1
|
Oshchepkov DY, Makovka YV, Fedoseeva LA, Seryapina AA, Markel AL, Redina OE. Effect of Short-Term Restraint Stress on the Hypothalamic Transcriptome Profiles of Rats with Inherited Stress-Induced Arterial Hypertension (ISIAH) and Normotensive Wistar Albino Glaxo (WAG) Rats. Int J Mol Sci 2024; 25:6680. [PMID: 38928385 PMCID: PMC11203755 DOI: 10.3390/ijms25126680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Emotional stress is one of the health risk factors in the modern human lifestyle. Stress exposure can provoke the manifestation of various pathological conditions, one of which is a sharp increase in the blood pressure level. In the present study, we analyzed changes in the transcriptome profiles of the hypothalamus of hypertensive ISIAH and normotensive WAG rats exposed to a single short-term restraint stress (the rat was placed in a tight wire-mesh cage for 2 h). This type of stress can be considered emotional stress. The functional annotation of differentially expressed genes allowed us to identify the most significantly altered biological processes in the hypothalamus of hypertensive and normotensive rats. The study made it possible to identify a group of genes that describe a general response to stress, independent of the rat genotype, as well as a hypothalamic response to stress specific to each strain. The alternatively changing expression of the Npas4 (neuronal PAS domain protein 4) gene, which is downregulated in the hypothalamus of the control WAG rats and induced in the hypothalamus of hypertensive ISIAH rats, is suggested to be the key event for understanding inter-strain differences in the hypothalamic response to stress. The stress-dependent ISIAH strain-specific induction of Fos and Jun gene transcription may play a crucial role in neuronal activation in this rat strain. The data obtained can be potentially useful in the selection of molecular targets for the development of pharmacological approaches to the correction of stress-induced pathologies related to neuronal excitability, taking into account the hypertensive status of the patients.
Collapse
Affiliation(s)
- Dmitry Yu. Oshchepkov
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
- Kurchatov Genomic Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yulia V. Makovka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Larisa A. Fedoseeva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
| | - Alisa A. Seryapina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
| | - Arcady L. Markel
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Olga E. Redina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (D.Y.O.); (Y.V.M.); (L.A.F.); (A.A.S.); (A.L.M.)
| |
Collapse
|
2
|
Azevedo M, Martinho R, Oliveira A, Correia-de-Sá P, Moreira-Rodrigues M. Molecular pathways underlying sympathetic autonomic overshooting leading to fear and traumatic memories: looking for alternative therapeutic options for post-traumatic stress disorder. Front Mol Neurosci 2024; 16:1332348. [PMID: 38260808 PMCID: PMC10800988 DOI: 10.3389/fnmol.2023.1332348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
The sympathoadrenal medullary system and the hypothalamic-pituitary-adrenal axis are both activated upon stressful events. The release of catecholamines, such as dopamine, norepinephrine (NE), and epinephrine (EPI), from sympathetic autonomic nerves participate in the adaptive responses to acute stress. Most theories suggest that activation of peripheral β-adrenoceptors (β-ARs) mediates catecholamines-induced memory enhancement. These include direct activation of β-ARs in the vagus nerve, as well as indirect responses to catecholamine-induced glucose changes in the brain. Excessive sympathetic activity is deeply associated with memories experienced during strong emotional stressful conditions, with catecholamines playing relevant roles in fear and traumatic memories consolidation. Recent findings suggest that EPI is implicated in fear and traumatic contextual memories associated with post-traumatic stress disorder (PTSD) by increasing hippocampal gene transcription (e.g., Nr4a) downstream to cAMP response-element protein activation (CREB). Herein, we reviewed the literature focusing on the molecular mechanisms underlying the pathophysiology of memories associated with fear and traumatic experiences to pave new avenues for the treatment of stress and anxiety conditions, such as PTSD.
Collapse
Affiliation(s)
- Márcia Azevedo
- Laboratory of General Physiology, Department of Immuno-Physiology and Pharmacology and Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Raquel Martinho
- Laboratory of General Physiology, Department of Immuno-Physiology and Pharmacology and Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Ana Oliveira
- Laboratory of General Physiology, Department of Immuno-Physiology and Pharmacology and Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Paulo Correia-de-Sá
- Laboratory of Pharmacology and Neurobiology, Department of Immuno-Physiology and Pharmacology and Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| | - Mónica Moreira-Rodrigues
- Laboratory of General Physiology, Department of Immuno-Physiology and Pharmacology and Center for Drug Discovery and Innovative Medicines (MedInUP), School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
| |
Collapse
|
3
|
Unno K, Taguchi K, Konishi T, Ozeki M, Nakamura Y. Theanine, a Tea-Leaf-Specific Amino Acid, Alleviates Stress through Modulation of Npas4 Expression in Group-Housed Older Mice. Int J Mol Sci 2023; 24:ijms24043983. [PMID: 36835393 PMCID: PMC9962395 DOI: 10.3390/ijms24043983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Group rearing is a common housing condition, but group-housed older mice show increased adrenal hypertrophy, a marker of stress. However, the ingestion of theanine, an amino acid unique to tea leaves, suppressed stress. We aimed to elucidate the mechanism of theanine's stress-reducing effects using group-reared older mice. The expression of repressor element 1 silencing transcription factor (REST), which represses excitability-related genes, was increased in the hippocampus of group-reared older mice, whereas the expression of neuronal PAS domain protein 4 (Npas4), which is involved in the regulation of excitation and inhibition in the brain, was lower in the hippocampus of older group-reared mice than in same-aged two-to-a-house mice. That is, the expression patterns of REST and Npas4 were found to be just inversely correlated. On the other hand, the expression levels of the glucocorticoid receptor and DNA methyltransferase, which suppress Npas4 transcription, were higher in the older group-housed mice. In mice fed theanine, the stress response was reduced and Npas4 expression tended to be increased. These results suggest that Npas4 expression was suppressed by the increased expression of REST and Npas4 downregulators in the group-fed older mice, but that theanine avoids the decrease in Npas4 expression by suppressing the expression of Npas4 transcriptional repressors.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Correspondence:
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomokazu Konishi
- Faculty of Bioresources Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan
| | - Makoto Ozeki
- Taiyo Kagaku Co., Ltd., 1-3 Takaramachi, Yokkaichi 510-0844, Japan
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
4
|
Unno K, Furushima D, Tanaka Y, Tominaga T, Nakamura H, Yamada H, Taguchi K, Goda T, Nakamura Y. Improvement of Depressed Mood with Green Tea Intake. Nutrients 2022; 14:nu14142949. [PMID: 35889906 PMCID: PMC9319139 DOI: 10.3390/nu14142949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Being in a prolonged depressed state increases the risk of developing depression. To investigate whether green tea intake is effective in improving depression-like moods, we used an experimental animal model of depression with lipopolysaccharide (LPS) and clarified the effects of green tea on the biological stress response and inflammation in the brain. Regarding the stress reduction effect of green tea, we found that the sum of caffeine (C) and epigallocatechin gallate (E) relative to the sum of theanine (T) and arginine (A), the major components of green tea, or the CE/TA ratio, is important. The results showed that depression-like behavior, adrenal hypertrophy as a typical stress response, and brain inflammation were suppressed in mice fed green tea components with CE/TA ratios of 2 to 8. In addition, the expression of Npas4, which is reduced in anxiety and depression, was maintained at the same level as controls in mice that consumed green tea with a CE/TA ratio of 4. In clinical human trials, the consumption of green tea with CE/TA ratios of 3.9 and 4.7 reduced susceptibility to subjective depression. These results suggest that the daily consumption of green tea with a CE/TA ratio of 4–5 is beneficial to improving depressed mood.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
- Correspondence: ; Tel.: +81-54-264-5822
| | - Daisuke Furushima
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
- Faculty of Medicine School of Health Science, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yuya Tanaka
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Takeichiro Tominaga
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Hirotomo Nakamura
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Hiroshi Yamada
- Department of Drug Evaluation & Informatics Graduate School of Pharmaceutical Science, University of Shizuoka, Shizuoka 422-8526, Japan; (D.F.); (Y.T.); (T.T.); (H.N.); (H.Y.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| | - Toshinao Goda
- Faculty of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan;
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (K.T.); (Y.N.)
| |
Collapse
|
5
|
Martinho R, Correia G, Seixas R, Oliveira A, Silva S, Serrão P, Fernandes-Lopes C, Costa C, Moreira-Rodrigues M. Treatment With Nepicastat Decreases Contextual Traumatic Memories Persistence in Post-traumatic Stress Disorder. Front Mol Neurosci 2021; 14:745219. [PMID: 34630037 PMCID: PMC8498196 DOI: 10.3389/fnmol.2021.745219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a common anxiety mental disorder and can be manifested after exposure to a real or perceived life-threatening event. Increased noradrenaline and adrenaline in plasma and urine have been documented in PTSD. Dopamine-β-hydroxylase (DBH) catalyzes the conversion of dopamine to noradrenaline and consequently, DBH inhibition reduces catecholamines. Our aim was to evaluate if nepicastat treatment decreases PTSD signs in an animal model. Wild-type (129x1/SvJ) female mice were submitted to PTSD induction protocol. DBH-inhibitor nepicastat (30 mg/kg) or vehicle (0.2% HPMC) were administered once daily since day 0 until day 7 or 12. The percentage of freezing was calculated on days 0, 1, 2, and 7, and behavioral tests were performed. Quantification of nepicastat in plasma and DBH activity in the adrenal gland was evaluated. Catecholamines were quantified by HPLC with electrochemical detection. mRNA expression of Npas4 and Bdnf in hippocampus was evaluated by qPCR.Mice in the PTSD-group and treated with nepicastat showed a decrease in freezing, and an increase in the time spent and entries in open arms in elevated plus maze test. In mice treated with nepicastat, adrenal gland DBH activity was decreased, and catecholamines were also decreased in plasma and tissues. On day 7, in mice treated with nepicastat, there was an increase of Npas4 and Bdnf mRNA expression in the hippocampus.In conclusion, DBH inhibitor nepicastat has an effect consistent with a decrease in the persistence of traumatic memories and anxiety-like behavior in this PTSD mice model. The disruption of traumatic memories through interference with the formation, consolidation, retrieval, and/or expression processes may be important to decrease PTSD symptoms and signs. The increase in Npas4 and Bdnf mRNA expression in the hippocampus may be important to develop a weaker traumatic contextual memory after nepicastat treatment.
Collapse
Affiliation(s)
- Raquel Martinho
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Gabriela Correia
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Rafaela Seixas
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Ana Oliveira
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Soraia Silva
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| | - Paula Serrão
- Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal.,Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
| | | | | | - Mónica Moreira-Rodrigues
- Laboratory of General Physiology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS/UP), Porto, Portugal.,Center for Drug Discovery and Innovative Medicines, University of Porto (MedInUP), Porto, Portugal
| |
Collapse
|
6
|
Panayotis N, Freund PA, Marvaldi L, Shalit T, Brandis A, Mehlman T, Tsoory MM, Fainzilber M. β-sitosterol reduces anxiety and synergizes with established anxiolytic drugs in mice. Cell Rep Med 2021; 2:100281. [PMID: 34095883 PMCID: PMC8149471 DOI: 10.1016/j.xcrm.2021.100281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/28/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022]
Abstract
Anxiety and stress-related conditions represent a significant health burden in modern society. Unfortunately, most anxiolytic drugs are prone to side effects, limiting their long-term usage. Here, we employ a bioinformatics screen to identify drugs for repurposing as anxiolytics. Comparison of drug-induced gene-expression profiles with the hippocampal transcriptome of an importin α5 mutant mouse model with reduced anxiety identifies the hypocholesterolemic agent β-sitosterol as a promising candidate. β-sitosterol activity is validated by both intraperitoneal and oral application in mice, revealing it as the only clear anxiolytic from five closely related phytosterols. β-sitosterol injection reduces the effects of restraint stress, contextual fear memory, and c-Fos activation in the prefrontal cortex and dentate gyrus. Moreover, synergistic anxiolysis is observed when combining sub-efficacious doses of β-sitosterol with the SSRI fluoxetine. These preclinical findings support further development of β-sitosterol, either as a standalone anxiolytic or in combination with low-dose SSRIs.
Collapse
Affiliation(s)
- Nicolas Panayotis
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Philip A. Freund
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Letizia Marvaldi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tali Shalit
- Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Mehlman
- Life Science Core Facility, Weizmann Institute of Science, Rehovot, Israel
| | - Michael M. Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Mike Fainzilber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
7
|
Determining effects of adolescent stress exposure on risk for posttraumatic stress disorder in adulthood. Curr Opin Behav Sci 2020. [DOI: 10.1016/j.cobeha.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Chaby LE, Sadik N, Burson NA, Lloyd S, O'Donnel K, Winters J, Conti AC, Liberzon I, Perrine SA. Repeated stress exposure in mid-adolescence attenuates behavioral, noradrenergic, and epigenetic effects of trauma-like stress in early adult male rats. Sci Rep 2020; 10:17935. [PMID: 33087769 PMCID: PMC7578655 DOI: 10.1038/s41598-020-74481-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
Stress in adolescence can regulate vulnerability to traumatic stress in adulthood through region-specific epigenetic activity and catecholamine levels. We hypothesized that stress in adolescence would increase adult trauma vulnerability by impairing extinction-retention, a deficit in PTSD, by (1) altering class IIa histone deacetylases (HDACs), which integrate effects of stress on gene expression, and (2) enhancing norepinephrine in brain regions regulating cognitive effects of trauma. We investigated the effects of adolescent-stress on adult vulnerability to severe stress using the single-prolonged stress (SPS) model in male rats. Rats were exposed to either (1) adolescent-stress (33-35 postnatal days) then SPS (58-60 postnatal days; n = 14), or (2) no adolescent-stress and SPS (58-60 postnatal days; n = 14), or (3) unstressed conditions (n = 8). We then measured extinction-retention, norepinephrine, HDAC4, and HDAC5. As expected, SPS exposure induced an extinction-retention deficit. Adolescent-stress prior to SPS eliminated this deficit, suggesting adolescent-stress conferred resiliency to adult severe stress. Adolescent-stress also conferred region-specific resilience to norepinephrine changes. HDAC4 and HDAC5 were down-regulated following SPS, and these changes were also modulated by adolescent-stress. Regulation of HDAC levels was consistent with the pattern of cognitive effects of SPS; only animals exposed to SPS without adolescent-stress exhibited reduced HDAC4 and HDAC5 in the prelimbic cortex, hippocampus, and striatum. Thus, HDAC regulation caused by severe stress in adulthood interacts with stress history such that seemingly conflicting reports describing effects of adolescent stress on adult PTSD vulnerability may stem in part from dynamic HDAC changes following trauma that are shaped by adolescent stress history.
Collapse
MESH Headings
- Adolescent
- Adolescent Behavior/physiology
- Adolescent Behavior/psychology
- Animals
- Brain/metabolism
- Disease Models, Animal
- Epigenesis, Genetic
- Extinction, Psychological/physiology
- Histone Deacetylases/metabolism
- Humans
- Male
- Norepinephrine/metabolism
- Psychology, Adolescent
- Rats, Sprague-Dawley
- Retention, Psychology/physiology
- Stress Disorders, Post-Traumatic/etiology
- Stress Disorders, Post-Traumatic/genetics
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/psychology
- Stress, Psychological
Collapse
Affiliation(s)
- Lauren E Chaby
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Nareen Sadik
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nicole A Burson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Scott Lloyd
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
| | - Kelly O'Donnel
- Department of Psychology, University of Colorado, Colorado Springs, CO, USA
| | - Jesse Winters
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Alana C Conti
- Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M College of Medicine, Bryan, TX, USA
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
- Research Service, John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
9
|
Wu H, Huang Y, Tian X, Zhang Z, Zhang Y, Mao Y, Wang C, Yang S, Liu Y, Zhang W, Ma Z. Preoperative anxiety-induced glucocorticoid signaling reduces GABAergic markers in spinal cord and promotes postoperative hyperalgesia by affecting neuronal PAS domain protein 4. Mol Pain 2020; 15:1744806919850383. [PMID: 31041873 PMCID: PMC6537253 DOI: 10.1177/1744806919850383] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Preoperative anxiety is common in patients undergoing elective surgery and is
closely related to postoperative hyperalgesia. In this study, a single prolonged
stress model was used to induce preoperative anxiety-like behavior in rats 24 h
before the surgery. We found that single prolonged stress exacerbated the
postoperative pain and elevated the level of serum corticosterone. Previous
studies have shown that glucocorticoid is associated with synaptic plasticity,
and decreased spinal GABAergic activity can cause hyperalgesia in rodents. Here,
single prolonged stress rats’ lumbar spinal cord showed reduced glutamic acid
decarboxylase-65, glutamic acid decarboxylase-67, GABA type A receptor alpha 1
subunit, and GABA type A receptor gamma 2 subunit, indicating an impairment of
GABAergic system. Furthermore, neuronal PAS domain protein 4 was also reduced in
rats after single prolonged stress stimulation, which has been reported to
promote GABAergic synapse development. Then, intraperitoneal injection of RU486
(a glucocorticoid receptor antagonist) rather than spironolactone (a
mineralocorticoid receptor antagonist) was found to relieve single prolonged
stress-induced hyperalgesia and reverse neuronal PAS domain protein 4 reduction
and the impairment of GABAergic system. Furthermore, overexpressing neuronal PAS
domain protein 4 could also restore the damage of GABAergic system caused by
single prolonged stress while interfering with neuronal PAS domain protein 4
caused an opposite effect. Finally, after stimulation of rat primary spinal cord
neurons with exogenous corticosterone in vitro, neuronal PAS domain protein 4
and GABAergic markers were also downregulated, and RU486 reversed that.
Together, our results demonstrated that preoperative anxiety led to GABAergic
system impairment in spinal cord and thus caused hyperalgesia due to
glucocorticoid-induced downregulation of neuronal PAS domain protein 4.
Collapse
Affiliation(s)
- Hao Wu
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yulin Huang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Xinyu Tian
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zuoxia Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Ying Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yanting Mao
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Chenchen Wang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Shuai Yang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Yue Liu
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Wei Zhang
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| | - Zhengliang Ma
- 1 Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Maternal Separation Early in Life Alters the Expression of Genes Npas4 and Nr1d1 in Adult Female Mice: Correlation with Social Behavior. Behav Neurol 2020; 2020:7830469. [PMID: 32190129 PMCID: PMC7072106 DOI: 10.1155/2020/7830469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/22/2022] Open
Abstract
Early-life stress affects neuronal plasticity of the brain regions participating in the implementation of social behavior. Our previous studies have shown that brief and prolonged separation of pups from their mothers leads to enhanced social behavior in adult female mice. The goal of the present study was to characterize the expression of genes (which are engaged in synaptic plasticity) Egr1, Npas4, Arc, and Homer1 in the prefrontal cortex and dorsal hippocampus of adult female mice with a history of early-life stress. In addition, we evaluated the expression of stress-related genes: glucocorticoid and mineralocorticoid receptors (Nr3c1 and Nr3c2) and Nr1d1, which encodes a transcription factor (also known as REVERBα) modulating sociability and anxiety-related behavior. C57Bl/6 mice were exposed to either maternal separation (MS, 3 h once a day) or handling (HD, 15 min once a day) on postnatal days 2 through 14. In adulthood, the behavior of female mice was analyzed by some behavioral tests, and on the day after the testing of social behavior, we measured the gene expression. We found increased Npas4 expression only in the prefrontal cortex and higher Nr1d1 expression in both the prefrontal cortex and dorsal hippocampus of adult female mice with a history of MS. The expression of the studied genes did not change in HD female mice. The expression of stress-related genes Nr3c1 and Nr3c2 was unaltered in both groups. We propose that the upregulation of Npas4 and Nr1d1 in females with a history of early-life stress and the corresponding enhancement of social behavior may be regarded as an adaptation mechanism reversing possible aberrations caused by early-life stress.
Collapse
|
11
|
Unno K, Sumiyoshi A, Konishi T, Hayashi M, Taguchi K, Muguruma Y, Inoue K, Iguchi K, Nonaka H, Kawashima R, Hasegawa-Ishii S, Shimada A, Nakamura Y. Theanine, the Main Amino Acid in Tea, Prevents Stress-Induced Brain Atrophy by Modifying Early Stress Responses. Nutrients 2020; 12:nu12010174. [PMID: 31936294 PMCID: PMC7019546 DOI: 10.3390/nu12010174] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022] Open
Abstract
Chronic stress can impair the health of human brains. An important strategy that may prevent the accumulation of stress may be the consumption of functional foods. When senescence-accelerated mice prone 10 (SAMP10), a stress-sensitive strain, were loaded with stress using imposed male mouse territoriality, brain volume decreased. However, in mice that ingested theanine (6 mg/kg), the main amino acid in tea leaves, brain atrophy was suppressed, even under stress. On the other hand, brain atrophy was not clearly observed in a mouse strain that aged normally (Slc:ddY). The expression level of the transcription factor Npas4 (neuronal PAS domain protein 4), which regulates the formation and maintenance of inhibitory synapses in response to excitatory synaptic activity, decreased in the hippocampus and prefrontal cortex of stressed SAMP10 mice, but increased in mice that ingested theanine. Lipocalin 2 (Lcn2), the expression of which increased in response to stress, was significantly high in the hippocampus and prefrontal cortex of stressed SAMP10 mice, but not in mice that ingested theanine. These data suggest that Npas4 and Lcn2 are involved in the brain atrophy and stress vulnerability of SAMP10 mice, which are prevented by the consumption of theanine, causing changes in the expression of these genes.
Collapse
Affiliation(s)
- Keiko Unno
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan;
- Correspondence: ; Tel.: +81-54-264-5822
| | - Akira Sumiyoshi
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
- National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomokazu Konishi
- Faculty of Bioresource Sciences, Akita Prefectural University, Shimoshinjo Nakano, Akita 010-0195, Japan;
| | - Michiko Hayashi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| | - Kyoko Taguchi
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| | - Yoshio Muguruma
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (K.I.)
| | - Koichi Inoue
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan; (Y.M.); (K.I.)
| | - Kazuaki Iguchi
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan;
| | - Hiroi Nonaka
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (A.S.); (H.N.); (R.K.)
| | - Sanae Hasegawa-Ishii
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan; (S.H.-I.); (A.S.)
| | - Atsuyoshi Shimada
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo 181-8612, Japan; (S.H.-I.); (A.S.)
| | - Yoriyuki Nakamura
- Tea Science Center, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan; (M.H.); (K.T.); (Y.N.)
| |
Collapse
|
12
|
Ji LL, Ye Y, Nie PY, Peng JB, Fu CH, Wang ZY, Tong L. Dysregulation of miR-142 results in anxiety-like behaviors following single prolonged stress. Behav Brain Res 2019; 365:157-163. [PMID: 30857769 DOI: 10.1016/j.bbr.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a prevalent mental disorder that is classified as a trauma- and stressor-related disorder. While numerous epigenetic factors are related to the risk for PTSD, the precise mechanisms underlying this disorder remain unclear. However, accumulating evidence has demonstrated that dysregulation of microRNAs is involved in stress-related psychiatric disorders, resulting in anxiety-like behavior, memory-related deficits and aberrant neuronal plasticity. Here, rats exposed to single prolonged stress showed increased microRNA-142-5p levels in the amygdala and a concurrent reduction in the levels of its predicted target Npas4, an activity-regulated transcription factor, which was implicated in stress-related psychopathologies. In addition, the inhibition of microRNA-142 following exposure to single prolonged stress exhibited decreased anxiety-like behaviors and memory deficits, as well as increased expression of Npas4 and BDNF. Furthermore, a dual-luciferase reporter assay indicated that Npas4 was a direct downstream target of miR-142. Taken together, these data suggest that miR-142 may play a key role in the pathogenesis of stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Li-Li Ji
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Yao Ye
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Peng-Yin Nie
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Jun-Bo Peng
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Chang-Hai Fu
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Zhen-Yu Wang
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China
| | - Lei Tong
- Department of Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
13
|
Benatti C, Radighieri G, Alboni S, Blom JMC, Brunello N, Tascedda F. Modulation of neuroplasticity-related targets following stress-induced acute escape deficit. Behav Brain Res 2019; 364:140-148. [PMID: 30771367 DOI: 10.1016/j.bbr.2019.02.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/07/2019] [Indexed: 12/12/2022]
Abstract
Understanding resilience is a major challenge to improve current pharmacological therapies aimed at complementing psychological-based approaches of stress-related disorders. In particular, resilience is a multi-factorial construct where the complex network of molecular events that drive the process still needs to be resolved. Here, we exploit the acute escape deficit model, an animal model based on exposure to acute unavoidable stress followed by an escape test, to define vulnerable and resilient phenotypes in rats. Hippocampus and prefrontal cortex (PFC), two of the brain areas most involved in the stress response, were analysed for gene expression at two different time points (3 and 24 h) after the escape test. Total Brain-Derived Neurotrophic Factor (BDNF) was highly responsive in the PFC at 24-h after the escape test, while expression of BDNF transcript IV increased in the hippocampus of resistant animals 3 h post-test. Expression of memory enhancers like Neuronal PAS Domain Protein 4 (Npas4) and Activity-regulated cytoskeleton-associated protein (Arc) decreased in a time- and region-dependent fashion in both behavioural phenotypes. Also, the memory inhibitor Protein Phosphatase 1 (Ppp1ca) was increased in the hippocampus of resilient rats at 3 h post-test. Given the importance of neurotrophic factors and synaptic plasticity-related genes for the development of appropriate coping strategies, our data contribute to an additional step forward in the comprehension of the psychobiology of stress and resiliency.
Collapse
Affiliation(s)
- C Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - G Radighieri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - S Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy
| | - J M C Blom
- Department of Education and Human Sciences, University of Modena and Reggio Emilia, viale Antonio Allegri 9, 42121, Reggio Emilia, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - N Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - F Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125, Modena, Italy; Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|