1
|
Asahina R, Takahashi M, Takano H, Yao R, Abe M, Goshima Y, Ohshima T. The role of CRMP4 in LPS-induced neuroinflammation. Brain Res 2024:149094. [PMID: 38914219 DOI: 10.1016/j.brainres.2024.149094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Neuroinflammation has been gaining attention as one of the potential causes of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis in recent years. The suppression of excessive proinflammatory responses is expected to be a target for the treatment and prevention of neurodegenerative diseases. Collapsin response mediator protein 4 (CRMP4) is involved in cytoskeleton-associated axonal guidance in the developing brain. Recently, the involvement of CRMP4 in several pathological conditions, including inflammation induced by lipopolysaccharide (LPS), a widely used inflammatory molecule, has been reported. However, the role of CRMP4 in LPS-induced inflammation in vivo remains largely unknown. In this study, we generated microglia-specific CRMP4 knockout mice for the first time and examined the role of CRMP4 in an LPS-induced brain inflammation model. We found that microglia after LPS injection in substantia nigra was significantly reduced in Crmp4-/- mice compared to Crmp4+/+mice. The increased expression of IL-10 in striatum samples was downregulated in Crmp4-/- mice. A significant reduction in Iba1 expression was also observed in microglia-specific Crmp4 knockout mice compared with that in control mice. In contrast, the expression of IL-10 did not change in these mice, whereas arginase 1 (Arg1) expression was significantly suppressed. These results demonstrate the involvement of CRMP4 in LPS-induced inflammation in vivo, that CRMP4 suppresses microglial proliferation in a cell-autonomous manner.
Collapse
Affiliation(s)
- Ryo Asahina
- Departent of Life Science and Medical Bioscience, Waseda University, Japan
| | - Miyuki Takahashi
- Departent of Life Science and Medical Bioscience, Waseda University, Japan
| | - Hiroshi Takano
- Department of Cell Biology, The Cancer Institute of JFCR, Japan
| | - Ryoji Yao
- Department of Cell Biology, The Cancer Institute of JFCR, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Departent of Life Science and Medical Bioscience, Waseda University, Japan.
| |
Collapse
|
2
|
Chang JH, Chou CH, Wu JC, Liao KM, Luo WJ, Hsu WL, Chen XR, Yu SL, Pan SH, Yang PC, Su KY. LCRMP-1 is required for spermatogenesis and stabilises spermatid F-actin organization via the PI3K-Akt pathway. Commun Biol 2023; 6:389. [PMID: 37037996 PMCID: PMC10086033 DOI: 10.1038/s42003-023-04778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Long-form collapsin response mediator protein-1 (LCRMP-1) belongs to the CRMP family which comprises brain-enriched proteins responsible for axon guidance. However, its role in spermatogenesis remains unclear. Here we find that LCRMP-1 is abundantly expressed in the testis. To characterize its physiological function, we generate LCRMP-1-deficient mice (Lcrmp-1-/-). These mice exhibit aberrant spermiation with apoptotic spermatids, oligospermia, and accumulation of immature testicular cells, contributing to reduced fertility. In the seminiferous epithelial cycle, LCRMP-1 expression pattern varies in a stage-dependent manner. LCRMP-1 is highly expressed in spermatids during spermatogenesis and especially localized to the spermiation machinery during spermiation. Mechanistically, LCRMP-1 deficiency causes disorganized F-actin due to unbalanced signaling of F-actin dynamics through upregulated PI3K-Akt-mTOR signaling. In conclusion, LCRMP-1 maintains spermatogenesis homeostasis by modulating cytoskeleton remodeling for spermatozoa release.
Collapse
Affiliation(s)
- Jung-Hsuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Hua Chou
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Ching Wu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Keng-Mao Liao
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Wei-Jia Luo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Lun Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Xuan-Ren Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Hua Pan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Doctoral Degree Program of Translational Medicine, National Taiwan University, Taipei, Taiwan
| | - Pan-Chyr Yang
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Desprez F, Ung DC, Vourc’h P, Jeanne M, Laumonnier F. Contribution of the dihydropyrimidinase-like proteins family in synaptic physiology and in neurodevelopmental disorders. Front Neurosci 2023; 17:1154446. [PMID: 37144098 PMCID: PMC10153444 DOI: 10.3389/fnins.2023.1154446] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 05/06/2023] Open
Abstract
The dihydropyrimidinase-like (DPYSL) proteins, also designated as the collapsin response mediators (CRMP) proteins, constitute a family of five cytosolic phosphoproteins abundantly expressed in the developing nervous system but down-regulated in the adult mouse brain. The DPYSL proteins were initially identified as effectors of semaphorin 3A (Sema3A) signaling and consequently involved in regulation of growth cone collapse in young developing neurons. To date, it has been established that DPYSL proteins mediate signals for numerous intracellular/extracellular pathways and play major roles in variety of cellular process including cell migration, neurite extension, axonal guidance, dendritic spine development and synaptic plasticity through their phosphorylation status. The roles of DPYSL proteins at early stages of brain development have been described in the past years, particularly for DPYSL2 and DPYSL5 proteins. The recent characterization of pathogenic genetic variants in DPYSL2 and in DPYSL5 human genes associated with intellectual disability and brain malformations, such as agenesis of the corpus callosum and cerebellar dysplasia, highlighted the pivotal role of these actors in the fundamental processes of brain formation and organization. In this review, we sought to establish a detailed update on the knowledge regarding the functions of DPYSL genes and proteins in brain and to highlight their involvement in synaptic processing in later stages of neurodevelopment, as well as their particular contribution in human neurodevelopmental disorders (NDDs), such as autism spectrum disorders (ASD) and intellectual disability (ID).
Collapse
Affiliation(s)
| | - Dévina C. Ung
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
| | - Patrick Vourc’h
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- Laboratoire de Biochimie et de Biologie Moléculaire, Centre Hospitalier Régional Universitaire, Tours, France
| | - Médéric Jeanne
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
| | - Frédéric Laumonnier
- UMR1253, iBrain, Inserm, University of Tours, Tours, France
- Service de Génétique, Centre Hospitalier Régional Universitaire, Tours, France
- *Correspondence: Frédéric Laumonnier,
| |
Collapse
|
4
|
Boulan B, Ravanello C, Peyrel A, Bosc C, Delphin C, Appaix F, Denarier E, Kraut A, Jacquier-Sarlin M, Fournier A, Andrieux A, Gory-Fauré S, Deloulme JC. CRMP4-mediated fornix development involves Semaphorin-3E signaling pathway. eLife 2021; 10:e70361. [PMID: 34860155 PMCID: PMC8683083 DOI: 10.7554/elife.70361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Neurodevelopmental axonal pathfinding plays a central role in correct brain wiring and subsequent cognitive abilities. Within the growth cone, various intracellular effectors transduce axonal guidance signals by remodeling the cytoskeleton. Semaphorin-3E (Sema3E) is a guidance cue implicated in development of the fornix, a neuronal tract connecting the hippocampus to the hypothalamus. Microtubule-associated protein 6 (MAP6) has been shown to be involved in the Sema3E growth-promoting signaling pathway. In this study, we identified the collapsin response mediator protein 4 (CRMP4) as a MAP6 partner and a crucial effector in Sema3E growth-promoting activity. CRMP4-KO mice displayed abnormal fornix development reminiscent of that observed in Sema3E-KO mice. CRMP4 was shown to interact with the Sema3E tripartite receptor complex within detergent-resistant membrane (DRM) domains, and DRM domain integrity was required to transduce Sema3E signaling through the Akt/GSK3 pathway. Finally, we showed that the cytoskeleton-binding domain of CRMP4 is required for Sema3E's growth-promoting activity, suggesting that CRMP4 plays a role at the interface between Sema3E receptors, located in DRM domains, and the cytoskeleton network. As the fornix is affected in many psychiatric diseases, such as schizophrenia, our results provide new insights to better understand the neurodevelopmental components of these diseases.
Collapse
Affiliation(s)
- Benoît Boulan
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Charlotte Ravanello
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Amandine Peyrel
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Christian Delphin
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Florence Appaix
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Alexandra Kraut
- Univ. Grenoble Alpes, Inserm, CEA, UMR BioSanté U1292, CNRS, CEAGrenobleFrance
| | | | - Alyson Fournier
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill UniversityMontréalCanada
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CEA, Grenoble Institut NeurosciencesGrenobleFrance
| | | |
Collapse
|
5
|
Yamazaki Y, Moizumi M, Nagai J, Hatashita Y, Cai T, Kolattukudy P, Inoue T, Goshima Y, Ohshima T. Requirement of CRMP2 Phosphorylation in Neuronal Migration of Developing Mouse Cerebral Cortex and Hippocampus and Redundant Roles of CRMP1 and CRMP4. Cereb Cortex 2021; 32:520-527. [PMID: 34297816 DOI: 10.1093/cercor/bhab228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex is characterized by a 6-layer structure, and proper neuronal migration is critical for its formation. Cyclin-dependent kinase 5 (Cdk5) has been shown to be a critical kinase for neuronal migration. Several Cdk5 substrates have been suggested to be involved in ordered neuronal migration. However, in vivo loss-of-function studies on the function of Cdk5 phosphorylation substrates in neuronal migration in the developing cerebral cortex have not been reported. In this study, we demonstrated that Cdk5-mediated phosphorylation of collapsing mediator protein (CRMP) 2 is critical for neuronal migration in the developing cerebral cortex with redundant functions of CRMP1 and CRMP4. The cerebral cortices of triple-mutant CRMP1 knock-out (KO); CRMP2 knock-in (KI)/KI; and CRMP4 KO mice showed disturbed positioning of layers II-V neurons in the cerebral cortex. Further experiments using bromodeoxyuridine birthdate-labeling and in utero electroporation implicated radial migration defects in cortical neurons. Ectopic neurons were detected around the CA1 region and dentate gyrus in CRMP1 KO; CRMP2 KI/KI; and CRMP4 KO mice. These results suggest the importance of CRMP2 phosphorylation by Cdk5 and redundancy of CRMP1 and CRMP4 in proper neuronal migration in the developing cerebral cortex and hippocampus.
Collapse
Affiliation(s)
- Yuki Yamazaki
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Maho Moizumi
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jun Nagai
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan.,Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda City, Tokyo 102-0083, Japan
| | - Yoshiki Hatashita
- Laboratory for Neurophysiology, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Tianhong Cai
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Papachan Kolattukudy
- Burnett School of Biomedical Sciences, University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida 32816, USA
| | - Takafumi Inoue
- Laboratory for Neurophysiology, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| |
Collapse
|
6
|
Gileadi TE, Swamy AK, Hore Z, Horswell S, Ellegood J, Mohan C, Mizuno K, Lundebye AK, Giese KP, Stockinger B, Hogstrand C, Lerch JP, Fernandes C, Basson MA. Effects of Low-Dose Gestational TCDD Exposure on Behavior and on Hippocampal Neuron Morphology and Gene Expression in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:57002. [PMID: 33956508 PMCID: PMC8101924 DOI: 10.1289/ehp7352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent and toxic environmental pollutant. Gestational exposure to TCDD has been linked to cognitive and motor deficits, and increased incidence of autism spectrum disorder (ASD) traits in children. Most animal studies of these neurodevelopmental effects involve acute TCDD exposure, which does not model typical exposure in humans. OBJECTIVES The aim of the study was to establish a dietary low-dose gestational TCDD exposure protocol and performed an initial characterization of the effects on offspring behavior, neurodevelopmental phenotypes, and gene expression. METHODS Throughout gestation, pregnant C57BL/6J mice were fed a diet containing a low dose of TCDD (9 ng TCDD/kg body weight per day) or a control diet. The offspring were tested in a battery of behavioral tests, and structural brain alterations were investigated by magnetic resonance imaging. The dendritic morphology of pyramidal neurons in the hippocampal Cornu Ammonis (CA)1 area was analyzed. RNA sequencing was performed on hippocampi of postnatal day 14 TCDD-exposed and control offspring. RESULTS TCDD-exposed females displayed subtle deficits in motor coordination and reversal learning. Volumetric difference between diet groups were observed in regions of the hippocampal formation, mammillary bodies, and cerebellum, alongside higher dendritic arborization of pyramidal neurons in the hippocampal CA1 region of TCDD-exposed females. RNA-seq analysis identified 405 differentially expressed genes in the hippocampus, enriched for genes with functions in regulation of microtubules, axon guidance, extracellular matrix, and genes regulated by SMAD3. DISCUSSION Exposure to 9 ng TCDD/kg body weight per day throughout gestation was sufficient to cause specific behavioral and structural brain phenotypes in offspring. Our data suggest that alterations in SMAD3-regulated microtubule polymerization in the developing postnatal hippocampus may lead to an abnormal morphology of neuronal dendrites that persists into adulthood. These findings show that environmental low-dose gestational exposure to TCDD can have significant, long-term impacts on brain development and function. https://doi.org/10.1289/EHP7352.
Collapse
Affiliation(s)
- Talia E. Gileadi
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Abhyuday K. Swamy
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Zoe Hore
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Stuart Horswell
- Department of Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
| | - Conor Mohan
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
| | - Keiko Mizuno
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | | | - K. Peter Giese
- Department of Basic and Clinical Neuroscience, King’s College London, London, UK
| | | | | | - Jason P. Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Cathy Fernandes
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - M. Albert Basson
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| |
Collapse
|
7
|
Ji ZS, Li JP, Fu CH, Luo JX, Yang H, Zhang GW, Wu W, Lin HS. Spastin interacts with collapsin response mediator protein 3 to regulate neurite growth and branching. Neural Regen Res 2021; 16:2549-2556. [PMID: 33907047 PMCID: PMC8374569 DOI: 10.4103/1673-5374.313052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cytoskeletal microtubule rearrangement and movement are crucial in the repair of spinal cord injury. Spastin plays an important role in the regulation of microtubule severing. Both spastin and collapsin response mediator proteins can regulate neurite growth and branching; however, whether spastin interacts with collapsin response mediator protein 3 (CRMP3) during this process remains unclear, as is the mechanism by which CRMP3 participates in the repair of spinal cord injury. In this study, we used a proteomics approach to identify key proteins associated with spinal cord injury repair. We then employed liquid chromatography-mass spectrometry to identify proteins that were able to interact with glutathione S-transferase-spastin. Then, co-immunoprecipitation and staining approaches were used to evaluate potential interactions between spastin and CRMP3. Finally, we co-transfected primary hippocampal neurons with CRMP3 and spastin to evaluate their role in neurite outgrowth. Mass spectrometry identified the role of CRMP3 in the spinal cord injury repair process. Liquid chromatography-mass spectrometry pulldown assays identified three CRMP3 peptides that were able to interact with spastin. CRMP3 and spastin were co-expressed in the spinal cord and were able to interact with one another in vitro and in vivo. Lastly, CRMP3 overexpression was able to enhance the ability of spastin to promote neurite growth and branching. Therefore, our results confirm that spastin and CRMP3 play roles in spinal cord injury repair by regulating neurite growth and branching. These proteins may therefore be novel targets for spinal cord injury repair. The Institutional Animal Care and Use Committee of Jinan University, China approved this study (approval No. IACUS-20181008-03) on October 8, 2018.
Collapse
Affiliation(s)
- Zhi-Sheng Ji
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jian-Ping Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Chao-Hua Fu
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou; Department of Orthopedics, Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong Province, China
| | - Jian-Xian Luo
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Hua Yang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Guo-Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Wutian Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province; Re-Stem Biotechnology Co., Ltd., Suzhou, Jiangsu Province; Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hong-Sheng Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Yoo DY, Jung HY, Kim W, Hahn KR, Kwon HJ, Nam SM, Chung JY, Yoon YS, Kim DW, Hwang IK. Entacapone Treatment Modulates Hippocampal Proteins Related to Synaptic Vehicle Trafficking. Cells 2020; 9:cells9122712. [PMID: 33352833 PMCID: PMC7765944 DOI: 10.3390/cells9122712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022] Open
Abstract
Entacapone, a reversible inhibitor of catechol-O-methyl transferase, is used for patients in Parkinson’s disease because it increases the bioavailability and effectiveness of levodopa. In the present study, we observed that entacapone increases novel object recognition and neuroblasts in the hippocampus. In the present study, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry were performed to compare the abundance profiles of proteins expressed in the hippocampus after entacapone treatment in mice. Results of 2-DE, MALDI-TOF mass spectrometry, and subsequent proteomic analysis revealed an altered protein expression profile in the hippocampus after entacapone treatment. Based on proteomic analysis, 556 spots were paired during the image analysis of 2-DE gels and 76 proteins were significantly changed more than two-fold among identified proteins. Proteomic analysis indicated that treatment with entacapone induced expressional changes in proteins involved in synaptic transmission, cellular processes, cellular signaling, the regulation of cytoskeletal structure, energy metabolism, and various subcellular enzymatic reactions. In particular, entacapone significantly increased proteins related to synaptic trafficking and plasticity, such as dynamin 1, synapsin I, and Munc18-1. Immunohistochemical staining showed the localization of the proteins, and western blot confirmed the significant increases in dynamin I (203.5% of control) in the hippocampus as well as synapsin I (254.0% of control) and Munc18-1 (167.1% of control) in the synaptic vesicle fraction of hippocampus after entacapone treatment. These results suggest that entacapone can enhance hippocampal synaptic trafficking and plasticity against various neurological diseases related to hippocampal dysfunction.
Collapse
Affiliation(s)
- Dae Young Yoo
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Woosuk Kim
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, Korea
| | - Kyu Ri Hahn
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
| | - Sung Min Nam
- Department of Anatomy, School of Medicine and Institute for Environmental Science, Wonkwang University, Iksan 54538, Korea;
| | - Jin Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea;
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung 25457, Korea;
- Correspondence: (D.W.K.); (I.K.H.)
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea; (D.Y.Y.); (H.Y.J.); (W.K.); (K.R.H.); (Y.S.Y.)
- Correspondence: (D.W.K.); (I.K.H.)
| |
Collapse
|
9
|
Yamazaki Y, Nagai J, Akinaga S, Koga Y, Hasegawa M, Takahashi M, Yamashita N, Kolattukudy P, Goshima Y, Ohshima T. Phosphorylation of CRMP2 is required for migration and positioning of Purkinje cells: Redundant roles of CRMP1 and CRMP4. Brain Res 2020; 1736:146762. [PMID: 32156571 DOI: 10.1016/j.brainres.2020.146762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/31/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022]
Abstract
Proper migration and positioning of Purkinje cells are important for formation of the developing cerebellum. Although several cyclin-dependent kinase 5 (Cdk5) substrates are known to be critical for ordered neuronal migration, there are no reports of mutant mouse-based, in vivo studies on the function of Cdk5-phosphorylation substrates in migration of Purkinje cells. We focused on the analysis of collapsin response mediator protein 2 (CRMP2), one of the Cdk5 substrates, because a previous study reported migration defects of cortical neurons with shRNA-mediated knockdown of CRMP2. However, CRMP2 KI/KI mice, in which Cdk5-phosphorylation is inhibited, showed little defects in Purkinje cell migration and positioning. We hypothesized compensatory redundant functions of the other CRMPs, and analyzed the migration and positioning of Purkinje cells in the cerebellum in every combination of CRMP1 knockout (KO), CRMP2 KI/KI, and CRMP4 KO mice. Severe disturbance of migration and positioning of Purkinje cells were observed in the triple mutant mice. We also found motor coordination defects in the triple CRMPs mutant mice. These results suggest the importance of both, phosphorylation of CRMP2 by Cdk5 and the redundant functions of CRMP1 and CRMP4 in proper migration and positioning of Purkinje cells in developing cerebellum.
Collapse
Affiliation(s)
- Yuki Yamazaki
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Jun Nagai
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Japan Society for the Promotion of Science, Japan
| | - Satoshi Akinaga
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yumeno Koga
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masaya Hasegawa
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Miyuki Takahashi
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Naoya Yamashita
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Papachan Kolattukudy
- Biomolecular Science Center, University of Central Florida, Biomolecular Science, Orlando, FL 32816, USA
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Toshio Ohshima
- Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda Univeristy, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.
| |
Collapse
|
10
|
Ohtani-Kaneko R. Crmp4-KO Mice as an Animal Model for Investigating Certain Phenotypes of Autism Spectrum Disorders. Int J Mol Sci 2019; 20:E2485. [PMID: 31137494 PMCID: PMC6566569 DOI: 10.3390/ijms20102485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 12/21/2022] Open
Abstract
Previous research has demonstrated that the collapsin response mediator protein (CRMP) family is involved in the formation of neural networks. A recent whole-exome sequencing study identified a de novo variant (S541Y) of collapsin response mediator protein 4 (CRMP4) in a male patient with autism spectrum disorder (ASD). In addition, Crmp4-knockout (KO) mice show some phenotypes similar to those observed in human patients with ASD. For example, compared with wild-type mice, Crmp4-KO mice exhibit impaired social interaction, abnormal sensory sensitivities, broader distribution of activated (c-Fos expressing) neurons, altered dendritic formation, and aberrant patterns of neural gene expressions, most of which have sex differences. This review summarizes current knowledge regarding the role of CRMP4 during brain development and discusses the possible contribution of CRMP4 deficiencies or abnormalities to the pathogenesis of ASD. Crmp4-KO mice represent an appropriate animal model for investigating the mechanisms underlying some ASD phenotypes, such as impaired social behavior, abnormal sensory sensitivities, and sex-based differences, and other neurodevelopmental disorders associated with sensory processing disorders.
Collapse
Affiliation(s)
- Ritsuko Ohtani-Kaneko
- Graduate School of Life Sciences, Toyo University, 1-1-1 Itakura, Oura 374-0193, Japan.
| |
Collapse
|
11
|
Plexina2 and CRMP2 Signaling Complex Is Activated by Nogo-A-Liganded Ngr1 to Restrict Corticospinal Axon Sprouting after Trauma. J Neurosci 2019; 39:3204-3216. [PMID: 30804090 DOI: 10.1523/jneurosci.2996-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/31/2019] [Accepted: 02/17/2019] [Indexed: 01/01/2023] Open
Abstract
After brain or spinal cord trauma, interaction of Nogo-A with neuronal NgR1 limits regenerative axonal sprouting and functional recovery. Cellular signaling by lipid-anchored NgR1 requires a coreceptor but the relevant partner in vivo is not clear. Here, we examined proteins enriched in NgR1 immunoprecipitates by Nogo-A exposure, identifying CRMP2, a cytosolic protein implicated in axon growth inhibition by Semaphorin/Plexin complexes. The Nogo-A-induced association of NgR1 with CRMP2 requires PlexinA2 as a coreceptor. Non-neuronal cells expressing both NgR1 and PlexinA2, but not either protein alone, contract upon Nogo-A exposure. Inhibition of cortical axon regeneration by Nogo-A depends on a NgR1/PlexinA2 genetic interaction because double-heterozygous NgR1+/-, PlexinA2+/- neurons, but not single-heterozygote neurons, are rescued from Nogo-A inhibition. NgR1 and PlexinA2 also interact genetically in vivo to restrict corticospinal sprouting in mouse cervical spinal cord after unilateral pyramidotomy. Greater post-injury sprouting in NgR1+/-, PlexinA2+/- mice supports enhanced neurological recovery of a mixed female and male double-heterozygous cohort. Thus, a NgR1/PlexinA2/CRMP2 ternary complex limits neural repair after adult mammalian CNS trauma.SIGNIFICANCE STATEMENT Several decades of molecular research have suggested that developmental regulation of axon growth is distinct in most regards from titration of axonal regenerative growth after adult CNS trauma. Among adult CNS pathways, the oligodendrocyte Nogo-A inhibition of growth through NgR1 is thought to have little molecular relationship to axonal guidance mechanisms active embryonically. Here, biochemical analysis of NgR1 function uncovered a physical complex with CRMP cytoplasmic mediators, and this led to appreciation of a role for PlexinA2 in concert with NgR1 after adult trauma. The data extend molecular understanding of neural repair after CNS trauma and link it to developmental processes.
Collapse
|