonance imaging, we examined the relationship between socioeconomic disadvantage and gray matter volume in the hippocampus, amygdala, and ventrolateral prefrontal cortex in a sample of children (n = 34) in middle childhood. Using an affective dot probe paradigm, we examined the association between gray matter volume in these regions and attentional bias to threat, a risk marker for mood disorders including anxiety disorders. We found that lower income-to-needs ratio was associated with lower bilateral hippocampal and right amygdala volume, but not prefrontal cortex volumes. Moreover, lower attentional bias to threat was associated with greater left hippocampal volume. We provide evidence of a relationship between income-related variations in brain structure and attentional bias to threat, a risk for mood disorders. Therefore, these findings support an environment-morphometry-behavior relationship that contributes to the understanding of income-related mental health disparities in childhood.
Collapse
|
39
|
Moradi-Kor N, Ghanbari A, Rashidipour H, Bandegi AR, Yousefi B, Barati M, Kokhaei P, Rashidy-Pour A. Therapeutic Effects of Spirulina platensis Against Adolescent Stress-Induced Oxidative Stress, Brain-Derived Neurotrophic Factor Alterations and Morphological Remodeling in the Amygdala of Adult Female Rats. J Exp Pharmacol 2020; 12:75-85. [PMID: 32256126 PMCID: PMC7090200 DOI: 10.2147/jep.s237378] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/26/2020] [Indexed: 12/20/2022] Open
Abstract
Objective The amygdala structural and functional abnormalities have been implicated in numerous neuropsychiatric and neurodevelopmental disorders. Given the important role of the amygdala in stress responses and the susceptibility of the females to adolescent stress, the present study investigated the beneficial effects of Spirulina platensis microalgae (SP) as a neuroprotective supplement against adolescent stress-induced oxidative stress, brain-derived neurotrophic factor (BDNF) alterations, molecular and morphological remodeling in the basolateral amygdala (BLA) of adult female rats. Methods During the adolescent period (PNDs 30–40) rats were subjected to restraint stress (2 h/day for 10 days). Then, the animals were subjected to 15 days treatment (PNDs 41–55) with SP (200 mg/kg/day) followed by biochemical (BDNF and stress oxidative markers), molecular (BDNF and its receptor tropomyosin receptor kinase B [TrkB] mRNA expression), and morphological (dendritic length and spines) assessments in the BLA. Results The study revealed that adolescent stress decreased BDNF levels and reduced apical dendritic length and branch points of pyramidal neurons in the BLA. In addition, chronic stress significantly increased oxidative stress parameters and decreased BDNF and TrkB mRNA expression in the BLA. Treatment with SP alleviated both biochemical, molecular, and neuroanatomical deficits that induced by adolescent stress. Conclusion Our findings provide important evidence that SP as a non-pharmacological intervention during adolescent period can protect against chronic stress-induced neuroanatomical biochemical, and molecular deficits in adulthood, and thus, reduce stress-related disorders.
Collapse
Affiliation(s)
- Nasroallah Moradi-Kor
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran.,Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Hadi Rashidipour
- School of Veterinary Medicine, Islamic Azad University, Garmsar, Iran
| | - Ahmad Reza Bandegi
- Laboratory of Endocrine Research, Research Center of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Behpour Yousefi
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
40
|
Pezeshki-Nia S, Asle-Rousta M, Mahmazi S. Spinacia oleracea L. extract attenuates hippocampal expression of TNF-α and IL-1β in rats exposed to chronic restraint stress. Med J Islam Repub Iran 2020; 34:10. [PMID: 32284934 PMCID: PMC7139264 DOI: 10.34171/mjiri.34.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Indexed: 11/06/2022] Open
Abstract
Background: Restraint stress causes inflammation in nervous system that leads to emersion of neurodegenerative diseases. Spinach (Spinacia oleracea L.) contains different agents with antioxidant, antiapoptosis, and hepatoprotective properties. This study examined the effect of spinach hydroalcoholic extract (SHE) on TNF-α and IL-1β expression in hippocampus of male Wistar rats exposed to chronic restraint stress.
Methods: Rats were divided into 6 groups of 5: (1) control (intact); (2) nS-S200; (3) nS-S400; (4) stress; (5) stress-S200; (6) stressS400. Groups 2 and 3 and groups 5 and 6 received S. oleracea leaf hydroalcoholic extract in 200 and 400 mg/kg doses for 21 consecutive days by gavage. Groups 4, 5 and 6 were put in a restrainer 6 hours per day for 21 consecutive days. Then, the expression of IL-1β and TNF-α mRNAs and neuronal death in the hippocampus of rats were assessed by real time PCR and Nissl staining, respectively. Oneway analysis of variance was used for data analysis, and p<0.05 was considered statistically significant.
Results: The results showed that the expression of IL-1β and TNF-α was increased in hippocampus of rats exposed to stress compared to control groups (p<0.001). Furthermore, the expression of these proinflammatory cytokines was decreased in the stress-S200 and stress-S400 groups when compared to stress group (p<0.001). Immobility also caused neuronal death in CA1 region of hippocampus, and SHE reduced damage in CA1 pyramidal neurons layer in stressed rats.
Conclusion: Spinach decreases neuroinflammation in hippocampus of stressed rats, which may be due to its abundant antiinflammatory and antioxidant phytochemicals. The results of this study suggest that spinach may be effective in the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Sogand Pezeshki-Nia
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - Sanaz Mahmazi
- Department of Genetics, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
41
|
Mao Y, Fisher DW, Yang S, Keszycki RM, Dong H. Protein-protein interactions underlying the behavioral and psychological symptoms of dementia (BPSD) and Alzheimer's disease. PLoS One 2020; 15:e0226021. [PMID: 31951614 PMCID: PMC6968845 DOI: 10.1371/journal.pone.0226021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder currently affecting 45 million people worldwide, ranking as the 6th highest cause of death. Throughout the development and progression of AD, over 90% of patients display behavioral and psychological symptoms of dementia (BPSD), with some of these symptoms occurring before memory deficits and therefore serving as potential early predictors of AD-related cognitive decline. However, the biochemical links between AD and BPSD are not known. In this study, we explored the molecular interactions between AD and BPSD using protein-protein interaction (PPI) networks built from OMIM (Online Mendelian Inheritance in Man) genes that were related to AD and two distinct BPSD domains, the Affective Domain and the Hyperactivity, Impulsivity, Disinhibition, and Aggression (HIDA) Domain. Our results yielded 8 unique proteins for the Affective Domain (RHOA, GRB2, PIK3R1, HSPA4, HSP90AA1, GSK3beta, PRKCZ, and FYN), 5 unique proteins for the HIDA Domain (LRP1, EGFR, YWHAB, SUMO1, and EGR1), and 6 shared proteins between both BPSD domains (APP, UBC, ELAV1, YWHAZ, YWHAE, and SRC) and AD. These proteins might suggest specific targets and pathways that are involved in the pathogenesis of these BPSD domains in AD.
Collapse
Affiliation(s)
- Yimin Mao
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
- Applied Science Institute, Jiangxi University of Science and Technology, Jiangxi, China
| | - Daniel W. Fisher
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shuxing Yang
- School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China
| | - Rachel M. Keszycki
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Hongxin Dong
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
42
|
Marino L, Rose NA, Visser IN, Rally H, Ferdowsian H, Slootsky V. The harmful effects of captivity and chronic stress on the well-being of orcas (Orcinus orca). J Vet Behav 2020. [DOI: 10.1016/j.jveb.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
43
|
Merz EC, Desai PM, Maskus EA, Melvin SA, Rehman R, Torres SD, Meyer J, He X, Noble KG. Socioeconomic Disparities in Chronic Physiologic Stress Are Associated With Brain Structure in Children. Biol Psychiatry 2019; 86:921-929. [PMID: 31409452 PMCID: PMC6874729 DOI: 10.1016/j.biopsych.2019.05.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Socioeconomic factors have been consistently linked with the structure of children's hippocampus and anterior cingulate cortex (ACC). Chronic stress-as indexed by hair cortisol concentration-may represent an important mechanism underlying these associations. Here, we examined associations between hair cortisol and children's hippocampal and ACC structure, including across hippocampal subfields, and whether hair cortisol mediated associations between socioeconomic background (family income-to-needs ratio, parental education) and the structure of these brain regions. METHODS Participants were 5- to 9-year-old children (N = 94; 61% female) from socioeconomically diverse families. Parents and children provided hair samples that were assayed for cortisol. High-resolution, T1-weighted magnetic resonance imaging scans were acquired, and FreeSurfer 6.0 was used to compute hippocampal volume and rostral and caudal ACC thickness and surface area (n = 37 with both child hair cortisol and magnetic resonance imaging data; n = 41 with both parent hair cortisol and magnetic resonance imaging data). RESULTS Higher hair cortisol concentration was significantly associated with smaller CA3 and dentate gyrus hippocampal subfield volumes but not with CA1 or subiculum volume. Higher hair cortisol was also associated with greater caudal ACC thickness. Hair cortisol significantly mediated associations between parental education level and CA3 and dentate gyrus volumes; lower parental education level was associated with higher hair cortisol, which in turn was associated with smaller volume in these subfields. CONCLUSIONS These findings point to chronic physiologic stress as a potential mechanism through which lower parental education level leads to reduced hippocampal volume. Hair cortisol concentration may be an informative biomarker leading to more effective prevention and intervention strategies aimed at childhood socioeconomic disadvantage.
Collapse
Affiliation(s)
- Emily C Merz
- Teachers College, Columbia University, New York, New York
| | - Pooja M Desai
- Teachers College, Columbia University, New York, New York
| | | | | | - Rehan Rehman
- Teachers College, Columbia University, New York, New York
| | - Sarah D Torres
- Teachers College, Columbia University, New York, New York
| | | | - Xiaofu He
- Columbia University Medical Center and New York State Psychiatric Institute, New York, New York
| | | |
Collapse
|
44
|
Brown ES, Kulikova A, Van Enkevort E, Nakamura A, Ivleva EI, Tustison NJ, Roberts J, Yassa MA, Choi C, Frol A, Khan DA, Vazquez M, Holmes T, Malone K. A randomized trial of an NMDA receptor antagonist for reversing corticosteroid effects on the human hippocampus. Neuropsychopharmacology 2019; 44:2263-2267. [PMID: 31181564 PMCID: PMC6898191 DOI: 10.1038/s41386-019-0430-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/10/2019] [Accepted: 06/01/2019] [Indexed: 01/07/2023]
Abstract
Preclinical and clinical research indicates that excess corticosteroid is associated with adverse effects on the hippocampus. Animal model data suggest that N-methyl-D-aspartate (NMDA) receptor antagonists may block corticosteroid effect on the hippocampus. This translational clinical trial investigated the effect of memantine vs. placebo on hippocampal subfield volume in humans receiving chronic corticosteroid therapy. Men and women (N = 46) receiving chronic prescription corticosteroid therapy were randomized to memantine or placebo in a double-blind, crossover design (two 24-week treatment periods, separated by a 4-week washout) for 52 weeks. Structural magnetic resonance imaging was obtained at baseline and after each treatment. Data were analyzed using repeated measures analysis of variance. Mean corticosteroid dose was 7.69 ± 6.41 mg/day and mean duration 4.90 ± 5.61 years. Controlling for baseline volumes, the left DG/CA3 region was significantly larger following memantine than placebo (p = .011). The findings suggest that an NMDA receptor antagonist attenuates corticosteroid effect in the same hippocampal subfields in humans as in animal models. This finding has both mechanistic and clinical implications. Attenuation of the effect of corticosteroids on the human DG/CA3 region implicates the NMDA receptor in human hippocampal volume losses with corticosteroids. In addition, by suggesting a drug class that may, at least in part, block the effects of corticosteroids on the human DG/CA3 subfield, these results may have clinical relevance for people receiving prescription corticosteroids, as well as to those with cortisol elevations due to medical or psychiatric conditions.
Collapse
Affiliation(s)
- E Sherwood Brown
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Alexandra Kulikova
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Erin Van Enkevort
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alyson Nakamura
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Elena I Ivleva
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nicholas J Tustison
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, 92697, USA
| | - Jared Roberts
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, 92697, USA
| | - Michael A Yassa
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California at Irvine, Irvine, CA, 92697, USA
| | - Changho Choi
- Departments of Radiology and the Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Alan Frol
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - David A Khan
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Miguel Vazquez
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Traci Holmes
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Kendra Malone
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
45
|
Auersperg F, Vlasak T, Ponocny I, Barth A. Long-term effects of parental divorce on mental health - A meta-analysis. J Psychiatr Res 2019; 119:107-115. [PMID: 31622869 DOI: 10.1016/j.jpsychires.2019.09.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/22/2023]
Abstract
The aim of this study was to estimate the long-term effects of parental divorce on their offspring's mental health as well as substance-based addiction. We performed a systematic literature search on PubMed, Medline, PsyINFO, PsyARTICLES and PsycNET for the time period from 1990 until March 2018 in English language. In total 54 studies were included in the meta-analysis resulting in 117 effect sizes as well as a total sample of 506,299 participants. A significant association between parental divorce and every aspect of mental health was found with the following pooled ORs (95% CIs): Depression 1.29 (1.23-1.35), anxiety 1.12 (1.04-1.12), suicide attempt 1.35 (1.26-1.44), suicidal ideation 1.48 (1.43-1.54), distress 1.48 (1.37-1.6), alcohol 1.43 (1.34-1.53), smoking 1.64 (1.57-1.72) and drugs 1.45 (1.44-1.46) could be estimated. There was significant association between the effect sizes and the publication date specifically for distress (r = -0.995, p = .005). The results of the meta-analysis show a consistent direction of influence regarding the long-term effect of parental divorce on their children. Individuals affected by parental divorce have a higher risk of developing a variety of mental health conditions, although the effect sizes decreased from 1990 to 2017. Further research should focus on developing programmes to promote the resilience of children affected by divorce.
Collapse
Affiliation(s)
- Felicitas Auersperg
- Department of Psychology, Sigmund Freud University Vienna, 1020, Vienna, Austria.
| | - Thomas Vlasak
- Department of Psychology, Sigmund Freud University Linz, 4020, Linz, Austria.
| | - Ivo Ponocny
- Department for Sustainability, Governance, and Methods, MODUL University Vienna, 1190, Vienna, Austria.
| | - Alfred Barth
- Head of the Department of Psychology, Sigmund Freud University Linz, 4020, Linz, Austria.
| |
Collapse
|
46
|
Arafat EA, Shabaan DA. Fluoxetine ameliorates adult hippocampal injury in rats after early maternal separation. A biochemical, histological and immunohistochemical study. Biotech Histochem 2019; 95:55-68. [DOI: 10.1080/10520295.2019.1637021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Eetmad A. Arafat
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dalia A. Shabaan
- Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
47
|
Patel D, Kas MJ, Chattarji S, Buwalda B. Rodent models of social stress and neuronal plasticity: Relevance to depressive-like disorders. Behav Brain Res 2019; 369:111900. [DOI: 10.1016/j.bbr.2019.111900] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/26/2019] [Accepted: 04/09/2019] [Indexed: 12/11/2022]
|
48
|
Marrocco J, Gray JD, Kogan JF, Einhorn NR, O’Cinneide EM, Rubin TG, Carroll TS, Schmidt EF, McEwen BS. Early Life Stress Restricts Translational Reactivity in CA3 Neurons Associated With Altered Stress Responses in Adulthood. Front Behav Neurosci 2019; 13:157. [PMID: 31354448 PMCID: PMC6637287 DOI: 10.3389/fnbeh.2019.00157] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022] Open
Abstract
Early life experiences program brain structure and function and contribute to behavioral endophenotypes in adulthood. Epigenetic control of gene expression by those experiences affect discrete brain regions involved in mood, cognitive function and regulation of hypothalamic-pituitary-adrenal (HPA) axis. In rodents, acute restraint stress increases the expression of the repressive histone H3 lysine 9 tri-methylation (H3K9me3) in hippocampal fields, including the CA3 pyramidal neurons. These CA3 neurons are crucially involved in cognitive function and mood regulation as well as activation of glucocorticoid (CORT) secretion. CA3 neurons also exhibit structural and functional changes after early-life stress (ELS) as well as after chronic stress in adulthood. Using a protocol of chronic ELS induced by limited bedding and nesting material followed by acute-swim stress (AS) in adulthood, we show that mice with a history of ELS display a blunted CORT response to AS, despite exhibiting activation of immediate early genes after stress similar to that found in control mice. We find that ELS induced persistently increased expression of the repressive H3K9me3 histone mark in the CA3 subfield at baseline that was subsequently decreased following AS. In contrast, AS induced a transient increase of this mark in control mice. Using translating ribosome affinity purification (TRAP) method to isolate CA3 translating mRNAs, we found that expression of genes of the epigenetic gene family, GABA/glutamate family, and glucocorticoid receptors binding genes were decreased transiently in control mice by AS and showed a persistent reduction in ELS mice. In most cases, AS in ELS mice did not induce gene expression changes. A stringent filtering of genes affected by AS in control and ELS mice revealed a noteworthy decrease in gene expression change in ELS mice compared to control. Only 18 genes were selectively regulated by AS in ELS mice and encompassed pathways such as circadian rhythm, inflammatory response, opioid receptors, and more genes included in the glucocorticoid receptor binding family. Thus, ELS programs a restricted translational response to stress in stress-sensitive CA3 neurons leading to persistent changes in gene expression, some of which mimic the transient effects of AS in control mice, while leaving in operation the immediate early gene response to AS.
Collapse
Affiliation(s)
- Jordan Marrocco
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Jason D. Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Joshua F. Kogan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Nathan R. Einhorn
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Emma M. O’Cinneide
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| | - Todd G. Rubin
- Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas S. Carroll
- Bioinformatics Resource Center, The Rockefeller University, New York, NY, United States
| | - Eric F. Schmidt
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY, United States
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
49
|
Iturra-Mena AM, Aguilar-Rivera M, Arriagada-Solimano M, Pérez-Valenzuela C, Fuentealba P, Dagnino-Subiabre A. Impact of Stress on Gamma Oscillations in the Rat Nucleus Accumbens During Spontaneous Social Interaction. Front Behav Neurosci 2019; 13:151. [PMID: 31354444 PMCID: PMC6636240 DOI: 10.3389/fnbeh.2019.00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Alteration in social behavior is one of the most debilitating symptoms of major depression, a stress related mental illness. Social behavior is modulated by the reward system, and gamma oscillations in the nucleus accumbens (NAc) seem to be associated with reward processing. In this scenario, the role of gamma oscillations in depression remains unknown. We hypothesized that gamma oscillations in the rat NAc are sensitive to the effects of social distress. One group of male Sprague-Dawley rats were exposed to chronic social defeat stress (CSDS) while the other group was left undisturbed (control group). Afterward, a microelectrode array was implanted in the NAc of all animals. Local field potential (LFP) activity was acquired using a wireless recording system. Each implanted rat was placed in an open field chamber for a non-social interaction condition, followed by introducing another unfamiliar rat, creating a social interaction condition, where the implanted rat interacted freely and continuously with the unfamiliar conspecific in a natural-like manner (see Supplementary Videos). We found that the high-gamma band power in the NAc of non-stressed rats was higher during the social interaction compared to a non-social interaction condition. Conversely, we did not find significant differences at this level in the stressed rats when comparing the social interaction- and non-social interaction condition. These findings suggest that high-gamma oscillations in the NAc are involved in social behavior. Furthermore, alterations at this level could be an electrophysiological signature of the effect of chronic social stress on reward processing.
Collapse
Affiliation(s)
- Ann Mary Iturra-Mena
- Laboratory of Stress Neurobiology, Center for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - Marcelo Aguilar-Rivera
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Marcia Arriagada-Solimano
- Laboratory of Stress Neurobiology, Center for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - Catherine Pérez-Valenzuela
- Laboratory of Stress Neurobiology, Center for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Fuentealba
- Department of Psychiatry, Integrative Center for Neurosciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Center for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
50
|
From serendipity to clinical relevance: How clinical psychology and neuroscience converged to illuminate psychoneuroendocrinology. Psychoneuroendocrinology 2019; 105:36-43. [PMID: 30309685 DOI: 10.1016/j.psyneuen.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/01/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
Abstract
Dirk Hellhammer and his colleagues have played a major role in creating the field of psychoneuroendocrinology from their roots in psychology. In this review, using examples from the history of the McEwen laboratory and neuroscience and neuroendocrinology colleagues, I summarize my own perspective as to how the fields of neuroscience and neuroendocrinology have contributed to psychoneuroendocrinology and how they converged with the contributions from Dirk Hellhammer and his colleagues.
Collapse
|