1
|
Jiang M, Li H, Zhang Q, Xu T, Huang L, Zhang J, Yu H, Zhang J. The role of RGS12 in tissue repair and human diseases. Genes Dis 2025; 12:101480. [PMID: 40271194 PMCID: PMC12017852 DOI: 10.1016/j.gendis.2024.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 08/05/2024] [Accepted: 11/02/2024] [Indexed: 04/25/2025] Open
Abstract
Regulator of G protein signaling 12 (RGS12) belongs to the superfamily of RGS proteins defined by a conserved RGS domain that canonically binds and deactivates heterotrimeric G-proteins. As the largest family member, RGS12 is widely expressed in many cells and tissues. In the past few decades, it has been found that RGS12 affects the activity of various cells in the human body, participates in many physiological and pathological processes, and plays an important role in the pathogenesis of many diseases. Here, we set out to comprehensively review the role of RGS12 in human diseases and its mechanisms, highlighting the possibility of RGS12 as a therapeutic target for the treatment of human diseases.
Collapse
Affiliation(s)
- Min Jiang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Hongmei Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Tongtong Xu
- General Department of Critical Care Medicine, Zhenjiang Traditional Chinese Medicine Hospital, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Zhenjiang, Jiangsu 212003, China
| | - Le Huang
- Army 72nd Group Military Hospital, Huzhou, Zhejiang 313000, China
| | - Jinghong Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Huiqing Yu
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Junhui Zhang
- Department of Geriatric Oncology and Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
2
|
Lin H, Ma C, Zhuang X, Liu S, Liu D, Zhang M, Lu Y, Zhou G, Zhang C, Wang T, Zhang Z, Lv L, Zhang D, Ruan XZ, Xu Y, Chai R, Yu X, Sun JP, Chu B. Sensing steroid hormone 17α-hydroxypregnenolone by GPR56 enables protection from ferroptosis-induced liver injury. Cell Metab 2024; 36:2402-2418.e10. [PMID: 39389061 DOI: 10.1016/j.cmet.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate most cellular responses to hormones, neurotransmitters, and environmental stimulants. However, whether GPCRs participate in tissue homeostasis through ferroptosis remains unclear. Here we identify that GPR56/ADGRG1 renders cells resistant to ferroptosis and deficiency of GPR56 exacerbates ferroptosis-mediated liver injury induced by doxorubicin (DOX) or ischemia-reperfusion (IR). Mechanistically, GPR56 decreases the abundance of phospholipids containing free polyunsaturated fatty acids (PUFAs) by promoting endocytosis-lysosomal degradation of CD36. By screening a panel of steroid hormones, we identified that 17α-hydroxypregnenolone (17-OH PREG) acts as an agonist of GPR56 to antagonize ferroptosis and efficiently attenuates liver injury before or after insult. Moreover, disease-associated GPR56 mutants were unresponsive to 17-OH PREG activation and insufficient to defend against ferroptosis. Together, our findings uncover that 17-OH PREG-GPR56 axis-mediated signal transduction works as a new anti-ferroptotic pathway to maintain liver homeostasis, providing novel insights into the potential therapy for liver injury.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China; Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Chuanshun Ma
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiao Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shuo Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mingxiang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Guangjian Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Tengwei Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zihao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Lin Lv
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiong-Zhong Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Gheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Department of Otolaryngology Head and Neck Surgery, Sichuan, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China.
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Mental Disorders and Intelligent Control, Shandong University, Jinan 250012, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
3
|
Palacios D, Majhi RK, Szabo EK, Clement D, Lachota M, Netskar H, Penna L, Krokeide SZ, Vincenti M, Kveberg L, Malmberg KJ. The G Protein-Coupled Receptor GPR56 Is an Inhibitory Checkpoint for NK Cell Migration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1349-1357. [PMID: 39320215 PMCID: PMC11491499 DOI: 10.4049/jimmunol.2400228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of surface receptors and are responsible for key physiological functions, including cell growth, neurotransmission, hormone release, and cell migration. The GPCR 56 (GPR56), encoded by ADGRG1, is an adhesion GPCR found on diverse cell types, including neural progenitor cells, melanoma cells, and lymphocytes, such as effector memory T cells, γδ T cells, and NK cells. Using RNA-sequencing and high-resolution flow cytometry, we found that GPR56 mRNA and protein expression increased with NK cell differentiation, reaching its peak in adaptive NK cells. Small interfering RNA silencing of GPR56 led to increased spontaneous and chemokine-induced migration, suggesting that GPR56 functions as an upstream checkpoint for migration of highly differentiated NK cells. Increased NK cell migration could also be induced by agonistic stimulation of GPR56 leading to rapid internalization and deactivation of the receptor. Mechanistically, GPR56 ligation and downregulation were associated with transcriptional coactivator with PDZ-binding motif translocation to the nucleus and increased actin polymerization. Together, these data provide insights into the role of GPR56 in the migratory behavior of human NK cell subsets and may open possibilities to improve NK cell infiltration into cancer tissues by releasing a migratory checkpoint.
Collapse
Affiliation(s)
- Daniel Palacios
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Rakesh Kumar Majhi
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Center of Excellence in Cancer, Gangwal School of Medical Sciences and Technology, Mehta Family Center for Engineering in Medicine, Department of Biological Sciences and Bioengineering, IIT Kanpur, India
| | - Edina K. Szabo
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Dennis Clement
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Mieszko Lachota
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Laboratory of Cellular and Genetic Therapies, Medical University of Warsaw, Warsaw, Poland
| | - Herman Netskar
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Leena Penna
- Finnish Red Cross Blood Service, Research and Development, Helsinki, Finland
| | - Silje Z. Krokeide
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Marianna Vincenti
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Lise Kveberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
| | - Karl-Johan Malmberg
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance, University of Oslo, Oslo, Norway
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Sweden
| |
Collapse
|
4
|
Ryu Y, Wague A, Liu X, Feeley BT, Ferguson AR, Morioka K. Cellular signaling pathways in the nervous system activated by various mechanical and electromagnetic stimuli. Front Mol Neurosci 2024; 17:1427070. [PMID: 39430293 PMCID: PMC11486767 DOI: 10.3389/fnmol.2024.1427070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024] Open
Abstract
Mechanical stimuli, such as stretch, shear stress, or compression, activate a range of biomolecular responses through cellular mechanotransduction. In the nervous system, studies on mechanical stress have highlighted key pathophysiological mechanisms underlying traumatic injury and neurodegenerative diseases. However, the biomolecular pathways triggered by mechanical stimuli in the nervous system has not been fully explored, especially compared to other body systems. This gap in knowledge may be due to the wide variety of methods and definitions used in research. Additionally, as mechanical stimulation techniques such as ultrasound and electromagnetic stimulation are increasingly utilized in psychological and neurorehabilitation treatments, it is vital to understand the underlying biological mechanisms in order to develop accurate pathophysiological models and enhance therapeutic interventions. This review aims to summarize the cellular signaling pathways activated by various mechanical and electromagnetic stimuli with a particular focus on the mammalian nervous system. Furthermore, we briefly discuss potential cellular mechanosensors involved in these processes.
Collapse
Affiliation(s)
- Youngjae Ryu
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
| | - Aboubacar Wague
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Xuhui Liu
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Brian T. Feeley
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Adam R. Ferguson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- San Francisco Veterans Affairs Healthcare System, San Francisco, CA, United States
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Brain and Spinal Injury Center, Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, CA, United States
- Zuckerberg San Francisco General Hospital and Trauma CenterOrthopaedic Trauma Institute, , San Francisco, CA, United States
| |
Collapse
|
5
|
Shi W, Xu C, Lei P, Sun X, Song M, Guo Y, Song W, Li Y, Yu L, Zhang H, Wang H, Zhang DL. A correlation study of adhesion G protein-coupled receptors as potential therapeutic targets for breast cancer. Breast Cancer Res Treat 2024; 207:417-434. [PMID: 38834774 DOI: 10.1007/s10549-024-07373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Adhesion G protein-coupled receptors (aGPCRs), a distinctive subset of the G protein-coupled receptor (GPCR) superfamily, play crucial roles in various physiological and pathological processes, with implications in tumor development. Despite the global prevalence of breast cancer (BRCA), specific aGPCRs as potential drug targets or biomarkers remain underexplored. METHODS UALCAN, GEPIA, Kaplan-Meier Plotter, MethSurv, cBiopportal, String, GeneMANIA, DAVID, Timer, Metascape, and qPCR were applied in this work. RESULTS Our analysis revealed significantly increased transcriptional levels of ADGRB2, ADGRC1, ADGRC2, ADGRC3, ADGRE1, ADGRF2, ADGRF4, and ADGRL1 in BRCA primary tumors. Further analysis indicated a significant correlation between the expressions of certain aGPCRs and the pathological stage of BRCA. High expression of ADGRA1, ADGRF2, ADGRF4, ADGRG1, ADGRG2, ADGRG4, ADGRG6, and ADGRG7 was significantly correlated with poor overall survival (OS) in BRCA patients. Additionally, high expression of ADGRF2 and ADGRF4 indicated inferior recurrence-free survival (RFS) in BRCA patients. The RT-qPCR experiments also confirmed that the mRNA levels of ADGRF2 and ADGRF4 were higher in BRCA cells and tissues. Functional analysis highlighted the diverse roles of aGPCRs, encompassing GPCR signaling and metabolic energy reserves. Moreover, aGPCRs may exert influence or actively participate in the development of BRCA through their impact on immune status. CONCLUSION aGPCRs, particularly ADGRF2 and ADGRF4, hold promise as immunotherapeutic targets and prognostic biomarkers in BRCA.
Collapse
Affiliation(s)
- Wenning Shi
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Cong Xu
- Department of Cell Biology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Ping Lei
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Xiaoli Sun
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Mengju Song
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yacong Guo
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Wenxuan Song
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yizheng Li
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Liting Yu
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China.
| | - Hongmei Wang
- Shaanxi University of Chinese Medicine, No.1, Middle Century Avenue, Chenyangzhai, Xianyang, 712046, Shaanxi, China.
| | - Dao-Lai Zhang
- Department of Protein and Antibody Engineering, School of Pharmacy, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
6
|
Melendez J, Sung YJ, Orr M, Yoo A, Schindler S, Cruchaga C, Bateman R. An interpretable machine learning-based cerebrospinal fluid proteomics clock for predicting age reveals novel insights into brain aging. Aging Cell 2024; 23:e14230. [PMID: 38923730 PMCID: PMC11488306 DOI: 10.1111/acel.14230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Machine learning can be used to create "biologic clocks" that predict age. However, organs, tissues, and biofluids may age at different rates from the organism as a whole. We sought to understand how cerebrospinal fluid (CSF) changes with age to inform the development of brain aging-related disease mechanisms and identify potential anti-aging therapeutic targets. Several epigenetic clocks exist based on plasma and neuronal tissues; however, plasma may not reflect brain aging specifically and tissue-based clocks require samples that are difficult to obtain from living participants. To address these problems, we developed a machine learning clock that uses CSF proteomics to predict the chronological age of individuals with a 0.79 Pearson correlation and mean estimated error (MAE) of 4.30 years in our validation cohort. Additionally, we analyzed proteins highly weighted by the algorithm to gain insights into changes in CSF and uncover novel insights into brain aging. We also demonstrate a novel method to create a minimal protein clock that uses just 109 protein features from the original clock to achieve a similar accuracy (0.75 correlation, MAE 5.41). Finally, we demonstrate that our clock identifies novel proteins that are highly predictive of age in interactions with other proteins, but do not directly correlate with chronological age themselves. In conclusion, we propose that our CSF protein aging clock can identify novel proteins that influence the rate of aging of the central nervous system (CNS), in a manner that would not be identifiable by examining their individual relationships with age.
Collapse
Affiliation(s)
- Justin Melendez
- Tracy Family SILQ CenterWashington University in St. LouisSt. LouisMissouriUSA
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Yun Ju Sung
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
- Department of BiostatisticsWashington University in St. LouisSt. LouisMissouriUSA
| | - Miranda Orr
- Department of Internal MedicineWake Forest School of Medicine Section of Gerontology and Geriatric Medicine Medical Center BoulevardWinston‐SalemNorth CarolinaUSA
| | - Andrew Yoo
- Department of Developmental BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Suzanne Schindler
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Carlos Cruchaga
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of PsychiatryWashington University in St. LouisSt. LouisMissouriUSA
| | - Randall Bateman
- Tracy Family SILQ CenterWashington University in St. LouisSt. LouisMissouriUSA
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| |
Collapse
|
7
|
Qi W, Guan W. GPR56: A potential therapeutic target for neurological and psychiatric disorders. Biochem Pharmacol 2024; 226:116395. [PMID: 38942087 DOI: 10.1016/j.bcp.2024.116395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
GPR56, also known as GPR56/ADGRG1, is a member of the ADGRG subgroup belonging to adhesion G protein-coupled receptors (aGPCRs). aGPCRs are the second largest subfamily of the GPCR superfamily, which is the largest family of membrane protein receptors in the human genome. Studies in recent years have demonstrated that GPR56 is integral to the normal development of the brain and functions as an important player in cortical development, suggesting that GPR56 is involved in many physiological processes. Indeed, aberrant expression of GPR56 has been implicated in multiple neurological and psychiatric disorders, including bilateral frontoparietal polymicrogyria (BFPP), depression and epilepsy. In a recent study, it was found that upregulated expression of GPR56 reduced depressive-like behaviours in an animal model of depression, indicating that GPR56 plays an important role in the antidepressant response. Given the link of GPR56 with the antidepressant response, the function of GPR56 has become a focus of research. Although GPR56 may be a potential target for the development of antidepressants, the underlying molecular mechanisms remain largely unknown. Therefore, in this review, we will summarize the latest findings of GPR56 function in neurological and psychiatric disorders (depression, epilepsy, autism, and BFPP) and emphasize the mechanisms of GPR56 in activation and signalling in those conditions. After reviewing several studies, attributing to its significant biological functions and exceptionally long extracellular N-terminus that interacts with multiple ligands, we draw a conclusion that GPR56 may serve as an important drug target for neuropsychological diseases.
Collapse
Affiliation(s)
- Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, China.
| |
Collapse
|
8
|
Ren J, Zhu Y, Nie Y, Zheng M, Hasimu A, Zhao M, Zhao Y, Ma X, Yuan Z, Li Q, Bahabayi A, Zhang Z, Zeng X, Liu C. Differential GPR56 Expression in T Cell Subpopulations for Early-Stage Lung Adenocarcinoma Patient Identification. Immunol Invest 2024; 53:843-856. [PMID: 38809082 DOI: 10.1080/08820139.2024.2350549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
OBJECTIVE This study aimed to investigate the expression of GPR56 in the T cells of early-stage lung adenocarcinoma (LUAD) patients and clarify its diagnostic significance. METHODS Blood samples were collected from 32 patients with stage IA LUAD and 31 healthy controls. GPR56 and perforin were analysed in circulating T-cell subsets by flow cytometry. In addition, a correlation between perforin and GPR56 expression was detected. Changes in GPR56+ cells in early LUAD patients were analysed, and the diagnostic significance of GPR56+ T cells for early LUAD was studied by receiver operating characteristic (ROC) curve analysis. RESULTS The expression of GPR56 in CD8+ T cells from early-stage LUAD patients was significantly greater than that in CD4+ T cells. The percentage of perforin-positive GPR56+ cells in early-stage LUAD patients was high. GPR56 levels in the T cells of LUAD patients were significantly lower than those in healthy controls. ROC analysis revealed that the area under the curve for the percentage of GPR56-positive CD8+ TEMRA cells to distinguish early-stage LUAD patients from healthy individuals- reached 0.7978. CONCLUSION The decreased expression of GPR56 in the peripheral blood of early-stage LUAD patients correlated with perforin levels, reflecting compromised antitumor immunity and aiding early-stage LUAD screening.
Collapse
Affiliation(s)
- Jiaxin Ren
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yaoyi Zhu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuying Nie
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Mohan Zheng
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ainizati Hasimu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ming Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yiming Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiancan Ma
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| |
Collapse
|
9
|
Gao JM, Xia SY, Hide G, Li BH, Liu YY, Wei ZY, Zhuang XJ, Yan Q, Wang Y, Yang W, Chen JH, Rao JH. Multiomics of parkinsonism cynomolgus monkeys highlights significance of metabolites in interaction between host and microbiota. NPJ Biofilms Microbiomes 2024; 10:61. [PMID: 39060267 PMCID: PMC11282307 DOI: 10.1038/s41522-024-00535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The gut microbiota has been demonstrated to play a significant role in the pathogenesis of Parkinson's disease (PD). However, conflicting findings regarding specific microbial species have been reported, possibly due to confounding factors within human populations. Herein, our current study investigated the interaction between the gut microbiota and host in a non-human primate (NHP) PD model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) using a multi-omic approach and a self-controlled design. Our transcriptomic sequencing of peripheral blood leukocytes (PBL) identified key genes involved in pro-inflammatory cytokine dysregulation, mitochondrial function regulation, neuroprotection activation, and neurogenesis associated with PD, such as IL1B, ATP1A3, and SLC5A3. The metabolomic profiles in serum and feces consistently exhibited significant alterations, particularly those closely associated with inflammation, mitochondrial dysfunctions and neurodegeneration in PD, such as TUDCA, ethylmalonic acid, and L-homophenylalanine. Furthermore, fecal metagenome analysis revealed gut dysbiosis associated with PD, characterized by a significant decrease in alpha diversity and altered commensals, particularly species such as Streptococcus, Butyrivibrio, and Clostridium. Additionally, significant correlations were observed between PD-associated microbes and metabolites, such as sphingomyelin and phospholipids. Importantly, PDPC significantly reduced in both PD monkey feces and serum, exhibiting strong correlation with PD-associated genes and microbes, such as SLC5A3 and Butyrivibrio species. Moreover, such multi-omic differential biomarkers were linked to the clinical rating scales of PD monkeys. Our findings provided novel insights into understanding the potential role of key metabolites in the host-microbiota interaction involved in PD pathogenesis.
Collapse
Affiliation(s)
- Jiang-Mei Gao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Geoff Hide
- Biomedical Research Centre and Ecosystems and Environment Research Centre, School of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, UK
| | - Bi-Hai Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Yi-Yan Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Xiao-Ji Zhuang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
| | - Qing Yan
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China
- Zhuzhou Central Hospital, Zhuzhou, Hunan, China
| | - Yun Wang
- Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Yang
- Guangzhou Bay Area Institute of Biomedicine, Guangdong Lewwin Pharmaceutical Research Institute Co., Ltd., Guangdong Provincial Key Laboratory of Drug Non-Clinical Evaluation and Research, Guangzhou, Guangdong, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| | - Jun-Hua Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
- Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.
| |
Collapse
|
10
|
Fan Y, Yan XY, Guan W. GPR56, an Adhesion GPCR with Multiple Roles in Human Diseases, Current Status and Future Perspective. Curr Drug Targets 2024; 25:558-573. [PMID: 38752635 DOI: 10.2174/0113894501298344240507080149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Human G protein-coupled receptor 56 (GPR56) belongs to a member of the adhesion G-protein coupled receptor (aGPCR) family and widely exists in the central nervous system and various types of tumor tissues. Recent studies have shown that abnormal expression or dysfunction of GPR56 is closely associated with many physiological and pathological processes, including brain development, neuropsychiatric disorders, cardiovascular diseases and cancer progression. In addition, GPR56 has been proven to enhance the susceptibility of some antipsychotics and anticarcinogens in response to the treatment of neuropsychological diseases and cancer. Although there have been some reports about the functions of GPR56, the underlying mechanisms implicated in these diseases have not been clarified thoroughly, especially in depression and epilepsy. Therefore, in this review, we described the molecular structure and signal transduction pathway of GPR56 and carried out a comprehensive summary of GPR56's function in the development of psychiatric disorders and cancer. Our review showed that GPR56 deficiency led to depressive-like behaviors and an increase in resistance to antipsychotic treatment. In contrast, the upregulation of GPR56 contributed to tumor cell proliferation and metastasis in malignant diseases such as glioblastoma, colorectal cancer, and ovarian cancer. Moreover, we elucidated specific signaling pathways downstream of GPR56 related to the pathogenesis of these diseases. In summary, our review provides compelling arguments for an attractive therapeutic target of GPR56 in improving the therapeutic efficiency for patients suffering from psychiatric disorders and cancer.
Collapse
Affiliation(s)
- Yan Fan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang 215600, Jiangsu, China
| | - Xiao-Yan Yan
- Department of Pharmacy, Zhangjiagang Second People's Hospital, Zhangjiagang 215600, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
11
|
Ganesh RA, Venkataraman K, Sirdeshmukh R. GPR56 signaling pathway network and its dynamics in the mesenchymal transition of glioblastoma. J Cell Commun Signal 2023:10.1007/s12079-023-00792-5. [PMID: 37980704 DOI: 10.1007/s12079-023-00792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023] Open
Abstract
G protein-coupled receptor 56 (GPR56/ADGRG1) is a multifunctional adhesion GPCR involved in diverse biological processes ranging from development to cancer. In our earlier study, we reported that GPR56 is expressed heterogeneously in glioblastoma (GBM) and is involved in the mesenchymal transition, making it a promising therapeutic target (Ganesh et al., 2022). Despite its important role in cancer, its mechanism of action or signaling is not completely understood. Thus, based on transcriptomic, proteomic, and phosphoproteomic differential expression data of GPR56 knockdown U373-GBM cells included in our above study along with detailed literature mining of the molecular events plausibly associated with GPR56 activity, we have constructed a signaling pathway map of GPR56 as may be applicable in mesenchymal transition in GBM. The map incorporates more than 100 molecular entities including kinases, receptors, ion channels, and others associated with Wnt, integrin, calcium signaling, growth factors, and inflammation signaling pathways. We also considered intracellular and extracellular factors that may influence the activity of the pathway entities. Here we present a curated signaling map of GPR56 in the context of GBM and discuss the relevance and plausible cross-connectivity across different axes attributable to GPR56 function. GPR56 signaling and mesenchymal transition.
Collapse
Affiliation(s)
- Raksha A Ganesh
- Mazumdar Shaw Center for Translational Research, Narayana Health, Mazumdar Shaw Medical Foundation, Bangalore, 560099, India
- Center for Bio-Separation Technology, Vellore Institute of Technology, Vellore, 632104, India
| | - Krishnan Venkataraman
- Center for Bio-Separation Technology, Vellore Institute of Technology, Vellore, 632104, India
| | - Ravi Sirdeshmukh
- Mazumdar Shaw Center for Translational Research, Narayana Health, Mazumdar Shaw Medical Foundation, Bangalore, 560099, India.
- Institute of Bioinformatics, International Tech Park, Bangalore, 560066, India.
- Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
12
|
Wu J, Wang Z, Cai M, Wang X, Lo B, Li Q, He JC, Lee K, Fu J. GPR56 Promotes Diabetic Kidney Disease Through eNOS Regulation in Glomerular Endothelial Cells. Diabetes 2023; 72:1652-1663. [PMID: 37579299 PMCID: PMC10588296 DOI: 10.2337/db23-0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Although glomerular endothelial dysfunction is well recognized as contributing to the pathogenesis of diabetic kidney disease (DKD), the molecular pathways contributing to DKD pathogenesis in glomerular endothelial cells (GECs) are only partially understood. To uncover pathways that are differentially regulated in early DKD that may contribute to disease pathogenesis, we recently conducted a transcriptomic analysis of isolated GECs from diabetic NOS3-null mice. The analysis identified several potential mediators of early DKD pathogenesis, one of which encoded an adhesion G protein-coupled receptor-56 (GPR56), also known as ADGRG1. Enhanced glomerular expression of GPR56 was observed in human diabetic kidneys, which was negatively associated with kidney function. Using cultured mouse GECs, we observed that GPR56 expression was induced with exposure to advanced glycation end products, as well as in high-glucose conditions, and its overexpression resulted in decreased phosphorylation and expression of endothelial nitric oxide synthase (eNOS). This effect on eNOS by GPR56 was mediated by coupling of Gα12/13-RhoA pathway activation and Gαi-mediated cAMP/PKA pathway inhibition. The loss of GPR56 in mice led to a significant reduction in diabetes-induced albuminuria and glomerular injury, which was associated with reduced oxidative stress and restoration of eNOS expression in GECs. These findings suggest that GPR56 promotes DKD progression mediated, in part, through enhancing glomerular endothelial injury and dysfunction. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Jinshan Wu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhihong Wang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minchao Cai
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xuan Wang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Benjamin Lo
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Qifu Li
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
- Renal Program, James J. Peters Veterans Affairs Medical Center at Bronx, Bronx, NY
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jia Fu
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
13
|
Seregin AA, Smirnova LP, Dmitrieva EM, Zavialova MG, Simutkin GG, Ivanova SA. Differential Expression of Proteins Associated with Bipolar Disorder as Identified Using the PeptideShaker Software. Int J Mol Sci 2023; 24:15250. [PMID: 37894929 PMCID: PMC10607299 DOI: 10.3390/ijms242015250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
The prevalence of bipolar disorder (BD) in modern society is growing rapidly, but due to the lack of paraclinical criteria, its differential diagnosis with other mental disorders is somewhat challenging. In this regard, the relevance of proteomic studies is increasing due to the development of methods for processing large data arrays; this contributes to the discovery of protein patterns of pathological processes and the creation of new methods of diagnosis and treatment. It seems promising to search for proteins involved in the pathogenesis of BD in an easily accessible material-blood serum. Sera from BD patients and healthy individuals were purified via affinity chromatography to isolate 14 major proteins and separated using 1D SDS-PAGE. After trypsinolysis, the proteins in the samples were identified via HPLC/mass spectrometry. Mass spectrometric data were processed using the OMSSA and X!Tandem search algorithms using the UniProtKB database, and the results were analyzed using PeptideShaker. Differences in proteomes were assessed via an unlabeled NSAF-based analysis using a two-tailed Bonferroni-adjusted t-test. When comparing the blood serum proteomes of BD patients and healthy individuals, 10 proteins showed significant differences in NSAF values. Of these, four proteins were predominantly present in BD patients with the maximum NSAF value: 14-3-3 protein zeta/delta; ectonucleoside triphosphate diphosphohydrolase 7; transforming growth factor-beta-induced protein ig-h3; and B-cell CLL/lymphoma 9 protein. Further exploration of the role of these proteins in BD is warranted; conducting such studies will help develop new paraclinical criteria and discover new targets for BD drug therapy.
Collapse
Affiliation(s)
- Alexander A. Seregin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | - Liudmila P. Smirnova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | - Elena M. Dmitrieva
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | | | - German G. Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (A.A.S.)
| |
Collapse
|
14
|
Mohan K, Gasparoni G, Salhab A, Orlich MM, Geffers R, Hoffmann S, Adams RH, Walter J, Nordheim A. Age-Associated Changes in Endothelial Transcriptome and Epigenetic Landscapes Correlate With Elevated Risk of Cerebral Microbleeds. J Am Heart Assoc 2023; 12:e031044. [PMID: 37609982 PMCID: PMC10547332 DOI: 10.1161/jaha.123.031044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Background Stroke is a leading global cause of human death and disability, with advanced aging associated with elevated incidences of stroke. Despite high mortality and morbidity of stroke, the mechanisms leading to blood-brain barrier dysfunction and development of stroke with age are poorly understood. In the vasculature of brain, endothelial cells (ECs) constitute the core component of the blood-brain barrier and provide a physical barrier composed of tight junctions, adherens junctions, and basement membrane. Methods and Results We show, in mice, the incidents of intracerebral bleeding increases with age. After isolating an enriched population of cerebral ECs from murine brains at 2, 6, 12, 18, and 24 months, we studied age-associated changes in gene expression. The study reveals age-dependent dysregulation of 1388 genes, including many involved in the maintenance of the blood-brain barrier and vascular integrity. We also investigated age-dependent changes on the levels of CpG methylation and accessible chromatin in cerebral ECs. Our study reveals correlations between age-dependent changes in chromatin structure and gene expression, whereas the dynamics of DNA methylation changes are different. Conclusions We find significant age-dependent downregulation of the Aplnr gene along with age-dependent reduction in chromatin accessibility of promoter region of the Aplnr gene in cerebral ECs. Aplnr is associated with positive regulation of vasodilation and is implicated in vascular health. Altogether, our data suggest a potential role of the apelinergic axis involving the ligand apelin and its receptor to be critical in maintenance of the blood-brain barrier and vascular integrity.
Collapse
Affiliation(s)
- Kshitij Mohan
- Interfaculty Institute of Cell BiologyUniversity of TübingenTübingenGermany
- International Max Planck Research School “From Molecules to Organisms”TübingenGermany
| | | | | | - Michael M. Orlich
- Interfaculty Institute of Cell BiologyUniversity of TübingenTübingenGermany
- International Max Planck Research School “From Molecules to Organisms”TübingenGermany
| | - Robert Geffers
- Genome AnalyticsHelmholtz Centre for Infection ResearchBraunschweigGermany
| | - Steve Hoffmann
- Leibniz Institute on AgingFritz Lipmann InstituteJenaGermany
| | - Ralf H. Adams
- Department of Tissue MorphogenesisMax Planck Institute for Molecular BiomedicineMünsterGermany
- Faculty of MedicineUniversity of MünsterMünsterGermany
| | - Jörn Walter
- Department of GeneticsUniversity of SaarlandSaarbrückenGermany
| | - Alfred Nordheim
- Interfaculty Institute of Cell BiologyUniversity of TübingenTübingenGermany
- Leibniz Institute on AgingFritz Lipmann InstituteJenaGermany
- International Max Planck Research School “From Molecules to Organisms”TübingenGermany
| |
Collapse
|
15
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
16
|
Stachowicz K. Physicochemical Principles of Adhesion Mechanisms in the Brain. Int J Mol Sci 2023; 24:ijms24065070. [PMID: 36982145 PMCID: PMC10048821 DOI: 10.3390/ijms24065070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The brain functions through neuronal circuits and networks that are synaptically connected. This type of connection can exist due to physical forces that interact to stabilize local contacts in the brain. Adhesion is a fundamental physical phenomenon that allows different layers, phases, and tissues to connect. Similarly, synaptic connections are stabilized by specialized adhesion proteins. This review discusses the basic physical and chemical properties of adhesion. Cell adhesion molecules (CAMs) such as cadherins, integrins, selectins, and immunoglobulin family of cell adhesion molecules (IgSF) will be discussed, and their role in physiological and pathological brain function. Finally, the role of CAMs at the synapse will be described. In addition, methods for studying adhesion in the brain will be presented.
Collapse
Affiliation(s)
- Katarzyna Stachowicz
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
17
|
Lin X, Jiang S, Wu Y, Wei X, Han GW, Wu L, Liu J, Chen B, Zhang Z, Zhao S, Cherezov V, Xu F. The activation mechanism and antibody binding mode for orphan GPR20. Cell Discov 2023; 9:23. [PMID: 36849514 PMCID: PMC9971246 DOI: 10.1038/s41421-023-00520-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/02/2023] [Indexed: 03/01/2023] Open
Abstract
GPR20 is a class-A orphan G protein-coupled receptor (GPCR) and a potential therapeutic target for gastrointestinal stromal tumors (GIST) owing to its differentially high expression. An antibody-drug conjugate (ADC) containing a GPR20-binding antibody (Ab046) was recently developed in clinical trials for GIST treatment. GPR20 constitutively activates Gi proteins in the absence of any known ligand, but it remains obscure how this high basal activity is achieved. Here we report three cryo-EM structures of human GPR20 complexes including Gi-coupled GPR20 in the absence or presence of the Fab fragment of Ab046 and Gi-free GPR20. Remarkably, the structures demonstrate a uniquely folded N-terminal helix capping onto the transmembrane domain and our mutagenesis study suggests a key role of this cap region in stimulating the basal activity of GPR20. We also uncover the molecular interactions between GPR20 and Ab046, which may enable the design of tool antibodies with enhanced affinity or new functionality for GPR20. Furthermore, we report the orthosteric pocket occupied by an unassigned density which might be essential for exploring opportunities for deorphanization.
Collapse
Affiliation(s)
- Xi Lin
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Shan Jiang
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yiran Wu
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Xiaohu Wei
- grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Gye-Won Han
- grid.42505.360000 0001 2156 6853Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA USA
| | - Lijie Wu
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Junlin Liu
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Bo Chen
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Zhibin Zhang
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Suwen Zhao
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Vadim Cherezov
- grid.42505.360000 0001 2156 6853Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA USA
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
18
|
GPR110 promotes progression and metastasis of triple-negative breast cancer. Cell Death Dis 2022; 8:271. [PMID: 35614051 PMCID: PMC9132940 DOI: 10.1038/s41420-022-01053-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Accepted: 01/20/2022] [Indexed: 12/19/2022]
Abstract
Breast cancer is the most common type of cancer in women, and approximately 70% of all breast cancer patients use endocrine therapy, such as estrogen receptor modulators and aromatase inhibitors. In particular, triple-negative breast cancer (TNBC) remains a major threat due to the lack of targeted treatment options and poor clinical outcomes. Here, we found that GPR110 was highly expressed in TNBC and GPR110 plays a key role in TNBC progression by engaging the RAS signaling pathway (via Gαs activation). High expression of GPR110 promoted EMT and CSC phenotypes in breast cancer. Consequently, our study highlights the critical role of GPR110 as a therapeutic target and inhibition of GPR110 could provide a therapeutic strategy for the treatment of TNBC patients.
Collapse
|
19
|
Sun J, Zhang Z, Chen J, Xue M, Pan X. ELTD1 promotes invasion and metastasis by activating MMP2 in colorectal cancer. Int J Biol Sci 2021; 17:3048-3058. [PMID: 34421349 PMCID: PMC8375227 DOI: 10.7150/ijbs.62293] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022] Open
Abstract
Metastasis is a key factor that affects the prognosis of colorectal cancer (CRC), and patients with metastasis have limited treatment options and poor prognoses. EGF, latrophilin, and seven transmembrane domains containing 1 (ELTD1/ADGRL4) are members of the adhesion G protein-coupled receptor (aGPCR) superfamily. In this study, high expression of ELTD1 was correlated with lymph node metastasis and poor outcomes in CRC patients. Both in vitro and in vivo studies showed that ELTD1 markedly promoted the invasion and metastasis of CRC. Moreover, ELTD1 accelerated the transcriptional activity of MMP2, which could rescue the impaired invasiveness of CRC cells caused by the downregulation of ELTD1 expression. In conclusion, our study suggests that ELTD1 might be a potential novel target for the treatment of CRC metastasis.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310020, China.,Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zizhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310020, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| | - Jingyu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310020, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| | - Meng Xue
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310020, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| | - Xia Pan
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310020, China.,Institution of Gastroenterology, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
20
|
Sun H, Wang T, Atkinson PJ, Billings SE, Dong W, Cheng AG. Gpr125 Marks Distinct Cochlear Cell Types and Is Dispensable for Cochlear Development and Hearing. Front Cell Dev Biol 2021; 9:690955. [PMID: 34395423 PMCID: PMC8355630 DOI: 10.3389/fcell.2021.690955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/14/2021] [Indexed: 01/16/2023] Open
Abstract
The G protein-coupled receptor (GPR) family critically regulates development and homeostasis of multiple organs. As a member of the GPR adhesion family, Gpr125 (Adgra3) modulates Wnt/PCP signaling and convergent extension in developing zebrafish, but whether it is essential for cochlear development in mammals is unknown. Here, we examined the Gpr125 lacZ/+ knock-in mice and show that Gpr125 is dynamically expressed in the developing and mature cochleae. From embryonic day (E) 15.5 to postnatal day (P) 30, Gpr125-β-Gal is consistently expressed in the lesser epithelial ridge and its presumed progenies, the supporting cell subtypes Claudius cells and Hensen's cells. In contrast, Gpr125-β-Gal is expressed transiently in outer hair cells, epithelial cells in the lateral cochlear wall, interdental cells, and spiral ganglion neurons in the late embryonic and early postnatal cochlea. In situ hybridization for Gpr125 mRNA confirmed Gpr125 expression and validated loss of expression in Gpr125 lacZ/lacZ cochleae. Lastly, Gpr125 lacZ/+ and Gpr125 lacZ/ lacZ cochleae displayed no detectable loss or disorganization of either sensory or non-sensory cells in the embryonic and postnatal ages and exhibited normal auditory physiology. Together, our study reveals that Gpr125 is dynamically expressed in multiple cell types in the developing and mature cochlea and is dispensable for cochlear development and hearing.
Collapse
Affiliation(s)
- Haiying Sun
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Wang
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Patrick J. Atkinson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Sara E. Billings
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Wuxing Dong
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
21
|
No changes of expression of GPR56 protein in the parietal cortex, cerebellum, and liver from psychiatric disorders. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2020.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|