1
|
Lian Z, Luo Y, Li Y, Gao Y, Xiong X, Gu L. CD4 + T cells in ischemic stroke: effects and therapeutic targets. Front Immunol 2025; 16:1512634. [PMID: 40352928 PMCID: PMC12061934 DOI: 10.3389/fimmu.2025.1512634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/27/2025] [Indexed: 05/14/2025] Open
Abstract
Ischemic stroke (IS) is a significant contributor to disability and death worldwide, with limited treatments beyond early intervention. The importance of CD4+ T cells in the advancement of IS has been highlighted by recent studies, providing new insights into immunomodulatory strategies. This review describes the spatiotemporal dynamics of CD4+ T cells and their subsets at different stages of IS. The signaling pathways activated by IS regulate the distribution of CD4+ T cells and their subsets, which further influences the inflammatory response and disease progression. In the acute and subacute stages, CD4+ T cells exacerbate neuronal damage. In contrast, CD4+ T cells, which are predominantly composed of Treg cells (Tregs), promote tissue repair and neurological recovery in the chronic stage. In light of recent findings that challenge traditional views, we analyze the underlying mechanisms and potential explanations for these discrepancies. In addition, we summarize the potential of targeting CD4+ T cells as a therapeutic strategy for IS. Although no drugs specifically targeting CD4+ T cells have been developed, certain drugs that modulate CD4+ T cells show potential for IS treatment. Moreover, multitarget drugs integrated with nanomaterials are currently undergoing preclinical investigation. We further explore the challenges in the clinical translation of CD4+ T-cell-targeted therapies and discuss potential strategies to address these challenges. In conclusion, a deeper comprehension of the complex effects of CD4+ T cells and their subsets on IS will contribute to disease management and drug development, thereby improving the quality of life for IS patients.
Collapse
Affiliation(s)
- Zhengqi Lian
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Wang J, Gao Y, Yuan Y, Wang H, Wang Z, Zhang X. Th17 Cells and IL-17A in Ischemic Stroke. Mol Neurobiol 2024; 61:2411-2429. [PMID: 37884768 DOI: 10.1007/s12035-023-03723-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The neurological injury and repair mechanisms after ischemic stroke are complex. The inflammatory response is present throughout stroke onset and functional recovery, in which CD4 + T helper(Th) cells play a non-negligible role. Th17 cells, differentiated from CD4 + Th cells, are regulated by various extracellular signals, transcription factors, RNA, and post-translational modifications. Th17 cells specifically produce interleukin-17A(IL-17A), which has been reported to have pro-inflammatory effects in many studies. Recently, experimental researches showed that Th17 cells and IL-17A play an important role in promoting stroke pathogenesis (atherosclerosis), inducing secondary damage after stroke, and regulating post-stroke repair. This makes Th17 and IL-17A a possible target for the treatment of stroke. In this paper, we review the mechanism of action of Th17 cells and IL-17A in ischemic stroke and the progress of research on targeted therapy.
Collapse
Affiliation(s)
- Jingjing Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Yuxiao Gao
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Yujia Yuan
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Huan Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhao Wang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Xiangjian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, 050000, Hebei, China.
- Hebei Key Laboratory of Vascular Homeostasis, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
3
|
Yang S, Zhong S, Deng Z, Xie T, Yin G, Wang L, Liu J, Yang J, Long Z, Jiang X, Tan J. Hyperforin regulates renal fibrosis via targeting the PI3K-AKT/ICAM1 axis. Cell Signal 2023; 108:110691. [PMID: 37116554 DOI: 10.1016/j.cellsig.2023.110691] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/18/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
OBJECTIVE To explore the role and mechanism of hyperforin (one of the active components of Sophora flavescens) in renal fibrosis. METHODS The active compounds and target proteins of Sophora flavescens were first screened through TCMSP (https://tcmsp-e.com/). The renal fibrosis-related genes were analyzed through GeneCards (https://www.genecards.org/). The differentially expressed genes (DEGs) in renal fibrosis in GEO dataset GSE156181 were obtained. Metascape was applied for target protein enrichment analysis. TGF-β1-stimulated renal tubular epithelial cells were used for renal fibrosis cell model establishment. The unilateral ureteral obstruction (UUO) mouse model was used for the renal fibrosis in vivo model. Cell viability was detected using an MTT assay. Immunofluorescence staining was employed to detect cell morphology changes and the expression of α-SMA and collagen I. Hematoxylin and eosin (H&E) and Masson staining were employed to determine the renal morphologic change. qRT-PCR or Western blotting was applied to determine the expression levels of the target proteins. RESULTS After intersecting the analysis results of TCMSP, GeneCards, and dataset GSE156181, hyperforin targeting ICAM1 was identified. Metascape pathway enrichment analysis results revealed that the effective compounds of Sophora flavescens were tightly associated with extracellular matrix (ECM) remodeling and inflammatory response. MTT assay demonstrated that hyperforin had no toxic effect on cells. Immunofluorescence staining results evidenced that hyperforin could partially restore TGF-β1-induced epithelial-mesenchymal transition (EMT), the PI3K/AKT pathway activation, and ICAM1 upregulation, and these effects of hyperforin could be reversed by ICAM1 overexpression. While the PI3K/AKT pathway activator IGF-1 effectively reversed the EMT inhibition effect of hyperforin on renal tubular epithelial cells. Moreover, the UUO mouse model further confirmed that hyperforin reduced renal fibrosis. CONCLUSION Hyperforin inhibited renal fibrosis via the PI3K/AKT/ICAM1 axis.
Collapse
Affiliation(s)
- Songbai Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Sheng Zhong
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zhijun Deng
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Tongjin Xie
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Guangmin Yin
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jianfu Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Xianzhen Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Jing Tan
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
4
|
Li XX, Yan Y, Zhang J, Ding K, Xia CY, Pan XG, Shi YJ, Xu JK, He J, Zhang WK. Hyperforin: A natural lead compound with multiple pharmacological activities. PHYTOCHEMISTRY 2023; 206:113526. [PMID: 36442576 DOI: 10.1016/j.phytochem.2022.113526] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/16/2023]
Abstract
Hypericum perforatum L. (Clusiaceae), commonly known as St. John's wort, has a rich historical background as one of the oldest and most widely studied herbal medicines. Hyperforin is the main antidepressant active ingredient of St. John's wort. In recent years, hyperforin has attached increasing attention due to its multiple pharmacological activities. In this review, the information on hyperforin was systematically summarized. Hyperforin is considered to be a lead compound with diverse pharmacological activities including anti-depression, anti-tumor, anti-dementia, anti-diabetes and others. It can be obtained by extraction and synthesis. Further pharmacological studies and more precise detection methods will help develop a value for hyperforin. In addition, structural modification and pharmaceutical preparation technology will be beneficial to promoting the research progress of hyperforin based innovative drugs. Although these works are full of known and unknown challenges, researchers are still expected to make hyperforin play a greater value.
Collapse
Affiliation(s)
- Xin-Xin Li
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China; School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Jia Zhang
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Kang Ding
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Xue-Ge Pan
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Yan-Jing Shi
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| |
Collapse
|
5
|
Chen X, Liu L, Zhong Y, Liu Y. Enriched environment promotes post-stroke angiogenesis through astrocytic interleukin-17A. Front Behav Neurosci 2023; 17:1053877. [PMID: 36873773 PMCID: PMC9979086 DOI: 10.3389/fnbeh.2023.1053877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Objective Our previous studies have revealed that the protective effect of an enriched environment (EE) may be linked with astrocyte proliferation and angiogenesis. However, the relationship between astrocytes and angiogenesis under EE conditions still requires further study. The current research examined the neuroprotective effects of EE on angiogenesis in an astrocytic interleukin-17A (IL-17A)-dependent manner following cerebral ischemia/reperfusion (I/R) injury. Methods A rat model of ischemic stroke based on middle cerebral artery occlusion (MCAO) for 120 min followed by reperfusion was established, after which rats were housed in either EE or standard conditions. A set of behavior tests were conducted, including the modified neurological severity scores (mNSS) and the rotarod test. The infarct volume was evaluated by means of 2,3,5-Triphenyl tetrazolium chloride (TTC) staining. To evaluate the levels of angiogenesis, the protein levels of CD34 were examined by means of immunofluorescence and western blotting, while the protein and mRNA levels of IL-17A, vascular endothelial growth factor (VEGF), and the angiogenesis-associated factors interleukin-6 (IL-6), JAK2, and STAT3 were detected by western blotting and real-time quantitative PCR (RT-qPCR). Results We found that EE promoted functional recovery, reduced infarct volume, and enhanced angiogenesis compared to rats in standard conditions. IL-17A expression in astrocytes was also increased in EE rats. EE treatment increased the levels of microvascular density (MVD) and promoted the expression of CD34, VEGF, IL-6, JAK2, and STAT3 in the penumbra, while the intracerebroventricular injection of the IL-17A-neutralizing antibody in EE rats attenuated EE-mediated functional recovery and angiogenesis. Conclusion Our findings revealed a possible neuroprotective mechanism of astrocytic IL-17A in EE-mediated angiogenesis and functional recovery after I/R injury, which might provide the theoretical basis for EE in clinical practise for stroke patients and open up new ideas for the research on the neural repair mechanism mediated by IL-17A in the recovery phase of stroke.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lingling Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yingjun Zhong
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yang Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Monsour M, Borlongan CV. Emerging regenerative medicine for hemorrhagic stroke: An update on stem cell therapies. BRAIN HEMORRHAGES 2022. [DOI: 10.1016/j.hest.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
7
|
Changes and roles of IL-17A, VEGF-A and TNF-α in patients with cerebral infarction during the acute phase and early stage of recovery. Clin Biochem 2022; 107:67-72. [PMID: 35550786 DOI: 10.1016/j.clinbiochem.2022.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Interleukin 17A (IL-17A), vascular endothelial growth factor A (VEGF-A) and tumour necrosis factor alpha (TNF-α) are important cytokines detected mostly within two weeks after stroke in previous clinical studies. Longer clinical studies investigating these cytokines are lacking. We aimed to explore the roles of these cytokines in patients within 35 days after cerebral infarction. METHODS Thirty patients with cerebral infarction and 30 healthy individuals were enrolled. Venous blood was collected from each patient at specific times and from each healthy individual only once. Coma and neurological functional deficits of the patients were evaluated by the Glasgow Coma Scale (GCS) and the National Institutes of Health Stroke Scale (NIHSS), respectively. Three cytokines were measured. The correlations among the three cytokines and between each cytokine and the GCS/NIHSS scores were analysed. RESULTS IL-17A and TNF-α began to increase on day 1 after cerebral infarction, peaked on day 4, then decreased, and increased again on day 18. IL-17A returned to normal on day 35, but TNF-α remained higher than normal on day 35. VEGF-A began to increase on day 1, peaked on day 7, and returned to normal on day 35. From days 18 to 35, IL-17A was positively correlated with the GCS scores, and both IL-17A and VEGF-A were negatively correlated with the NIHSS scores. CONCLUSION After cerebral infarction, VEGF-A from the acute phase and IL-17A from the early stage of recovery may be important for nerve protection and repair; TNF-α plays a complex role within 35 days.
Collapse
|
8
|
Zhang S, Zhang J, Yu J, Chen X, Zhang F, Wei W, Zhang L, Chen W, Lin N, Wu Y. Hyperforin Ameliorates Imiquimod-Induced Psoriasis-Like Murine Skin Inflammation by Modulating IL-17A-Producing γδ T Cells. Front Immunol 2021; 12:635076. [PMID: 34025642 PMCID: PMC8131513 DOI: 10.3389/fimmu.2021.635076] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Hyperforin is a major active constituent of Hypericum perforatum L. extract, which is widely used for the treatment of depressive disorders. Recent studies have reported that hyperforin reduced inflammation in stroke and suppressed proliferation and differentiation in keratinocytes. Psoriasis is a chronic immune-mediated inflammatory skin disease in which the IL-23/IL-17 axis plays an important role. To investigate the underlying inflammatory mechanisms and response of hyperforin in psoriasis, we use imiquimod (IMQ)-induced mice model, in vitro cultured murine splenic γδ T cells, and HaCaT cells in this study. Data showed that hyperforin reduced epidermal thickness and decreased IMQ-induced pathological scores of cutaneous skin lesions in mice. Meanwhile we proved that hyperforin suppressed infiltration of CD3+ T cells and downregulated expression of Il1, Il6, Il23, Il17a, Il22, antimicrobial peptides (AMPs) in the skin lesion. Hyperforin significantly inhibited imiquimod-induced splenomegaly, reduced serum levels of TNF-α and IL-6, and IL-17A in splenocytes and draining lymph nodes. Our study also suggested that hyperforin lessened the infiltration of γδ T cell and CCR6+ γδ T cells in spleen and lymph nodes. Hyperforin also suppressed the typical psoriasis-like inflammatory responses and the infiltration of IL-17A+ cells in dermal γδ T cells of IMQ treated Tcrd-/- mice transferred with γδ T cells. In vitro studies, hyperforin reduced the expression and secretion of IL-17A in γδ T cells, and suppressed the activation of MAPK/STAT3 pathways in human keratinocyte HaCaT cells and γδ T cells. In conclusion, hyperforin alleviates IMQ-induced inflammation in psoriasis through suppressing the immune responses exerted by IL-17 A-producing γδ T cells and related cytokines by modulating MAPK/STAT3 pathways. Our study provided a novel therapeutic tragedy for psoriasis by which hyperforin attenuates psoriasis-related inflammatory responses.
Collapse
Affiliation(s)
- Song Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Dermatology, The First People’s Hospital of Jiangxia District, Wuhan, China
| | - Juanjuan Yu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaolu Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangyuan Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyun Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenmao Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nengxing Lin
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Chen H, Li S, Xu W, Hong Y, Dou R, Shen H, Liu X, Wu T, He JC. Interleukin-17A promotes the differentiation of bone marrow mesenchymal stem cells into neuronal cells. Tissue Cell 2021; 69:101482. [PMID: 33418236 DOI: 10.1016/j.tice.2020.101482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022]
Abstract
Ischemia or hemorrhagic stroke is one of the leading causes of death and permanent disability in the worldwide population. As a consequence of the potential increasing in stroke, stem cell therapy is currently an area of intense focus. However, there are less data available regarding the promotion of healing efficacy after stroke. The present study aimed to investigate whether the cytokine interleukin-17A (IL-17A) could have a role in promoting the neuronal differentiation of mesenchymal stem cells (MSCs) and to investigate the associated molecular mechanism. Firstly, different concentration of IL-17A at range from 5-40 ng/mL was applied to stimulate bone marrow MSCs (BMSCs) during the course of neurogenic differentiation. Then reverse transcription-PCR, histological analyses and immunofluorescence assays were used to determine the optimum concentration of IL-17A in promoting the neuronal differentiation of BMSCs, which was 20 ng/mL. Mechanistically, Wnt signaling pathway was activated and Notch signaling pathway was suppressed. In addition, there were antergic effect of these two signaling pathways modulating the neurogenic differentiation of BMSCs induced by IL-17A. The present study demonstrated the potential role of IL-17A-based BMSCs strategy for promoting neuronal differentiation in vitro. However, the treatment efficacy could be considerably confirmed in animals with ischemia stroke. Therefore, a more sophisticated strategy that addresses the complicated treatment associated with stroke is needed.
Collapse
Affiliation(s)
- Hanlin Chen
- Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China
| | - Shasha Li
- Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China
| | - Wanting Xu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China
| | - Yongfeng Hong
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Shushan District, Hefei, Anhui, 230061, China
| | - Rengang Dou
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Shushan District, Hefei, Anhui, 230061, China
| | - Hongtao Shen
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Shushan District, Hefei, Anhui, 230061, China
| | - Xue Liu
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Shushan District, Hefei, Anhui, 230061, China
| | - Tingting Wu
- Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China.
| | - Jia Cai He
- Stomatologic Hospital & College, Anhui Medical University, Key Lab of Oral Diseases Research of Anhui Province, 69 Meishan Road, Shushan District, Hefei, Anhui, 230001, China.
| |
Collapse
|
10
|
Prikhodko V, Chernyuk D, Sysoev Y, Zernov N, Okovityi S, Popugaeva E. Potential Drug Candidates to Treat TRPC6 Channel Deficiencies in the Pathophysiology of Alzheimer's Disease and Brain Ischemia. Cells 2020; 9:cells9112351. [PMID: 33114455 PMCID: PMC7692306 DOI: 10.3390/cells9112351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease and cerebral ischemia are among the many causative neurodegenerative diseases that lead to disabilities in the middle-aged and elderly population. There are no effective disease-preventing therapies for these pathologies. Recent in vitro and in vivo studies have revealed the TRPC6 channel to be a promising molecular target for the development of neuroprotective agents. TRPC6 channel is a non-selective cation plasma membrane channel that is permeable to Ca2+. Its Ca2+-dependent pharmacological effect is associated with the stabilization and protection of excitatory synapses. Downregulation as well as upregulation of TRPC6 channel functions have been observed in Alzheimer’s disease and brain ischemia models. Thus, in order to protect neurons from Alzheimer’s disease and cerebral ischemia, proper TRPC6 channels modulators have to be used. TRPC6 channels modulators are an emerging research field. New chemical structures modulating the activity of TRPC6 channels are being currently discovered. The recent publication of the cryo-EM structure of TRPC6 channels should speed up the discovery process even more. This review summarizes the currently available information about potential drug candidates that may be used as basic structures to develop selective, highly potent TRPC6 channel modulators to treat neurodegenerative disorders, such as Alzheimer’s disease and cerebral ischemia.
Collapse
Affiliation(s)
- Veronika Prikhodko
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Daria Chernyuk
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
| | - Yurii Sysoev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
- Institute of Translational Biomedicine, Saint Petersburg State University, 199034 St. Petersburg, Russia
| | - Nikita Zernov
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
| | - Sergey Okovityi
- Department of Pharmacology and Clinical Pharmacology, Saint Petersburg State Chemical Pharmaceutical University, 197022 St. Petersburg, Russia;
- N.P. Bechtereva Institute of the Human Brain of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
| | - Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (V.P.); (D.C.); (Y.S.); (N.Z.)
- Correspondence:
| |
Collapse
|
11
|
Fan Q, Zhou J, Wang Y, Xi T, Ma H, Wang Z, Xiao W, Liu Q. Chip-based serum proteomics approach to reveal the potential protein markers in the sub-acute stroke patients receiving the treatment of Ginkgo Diterpene Lactone Meglumine Injection. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:112964. [PMID: 32413576 DOI: 10.1016/j.jep.2020.112964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. is a kind of traditional Chinese medicinal material with a long history. Its main active ingredients, ginkgolides, can be used for the treatment of stroke and other cardio-cerebrovascular diseases. Ginkgo Diterpene Lactone Meglumine Injection (GDLI), a modernized TCM, has attracted much attention because of its neuroprotective and anti-inflammatory properties. AIM OF THE STUDY To uncover the effects of GDLI on ischemic stroke patients, as well as the underlying biomarkers involved in sub-acute stroke. MATERIALS AND METHODS We used a state-of-the-art targeted proteomics chip to investigate the association between numerous serum proteins (1101 proteins) and the sub-acute phase post-ischemic stroke. Then, the relative proteins of anti-apoptosis, anticoagulant, and neuroprotection of GDLI were verified in animal models. RESULTS Compared with the serum from healthy volunteers, we identified 15 up-regulated proteins and 26 down-regulated proteins (FC ≥ 1.5) involved in inflammatory response, immune response, and nervous system development in the sub-acute ischemic stroke. The pro-inflammatory proteins, such as IL17, MSP-R, G-CSF-R, TLR3, MIP-3β, TNFRSF19, and TNFRSF12, were significantly increased in serum, illustrating that the chronic inflammatory state was evident in the sub-acute stage of ischemic stroke. However, the common pro-inflammatory proteins, such as IL-1β, IL-6, IL-8, TNF-α, IFN-γ, and IL-10, known to be up-regulated in acute stroke, had close or lightly lower levels than healthy humans (FC ≥ 1.5, P > 0.05). And some cytokines (IL3, CCL13, TNFRSF3, IL10 R beta, HLA-A, IL-1 F8/FIL1 eta, TNFRSF8, CCL18) were also markedly down-regulated in the sub-acute phase of stroke. These proteins are highly associated with the onset of stroke-induced immunosuppression and post-stroke infection. Moreover, we noticed that Ginkgo Diterpene Lactone Meglumine Injection (GDLI) treatment for 14 days was helpful to the recovery of patients in the subacute period. After the treatment of GDLI, it was observed that several inflammatory cytokines (i.e. IL-17 and IL-28A), chemokine (i.e. CCL14), and Coagulation Factor III were reduced. Meanwhile, the anti-inflammatory cytokines (IL-10 R alpha, GREMLIN, and Activin C) and neurotrophic factors (Neurturin and IGFBP2) were found to be up-regulated in stroke patients through self-control observation. Finally, we identified the IGFBP2 as a novel marker in the animal models. CONCLUSIONS In summary, the potential markers in sub-acute stroke patients were highly different from known protein markers in the acute phase of ischemic stroke. The serum protein IGFBP2 could be novel biomarkers for the treatment of GDLI in sub-acute stroke patients. Our present findings provide an innovative insight into the novel treatment of GDLI in ischemic stroke therapy.
Collapse
Affiliation(s)
- Qiru Fan
- Faculty of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China; State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222000, China.
| | - Jing Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yilin Wang
- Pharmaceutical sciences, University of Maryland, Baltimore, USA.
| | - Tao Xi
- Faculty of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hongyue Ma
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhenzhong Wang
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222000, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222000, China.
| | - Qiu Liu
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Lianyungang, 222000, China
| |
Collapse
|
12
|
Huang Q, Wang X, Lin X, Zhang J, You X, Shao A. The Role of Transient Receptor Potential Channels in Blood-Brain Barrier Dysfunction after Ischemic Stroke. Biomed Pharmacother 2020; 131:110647. [PMID: 32858500 DOI: 10.1016/j.biopha.2020.110647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/11/2020] [Accepted: 08/16/2020] [Indexed: 12/25/2022] Open
Abstract
Stroke is the leading cause of long-term disability, demanding an ever-increasing need to find treatment. Transient receptor potential (TRP) channels are nonselective Ca2+-permeable channels, among which TRPC, TRPM, and TRPV are widely expressed in the brain. Dysfunction of the blood brain barrier (BBB) is a core feature of stroke and is associated with severity of injury. As studies have shown, TRP channels influence various neuronal functions by regulating the BBB. Here, we briefly review the role of TRP channel in the BBB dysfunction after stroke, and explore the therapeutic potential of TRP-targeted therapy.
Collapse
Affiliation(s)
- Qingxia Huang
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianyi Lin
- Department of anesthesiology, Sir run run shaw hospital, school of medicine, zhejiang university, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China; Brain Research Institute, Zhejiang University, Hangzhou, China; Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Xiangdong You
- Department of Echocardiography, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
13
|
Yao H, Zhang Y, Xie B, Shang Y, Yuan S, Zhang J. Sleep-restriction Inhibits Neurogenesis Through Decreasing the Infiltration of CD169 + Macrophages to Ischemic Brain After Stroke. Neuroscience 2020; 431:222-236. [PMID: 32081723 DOI: 10.1016/j.neuroscience.2020.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Chronic sleep-restriction (SR) is shown to be correlated with neurodevelopmental disorders. However, the effects of SR during stroke recovery on neurorepair remain unclear. In this study, mice were subjected to 60 min of cerebral ischemia followed by reperfusion. The SR protocol was accomplished by depriving mice of sleep for 20 h/day for 14 days starting at 14 days post-ischemia. We found that SR increased CD169+ macrophages infiltration into the ischemic brain parenchyma and inhibited neurogenesis and functional recovery. SR decreased CD169+ macrophages infiltration into the choroid plexus (CP) and cerebrospinal fluid (CSF), accompanied by increased expression of Chemokine C-X3-C-Motif Ligand 1 (CX3CL1) and intercellular adhesion molecule (ICAM-1) via IFN-γ/IFN-γR signaling in the CP. When splenic CD169+ macrophages sorted from Kaede transgenic mice were administered into CSF of C57BL/6 mice, they homed to the ischemic brain parenchyma. Moreover, blockade of IFN-γ/IFN-γR signaling, CX3CL1 or ICAM-1 decreased CD169+ macrophages infiltration into the CP, CSF and ischemic brain parenchyma, as well as decreasing neurogenesis and functional recovery after SR. The promoting roles of infiltrated CD169+ macrophages in post-stroke neurogenesis were due to increasing regulatory T cells (Tregs) in the ischemic brain parenchyma. Furthermore, dexmedetomidine treatment during SR increased CD169+ macrophages infiltration into the CP, CSF and ischemic brain parenchyma, and promoted neurogenesis and functional recovery. Taken together, our results showed that SR during stroke recovery decreased Tregs in the ischemic brain parenchyma by decreasing CD169+ macrophages infiltration to the ischemic brain parenchyma across the CP, which inhibited neurogenesis and functional recovery.
Collapse
Affiliation(s)
- Hua Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
14
|
TGF-β2/Smad3 Signaling Pathway Activation Through Enhancing VEGF and CD34 Ameliorates Cerebral Ischemia/Reperfusion Injury After Isoflurane Post-conditioning in Rats. Neurochem Res 2019; 44:2606-2618. [DOI: 10.1007/s11064-019-02880-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/26/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022]
|
15
|
Yao H, Zhang Y, Shu H, Xie B, Tao Y, Yuan Y, Shang Y, Yuan S, Zhang J. Hyperforin Promotes Post-stroke Neuroangiogenesis via Astrocytic IL-6-Mediated Negative Immune Regulation in the Ischemic Brain. Front Cell Neurosci 2019; 13:201. [PMID: 31133816 PMCID: PMC6514137 DOI: 10.3389/fncel.2019.00201] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Hyperforin has been shown to be capable of promoting angiogenesis and functional recovery after ischemic stroke in our previous study. However, the exact mechanisms involved are not fully elucidated. In this study, adult male mice were subjected to 60-min transient middle cerebral artery occlusion followed by reperfusion for 28 days. Hyperforin was administrated to MCAO mice every 24 h for 2 weeks starting at 14 days post-ischemia (dpi). Then flow cytometry, quantitative Real-time PCR (RT-qPCR), western blotting, immunohistochemistry, and functional assays were performed to explore the molecular mechanisms in vivo and in vitro. Our data showed that hyperforin increased astrocytic interleukin (IL)-6 in the ischemic hemisphere via TLR4 at 28 dpi. The astrocytic IL-6 was essential to the promoting effects of hyperforin on the neural precursor cells proliferation, neuronal differentiation, angiogenesis, and functional recovery after stroke. Furthermore, hyperforin promoted the infiltration of regulatory T cells (Tregs) to the ischemic hemisphere and increased Tregs-derived cytokine IL-10 and transforming growth factor-β (TGF-β) in a manner that was dependent on astrocytic IL-6. Astrocytic IL-6 was critical to the role of hyperforin in promoting the infiltration of T-helper (Th) type 2 cells to the ischemic hemisphere and Th2-derived cytokine IL-4, relative to Th1 and Th1-derived cytokine interferon-γ (IFN-γ), which decreased during stroke recovery. After depletion of CD25+ Tregs, the promoting effects of hyperforin on post-stroke neurogenesis was attenuated. Moreover, blockade of IL-4 and TGF-β abrogated the promoting role of hyperforin in post-stroke neurogenesis, angiogenesis and functional recovery. Our results reveal a previously uncharacterized role of astrocytic IL-6-mediated negative immune regulation in the promoting effects of hyperforin on post-stroke neurovascular regeneration and functional recovery.
Collapse
Affiliation(s)
- Hua Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huaqing Shu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Xie
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanfa Tao
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yin Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - You Shang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Zhao XP, Zhao Y, Qin XY, Wan LY, Fan XX. Non-invasive Vagus Nerve Stimulation Protects Against Cerebral Ischemia/Reperfusion Injury and Promotes Microglial M2 Polarization Via Interleukin-17A Inhibition. J Mol Neurosci 2018; 67:217-226. [PMID: 30484061 DOI: 10.1007/s12031-018-1227-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/21/2018] [Indexed: 10/27/2022]
Abstract
Microglia play an essential role during cerebral an ischemia/reperfusion (I/R)-related inflammatory process. Because the M2 phenotype of microglia exhibits anti-inflammation activity, it has become a promising target for anti-inflammatory therapy. Vagus nerve stimulation (VNS) reportedly has neuroprotective effects against cerebral I/R injuries via its anti-inflammatory action. The aim of this study was to investigate the ability of non-invasive VNS (nVNS) to alleviate cerebral I/R in mice by promoting microglial M2 polarization. Neurological scoring and cerebral infarct volume assessments were performed 72 h after a middle cerebral artery occlusion (MCAO)-induced stroke. M2 phenotype microglia were identified by immunohistochemistry staining using Arg-1 and Iba-1 antibodies. The protein expressions of Arg-1, IL-17A, IL-10, Bax, and Bcl-2 were detected by Western blot. Apoptotic cells were detected using TUNEL staining. According to our results, nVNS decreased infarct volume, improved neurological outcomes, reduced apoptotic neurons (TUNEL+NeuN+ cells), and promoted microglial M2 polarization as indicated by elevated Arg-1 protein expression and increased Arg-1+ cells after MCAO. Moreover, nVNS attenuated the increased levels of IL-17A protein expression after MCAO. To test the possible involvement of IL-17A in nVNS-induced neuroprotection and microglial M2 polarization, 1-μg recombinant IL-17A (rIL-17A) was intranasally administered once daily for three consecutive days after reperfusion. We found that the intranasal administration of rIL-17A nullified the nVNS-induced promotion of microglial M2 polarization. Furthermore, rIL-17A administration abolished the neuroprotective effect of nVNS. In conclusion, our study identifies microglial M2 polarization as an important mechanism underlying the nVNS-mediated neuroprotection against cerebral I/R. This effect of nVNS could be attributed to the inhibition of IL-17A expression.
Collapse
Affiliation(s)
- Xiao-Ping Zhao
- Department of Neurosurgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Yuan Zhao
- College of foreign languages, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiao-Ya Qin
- First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Li-Yuan Wan
- First Clinical Medical College of Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiao-Xuan Fan
- Department of Neurosurgery, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China.
| |
Collapse
|
17
|
Zhang Y, Yu P, Liu H, Yao H, Yao S, Yuan SY, Zhang JC. Hyperforin improves post-stroke social isolation‑induced exaggeration of PSD and PSA via TGF-β. Int J Mol Med 2018; 43:413-425. [PMID: 30387813 PMCID: PMC6257831 DOI: 10.3892/ijmm.2018.3971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/30/2018] [Indexed: 11/14/2022] Open
Abstract
Stroke survivors often experience social isolation, which can lead to post-stroke depression (PSD) and post-stroke anxiety (PSA) that can compromise neurogenesis and impede functional recovery following the stroke. The present study aimed to investigate the effects and mechanisms of post-stroke social isolation-mediated PSD and PSA on hippocampal neurogenesis and cognitive function. The effects of the natural antidepressant hyperforin on post-stroke social isolation-mediated PSD and PSA were also investigated. In the present study, a model of PSD and PSA using C57BL/6J male mice was successfully established using middle cerebral artery occlusion combined with post-stroke isolated housing conditions. It was observed that PSD and PSA were more prominent in the isolated mice compared with the pair-housed mice at 14 days post-ischemia (dpi). Mice isolated 3 dpi exhibited decreased transforming growth factor-β (TGF-β) levels and impairment of hippocampal neurogenesis and memory function at 14 dpi. Intracerebroventricular administration of recombinant TGF-β for 7 consecutive days, starting at 7 dpi, restored the reduced hippocampal neurogenesis and memory function induced by social isolation. Furthermore, intranasal administration of hyperforin for 7 consecutive days starting at 7 dpi improved PSD and PSA and promoted hippocampal neurogenesis and memory function in the isolated mice at 14 dpi. The inhibition of TGF-β with a neutralizing antibody prevented the effects of hyperforin. In conclusion, the results revealed a previously uncharacterized role of hyperforin in improving post-stroke social isolation-induced exaggeration of PSD and PSA and, in turn, promoting hippocampal neurogenesis and cognitive function via TGF-β.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peiyun Yu
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong Liu
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hua Yao
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shanglong Yao
- Department of Anesthesiology, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shi-Ying Yuan
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jian-Cheng Zhang
- Department of Critical Care Medicine, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
18
|
Zhang Y, Xu D, Qi H, Yuan Y, Liu H, Yao S, Yuan S, Zhang J. Enriched environment promotes post-stroke neurogenesis through NF-κB-mediated secretion of IL-17A from astrocytes. Brain Res 2018; 1687:20-31. [PMID: 29481794 DOI: 10.1016/j.brainres.2018.02.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 01/01/2023]
Abstract
Enriched environment (EE) has been shown to promote post-stroke neurogenesis and functional recovery. However, the underlying molecular mechanisms remains poorly understood. Male C57BL/6 mice underwent 60-min middle cerebral artery occlusion (MCAO) followed by reperfusion, after which mice were housed in either standard environment (SE) or EE. We found that post-ischemic EE exhibited reduced protein level of nuclear factor κB (NF-κB)/p65 in cytoplasm and increased its expression correspondingly in nucleus at 28 days post-ischemia (dpi). However, post-ischemic EE had no effects on terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL)-positive cells in ischemic hemisphere at 28dpi. EE mice treated with NF-kB inhibitor Bay11-7082 had decreased subventricular zone (SVZ) neural precursor cells (NPCs) proliferation, neuronal differentiation and subsequent functional recovery after stroke at 28dpi. Bay11-7082 treatment attenuated the promoting effects of post-ischemic EE on interleukin 17A (IL-17A) messenger RNA (mRNA) and protein expression at 28dpi. Furthermore, our in vitro data revealed that in primary astrocyte cultures addition of Bay11-7082 markedly decreased the expression of IL-17A in both the cell lysate and culture supernatant of activated astrocytes. Blockade of IL-17A with neutralizing antibody abrogated the promoting role of EE in NPCs proliferation derived from SVZ, neuronal differentiation and subsequent functional recovery after stroke. Thus, our results reveal a previously uncharacterized property of NF-κB/IL-17A signaling pathway in EE-mediated neurogenesis and functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Xu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Qi
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yin Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong Liu
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shanglong Yao
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
19
|
Yang XW, Grossman RB, Xu G. Research Progress of Polycyclic Polyprenylated Acylphloroglucinols. Chem Rev 2018; 118:3508-3558. [PMID: 29461053 DOI: 10.1021/acs.chemrev.7b00551] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polycyclic polyprenylated acylphloroglucinols (PPAPs) are a class of hybrid natural products sharing the mevalonate/methylerythritol phosphate and polyketide biosynthetic pathways and showing considerable structure and bioactivity diversity. This review discusses the progress of research into the chemistry and biological activity of 421 natural PPAPs in the past 11 years as well as in-depth studies of biological activities and total synthesis of some PPAPs isolated before 2006. We created an online database of all PPAPs known to date at http://www.chem.uky.edu/research/grossman/PPAPs . Two subclasses of biosynthetically related metabolites, spirocyclic PPAPs with octahydrospiro[cyclohexan-1,5'-indene]-2,4,6-trione core and complicated PPAPs produced by intramolecular [4 + 2] cycloadditions of MPAPs, are brought into the PPAP family. Some PPAPs' relative or absolute configurations are reassigned or critically discussed, and the confusing trivial names in PPAPs investigations are clarified. Pharmacologic studies have revealed a new molecular mechanism whereby hyperforin and its derivatives regulate neurotransmitter levels by activating TRPC6 as well as the antitumor mechanism of garcinol and its analogues. The antineoplastic potential of some type B PPAPs such as oblongifolin C and guttiferone K has increased significantly. As a result of the recent appearances of innovative synthetic methods and strategies, the total syntheses of 22 natural PPAPs including hyperforin, garcinol, and plukenetione A have been accomplished.
Collapse
Affiliation(s)
- Xing-Wei Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| | - Robert B Grossman
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506-0055 , United States
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China , Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry , Kunming 650201 , People's Republic of China
| |
Collapse
|