1
|
Baidoe-Ansah D, Mirzapourdelavar H, Aleshin S, Schott BH, Seidenbecher C, Kaushik R, Dityatev A. Neurocan regulates axon initial segment organization and neuronal activity. Matrix Biol 2025; 136:22-35. [PMID: 39788215 DOI: 10.1016/j.matbio.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The neural extracellular matrix (ECM) accumulates in the form of perineuronal nets (PNNs), particularly around fast-spiking GABAergic interneurons in the cortex and hippocampus, but also around synapses and in association with the axon initial segments (AIS) and nodes of Ranvier. Increasing evidence highlights the role of Neurocan (Ncan), a brain-specific component of ECM, in the pathophysiology of neuropsychiatric disorders like bipolar disorder and schizophrenia. Ncan localizes at PNNs, perisynaptically, and at the nodes of Ranvier and the AIS, highlighting its potential role in regulating axonal excitability. Here, we used knockdown and knockout approaches in mouse primary cortical neurons in combination with immunocytochemistry, Western blotting and electrophysiological techniques to characterize the role of Ncan in the organization of PNNs and AISs and regulation of neuronal activity. We found that reduced Ncan levels led to remodeling of PNNs around neurons via upregulation of aggrecan mRNA and protein levels, increased expression of activity-dependent c-Fos and FosB genes and elevated spontaneous synaptic activity. The latter correlated with increased levels of ankyrin-G in the AIS, particularly in excitatory neurons, and with the elevated expression of Nav1.6 channels. Our results suggest that Ncan regulates the expression of key proteins in PNNs and AISs and provide new insights into its role in fine-tuning neuronal functions.
Collapse
Affiliation(s)
- David Baidoe-Ansah
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany
| | - Hadi Mirzapourdelavar
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany
| | - Stepan Aleshin
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany
| | - Björn Hendrik Schott
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University Medical Center, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Rahul Kaushik
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany
| | - Alexander Dityatev
- German Center for Neurodegenerative Diseases (DZNE), Helmholtz Association of German Research Centers, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany; Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
2
|
Mosquera-Heredia MI, Vidal OM, Morales LC, Silvera-Redondo C, Barceló E, Allegri R, Arcos-Burgos M, Vélez JI, Garavito-Galofre P. Long Non-Coding RNAs and Alzheimer's Disease: Towards Personalized Diagnosis. Int J Mol Sci 2024; 25:7641. [PMID: 39062884 PMCID: PMC11277322 DOI: 10.3390/ijms25147641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder characterized by progressive cognitive decline, is the most common form of dementia. Currently, there is no single test that can diagnose AD, especially in understudied populations and developing countries. Instead, diagnosis is based on a combination of medical history, physical examination, cognitive testing, and brain imaging. Exosomes are extracellular nanovesicles, primarily composed of RNA, that participate in physiological processes related to AD pathogenesis such as cell proliferation, immune response, and neuronal and cardiovascular function. However, the identification and understanding of the potential role of long non-coding RNAs (lncRNAs) in AD diagnosis remain largely unexplored. Here, we clinically, cognitively, and genetically characterized a sample of 15 individuals diagnosed with AD (cases) and 15 controls from Barranquilla, Colombia. Advanced bioinformatics, analytics and Machine Learning (ML) techniques were used to identify lncRNAs differentially expressed between cases and controls. The expression of 28,909 lncRNAs was quantified. Of these, 18 were found to be differentially expressed and harbored in pivotal genes related to AD. Two lncRNAs, ENST00000608936 and ENST00000433747, show promise as diagnostic markers for AD, with ML models achieving > 95% sensitivity, specificity, and accuracy in both the training and testing datasets. These findings suggest that the expression profiles of lncRNAs could significantly contribute to advancing personalized AD diagnosis in this community, offering promising avenues for early detection and follow-up.
Collapse
Affiliation(s)
- Maria I. Mosquera-Heredia
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Oscar M. Vidal
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Luis C. Morales
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Carlos Silvera-Redondo
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| | - Ernesto Barceló
- Instituto Colombiano de Neuropedagogía, Barranquilla 080020, Colombia;
- Department of Health Sciences, Universidad de La Costa, Barranquilla 080002, Colombia
- Grupo Internacional de Investigación Neuro-Conductual (GIINCO), Universidad de La Costa, Barranquilla 080002, Colombia
| | - Ricardo Allegri
- Institute for Neurological Research FLENI, Montañeses 2325, Buenos Aires C1428AQK, Argentina;
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia;
| | - Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | - Pilar Garavito-Galofre
- Department of Medicine, Universidad del Norte, Barranquilla 081007, Colombia; (M.I.M.-H.); (O.M.V.); (L.C.M.); (C.S.-R.)
| |
Collapse
|
3
|
John U, Patro N, Patro IK. Astrogliosis and associated CSPG upregulation adversely affect dendritogenesis, spinogenesis and synaptic activity in the cerebellum of a double-hit rat model of protein malnutrition (PMN) and lipopolysaccharide (LPS) induced bacterial infection. J Chem Neuroanat 2023; 131:102286. [PMID: 37169039 DOI: 10.1016/j.jchemneu.2023.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The extracellular matrix (ECM) plays a vital role in growth, guidance and survival of neurons in the central nervous system (CNS). The chondroitin sulphate proteoglycans (CSPGs) are a type of ECM proteins that are crucial for CNS homeostasis. The major goal of this study was to uncover the effects of astroglial activation and associated intensified expression of CSPGs on dendritogenesis, spinogenesis as well as on synaptic activity in cerebellum following protein malnutrition (PMN) and lipopolysaccharide (LPS) induced bacterial infection. Female Wistar albino rats (3 months old) were switched to control (20% protein) or low protein (LP, 8% protein) diet for 15 days followed by breeding. A set of pups born to control/LP mothers and maintained on respective diets throughout the experimental period constituted the control and LP groups, while a separate set of both control and LP group pups exposed to bacterial infection by a single intraperitoneal injection of LPS (0.3 mg/ kg body weight) on postnatal day-9 (P-9) constituted control+LPS and LP+LPS groups respectively. The consequences of astrogliosis induced CSPG upregulation on cerebellar cytoarchitecture and synaptic activity were studied using standard immunohistochemical and histological tools on P-21 and 6 months of age. The results revealed reactive astrogliosis and associated CSPG upregulation in a double-hit model of PMN and LPS induced bacterial infection resulted in disrupted dendritogenesis, reduced postsynaptic density protein (PSD-95) levels and a deleterious impact on normal spine growth. Such alterations frequently have the potential to cause synaptic dysregulation and inhibition of plasticity both during development as well as adulthood. At the light of our results, we can envision that upregulation of CSPGs in PMN and LPS co-challenged individuals might emerge as an important modulator of brain circuitry and a major causative factor for many neurological disorders.
Collapse
Affiliation(s)
- Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nisha Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India
| | - Ishan K Patro
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India.
| |
Collapse
|
4
|
Höhn L, Hußler W, Richter A, Smalla KH, Birkl-Toeglhofer AM, Birkl C, Vielhaber S, Leber SL, Gundelfinger ED, Haybaeck J, Schreiber S, Seidenbecher CI. Extracellular Matrix Changes in Subcellular Brain Fractions and Cerebrospinal Fluid of Alzheimer’s Disease Patients. Int J Mol Sci 2023; 24:ijms24065532. [PMID: 36982604 PMCID: PMC10058969 DOI: 10.3390/ijms24065532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The brain’s extracellular matrix (ECM) is assumed to undergo rearrangements in Alzheimer’s disease (AD). Here, we investigated changes of key components of the hyaluronan-based ECM in independent samples of post-mortem brains (N = 19), cerebrospinal fluids (CSF; N = 70), and RNAseq data (N = 107; from The Aging, Dementia and TBI Study) of AD patients and non-demented controls. Group comparisons and correlation analyses of major ECM components in soluble and synaptosomal fractions from frontal, temporal cortex, and hippocampus of control, low-grade, and high-grade AD brains revealed a reduction in brevican in temporal cortex soluble and frontal cortex synaptosomal fractions in AD. In contrast, neurocan, aggrecan and the link protein HAPLN1 were up-regulated in soluble cortical fractions. In comparison, RNAseq data showed no correlation between aggrecan and brevican expression levels and Braak or CERAD stages, but for hippocampal expression of HAPLN1, neurocan and the brevican-interaction partner tenascin-R negative correlations with Braak stages were detected. CSF levels of brevican and neurocan in patients positively correlated with age, total tau, p-Tau, neurofilament-L and Aβ1-40. Negative correlations were detected with the Aβ ratio and the IgG index. Altogether, our study reveals spatially segregated molecular rearrangements of the ECM in AD brains at RNA or protein levels, which may contribute to the pathogenic process.
Collapse
Affiliation(s)
- Lukas Höhn
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Wilhelm Hußler
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
| | - Karl-Heinz Smalla
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Anna-Maria Birkl-Toeglhofer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Christoph Birkl
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
| | - Stefan L. Leber
- Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, 8036 Graz, Austria
| | - Eckart D. Gundelfinger
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- Institute for Pharmacology and Toxicology, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- German Center for Neurodegenerative Disorders (DZNE), 39120 Magdeburg, Germany
| | - Constanze I. Seidenbecher
- Leibniz Institute for Neurobiology (LIN), 39118 Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, 07743 Jena, Germany
- Center for Behavioral Brain Sciences (CBBS), 39104 Magdeburg, Germany
- Correspondence:
| |
Collapse
|
5
|
Functionalised penetrating peptide-chondroitin sulphate‑gold nanoparticles: Synthesis, characterization, and applications as an anti-Alzheimer's disease drug. Int J Biol Macromol 2023; 230:123125. [PMID: 36603725 DOI: 10.1016/j.ijbiomac.2022.123125] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
The purpose of this study was to construct a transmembrane peptide-chondroitin sulphate‑gold nanoparticle (TAT-CS@Au) delivery system and investigate its activity as an anti-Alzheimer's disease (AD) drug. We successfully prepared TAT-CS@Au nanoparticles, investigated their anti-AD effects, and explored the possible mechanisms in in vitro models. TAT-CS@Au exhibited excellent cellular uptake and transport capacity, effectively inhibited the accumulation of Aβ1-40, and significantly reduced Aβ1-40-induced apoptosis in SH-SY5Y cells. Furthermore, TAT-CS@Au significantly reduced oxidative stress damage and cholinergic injury induced by Aβ1-40 by regulating intracellular concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and acetylcholine (ACh). Western blotting results demonstrated that TAT-CS@Au inhibited aberrant tau phosphorylation (Ser199, Thr205, Ser404, and Ser396) through GSK3β inactivation. TAT-CS@Au decreased the levels of inflammatory factors, specifically TNF-α, IL-6, and IL-1β, by inhibiting NF-κB nuclear translocation by activating MAPK signalling pathways. Overall, these results indicate that TAT-CS@Au exhibits excellent transmembrane ability, inhibits Aβ1-40 accumulation, antagonises oxidative stress, reduces aberrant tau phosphorylation, and suppresses the expression of inflammatory factors. TAT-CS@Au may be a multi-target anti-AD drug with good cell permeability, providing new insights into the design and research of anti-AD therapeutics.
Collapse
|
6
|
Alamoudi AA. SOX9 Expression Is Increased in Alzheimer's Disease (AD) and Is Associated With Disease Progression and APOE4 Genotype: A Computational Approach. Cureus 2023; 15:e36129. [PMID: 37065298 PMCID: PMC10100190 DOI: 10.7759/cureus.36129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease characterized by depositions of amyloid-β protein leading to neuronal loss. Despite our understanding of the disease several gaps remain, including the role of astrocytes and astrocytic genes in the disease development and progression. Recently, some reports have suggested that SOX9 transcription factor (TF), an important mediator of astrocyte differentiation and maturation, might be linked to AD. Using human AD publicly available dataset, we aimed to analyze SOX9 expression and its relation to disease. METHODOLOGY The AD gene expression data set was obtained from National Center for Bioinformatics-Gene Expression Omnibus (NCBI-GEO). The GSE48350 consisted of mRNA microarray data from 55 normal controls (173 samples) and 26 AD cases (81 samples) obtained, from four brain regions. The SOX9 expression profile and correlations were analyzed using the R2 Genomics Analysis and Visualization platform. RESULTS The SOX9 was significantly upregulated (p<0.001) in AD tissue compared to control cases. The increased expression appeared to be more in the entorhinal cortex (EC) and hippocampus (HC) regions. The SOX9 expression positively correlated with BRAAK stages (p<0.05). Interestingly in AD patients the SOX9 expression was significantly less in APOE3/3 genotypes compared with genotypes containing APOE4 allele. The SOX9 expression negatively correlated with oxidative phosphorylation genes which could suggest a metabolic role for the TF. CONCLUSION From these data we hypothesize that SOX9 acts as a metabolic regulator responding to lipid metabolism disruption associated with APOE4 genotypes. In turn, SOX9 expression could be associated with astrocyte maturation and survival in the disease contributing thus to disease burden and disease progression.
Collapse
Affiliation(s)
- Aliaa A Alamoudi
- Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, SAU
- Regenerative Medicine Unit, King Fahad Medical Research Center, Jeddah, SAU
| |
Collapse
|
7
|
Alzheimer's disease large-scale gene expression portrait identifies exercise as the top theoretical treatment. Sci Rep 2022; 12:17189. [PMID: 36229643 PMCID: PMC9561721 DOI: 10.1038/s41598-022-22179-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 10/11/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that affects multiple brain regions and is difficult to treat. In this study we used 22 AD large-scale gene expression datasets to identify a consistent underlying portrait of AD gene expression across multiple brain regions. Then we used the portrait as a platform for identifying treatments that could reverse AD dysregulated expression patterns. Enrichment of dysregulated AD genes included multiple processes, ranging from cell adhesion to CNS development. The three most dysregulated genes in the AD portrait were the inositol trisphosphate kinase, ITPKB (upregulated), the astrocyte specific intermediate filament protein, GFAP (upregulated), and the rho GTPase, RHOQ (upregulated). 41 of the top AD dysregulated genes were also identified in a recent human AD GWAS study, including PNOC, C4B, and BCL11A. 42 transcription factors were identified that were both dysregulated in AD and that in turn affect expression of other AD dysregulated genes. Male and female AD portraits were highly congruent. Out of over 250 treatments, three datasets for exercise or activity were identified as the top three theoretical treatments for AD via reversal of large-scale gene expression patterns. Exercise reversed expression patterns of hundreds of AD genes across multiple categories, including cytoskeleton, blood vessel development, mitochondrion, and interferon-stimulated related genes. Exercise also ranked as the best treatment across a majority of individual region-specific AD datasets and meta-analysis AD datasets. Fluoxetine also scored well and a theoretical combination of fluoxetine and exercise reversed 549 AD genes. Other positive treatments included curcumin. Comparisons of the AD portrait to a recent depression portrait revealed a high congruence of downregulated genes in both. Together, the AD portrait provides a new platform for understanding AD and identifying potential treatments for AD.
Collapse
|
8
|
MicroRNA-22-3p ameliorates Alzheimer's disease by targeting SOX9 through the NF-κB signaling pathway in the hippocampus. J Neuroinflammation 2022; 19:180. [PMID: 35821145 PMCID: PMC9277852 DOI: 10.1186/s12974-022-02548-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Studies have suggested that many down-regulated miRNAs identified in the brain tissue or serum of Alzheimer’s disease (AD) patients were involved in the formation of senile plaques and neurofibrillary tangles. Specifically, our previous study revealed that microRNA-22-3p (miR-22-3p) was significantly down-regulated in AD patients. However, the molecular mechanism underlying the down-regulation of miR-22-3p has not been comprehensively investigated. Methods The ameliorating effect of miR-22-3p on apoptosis of the Aβ-treated HT22 cells was detected by TUNEL staining, flow cytometry, and western blotting. The cognition of mice with stereotaxic injection of agomir or antagomir of miR-22-3p was assessed by Morris water maze test. Pathological changes in the mouse hippocampus were analyzed using hematoxylin and eosin (HE) staining, Nissl staining, and immunohistochemistry. Proteomics analysis was performed to identify the targets of miR-22-3p, which were further validated using dual-luciferase reporter analysis and western blotting analysis. Results The miR-22-3p played an important role in ameliorating apoptosis in the Aβ-treated HT22 cells. Increased levels of miR-22-3p in the mouse hippocampus improved the cognition in mice. Although the miR-22-3p did not cause the decrease of neuronal loss in the hippocampus, it reduced the Aβ deposition. Proteomics analysis revealed Sox9 protein as the target of miR-22-3p, which was verified by the luciferase reporter experiments. Conclusion Our study showed that miR-22-3p could improve apoptosis and reduce Aβ deposition by acting on Sox9 through the NF-κB signaling pathway to improve the cognition in AD mice. We concluded that miR-22-3p ameliorated AD by targeting Sox9 through the NF-κB signaling pathway in the hippocampus. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02548-1.
Collapse
|
9
|
Lin JZ, Duan MR, Lin N, Zhao WJ. The emerging role of the chondroitin sulfate proteoglycan family in neurodegenerative diseases. Rev Neurosci 2021; 32:737-750. [PMID: 33655733 DOI: 10.1515/revneuro-2020-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/07/2021] [Indexed: 02/05/2023]
Abstract
Chondroitin sulfate (CS) is a kind of linear polysaccharide that is covalently linked to proteins to form proteoglycans. Chondroitin sulfate proteoglycans (CSPGs) consist of a core protein, with one or more CS chains covalently attached. CSPGs are precisely regulated and they exert a variety of physiological functions by binding to adhesion molecules and growth factors. Widely distributed in the nervous system in human body, CSPGs contribute to the major component of extracellular matrix (ECM), where they play an important role in the development and maturation of the nervous system, as well as in the pathophysiological response to damage to the central nervous system (CNS). While there are more than 30 types of CSPGs, this review covers the roles of the most important ones, including versican, aggrecan, neurocan and NG2 in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and multiple sclerosis. The updated reports of the treatment of neurodegenerative diseases are involving CSPGs.
Collapse
Affiliation(s)
- Jia-Zhe Lin
- Neurosurgical Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ming-Rui Duan
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Nuan Lin
- Obstetrics and Gynecology Department, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei-Jiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, China
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
10
|
Birt IA, Hagenauer MH, Clinton SM, Aydin C, Blandino P, Stead JD, Hilde KL, Meng F, Thompson RC, Khalil H, Stefanov A, Maras P, Zhou Z, Hebda-Bauer EK, Goldman D, Watson SJ, Akil H. Genetic Liability for Internalizing Versus Externalizing Behavior Manifests in the Developing and Adult Hippocampus: Insight From a Meta-analysis of Transcriptional Profiling Studies in a Selectively Bred Rat Model. Biol Psychiatry 2021; 89:339-355. [PMID: 32762937 PMCID: PMC7704921 DOI: 10.1016/j.biopsych.2020.05.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND For more than 16 years, we have selectively bred rats for either high or low levels of exploratory activity within a novel environment. These bred high-responder (bHR) and bred low-responder (bLR) rats model temperamental extremes, exhibiting large differences in internalizing and externalizing behaviors relevant to mood and substance use disorders. METHODS We characterized persistent differences in gene expression related to bHR/bLR phenotype across development and adulthood in the hippocampus, a region critical for emotional regulation, by meta-analyzing 8 transcriptional profiling datasets (microarray and RNA sequencing) spanning 43 generations of selective breeding (postnatal day 7: n = 22; postnatal day 14: n = 49; postnatal day 21: n = 21; adult: n = 46; all male). We cross-referenced expression differences with exome sequencing within our colony to pinpoint candidates likely to mediate the effect of selective breeding on behavioral phenotype. The results were compared with hippocampal profiling from other bred rat models. RESULTS Genetic and transcriptional profiling results converged to implicate multiple candidate genes, including two previously associated with metabolism and mood: Trhr and Ucp2. Results also highlighted bHR/bLR functional differences in the hippocampus, including a network essential for neurodevelopmental programming, proliferation, and differentiation, centering on Bmp4 and Mki67. Finally, we observed differential expression related to microglial activation, which is important for synaptic pruning, including 2 genes within implicated chromosomal regions: C1qa and Mfge8. CONCLUSIONS These candidate genes and functional pathways may direct bHR/bLR rats along divergent developmental trajectories and promote a widely different reactivity to the environment.
Collapse
Affiliation(s)
- Isabelle A. Birt
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Megan H. Hagenauer
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | | | - Cigdem Aydin
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Peter Blandino
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - John D.H. Stead
- Department of Neuroscience, Carleton University, Ottawa, Ontario,
Canada
| | - Kathryn L. Hilde
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Fan Meng
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Robert C. Thompson
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Huzefa Khalil
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Alex Stefanov
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Pamela Maras
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Zhifeng Zhou
- National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, Bethesda, Maryland
| | - Elaine K. Hebda-Bauer
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National
Institutes of Health, Bethesda, Maryland
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of
Michigan, Ann Arbor, Michigan
| |
Collapse
|
11
|
Peters van Ton AM, Verbeek MM, Alkema W, Pickkers P, Abdo WF. Downregulation of synapse-associated protein expression and loss of homeostatic microglial control in cerebrospinal fluid of infectious patients with delirium and patients with Alzheimer's disease. Brain Behav Immun 2020; 89:656-667. [PMID: 32592865 DOI: 10.1016/j.bbi.2020.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/18/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Delirium is a complex and multifactorial condition associated with long-term cognitive decline. Due to the strong links between systemic inflammation, delirium and dementia we hypothesized that responses within the brain in patients who develop delirium could show biochemical overlap with patients with Alzheimer's disease (AD). In this observational study we analyzed protein expression signatures in cerebrospinal fluid (CSF) from 15 patients with infectious delirium and compared these to 29 patients with AD, 30 infectious patients without delirium and 15 non-infectious controls free of neurological disease. A proximity extension assay was performed measuring a total of 184 inflammatory and neurology-related proteins. Eight inflammatory proteins (4%), including the key neuron-microglia communication marker CX3CL1 (fractalkine), were significantly upregulated in both delirium and AD, compared to infectious patients without delirium. Likewise, 23 proteins (13%) showed downregulation in both delirium and AD, relative to infectious patients without delirium, which interestingly included CD200R1, another neuron-microglia communication marker, as well as a cluster of proteins related to synapse formation and function. Synaptopathy is an early event in AD and correlates strongly with cognitive dysfunction. These results were partially mediated by aging, which is an important predisposing risk factor among many others for both conditions. Within this study we report the first in vivo human evidence suggesting that synapse pathology and loss of homeostatic microglial control is involved in the pathophysiology of both infectious delirium and AD and thus may provide a link for the association between infections, delirium and long-term cognitive decline.
Collapse
Affiliation(s)
- A M Peters van Ton
- Radboudumc, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Nijmegen, The Netherlands; Radboudumc, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - M M Verbeek
- Radboudumc, Donders Center of Medical Neurosciences, Department of Neurology, Nijmegen, The Netherlands; Radboudumc, Department of Laboratory Medicine, Nijmegen, The Netherlands
| | - W Alkema
- Radboudumc, Radboud Institute for Molecular Life Sciences, Center for Molecular and Biomolecular Informatics, Nijmegen, The Netherlands
| | - P Pickkers
- Radboudumc, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Nijmegen, The Netherlands; Radboudumc, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands
| | - W F Abdo
- Radboudumc, Radboud Institute for Molecular Life Sciences, Department of Intensive Care Medicine, Nijmegen, The Netherlands; Radboudumc, Radboud Center for Infectious Diseases, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Minta K, Portelius E, Janelidze S, Hansson O, Zetterberg H, Blennow K, Andreasson U. Cerebrospinal Fluid Concentrations of Extracellular Matrix Proteins in Alzheimer's Disease. J Alzheimers Dis 2020; 69:1213-1220. [PMID: 31156172 DOI: 10.3233/jad-190187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Brevican, neurocan, tenascin-C, and tenascin-R are extracellular matrix (ECM) proteins that are mainly expressed in the brain. They play important roles in proliferation and migration of neurons and other cell types in the brain. These ECM proteins may also be involved in various pathologies, including reactive gliosis. OBJECTIVE The aim of the study was to investigate if ECM protein concentrations in cerebrospinal fluid (CSF) are linked to the neurodegenerative process in Alzheimer's disease (AD). METHODS Lumbar CSF samples from a non-AD control group (n = 50) and a clinically diagnosed AD group (n = 42), matched for age and gender, were analyzed using commercially available ELISAs detecting ECM proteins. Mann-Whitney U test was used to examine group differences, while Spearman's rho test was used for correlations. RESULTS Brevican, neurocan, tenascin-R, and tenascin-C concentrations in AD patients did not differ compared to healthy controls or when the groups were dichotomized based on the Aβ42/40 cut-off. CSF tenascin-C and tenascin-R concentrations were significantly higher in women than in men in the AD group (p = 0.02). CONCLUSION ECM proteins do not reflect AD-pathology in CSF. CSF tenascin-C and tenascin-R upregulation in women possibly reveal sexual dimorphism in the central nervous system immunity during AD.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
13
|
Alzheimer's Disease Mouse as a Model of Testis Degeneration. Int J Mol Sci 2020; 21:ijms21165726. [PMID: 32785075 PMCID: PMC7460847 DOI: 10.3390/ijms21165726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide with protective functions in the central nervous system and various peripheral organs. PACAP has the highest expression level in the testes, among the peripheral organs, and has a positive regulative role in spermatogenesis and in sperm motility. In the present study, we explored testicular degenerative alterations in a mouse model of Alzheimer’s disease (AD) (B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J) and demonstrated changes in PACAP-regulated signaling pathways. In addition, the effects of increased physical activity of AD (trained AD (TAD)) mice on testis were also followed. Reduced cell number and decreased thickness of basement membrane were detected in AD samples. These changes were compensated by physical activity. Expression of PACAP receptors and canonical signaling elements such as PKA, P-PKA, PP2A significantly decreased in AD mice, and altered Sox transcription factor expression was also detected. Via this signaling mechanism, physical activity compensated the negative effects of AD on the expression of type IV collagen. Our findings suggest that the testes of AD mice can be a good model of testis degeneration. Moreover, it can be an appropriate organ to follow the effects of various interventions such as physical activity on tissue regeneration and signaling alterations.
Collapse
|
14
|
Kumar D, Sharma A, Sharma L. A Comprehensive Review of Alzheimer's Association with Related Proteins: Pathological Role and Therapeutic Significance. Curr Neuropharmacol 2020; 18:674-695. [PMID: 32172687 PMCID: PMC7536827 DOI: 10.2174/1570159x18666200203101828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's is an insidious, progressive, chronic neurodegenerative disease which causes the devastation of neurons. Alzheimer's possesses complex pathologies of heterogeneous nature counting proteins as one major factor along with enzymes and mutated genes. Proteins such as amyloid precursor protein (APP), apolipoprotein E (ApoE), presenilin, mortalin, calbindin-D28K, creactive protein, heat shock proteins (HSPs), and prion protein are some of the chief elements in the foremost hypotheses of AD like amyloid-beta (Aβ) cascade hypothesis, tau hypothesis, cholinergic neuron damage, etc. Disturbed expression of these proteins results in synaptic dysfunction, cognitive impairment, memory loss, and neuronal degradation. On the therapeutic ground, attempts of developing anti-amyloid, anti-inflammatory, anti-tau therapies are on peak, having APP and tau as putative targets. Some proteins, e.g., HSPs, which ameliorate oxidative stress, calpains, which help in regulating synaptic plasticity, and calmodulin-like skin protein (CLSP) with its neuroprotective role are few promising future targets for developing anti-AD therapies. On diagnostic grounds of AD C-reactive protein, pentraxins, collapsin response mediator protein-2, and growth-associated protein-43 represent the future of new possible biomarkers for diagnosing AD. The last few decades were concentrated over identifying and studying protein targets of AD. Here, we reviewed the physiological/pathological roles and therapeutic significance of nearly all the proteins associated with AD that addresses putative as well as probable targets for developing effective anti-AD therapies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P. India
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P. India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P. India
| |
Collapse
|
15
|
Sivaji K, Kannan RR, Nandhagopal S, Carlton Ranjith WA, Saleem S. Exogenous human beta amyloid peptide interferes osteogenesis through Sox9a in embryonic zebrafish. Mol Biol Rep 2019; 46:4975-4984. [PMID: 31264162 DOI: 10.1007/s11033-019-04948-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
The two major hallmarks of Alzheimer's disease (AD) are beta-amyloid plaques and neurofibrillary tangles. Amyloid peptide aggregations in the brain cause loss of synaptic connections and subsequent neurotoxicity leading to neurodegeneration and memory deficits. However, the physiological effects of beta-amyloid on early embryonic development still remain unclear. Administration of human beta-amyloid peptide (1-42) through cerebrospinal ventricular injection was carried out at 24 hpf (hours post fertilization) and it was uptaken into the cellular layers of the early ventricular development without any plaque aggregation. Whole-mount Immunostaining of zebrafish embryos injected with the beta-amyloid at 60 hpf revealed the delay in Sox9a expression. Decreased level of cartilage to bone transformation rate in 15 dpf (days post fertilization) zebrafish was observed by differential staining. These results suggest the possible existence of a genetic relationship between extrinsic amyloid peptide and Sox9a expression. Thus, our results demonstrated that the human beta-amyloid influences bone development through Sox9a expression during osteogenesis in zebrafish.
Collapse
Affiliation(s)
- Kalaiarasi Sivaji
- Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | | | | | | | - Suraiya Saleem
- Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Ren H, Ma L, Gong X, Xu C, Zhang Y, Ma M, Watanabe K, Wen J. Edaravone Exerts Brain Protective Function by Reducing the Expression of AQP4, APP and Aβ Proteins. Open Life Sci 2019; 14:651-658. [PMID: 33817204 PMCID: PMC7874750 DOI: 10.1515/biol-2019-0074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
This study aims to investigate the changes of aquaporin-4 (AQP4), β-amyloid precursor proteins (APP) and β-amyloid (Aβ) in brain tissues after cerebral ischemiareperfusion injury (CIRI), and evaluate the effect of edaravone. The Middle Cerebral Artery Occlusion was used to establish CIRI in rats. Rats were divided into control, model and edaravone groups. The neurological deficits in the model group were obvious and the neurological score increased compared to the control group, while the neurological deficits of the edaravone group were improved as the neurological score decreased compared to the model group. The number of pyramidel cells in the hippocampus of the model group was significantly decreased whereas edaravone could reverse this decrease. The model group had significantly higher levels of Aβ, APP and AQP4 than the control group and edaravone group, suggesting that they might be involved in the neuronal cell damage. Meanwhile, the increased AQP4 might enhance the permeability of cells, and thus cause cell damage and neurological deficit. Conclusively, edaravone could reduce brain edema, protect neuronal cells and improve the neurological impairment of rats possibly by decreasing the expression of Aβ, APP and AQP4. Therefore, edaravone may have the potential to treat neurodegenerative diseases (such as Alzheimer's disease).
Collapse
Affiliation(s)
- Haiyan Ren
- Laboratory of Electron Microscopy, Central Laboratory of Xinjiang Medical University, Urumqi830011, P.R. China
| | - Lijuan Ma
- Department of Pathology and Pathophysiology, Basic Medical College of Xinjiang Medical University, No. 393, Xinyi Road, Xinshi District, Urumqi830011, P.R. China
| | - Xueli Gong
- Department of Pathology and Pathophysiology, Basic Medical College of Xinjiang Medical University, No. 393, Xinyi Road, Xinshi District, Urumqi830011, P.R. China
| | - Chenbo Xu
- Department of Biochemistry, Basic Medical College of Xinjiang Medical University, Urumqi830011, P.R. China
| | - Yuge Zhang
- Department of Pathology and Pathophysiology, Basic Medical College of Xinjiang Medical University, No. 393, Xinyi Road, Xinshi District, Urumqi830011, P.R. China
| | - Meilei Ma
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Niigata City 950-2181, Japan
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Niigata University of Pharmacy and Applied Life Sciences, Niigata City 950-2181, Japan
| | - Juan Wen
- Department of Pathology and Pathophysiology, Basic Medical College of Xinjiang Medical University, No. 393, Xinyi Road, Xinshi District, Urumqi830011, P.R. China
| |
Collapse
|
17
|
Fernström E, Minta K, Andreasson U, Sandelius Å, Wasling P, Brinkmalm A, Höglund K, Blennow K, Nyman J, Zetterberg H, Kalm M. Cerebrospinal fluid markers of extracellular matrix remodelling, synaptic plasticity and neuroinflammation before and after cranial radiotherapy. J Intern Med 2018; 284:211-225. [PMID: 29664192 DOI: 10.1111/joim.12763] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Advances in the treatment of brain tumours have increased the number of long-term survivors, but at the cost of side effects following cranial radiotherapy ranging from neurocognitive deficits to outright tissue necrosis. At present, there are no tools reflecting the molecular mechanisms underlying such side effects, and thus no means to evaluate interventional effects after cranial radiotherapy. Therefore, fluid biomarkers are of great clinical interest. OBJECTIVE Cerebrospinal fluid (CSF) levels of proteins involved in inflammatory signalling, synaptic plasticity and extracellular matrix (ECM) integrity were investigated following radiotherapy to the brain. METHODS Patients with small-cell lung cancer (SCLC) eligible for prophylactic cranial irradiation (PCI) were asked to participate in the study. PCI was prescribed either as 2 Gy/fraction to a total dose of 30 Gy (limited disease) or 4 Gy/fraction to 20 Gy (extensive disease). CSF was collected by lumbar puncture at baseline, 3 months and 1 year following PCI. Protein concentrations were measured using immunobased assays or mass spectrometry. RESULTS The inflammatory markers IL-15, IL-16 and MCP-1/CCL2 were elevated in CSF 3 months following PCI compared to baseline. The plasticity marker GAP-43 was elevated 3 months following PCI, and the same trend was seen for SNAP-25, but not for SYT1. The investigated ECM proteins, brevican and neurocan, showed a decline following PCI. There was a strong correlation between the progressive decline of soluble APPα and brevican levels. CONCLUSION To our knowledge, this is the first time ECM-related proteins have been shown to be affected by cranial radiotherapy in patients with cancer. These findings may help us to get a better understanding of the mechanisms behind side effects following radiotherapy.
Collapse
Affiliation(s)
- E Fernström
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - K Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - U Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Å Sandelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - P Wasling
- Department of Physiology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - A Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - K Höglund
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - K Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - J Nyman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - H Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - M Kalm
- Department of Pharmacology, Institute of Neuroscience and Physiology at the Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Pita-Juárez Y, Altschuler G, Kariotis S, Wei W, Koler K, Green C, Tanzi RE, Hide W. The Pathway Coexpression Network: Revealing pathway relationships. PLoS Comput Biol 2018; 14:e1006042. [PMID: 29554099 PMCID: PMC5875878 DOI: 10.1371/journal.pcbi.1006042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 03/29/2018] [Accepted: 02/19/2018] [Indexed: 02/02/2023] Open
Abstract
A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer’s Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/. Genes do not function alone, but interact within pathways to carry out specific biological processes. Pathways, in turn, interact at a higher level to affect major cellular activities such as motility, growth and development. We present a pathway coexpression network (PCxN) that systematically maps and quantifies these high-level interactions and establishes a unifying reference for pathway relationships. The method uses 3,207 human microarrays from 72 normal human tissues and 1,330 of the most well established pathway annotations to describe global relationships between pathways. PCxN accounts for shared genes to estimate correlations between pathways with related functions rather than with redundant pathway definitions. PCxN can be used to discover and explore pathways correlated with a pathway of interest. We applied PCxN to identify key processes related to Alzheimer’s disease (AD), interpreting a mixed genetic association and experimental derived set of disease genes in the context of gene co-expression. We expand the known relationships between pathways identified by gene set enrichment analysis in brain tissues affected with AD. PCxN provides a high-level overview of pathway relationships. PCxN is available as a webtool at http://pcxn.org/, and as a Bioconductor package at http://bioconductor.org/packages/pcxn/.
Collapse
Affiliation(s)
- Yered Pita-Juárez
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States of America
| | - Gabriel Altschuler
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Sokratis Kariotis
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Wenbin Wei
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Katjuša Koler
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Claire Green
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Winston Hide
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, United States of America
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- National Institute Health Research, Sheffield Biomedical Research Centre, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
19
|
Duits FH, Brinkmalm G, Teunissen CE, Brinkmalm A, Scheltens P, Van der Flier WM, Zetterberg H, Blennow K. Synaptic proteins in CSF as potential novel biomarkers for prognosis in prodromal Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2018; 10:5. [PMID: 29370833 PMCID: PMC6389073 DOI: 10.1186/s13195-017-0335-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND We investigated whether a panel of 12 potential novel biomarkers consisting of proteins involved in synapse functioning and immunity would be able to distinguish patients with Alzheimer's disease (AD) and patients with mild cognitive impairment (MCI) from control subjects. METHODS We included 40 control subjects, 40 subjects with MCI, and 40 subjects with AD from the Amsterdam Dementia Cohort who were matched for age and sex (age 65 ± 5 years, 19 [48%] women). The mean follow-up of patients with MCI was 3 years. Two or three tryptic peptides per protein were analyzed in cerebrospinal fluid using parallel reaction monitoring mass spectrometry. Corresponding stable isotope-labeled peptides were added and used as reference peptides. Multilevel generalized estimating equations (GEEs) with peptides clustered per subject and per protein (as within-subject variables) were used to assess differences between diagnostic groups. To assess differential effects of individual proteins, we included the diagnosis × protein interaction in the model. Separate GEE analyses were performed to assess differences between stable patients and patients with progressive MCI (MCI-AD). RESULTS There was a main effect for diagnosis (p < 0.01) and an interaction between diagnosis and protein (p < 0.01). Analysis stratified according to protein showed higher levels in patients with MCI for most proteins, especially in patients with MCI-AD. Chromogranin A, secretogranin II, neurexin 3, and neuropentraxin 1 showed the largest effect sizes; β values ranged from 0.53 to 0.78 for patients with MCI versus control subjects or patients with AD, and from 0.67 to 0.98 for patients with MCI-AD versus patients with stable MCI. In contrast, neurosecretory protein VGF was lower in patients with AD than in patients with MCI (ß = -0.93 [SE 0.22]) and control subjects (ß = 0.46 [SE 0.19]). CONCLUSIONS Our results suggest that several proteins involved in vesicular transport and synaptic stability are elevated in patients with MCI, especially in patients with MCI progressing to AD dementia. This may reflect early events in the AD pathophysiological cascade. These proteins may be valuable as disease stage or prognostic markers in an early symptomatic stage of the disease.
Collapse
Affiliation(s)
- Flora H Duits
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands.
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Charlotte E Teunissen
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands.,Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Philip Scheltens
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands
| | - Wiesje M Van der Flier
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, P.O. Box 7057, 1007MB, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, University College London, London, UK
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
20
|
Brinkmalm G, Sjödin S, Simonsen AH, Hasselbalch SG, Zetterberg H, Brinkmalm A, Blennow K. A Parallel Reaction Monitoring Mass Spectrometric Method for Analysis of Potential CSF Biomarkers for Alzheimer's Disease. Proteomics Clin Appl 2017; 12. [PMID: 29028155 DOI: 10.1002/prca.201700131] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Indexed: 01/04/2023]
Abstract
SCOPE The aim of this study was to develop and evaluate a parallel reaction monitoring mass spectrometry (PRM-MS) assay consisting of a panel of potential protein biomarkers in cerebrospinal fluid (CSF). EXPERIMENTAL DESIGN Thirteen proteins were selected based on their association with neurodegenerative diseases and involvement in synaptic function, secretory vesicle function, or innate immune system. CSF samples were digested and two to three peptides per protein were quantified using stable isotope-labeled peptide standards. RESULTS Coefficients of variation were generally below 15%. Clinical evaluation was performed on a cohort of 10 patients with Alzheimer's disease (AD) and 15 healthy subjects. Investigated proteins of the granin family exhibited the largest difference between the patient groups. Secretogranin-2 (p<0.005) and neurosecretory protein VGF (p<0.001) concentrations were lowered in AD. For chromogranin A, two of three peptides had significantly lowered AD concentrations (p<0.01). The concentrations of the synaptic proteins neurexin-1 and neuronal pentraxin-1, as well as neurofascin were also significantly lowered in AD (p<0.05). The other investigated proteins, β2-microglobulin, cystatin C, amyloid precursor protein, lysozyme C, neurexin-2, neurexin-3, and neurocan core protein, were not significantly altered. CONCLUSION AND CLINICAL RELEVANCE PRM-MS of protein panels is a valuable tool to evaluate biomarker candidates for neurodegenerative disorders.
Collapse
Affiliation(s)
- Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Simon Sjödin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Anja Hviid Simonsen
- Danish Dementia Research Centre, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Molecular Neuroscience, University College London Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute, London, UK
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
21
|
Lee DY, Hwang CJ, Choi JY, Park MH, Song MJ, Oh KW, Han SB, Park WK, Cho HY, Cho SY, Park HB, Song MJ, Hong JT. KRICT-9 inhibits neuroinflammation, amyloidogenesis and memory loss in Alzheimer's disease models. Oncotarget 2017; 8:68654-68667. [PMID: 28978145 PMCID: PMC5620285 DOI: 10.18632/oncotarget.19818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/24/2017] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and is characterized by neuroinflammation and amyloidogenesis. Here we investigated the effects of KRICT-9 on neuroinflammation and amyloidogenesis in in vitro and in vivo AD models. We found that KRICT-9 decreased lipopolysaccharide (LPS)-induced inflammation in microglial BV-2 cells and astrocytes while reducing nitric oxide generation and expression of inflammatory marker proteins (iNOS and COX-2) as well as APP, BACE1, C99, Iba-1, and GFAP. KRICT-9 also inhibited β-secretase. Pull-down assays and docking model analyses indicated that KRICT-9 binds to the DNA binding domain of signal transducer and activator of transcription 3 (STAT3). KRICT-9 also decreased β-secretase activity and Aβ levels in tissues from LPS-induced mice brains, and it reversed memory impairment in mice. These experiments demonstrated that KRICT-9 protects against LPS-induced neuroinflammation and amyloidogenesis by inhibiting STAT3 activity. This suggests KRICT-9 or KRICT-9-inspired reagents could be used as therapeutic agents to treat AD.
Collapse
Affiliation(s)
- Do Yeon Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Heungduk-gu, Chungbuk 361-951, Republic of Korea
| | - Chul Ju Hwang
- College of Pharmacy and Medical Research Center, Chungbuk National University, Heungduk-gu, Chungbuk 361-951, Republic of Korea
| | - Ji Yeon Choi
- College of Pharmacy and Medical Research Center, Chungbuk National University, Heungduk-gu, Chungbuk 361-951, Republic of Korea
| | - Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Heungduk-gu, Chungbuk 361-951, Republic of Korea
| | - Min Ji Song
- College of Pharmacy and Medical Research Center, Chungbuk National University, Heungduk-gu, Chungbuk 361-951, Republic of Korea
| | - Ki Wan Oh
- College of Pharmacy and Medical Research Center, Chungbuk National University, Heungduk-gu, Chungbuk 361-951, Republic of Korea
| | - Sang Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Heungduk-gu, Chungbuk 361-951, Republic of Korea
| | - Woo Kyu Park
- Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hee Yeong Cho
- Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Sung Yun Cho
- Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Hye Byn Park
- Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Min Jong Song
- Department of Obstetrics and Gynecology, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Jung-gu, Daejeon 301-723, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Heungduk-gu, Chungbuk 361-951, Republic of Korea
| |
Collapse
|