1
|
Cheng KY, Wang SW, Lan T, Mao ZJ, Xu YY, Shen Q, Zeng XX. CircRNA-mediated regulation of cardiovascular disease. Front Cardiovasc Med 2024; 11:1411621. [PMID: 39660120 PMCID: PMC11628502 DOI: 10.3389/fcvm.2024.1411621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Cardiovascular diseases (CVDs) encompass a range of disorders affecting the heart and blood vessels, such as coronary heart disease, cerebrovascular disease (e.g., stroke), peripheral arterial disease, congenital heart anomalies, deep vein thrombosis, and pulmonary embolism. CVDs are often referred to as the leading cause of mortality worldwide. Recent advancements in deep sequencing have unveiled a plethora of noncoding RNA transcripts, including circular RNAs (circRNAs), which play pivotal roles in the regulation of CVDs. A decade of research has differentiated various circRNAs by their vasculoprotective or deleterious functions, revealing potential therapeutic targets. This review provides an overview of circRNAs and a comprehensive examination of CVDs, the regulatory circRNAs within the vasculature, and the burgeoning research domain dedicated to these noncoding RNAs.
Collapse
Affiliation(s)
- Ke-yun Cheng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Si-wei Wang
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Tian Lan
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Zhu-jun Mao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - You-yao Xu
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Qing Shen
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Xi-xi Zeng
- Panvascular Diseases Research Center, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Cardiovascular Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| |
Collapse
|
2
|
Holme FA, Huse C, Kong XY, Broch K, Gullestad L, Anstensrud AK, Andersen GØ, Amundsen BH, Kleveland O, Quiles-Jimenez A, Holm S, Aukrust P, Alseth I, Halvorsen B, Dahl TB. Circular RNA Profile in Atherosclerotic Disease: Regulation during ST-Elevated Myocardial Infarction. Int J Mol Sci 2024; 25:9014. [PMID: 39201700 PMCID: PMC11354517 DOI: 10.3390/ijms25169014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Circular (circ) RNAs are non-coding RNAs with important functions in the nervous system, cardiovascular system, and cancer. Their role in atherosclerosis and myocardial infarction (MI) remains poorly described. We aim to investigate the potential circRNAs in immune cells during atherogenesis and examine the most regulated during MI and the modulation by interleukin (IL)-6 receptor inhibition by tocilizumab. Wild-type (WT) and ApoE-/- mice were fed an atherogenic diet for 10 weeks, and the circRNA profile was analyzed by circRNA microarray. Whole blood from patients with ST-elevated MI (STEMI) and randomized to tocilizumab (n = 21) or placebo (n = 19) was collected at admission, 3-7 days, and at 6 months, in addition to samples from healthy controls (n = 13). Primers for human circRNA were designed, and circRNA levels were measured using RT-qPCR. mRNA regulation of predicted circRNA targets was investigated by RNA sequencing. The expression of 867 circRNAs differed between atherogenic and WT mice. In STEMI patients, circUBAC2 was significantly lower than in healthy controls. CircANKRD42 and circUBAC2 levels were inversely correlated with troponin T, and for circUBAC2, an inverse correlation was also seen with final infarct size at 6 months. The predicted mRNA targets for circUBAC2 and circANKRD42 were investigated and altered levels of transcripts involved in the regulation of inflammatory/immune cells, apoptosis, and mitochondrial function were found. Finally, tocilizumab induced an up-regulation of circANKRD42 and circUBAC2 3-7 days after percutaneous coronary intervention. CircRNA levels were dysregulated in STEMI, potentially influencing the immune system, apoptosis, and mitochondrial function.
Collapse
Affiliation(s)
- Fredric A. Holme
- Institute of Clinical Medicine, University of Oslo (UiO), 0372 Oslo, Norway (B.H.)
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Camilla Huse
- Institute of Clinical Medicine, University of Oslo (UiO), 0372 Oslo, Norway (B.H.)
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiang Yi Kong
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway (A.K.A.)
| | - Lars Gullestad
- Institute of Clinical Medicine, University of Oslo (UiO), 0372 Oslo, Norway (B.H.)
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway (A.K.A.)
| | | | - Geir Ø. Andersen
- Department of Cardiology, Oslo University Hospital, Ullevål, 0450 Oslo, Norway;
| | - Brage H. Amundsen
- Clinic of Cardiology, St. Olav’s Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), 7030 Trondheim, Norway
| | - Ola Kleveland
- Clinic of Cardiology, St. Olav’s Hospital, Trondheim University Hospital, 7030 Trondheim, Norway
| | - Ana Quiles-Jimenez
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Sverre Holm
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Pål Aukrust
- Institute of Clinical Medicine, University of Oslo (UiO), 0372 Oslo, Norway (B.H.)
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Ingrun Alseth
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Bente Halvorsen
- Institute of Clinical Medicine, University of Oslo (UiO), 0372 Oslo, Norway (B.H.)
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| | - Tuva B. Dahl
- Research Institute for Internal Medicine, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway
| |
Collapse
|
3
|
Xu G, Liu G, Wang Z, Li Y, Fang W. Circular RNAs: Promising Treatment Targets and Biomarkers of Ischemic Stroke. Int J Mol Sci 2023; 25:178. [PMID: 38203348 PMCID: PMC10779226 DOI: 10.3390/ijms25010178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Ischemic stroke is one of the most significant causes of morbidity and mortality worldwide. However, there is a dearth of effective drugs and treatment methods for ischemic stroke. Significant numbers of circular RNAs (circRNAs) exhibit abnormal expression following ischemic stroke and are considered potential therapeutic targets. CircRNAs have emerged as promising biomarkers due to their stable expression in peripheral blood and their potential significance in ischemic stroke diagnosis and prognosis. This review provides a summary of 31 circRNAs involved in the pathophysiological processes of apoptosis, autophagy, inflammation, oxidative stress, and angiogenesis following ischemic stroke. Furthermore, we discuss the mechanisms of action of said circRNAs and their potential clinical applications. Ultimately, circRNAs exhibit promise as both therapeutic targets and biomarkers for ischemic stroke.
Collapse
Affiliation(s)
| | | | | | - Yunman Li
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (G.X.); (G.L.); (Z.W.)
| | - Weirong Fang
- Department of Physiology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (G.X.); (G.L.); (Z.W.)
| |
Collapse
|