1
|
Wang L, Zhang L, Yun Y, Liang T, Yan C, Mao Z, Zhang J, Liu B, Zhang J, Liang T. Protective effect of astragaloside IV against zinc oxide nanoparticles induced human neuroblastoma SH-SY5Y cell death: a focus on mitochondrial quality control. Mol Cell Biochem 2025; 480:3079-3095. [PMID: 39630360 DOI: 10.1007/s11010-024-05172-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/18/2024] [Indexed: 05/03/2025]
Abstract
Occupational and unintentional exposure of zinc oxide nanoparticles (ZnONPs) raises concerns regarding their neurotoxic potential and there is an urgent need for the development of effective agents to protect against the toxic effects of ZnONPs. Astragalus memeranaceus (AM), a famous Traditional Chinese Medicine, as well as its bioactive components, showing a potential neuroprotective function. This study aims to investigate the neuroprotective effects of bioactive components of AM against ZnONPs-induced toxicity in human neuroblastoma SH-SY5Y cells and its underlying mechanisms. The cell apoptosis, ROS generation, MMP changes, mitochondrial fission/fusion, biogenesis, and mitophagy were assessed. In this study, AM treatment inhibited ZnONPs-induced cell apoptosis and ROS overproduction in SH-SY5Y cells. And astragaloside IV (ASIV) played a dominant role in the attenuation of cytotoxicity after ZnONPs exposure, rather than flavonoids and polysaccharides. ASIV treatment significantly reduced ROS generation and MMP collapse in ZnONPs-exposed cells. Furthermore, the protein expressions of mitochondrial biogenesis (PGC-1α), fusion (Mfn1 and Mfn2), and fission (Drp1) were markedly increased. Meanwhile, the PINK1/Parkin-mediated mitophagy was activated after ASIV administration, which ameliorated ZnONPs-induced SH-SY5Y cell death. Collectively, ASIV administration mitigated ZnONPs-induced cytotoxicity in SH-SY5Y cells through restoring mitochondrial quality control process, which hinted the protective role of ASIV in ZnONPs-induced neurotoxicity.
Collapse
Affiliation(s)
- Liwei Wang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lu Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yang Yun
- The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Tingting Liang
- Shanxi Provincial Hospital of Traditional Chinese Medicine, Taiyuan, 030012, Shanxi, China
| | - Chaoqun Yan
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Zhuoya Mao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jingfang Zhang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Baoshe Liu
- Shanxi Provincial Hospital of Traditional Chinese Medicine, Taiyuan, 030012, Shanxi, China.
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Taigang Liang
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
2
|
Liang W, Li Y, Lei S, Chen R, Shi H, Li F, Liao Z, Zhong C, She Y. Astragalus polysaccharide mediates lnc-GD2H to regulate proliferation and differentiation of C2C12 muscle cells under hypoxic condition. Tissue Cell 2025; 93:102731. [PMID: 39823705 DOI: 10.1016/j.tice.2025.102731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Astragalus polysaccharide (APS) is a bioactive component of Astragalus species that shows protective effects on C2C12 muscle cell proliferation and differentiation under hypoxic conditions. In this study, EdU staining, cell scratch testing, quantitative reverse-transcription polymerase chain reaction, Western blotting, immunofluorescence analysis, and lnc-GD2H silencing were used to investigated the protective effects and mechanisms of action of APS against CoCl2-induced hypoxic injury of muscle cells. Our results showed that APS promoted cell proliferation and increased the expression of lnc-GD2H, c-Myc, and Ki-67. In addition, APS protected against the effect of CoCl2 on differentiation and increased the levels of Myog and MyHC expression. Silencing lnc-GD2H attenuated the protective effects of APS outlined above. Considering that APS may mediate the regulation of proliferation and differentiation by lnc-GD2H in C2C12 cells, and alleviates hypoxic injury induced by CoCl2.
Collapse
Affiliation(s)
- Wannian Liang
- Department of Clinical Research, Shenzhen Guangming District People's Hospital, ShenZhen, Guangdong, China
| | - Yang Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Feimeng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhiyuan Liao
- Department of Interventional Radiology, Shenzhen Guangming District People's Hospital,ShenZhen, Guangdong, China
| | - Chao Zhong
- Department of Clinical Research, Shenzhen Guangming District People's Hospital, ShenZhen, Guangdong, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Zhai S, Chen Y, Jiang T, Wu F, Cheng X, Wang Q, Wang M. Traditional Chinese medicine provides candidates for mutiple seclorsis: A review based on the progress of MS and potent treatment medicine. Mult Scler Relat Disord 2025; 95:106319. [PMID: 39951915 DOI: 10.1016/j.msard.2025.106319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/18/2024] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Multiple Sclerosis(MS) is a chronic inflammatory and degenerative autoimmune neurological disease, characterized by immune cells infiltration, demyelination, axonal loss and neuron degeneration. At present, the precise mechanism of the disease is still not very clear. Latest studies clarified that immune imbalance, microglia polarization, oxidative stress, the destruction of blood-brain barrier(BBB) and blood-spinal cord barrier(BSCB), and intestinal flora imbalance may participate in the pathogenesis and promote the progress of the disease. Traditional Chinese medicine(TCM) and their bioeffective components were found to have capacity to regulate these mechanisms, and have the advantages of multi-target activity, low toxicity and side effects, making TCM promising therapy candidates. In this review, we summarized the progress of TCM in treating MS or its animal model in recent five years, in order to further demonstrate the mechanism of MS and provide more potential effective drug choice.
Collapse
Affiliation(s)
- Shaopeng Zhai
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yan Chen
- Department of Rehabilitation, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Taotao Jiang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Fengjuan Wu
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaorong Cheng
- Department of Rehabilitation, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qi Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Manxia Wang
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
4
|
Wang JL, Li B, He XX, Gao CY, Wang JQ, Guo RY, Fan JY, Zhang YN, Quan MY, Song S, Xie T. The Protective Effect of Astragalus Polysaccharide on Experimental Autoimmune Encephalomyelitis in Mice by Activating the AMPK/JAK/ STAT3/Arginase-1 Signaling Pathway. Curr Pharm Biotechnol 2025; 26:863-871. [PMID: 39289935 DOI: 10.2174/0113892010314302240902073112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE This study aimed to investigate the protective effect and mechanism of Astragalus polysaccharide (APS) on autoimmune encephalomyelitis. METHODS C57BL/6 mice were randomly divided into the blank control group, EAE group, and APS intervention group (n=15/group). The Experimental Autoimmune Encephalomyelitis (EAE) mouse model was established by active immunization. The pathological changes in the spinal cord were evaluated by Hematoxylin-eosin (HE) and Luxol Fast Blue (LFB) staining. The number of CD11b+ Gr-1+ myeloid-derived suppressor cells (MDSCs) in the spleen tissues of mice in each group was determined by immunofluorescence staining. The expression of Arginase-1 in the spinal cord and spleen of each group was detected by immunofluorescence double staining. The TNF-α, IL-6, and Arginase-1 levels in the spleen were detected by ELISA assay. A western blot was used to detect the protein expression of the AMPK/JAK/STAT3/Arginase-1 signaling pathway. RESULTS After the intervention of APS, the incidence of autoimmune encephalomyelitis in mice of the APS group was significantly lower than that in the EAE group, and the intervention of APS could significantly delay the onset time in the EAE mice, and the score of neurological function deficit in mice was significantly lower than that in EAE group (P < 0.05). APS intervention could reduce myelin loss and improve the inflammatory response of EAE mice. Moreover, it could induce the expression of CD11b+ GR-1 + bone MDSCs in the spleen and increase the expression of Arginase-1 in the spinal cord and spleen. This study further demonstrated that APS can protect EAE mice by activating the AMPK/JAK/STAT3/Arginase-1 signaling pathway. CONCLUSION After the intervention of APS, myelin loss and inflammatory response of EAE mice were effectively controlled. APS promoted the secretion of Arginase-1 by activating MDSCs and inhibited CD4+T cells by activating AMPK/JAK/STAT3/Arginase-1 signaling pathway, thus improving the clinical symptoms and disease progression of EAE mice.
Collapse
Affiliation(s)
- Jin-Li Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Xue-Xin He
- Department of Rehabilitation, The Traditional Chinese Medical Hosptial of Shijiazhuang, 050000 Shijiazhuang, Hebei, China
| | - Chang-Yu Gao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Jue-Qiong Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Jing-Yi Fan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Ya-Nan Zhang
- Department of Neurology, Hebei Chest Hospital, Shijiazhuang, 050041, Hebei, China
| | - Mo-Yuan Quan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Tao Xie
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
- Department of Neurology, The Second Hospital of Hebei Medical University, Key Laboratory of Hebei Neurology, Shijiazhuang, 050051, Hebei, China
| |
Collapse
|
5
|
Zhao Y, Lu Q, Ma J, Ding G, Wang X, Qiao X, Wang Y, Cheng X. CD8+T cell infiltration-associated barrier function of brain endothelial cells is enhanced by astragalus polysaccharides via inhibiting the PI3K/AKT signaling pathway. J Leukoc Biol 2024; 117:qiae186. [PMID: 39226137 DOI: 10.1093/jleuko/qiae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Pathogenic CD8+T cells play an essential role in neuroinflammation and neural injury, which leads to the progression of inflammatory neurological disorders. Thus, blocking the infiltration of CD8+T cells is necessary for the treatment of neuroinflammatory diseases. Our previous study demonstrated that astragalus polysaccharide (APS) could significantly reduce the infiltration of CD8+T cells in experimental autoimmune encephalomyelitis mice. However, the mechanism by which APS suppresses CD8+T cell infiltration remains elusive. In this study, we further found that APS could reduce the CD8+T cell infiltration in experimental autoimmune encephalomyelitis and lipopolysaccharide (LPS)-induced neuroinflammatory model. Furthermore, we established the mouse brain endothelial cell (bEnd.3) inflammatory injury model by interleukin-1β or LPS in vitro. The results showed that APS treatment downregulated the expression of vascular cell adhesion molecule1 to decrease the adhesion of CD8+T cells to bEnd.3 cells. APS also upregulated the expression of zonula occludens-1 and vascular endothelial cadherin to reduce the transendothelial migration of CD8+T cells. The PI3K/AKT signaling pathway might mediate this protective effect of APS on bEnd.3 cells against inflammatory injury. In addition, we demonstrated the protective effect of APS on the integrity of brain endothelial cells in an LPS-induced neuroinflammatory model. In summary, our results indicate that APS can reduce peripheral CD8+T cell infiltration via enhancing the barrier function of brain endothelial cells; it may be a potential for the prevention of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Qijin Lu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Xiaohan Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan-he Road, Shanghai 200437, China
| |
Collapse
|
6
|
Chen Y, Wang Y, Lu Q, Zhao Y, Cruz J, Ma J, Ding G, Qiao X, Cheng X. Demyelination in cuprizone mice is ameliorated by calycosin mediated through astrocyte Nrf2 signaling pathway. Eur J Pharmacol 2024; 985:177090. [PMID: 39489278 DOI: 10.1016/j.ejphar.2024.177090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/27/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Oxidative stress plays a pivotal role in multiple sclerosis (MS), triggering demyelination predominantly through excessive peroxide production and the depletion of antioxidants. The accumulation of oxidative damage can be caused by dysregulation of astrocytes, which are the brain's main regulators of oxidative homeostasis. Calycosin, an essential bioactive component extracted from Astragalus, is recognized for its neuroprotective properties. Although recent research has highlighted calycosin's neuroprotective capabilities, its role in demyelinating conditions like MS remains unclear. In this work, we examined the possible molecular mechanism of calycosin's neuroprotective effect on cuprizone (CPZ)-induced demylination in mice. According to our research, calycosin successfully reduced demyelination and behavioral dysfuction in CPZ mice. Calycosin also decreased the production of oxidative stress and enhanced the expression of antioxidants in CPZ mice and in astrocytes induced by hydrogen peroxide (H2O2). Furthermore, both in vivo and in vitro experiments demonstrated that calycosin promoted the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) along with the upregulation of heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), and superoxide dismutase (SOD). Importantly, the application of all-trans retinoic acid (ATRA), a specific inhibitor of Nrf2, effectively reversed the myelin-protective and antioxidant effects conferred by calycosin. This study suggested that calycosin might exert neuroprotection by inhibiting oxidative stress and reducing demyelination via the activation of astrocyte Nrf2 signaling. These findings indicated that calycosin might be a potential candidate for treating MS.
Collapse
Affiliation(s)
- Yuxin Chen
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Qijin Lu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jennifer Cruz
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Doctoral Program of Acupuncture & Oriental Medicine, The Atlantic Institute of Oriental Medicine, Fort Lauderdale, FL, USA
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
7
|
Lu Q, Ma J, Zhao Y, Ding G, Wang Y, Qiao X, Cheng X. Disruption of blood-brain barrier and endothelial-to-mesenchymal transition are attenuated by Astragalus polysaccharides mediated through upregulation of ETS1 expression in experimental autoimmune encephalomyelitis. Biomed Pharmacother 2024; 180:117521. [PMID: 39383730 DOI: 10.1016/j.biopha.2024.117521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
Blood-brain barrier (BBB) breakdown, an early hallmark of multiple sclerosis (MS), remains crucial for MS progression. Our previous works have confirmed that Astragalus polysaccharides (APS) can significantly ameliorate demyelination and disease progression in experimental autoimmune encephalomyelitis (EAE) mice. However, it remains unclear whether APS protects BBB and the potential mechanism. In this study, we found that APS effectively reduced BBB leakage in EAE mice, which was accompanied by a decreased level of endothelial-to-mesenchymal transition (EndoMT) in the central nervous system (CNS). We further induced EndoMT in the mouse brain endothelial cells (bEnd.3) by interleukin-1β (IL-1β) in vitro. The results showed that APS treatment could inhibit IL-1β-induced EndoMT and endothelial cell dysfunction. In addition, the transcription factor ETS1 is a central regulator of EndoMT related to the compromise of BBB. We tested the regulation of APS on ETS1 and identified the expression of ETS1 was upregulated in both EAE mice and bEnd.3 cells by APS. ETS1 knockdown facilitated EndoMT and endothelial cell dysfunction, which completely abolished the regulatory effect of APS. Collectively, APS treatment could protect BBB integrity by inhibiting EndoMT, which might be associated with upregulating ETS1 expression. Our findings indicated that APS has potential value in the prevention of MS.
Collapse
Affiliation(s)
- Qijin Lu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
8
|
Shi Y, Ma P. Pharmacological effects of Astragalus polysaccharides in treating neurodegenerative diseases. Front Pharmacol 2024; 15:1449101. [PMID: 39156112 PMCID: PMC11327089 DOI: 10.3389/fphar.2024.1449101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Astragalus membranaceus widely used in traditional Chinese medicine, exhibits multiple pharmacological effects, including immune stimulation, antioxidation, hepatoprotection, diuresis, antidiabetes, anticancer, and expectorant properties. Its main bioactive compounds include flavonoids, triterpene saponins, and polysaccharides. Astragalus polysaccharides (APS), one of its primary bioactive components, have been shown to possess a variety of pharmacological activities, such as antioxidant, immunomodulatory, anti-inflammatory, antitumor, antidiabetic, antiviral, hepatoprotective, anti-atherosclerotic, hematopoietic, and neuroprotective effects. This review provides a comprehensive summary of the molecular mechanisms and therapeutic effects of APS in treating neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). It discusses how APS improve insulin resistance, reduce blood glucose levels, enhance cognitive function, and reduce Aβ accumulation and neuronal apoptosis by modulating various pathways such as Nrf2, JAK/STAT, Toll, and IMD. For PD, APS protect neurons and stabilize mitochondrial function by inhibiting ROS production and promoting autophagy through the PI3K/AKT/mTOR pathway. APS also reduce oxidative stress and neurotoxicity induced by 6-hydroxydopamine, showcasing their neuroprotective effects. In MS, APS alleviate symptoms by suppressing T cell proliferation and reducing pro-inflammatory cytokine expression via the PD-1/PD-Ls pathway. APS promote myelin regeneration by activating the Sonic hedgehog signaling pathway and fostering the differentiation of neural stem cells into oligodendrocytes. This article emphasizes the significant antioxidant, anti-inflammatory, immunomodulatory, and neuroprotective pharmacological activities of APS, highlighting their potential as promising candidates for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Ping Ma
- School of Basic Medical, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zhao Y, Ma J, Ding G, Wang Y, Yu H, Cheng X. Astragalus polysaccharides promote neural stem cells-derived oligodendrogenesis through attenuating CD8 +T cell infiltration in experimental autoimmune encephalomyelitis. Int Immunopharmacol 2024; 126:111303. [PMID: 38043269 DOI: 10.1016/j.intimp.2023.111303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/31/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Endogenous neural stem cells (NSCs) have the potential to generate remyelinating oligodendrocytes, which play an important role in multiple sclerosis (MS). However, the differentiation of NSCs into oligodendrocytes is insufficient, which is considered a major cause of remyelination failure. Our previous work reported that Astragalus polysaccharides (APS) had a neuroprotective effect on experimental autoimmune encephalomyelitis (EAE) mice. However, it remains unclear whether APS regulate NSCs differentiation in EAE mice. In this study, our data illustrated that APS administration could promote NSCs in the subventricular zone (SVZ) to differentiate into oligodendrocytes. Furthermore, we found that APS significantly improved neuroinflammation and inhibited CD8+T cell infiltration into SVZ of EAE mice. We also found that MOG35-55-specific CD8+T cells suppressed NSCs differentiation into oligodendrocytes by secreting IFN-γ, and APS facilitated the differentiation of NSCs into oligodendrocytes which was related to decreased IFN-γ secretion. In addition, APS treatment did not show a better effect on the NSCs-derived oligodendrogenesis after CD8+T cell depletion. This present study demonstrated that APS alleviated neuroinflammation and CD8+T cell infiltration into SVZ to induce oligodendroglial differentiation, and thus exerted neuroprotective effect. Our findings revealed that reducing the infiltration of CD8+T cells might contribute to enhancing NSCs-derived neurogenesis. And APS might be a promising drug candidate to treat MS.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yuanhua Wang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hua Yu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
10
|
Prajapati A, Mehan S, Khan Z. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders. Biogerontology 2023:10.1007/s10522-023-10034-1. [PMID: 37097427 DOI: 10.1007/s10522-023-10034-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Sonic hedgehog (Shh) signaling is an essential central nervous system (CNS) pathway involved during embryonic development and later life stages. Further, it regulates cell division, cellular differentiation, and neuronal integrity. During CNS development, Smo-Shh signaling is significant in the proliferation of neuronal cells such as oligodendrocytes and glial cells. The initiation of the downstream signalling cascade through the 7-transmembrane protein Smoothened (Smo) promotes neuroprotection and restoration during neurological disorders. The dysregulation of Smo-Shh is linked to the proteolytic cleavage of GLI (glioma-associated homolog) into GLI3 (repressor), which suppresses target gene expression, leading to the disruption of cell growth processes. Smo-Shh aberrant signalling is responsible for several neurological complications contributing to physiological alterations like increased oxidative stress, neuronal excitotoxicity, neuroinflammation, and apoptosis. Moreover, activating Shh receptors in the brain promotes axonal elongation and increases neurotransmitters released from presynaptic terminals, thereby exerting neurogenesis, anti-oxidation, anti-inflammatory, and autophagy responses. Smo-Shh activators have been shown in preclinical and clinical studies to help prevent various neurodegenerative and neuropsychiatric disorders. Redox signalling has been found to play a critical role in regulating the activity of the Smo-Shh pathway and influencing downstream signalling events. In the current study ROS, a signalling molecule, was also essential in modulating the SMO-SHH gli signaling pathway in neurodegeneration. As a result of this investigation, dysregulation of the pathway contributes to the pathogenesis of various neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).Thus, Smo-Shh signalling activators could be a potential therapeutic intervention to treat neurocomplications of brain disorders.
Collapse
Affiliation(s)
- Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
11
|
Astragalus Polysaccharides Alleviate Lung Adenocarcinoma Bone Metastases by Inhibiting the CaSR/PTHrP Signaling Pathway. J Food Biochem 2023. [DOI: 10.1155/2023/8936119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Bone metastasis is one of the common complications of lung cancer and can lead to bone-related adverse events, such as pathological fractures, spinal cord defects, and nerve compression syndrome. As an effective medicinal component of Astragalus membranaceus, Astragalus polysaccharide (APS) has antitumor activity and alleviates osteoporosis to a certain extent. In this study, we explored the possible role and mechanism underlying APS inhibition of lung adenocarcinoma bone metastases by constructing a mouse model of lung adenocarcinoma bone metastases. First, we constructed osteoclast (OC) and osteoblast (OB) culture systems in vitro to confirm that APS affected the differentiation and function of OCs and OBs. Then, using the mouse bone metastasis model, microCT, and bone histopathology, we confirmed that APS inhibited osteolytic metastasis and tumor cell proliferation in mice, and the effect was mainly realized by inhibiting the CaSR/PTHrP signal pathway. The results showed that APS had a protective effect on lung adenocarcinoma bone metastases.
Collapse
|
12
|
Abd Elrahim Abd Elkader HT, Essawy AE, Al-Shami AS. Astragalus species: Phytochemistry, biological actions and molecular mechanisms underlying their potential neuroprotective effects on neurological diseases. PHYTOCHEMISTRY 2022; 202:113293. [PMID: 35780924 DOI: 10.1016/j.phytochem.2022.113293] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Neurodegenerative and neuropsychiatric illnesses are prevalent and life-threatening disorders characterized by a wide range of clinical syndromes and comorbidities, all of which have complex origins and share common molecular pathomechanisms. Although the pathophysiology of neurological illnesses is not completely understood, researchers have discovered that several ion channels and signalling pathways may have played a role in disease pathogenesis. Active substances from Astragalus sp. are being employed for nutrition, and their usefulness in the treatment of neurological illnesses is receiving more attention. Because their extracts and active components exert different pharmacological effects on a variety of ailments, they have a long history of usage as a cure for various diseases. This review summarizes the research work on Astragalus and their biologically active constituents as potential candidates for the protection against and treatment of neurodegenerative and neuropsychiatric disorders to show the potential efficacy of Astragalus sp. and its active ingredients in treating some neurological diseases. Simultaneously, the chemical structures of these active compounds, their sources, biological properties, and mechanisms are also listed. In ethnopharmacological applications, Astragalus membranaceus and spinosus have been studied as traditional medicines worldwide. The chemical constituents of Astragalus species mainly comprise terpenoids, flavonoids, and polysaccharides. The extracts and phytochemical compounds of Astragalus species exhibit various pharmacological activities, including antioxidant, anti-inflammatory, anticancer, antitumor, anticonvulsive, immunomodulatory, and other activities. Based on the current literature, we conclude that Astragalus is a promising dietary herb with multiple potential signal modulating applications that mainly include the modulation of neurotransmitters and receptors, anti-inflammatory activities, inhibition of amyloid aggregation, induction of myelin sheath repair and neurogenesis, as well as activation of the signalling pathways relevant to neurological diseases.
Collapse
Affiliation(s)
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed S Al-Shami
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Liu H, Qi L, Tang X, Tan S, Gou Z, Qi J, Lu X, Li D, Chen C. Astragalus Polysaccharides Affect Glioblastoma Cells Through Targeting miR-34a-5p. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study discussed Astragalus Polysaccharides (APS)’s effect on the cytobiology of glioma. U87 glioma cells were assigned into control group (U87 cells), miR-34a-5p mimic group (transfected with miR-34a-5p mimic), and APS group (treated with 10 μM APS) followed by
analysis of miR-34a-5p level, cell proliferation and invasion, Caspase3 and SOD activity as well as E-cadherin, Vimentin and survivn expression. APS treatment significantly upregulated miR-34a-5p expression, inhibits cell proliferation and invasion, and promoted cell apoptosis. In addition,
APS also significantly upregulated E-cadherin, downregulated Vimentin and survivn level in glioma cells as well as inhibited ROS generation and increased SOD activity. In conclusion, the level of miR-34a-5a in glioma cells is up-regulated by APS so as to restrain the biological behaviors of
glioma cells, indicating that it might be used as novel agent for the treatment of glioma.
Collapse
Affiliation(s)
- Hongjun Liu
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Lingjun Qi
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Shasha Tan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Zhangyang Gou
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Jian Qi
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Xingyu Lu
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Dong Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Chunbao Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| |
Collapse
|
14
|
Sun L, Ye X, Wang L, Yu J, Wu Y, Wang M, Dai L. A Review of Traditional Chinese Medicine, Buyang Huanwu Decoction for the Treatment of Cerebral Small Vessel Disease. Front Neurosci 2022; 16:942188. [PMID: 35844225 PMCID: PMC9278698 DOI: 10.3389/fnins.2022.942188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is often referred to as “collaterals disease” in traditional Chinese medicine (TCM), and commonly includes ischemic and hemorrhagic CSVD. TCM has a long history of treating CSVD and has demonstrated unique efficacy. Buyang Huanwu Decoction (BHD) is a classical TCM formula that has been used for the prevention and treatment of stroke for hundreds of years. BHD exerts its therapeutic effects on CSVD through a variety of mechanisms. In this review, the clinical and animal studies on BHD and CSVD were systematically introduced. In addition, the pharmacological mechanisms, active components, and clinical applications of BHD in the treatment of CSVD were reviewed. We believe that an in-depth understanding of BHD, its pharmacological mechanism, disease-drug interaction, and other aspects will help in laying the foundation for its development as a new therapeutic strategy for the treatment of CSVD.
Collapse
|
15
|
Li CX, Liu Y, Zhang YZ, Li JC, Lai J. Astragalus polysaccharide: a review of its immunomodulatory effect. Arch Pharm Res 2022; 45:367-389. [PMID: 35713852 DOI: 10.1007/s12272-022-01393-3] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/12/2022] [Indexed: 12/27/2022]
Abstract
The Astragalus polysaccharide is an important bioactive component derived from the dry root of Astragalus membranaceus. This review aims to provide a comprehensive overview of the research progress on the immunomodulatory effect of Astragalus polysaccharide and provide valuable reference information. We review the immunomodulatory effect of Astragalus polysaccharide on central and peripheral immune organs, including bone marrow, thymus, lymph nodes, spleen, and mucosal tissues. Furthermore, the immunomodulatory effect of Astragalus polysaccharide on a variety of immune cells is summarized. Studies have shown that Astragalus polysaccharide can promote the activities of macrophages, natural killer cells, dendritic cells, T lymphocytes, B lymphocytes and microglia and induce the expression of a variety of cytokines and chemokines. The immunomodulatory effect of Astragalus polysaccharide makes it promising for the treatment of many diseases, including cancer, infection, type 1 diabetes, asthma, and autoimmune disease. Among them, the anticancer effect is the most prominent. In short, Astragalus polysaccharide is a valuable immunomodulatory medicine, but further high-quality studies are warranted to corroborate its clinical efficacy.
Collapse
Affiliation(s)
- Chun-Xiao Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Liu
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Zhen Zhang
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing-Chun Li
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jiang Lai
- Department of Anorectal Surgery, Third People's Hospital of Chengdu, Chengdu, China.
| |
Collapse
|
16
|
Microglia Polarization from M1 toward M2 Phenotype Is Promoted by Astragalus Polysaccharides Mediated through Inhibition of miR-155 in Experimental Autoimmune Encephalomyelitis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:5753452. [PMID: 34976303 PMCID: PMC8720009 DOI: 10.1155/2021/5753452] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/17/2021] [Indexed: 12/13/2022]
Abstract
Activated microglia is considered to be major mediators of the neuroinflammatory environment in demyelinating diseases of the central nervous system (CNS). Activated microglia are mainly polarized into M1 type, which plays a role in promoting inflammation and demyelinating. However, the proportion of microglia polarized into M2 type is relatively low, which cannot fully play the role of anti-inflammatory and resistance to demyelinating. Our previous study found that Astragalus polysaccharides (APS) has an immunomodulatory effect and can inhibit neuroinflammation and demyelination in experimental autoimmune encephalomyelitis (EAE), which is a classic animal model of CNS demyelinating disease. In this study, we found that APS was effective in treating EAE mice. It restored microglia balance by inhibiting the polarization of microglia to M1-like phenotype and promoting the polarization of microglia to M2-like phenotype in vivo and in vitro. miR-155 is a key factor in regulating microglia polarization. We found that APS could inhibit the expression level of miR-155 in vivo and in vitro. Furthermore, we performed transfection overexpression and blocking experiments. The results showed that miR-155 mediated the polarization of microglia M1/M2 phenotype, while the selective inhibitor of miR-155 attenuated the inhibition of APS on microglia M1 phenotype and eliminated the promotion of APS on microglia M2 phenotype. Microglia can secrete IL-1α, TNF-α, and C1q after polarizing into M1 type and induce the activation of A1 neurotoxic astrocytes, further aggravating neuroinflammation and demyelination. APS reduced the secretion of IL-1α, TNF-α, and C1q by activated microglia, thus inhibited the formation of A1 neurotoxic astrocytes. In summary, our study suggests that APS regulates the polarization of microglia from M1 to M2 phenotype by inhibiting the miR-155, reduces the secretion of inflammatory factors, and inhibits the activation of neurotoxic astrocytes, thus effectively treating EAE.
Collapse
|
17
|
Wei W, Ma D, Li L, Zhang L. Progress in the Application of Drugs for the Treatment of Multiple Sclerosis. Front Pharmacol 2021; 12:724718. [PMID: 34326775 PMCID: PMC8313804 DOI: 10.3389/fphar.2021.724718] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/30/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and chronic inflammatory demyelinating disease of the central nervous system (CNS), which gives rise to focal lesion in CNS and cause physical disorders. Although environmental factors and susceptibility genes are reported to play a role in the pathogenesis of MS, its etiology still remains unclear. At present, there is no complete cure, but there are drugs that decelerate the progression of MS. Traditional therapies are disease-modifying drugs that control disease severity. MS drugs that are currently marketed mainly aim at the immune system; however, increasing attention is being paid to the development of new treatment strategies targeting the CNS. Further, the number of neuroprotective drugs is presently undergoing clinical trials and may prove useful for the improvement of neuronal function and survival. In this review, we have summarized the recent application of drugs used in MS treatment, mainly introducing new drugs with immunomodulatory, neuroprotective, or regenerative properties and their possible treatment strategies for MS. Additionally, we have presented Food and Drug Administration-approved MS treatment drugs and their administration methods, mechanisms of action, safety, and effectiveness, thereby evaluating their treatment efficacy.
Collapse
Affiliation(s)
- Weipeng Wei
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Denglei Ma
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing, China.,National Clinical Research Center for Geriatric Diseases, Beijing, China.,Beijing Engineering Research Center for Nervous System Drugs, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|