1
|
Manco C, Righi D, Primiano G, Romano A, Luigetti M, Leonardi L, De Stefano N, Plantone D. Peripherin, A New Promising Biomarker in Neurological Disorders. Eur J Neurosci 2025; 61:e70030. [PMID: 39995075 PMCID: PMC11851000 DOI: 10.1111/ejn.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Peripherin is a class III intermediate filament protein that has recently gained attention as a potential biomarker for axonal damage in the peripheral nervous system. This review examines peripherin gene expression, protein structure, and its functions in both healthy and diseased states. Peripherin is predominantly expressed in the peripheral nervous system, especially in motor and sensory neurons, and plays a critical role in neurite growth, stability, and axonal transport during myelination. Its expression is regulated by various cytokines and undergoes several post-transcriptional modifications. Peripherin interacts with multiple proteins, including neurofilaments and kinases, influencing cytoskeletal dynamics and neuronal functions. The review also explores peripherin involvement in several neurological disorders, such as Amyotrophic Lateral Sclerosis, where its abnormal expression and aggregation contribute to disease pathology. Additionally, peripherin has been linked to polyneuropathies, traumatic axonal injury, and diabetic neuropathy, suggesting its broader relevance as a biomarker in these conditions. The potential of peripherin as a biomarker is further supported by recent studies using ultrasensitive detection methods, which have identified elevated peripherin levels in the serum of patients with neurological diseases. Despite the promising findings, the application of peripherin as a biomarker in clinical settings remains limited, primarily due to challenges in its detection and the need for further validation in diverse patient populations. Future research directions include the development of more sensitive assays and the exploration of peripherin's role in non-neuronal tissues, which may expand its diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Carlo Manco
- Centre of Precision and Translational MedicineDepartment of Medicine, Surgery, and NeuroscienceUniversity of SienaSienaItaly
| | - Delia Righi
- Department of Neurosciences, Sensory Organs and ThoraxAgostino Gemelli University Hospital Foundation IRCCSRomeItaly
| | - Guido Primiano
- Department of Neurosciences, Sensory Organs and ThoraxAgostino Gemelli University Hospital Foundation IRCCSRomeItaly
- Department of NeurosciencesCatholic University of the Sacred HeartRomeItaly
| | - Angela Romano
- Department of Neurosciences, Sensory Organs and ThoraxAgostino Gemelli University Hospital Foundation IRCCSRomeItaly
| | - Marco Luigetti
- Department of Neurosciences, Sensory Organs and ThoraxAgostino Gemelli University Hospital Foundation IRCCSRomeItaly
- Department of NeurosciencesCatholic University of the Sacred HeartRomeItaly
| | - Luca Leonardi
- Neuromuscular and Rare Disease CentreNeurology UnitSant'Andrea HospitalRomeItaly
| | - Nicola De Stefano
- Centre of Precision and Translational MedicineDepartment of Medicine, Surgery, and NeuroscienceUniversity of SienaSienaItaly
| | - Domenico Plantone
- Centre of Precision and Translational MedicineDepartment of Medicine, Surgery, and NeuroscienceUniversity of SienaSienaItaly
| |
Collapse
|
2
|
Dai W, Guo X, Cai W, Zheng Y, Chen Y, Zhu Y, Tian X. Preliminary study of the consciousness-promotion mechanism of electroacupuncture in comatose patients with diffuse axonal injuries. J Neurosurg Sci 2024; 68:186-194. [PMID: 33709661 DOI: 10.23736/s0390-5616.21.05236-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Diffuse axonal injury (DAI) accounts for 30-40% of total neurotrauma cases, and the majority among them manifest with consciousness disturbance. At present, the understanding of the treatment of coma and awakening in patients with DAIs is still limited. This study is characterized by the use of electroacupuncture along with conventional Western medicine to promote consciousness more effectively in comatose patients with DAIs, shorten their time spent in a coma, and gain time for more favorable treatments during follow-up rehabilitation in order to improve the cure rate, reduce the morbidity rate, and achieve better therapeutic effects. METHODS In this randomized controlled study, 145 comatose patients with DAIs (type III) were divided into the treatment group (N.=71) and control group (N.=74). The patients in the control group were treated with conventional Western medicine, while those in the treatment group were treated with both electroacupuncture and conventional treatment. The Glasgow Coma Scale (GCS) scores and consciousness-promotion rates of both groups were observed before treatment as well as 10, 20, and 30 days after treatment. Meanwhile, serum acetylcholinesterase E (AchE) concentrations in both groups were measured with ELISA, while AchE activity was determined with the rate method. Correlations between GCS score, AchE concentration, and AchE activity in the treatment group were analyzed by using the stepwise multiple regression method. RESULTS The GCS scores in the treatment group showed significant increases after the first, second, and third courses of treatment when compared to the pre-treatment scores (P<0.05). After 1 course of treatment, the GCS scores in the control group were not statistically significantly different compared to the pre-treatment scores (P>0.05), whereas after 2 and 3 courses of treatment, the differences were of greater statistical significance (P<0.05). Statistically significant differences between the two groups were found in GCS scores in the same course of treatment (P<0.05). The consciousness-promotion rates between the two groups after the same treatment course were statistically significantly different (P<0.05). Both the standardized regression coefficients and partial correlation coefficients showed that AchE concentration had a certain influence on GCS score (|Beta|=0.3601; r Y2.1=0.726). CONCLUSIONS Conventional Western medicine combined with electroacupuncture treatment may promote the consciousness of patients with DAIs and shorten the amount of time they spend comatose. Furthermore, the neurotransmitter AchE may play a role in the pathophysiological mechanism of consciousness promotion.
Collapse
Affiliation(s)
- Weichuan Dai
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China -
| | - Xieli Guo
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China
| | - Wenhua Cai
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China
| | - Yanfei Zheng
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China
| | - Yingxian Chen
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China
| | - Yuyan Zhu
- Department of Neurosurgery, Jinjiang Municipal Hospital, Jinjiang, China
| | - Xiayang Tian
- Department of Rehabilitation, Jinjiang Municipal Hospital, Jinjiang, China
| |
Collapse
|
3
|
Browning JL, Wilson KA, Shandra O, Wei X, Mahmutovic D, Maharathi B, Robel S, VandeVord PJ, Olsen ML. Applying Proteomics and Computational Approaches to Identify Novel Targets in Blast-Associated Post-Traumatic Epilepsy. Int J Mol Sci 2024; 25:2880. [PMID: 38474127 DOI: 10.3390/ijms25052880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Traumatic brain injury (TBI) can lead to post-traumatic epilepsy (PTE). Blast TBI (bTBI) found in Veterans presents with several complications, including cognitive and behavioral disturbances and PTE; however, the underlying mechanisms that drive the long-term sequelae are not well understood. Using an unbiased proteomics approach in a mouse model of repeated bTBI (rbTBI), this study addresses this gap in the knowledge. After rbTBI, mice were monitored using continuous, uninterrupted video-EEG for up to four months. Following this period, we collected cortex and hippocampus tissues from three groups of mice: those with post-traumatic epilepsy (PTE+), those without epilepsy (PTE-), and the control group (sham). Hundreds of differentially expressed proteins were identified in the cortex and hippocampus of PTE+ and PTE- relative to sham. Focusing on protein pathways unique to PTE+, pathways related to mitochondrial function, post-translational modifications, and transport were disrupted. Computational metabolic modeling using dysregulated protein expression predicted mitochondrial proton pump dysregulation, suggesting electron transport chain dysregulation in the epileptic tissue relative to PTE-. Finally, data mining enabled the identification of several novel and previously validated TBI and epilepsy biomarkers in our data set, many of which were found to already be targeted by drugs in various phases of clinical testing. These findings highlight novel proteins and protein pathways that may drive the chronic PTE sequelae following rbTBI.
Collapse
Affiliation(s)
- Jack L Browning
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kelsey A Wilson
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Oleksii Shandra
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Xiaoran Wei
- Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Dzenis Mahmutovic
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Biswajit Maharathi
- Neurology & Rehabilitation, University of Illinois, Chicago, IL 60612, USA
| | - Stefanie Robel
- Department of Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Pamela J VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Salem Veteran Affairs Medical Center, Salem, VA 24153, USA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Liu W, Wen Z, Shi Y, Bao J, Ma S, Liang J. Research progress in the application of proteomics technology in brain injury. Biomed Chromatogr 2024; 38:e5785. [PMID: 38014505 DOI: 10.1002/bmc.5785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
The aim of this article is to review the application progress of proteomics technology in brain injury research in recent years, point out the current problems that need to be overcome, and explore the application prospects of proteomics analysis in brain injury. This study also aims to retrieve all literature on brain injury and proteomics and summarize it. Through searching and screening, the widespread application of proteomics technology in the treatment of traumatic brain injury (TBI) and the use of a large number of TBI biomarkers were discovered. The pathways mediated by some biomarkers and the physiological and pathological mechanisms of occurrence were elucidated. The current classification of brain injury is mainly based on subjective evaluation of clinical symptoms, combined with objective imaging. However, its practical value is often limited when applied to prognosis evaluation in brain injury. Proteomics technology can make up for this deficiency and provide a reference for the prevention and treatment of brain injury.
Collapse
Affiliation(s)
- Wenhu Liu
- The First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou City, People's Republic of China
| | - Zhaomeng Wen
- The First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou City, People's Republic of China
| | - Yuwei Shi
- The First Clinical Medical College of Gansu University of Traditional Chinese Medicine, Lanzhou City, People's Republic of China
| | - Juan Bao
- Department of Neurosurgery, Gansu Provincial Hospital, Lanzhou City, People's Republic of China
| | - Shaobo Ma
- Department of Neurosurgery, Gansu Provincial Hospital, Lanzhou City, People's Republic of China
| | - Jin Liang
- Department of Neurosurgery, Gansu Provincial Hospital, Lanzhou City, People's Republic of China
| |
Collapse
|
5
|
Huang W, Zhao S, Liu H, Pan M, Dong H. The Role of Protein Degradation in Estimation Postmortem Interval and Confirmation of Cause of Death in Forensic Pathology: A Literature Review. Int J Mol Sci 2024; 25:1659. [PMID: 38338938 PMCID: PMC10855206 DOI: 10.3390/ijms25031659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
It is well known that proteins are important bio-macromolecules in human organisms, and numerous proteins are widely used in the clinical practice, whereas their application in forensic science is currently limited. This limitation is mainly attributed to the postmortem degradation of targeted proteins, which can significantly impact final conclusions. In the last decade, numerous methods have been established to detect the protein from a forensic perspective, and some of the postmortem proteins have been applied in forensic practice. To better understand the emerging issues and challenges in postmortem proteins, we have reviewed the current application of protein technologies at postmortem in forensic practice. Meanwhile, we discuss the application of proteins in identifying the cause of death, and postmortem interval (PMI). Finally, we highlight the interpretability and limitations of postmortem protein challenges. We believe that utilizing the multi-omics method can enhance the comprehensiveness of applying proteins in forensic practice.
Collapse
Affiliation(s)
- Weisheng Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Shuquan Zhao
- Faculty of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China;
| | - Huine Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Meichen Pan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| | - Hongmei Dong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Hankou, Wuhan 430030, China; (W.H.)
| |
Collapse
|
6
|
Zhang Y, Li Z, Wang H, Pei Z, Zhao S. Molecular biomarkers of diffuse axonal injury: recent advances and future perspectives. Expert Rev Mol Diagn 2024; 24:39-47. [PMID: 38183228 DOI: 10.1080/14737159.2024.2303319] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
INTRODUCTION Diffuse axonal injury (DAI), with high mortality and morbidity both in children and adults, is one of the most severe pathological consequences of traumatic brain injury. Currently, clinical diagnosis, disease assessment, disability identification, and postmortem diagnosis of DAI is mainly limited by the absent of specific molecular biomarkers. AREAS COVERED In this review, we first introduce the pathophysiology of DAI, summarized the reported biomarkers in previous animal and human studies, and then the molecular biomarkers such as β-Amyloid precursor protein, neurofilaments, S-100β, myelin basic protein, tau protein, neuron-specific enolase, Peripherin and Hemopexin for DAI diagnosis is summarized. Finally, we put forward valuable views on the future research direction of diagnostic biomarkers of DAI. EXPERT OPINION In recent years, the advanced technology has ultimately changed the research of DAI, and the numbers of potential molecular biomarkers was introduced in related studies. We summarized the latest updated information in such studies to provide references for future research and explore the potential pathophysiological mechanism on diffuse axonal injury.
Collapse
Affiliation(s)
- Youyou Zhang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Zhaoyang Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wang
- Department of Geriatrics Neurology, the Second Affiliated Hospital of Xi'an Jiao Tong University, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhiyong Pei
- Linfen People's Hosiptal, the Seventh Clinical Medical College of Shanxi Medical University, Linfen, Shanxi, China
| | - Shuquan Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Chen Q, Li L, Xu L, Yang B, Huang Y, Qiao D, Yue X. Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med 2024; 138:207-227. [PMID: 37338605 DOI: 10.1007/s00414-023-03039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVE Application of Tandem Mass Tags (TMT)-based LC-MS/MS analysis to screen for differentially expressed proteins (DEPs) in traumatic axonal injury (TAI) of the brainstem and to predict potential biomarkers and key molecular mechanisms of brainstem TAI. METHODS A modified impact acceleration injury model was used to establish a brainstem TAI model in Sprague-Dawley rats, and the model was evaluated in terms of both functional changes (vital sign measurements) andstructural changes (HE staining, silver-plating staining and β-APP immunohistochemical staining). TMT combined with LC-MS/MS was used to analyse the DEPs in brainstem tissues from TAI and Sham groups. The biological functions of DEPs and potential molecular mechanisms in the hyperacute phase of TAI were analysed by bioinformatics techniques, and candidate biomarkers were validated using western blotting and immunohistochemistry on brainstem tissues from animal models and humans. RESULTS Based on the successful establishment of the brainstem TAI model in rats, TMT-based proteomics identified 65 DEPs, and bioinformatics analysis indicated that the hyperacute phase of TAI involves multiple stages of biological processes including inflammation, oxidative stress, energy metabolism, neuronal excitotoxicity and apoptosis. Three DEPs, CBR1, EPHX2 and CYP2U1, were selected as candidate biomarkers and all three proteins were found to be significantly expressed in brainstem tissue 30 min-7 days after TAI in both animal models and humans. CONCLUSION Using TMT combined with LC-MS/MS analysis for proteomic study of early TAI in rat brainstem, we report for the first time that CBR1, EPHX2 and CYP2U1 can be used as biomarkers of early TAI in brainstem by means of western blotting and immunohistochemical staining, compensating for the limitations of silver-plating staining and β-APP immunohistochemical staining, especially in the case of very short survival time after TAI (shorter than 30 min). A number of other proteins that also have a potential marker role are also presented, providing new insights into the molecular mechanisms, therapeutic targets and forensic identification of early TAI in brainstem.
Collapse
Affiliation(s)
- Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lingyue Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Bin Yang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuebing Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Dongfang Qiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xia Yue
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
8
|
Ames S, Adams K, Geisen ME, Stirling DP. Ca 2+-induced myelin pathology precedes axonal spheroid formation and is mediated in part by store-operated Ca 2+ entry after spinal cord injury. Neural Regen Res 2023; 18:2720-2726. [PMID: 37449636 DOI: 10.4103/1673-5374.373656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
The formation of axonal spheroid is a common feature following spinal cord injury. To further understand the source of Ca2+ that mediates axonal spheroid formation, we used our previously characterized ex vivo mouse spinal cord model that allows precise perturbation of extracellular Ca2+. We performed two-photon excitation imaging of spinal cords isolated from Thy1YFP+ transgenic mice and applied the lipophilic dye, Nile red, to record dynamic changes in dorsal column axons and their myelin sheaths respectively. We selectively released Ca2+ from internal stores using the Ca2+ ionophore ionomycin in the presence or absence of external Ca2+. We reported that ionomycin dose-dependently induces pathological changes in myelin and pronounced axonal spheroid formation in the presence of normal 2 mM Ca2+ artificial cerebrospinal fluid. In contrast, removal of external Ca2+ significantly decreased ionomycin-induced myelin and axonal spheroid formation at 2 hours but not at 1 hour after treatment. Using mice that express a neuron-specific Ca2+ indicator in spinal cord axons, we confirmed that ionomycin induced significant increases in intra-axonal Ca2+, but not in the absence of external Ca2+. Periaxonal swelling and the resultant disruption in the axo-myelinic interface often precedes and is negatively correlated with axonal spheroid formation. Pretreatment with YM58483 (500 nM), a well-established blocker of store-operated Ca2+ entry, significantly decreased myelin injury and axonal spheroid formation. Collectively, these data reveal that ionomycin-induced depletion of internal Ca2+ stores and subsequent external Ca2+ entry through store-operated Ca2+ entry contributes to pathological changes in myelin and axonal spheroid formation, providing new targets to protect central myelinated fibers.
Collapse
Affiliation(s)
- Spencer Ames
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Kia Adams
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - Mariah E Geisen
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center; Department of Neurological Surgery; Anatomical Sciences and Neurobiology; Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY, USA
| |
Collapse
|
9
|
Keddie S, Smyth D, Keh RYS, Chou MKL, Grant D, Surana S, Heslegrave A, Zetterberg H, Wieske L, Michael M, Eftimov F, Bellanti R, Rinaldi S, Hart MS, Petzold A, Lunn MP. Peripherin is a biomarker of axonal damage in peripheral nervous system disease. Brain 2023; 146:4562-4573. [PMID: 37435933 PMCID: PMC10629771 DOI: 10.1093/brain/awad234] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 06/11/2023] [Indexed: 07/13/2023] Open
Abstract
Valid, responsive blood biomarkers specific to peripheral nerve damage would improve management of peripheral nervous system (PNS) diseases. Neurofilament light chain (NfL) is sensitive for detecting axonal pathology but is not specific to PNS damage, as it is expressed throughout the PNS and CNS. Peripherin, another intermediate filament protein, is almost exclusively expressed in peripheral nerve axons. We postulated that peripherin would be a promising blood biomarker of PNS axonal damage. We demonstrated that peripherin is distributed in sciatic nerve, and to a lesser extent spinal cord tissue lysates, but not in brain or extra-neural tissues. In the spinal cord, anti-peripherin antibody bound only to the primary cells of the periphery (anterior horn cells, motor axons and primary afferent sensory axons). In vitro models of antibody-mediated axonal and demyelinating nerve injury showed marked elevation of peripherin levels only in axonal damage and only a minimal rise in demyelination. We developed an immunoassay using single molecule array technology for the detection of serum peripherin as a biomarker for PNS axonal damage. We examined longitudinal serum peripherin and NfL concentrations in individuals with Guillain-Barré syndrome (GBS, n = 45, 179 time points), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 35, 70 time points), multiple sclerosis (n = 30), dementia (as non-inflammatory CNS controls, n = 30) and healthy individuals (n = 24). Peak peripherin levels were higher in GBS than all other groups (median 18.75 pg/ml versus < 6.98 pg/ml, P < 0.0001). Peak NfL was highest in GBS (median 220.8 pg/ml) and lowest in healthy controls (median 5.6 pg/ml), but NfL did not distinguish between CIDP (17.3 pg/ml), multiple sclerosis (21.5 pg/ml) and dementia (29.9 pg/ml). While peak NfL levels were higher with older age (rho = +0.39, P < 0.0001), peak peripherin levels did not vary with age. In GBS, local regression analysis of serial peripherin in the majority of individuals with three or more time points of data (16/25) displayed a rise-and-fall pattern with the highest value within the first week of initial assessment. Similar analysis of serial NfL concentrations showed a later peak at 16 days. Group analysis of serum peripherin and NfL levels in GBS and CIDP patients were not significantly associated with clinical data, but in some individuals with GBS, peripherin levels appeared to better reflect clinical outcome measure improvement. Serum peripherin is a promising new, dynamic and specific biomarker of acute PNS axonal damage.
Collapse
Affiliation(s)
- Stephen Keddie
- Department of Neuromuscular Diseases, Barts Health NHS Trust, London E1 1BB, UK
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Duncan Smyth
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Ryan Y S Keh
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Michael K L Chou
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- NHS Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Donna Grant
- NHS Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Neuroinflammation, University College London, London WC1N 3BG, UK
| | - Sunaina Surana
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
| | - Amanda Heslegrave
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 41, Sweden
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Milou Michael
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Roberto Bellanti
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Simon Rinaldi
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Melanie S Hart
- NHS Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Neuroinflammation, University College London, London WC1N 3BG, UK
| | - Axel Petzold
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Location AMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
- UCL Clinical and Movement Neurosciences Department, National Hospital for Neurology and Neurosurgery, UCL Institute of Neurology, London WC1E 6BT, UK
| | - Michael P Lunn
- Department of Neuromuscular Diseases, University College London, London WC1N 3BG, UK
- Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- NHS Neuroimmunology and CSF Laboratory, Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
10
|
Fang T, Yue L, Longlong Z, Longda M, Fang H, Yehui L, Yang L, Yiwu Z. Peripherin: A proposed biomarker of traumatic axonal injury triggered by mechanical force. Eur J Neurosci 2023; 58:3206-3225. [PMID: 37574217 DOI: 10.1111/ejn.16111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Traumatic axonal injury (TAI) is one of the most common pathological features of severe traumatic brain injury (TBI). Our previous study using proteomics suggested that peripherin (PRPH) should be a potential candidate as a biomarker for TAI diagnosis. This study is to further elucidate the role and association of PRPH with TAI. In the animal study, we performed immunohistochemistry, ELISA and morphological analysis to evaluate PRPH level and distribution following a severe impact. PRPH-positive regions were widely distributed in the axonal tract throughout the whole brain. Axonal injuries with PRPH inclusion were observed post-TBI. Besides, PRPH was significantly increased in both cerebral spinal fluid and plasma at the early phase post-TBI. Colocalization analysis based on microscopy revealed that PRPH represents an immunohistological biomarker in the neuropathological diagnosis of TAI. Brain samples from patients with TBI were included to further test whether PRPH is feasible in the real practice of neuropathology. Immunohistochemistry of PRPH, NFH, APP and NFL on human brain tissues further confirmed PRPH as an immunohistological biomarker that could be applied in practice. Collectively, we conclude that PRPH mirrors the cytoskeleton injury of axons and could represent a neuropathological biomarker for TAI.
Collapse
Affiliation(s)
- Tong Fang
- Department of Neurology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Physiology and Biochemistry, College of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Yue
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathology, Shanghai Medicilon Inc., Shanghai, China
| | - Zhu Longlong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ma Longda
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Fang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lv Yehui
- Institute of Wound Prevention and Treatment, Shanghai University of Medicine and Health Sciences, Shanghai, China
- Department of Human Anatomy and Histology, School of Fundamental Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Li Yang
- Institute of Forensic Science, Ministry of Public Security, People's Republic of China, Beijing, China
| | - Zhou Yiwu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Lampros M, Vlachos N, Tsitsopoulos PP, Zikou AK, Argyropoulou MI, Voulgaris S, Alexiou GA. The Role of Novel Imaging and Biofluid Biomarkers in Traumatic Axonal Injury: An Updated Review. Biomedicines 2023; 11:2312. [PMID: 37626808 PMCID: PMC10452517 DOI: 10.3390/biomedicines11082312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of disability worldwide. Traumatic axonal injury (TAI) is a subtype of TBI resulting from high-impact forces that cause shearing and/or stretching of the axonal fibers in white matter tracts. It is present in almost half of cases of severe TBI and frequently associated with poor functional outcomes. Axonal injury results from axonotomy due to mechanical forces and the activation of a biochemical cascade that induces the activation of proteases. It occurs at a cellular level; hence, conventional imaging modalities often fail to display TAI lesions. However, the advent of novel imaging modalities, such as functional magnetic resonance imaging and fiber tractography, has significantly improved the detection and characteristics of TAI. Furthermore, the significance of several fluid and structural biomarkers has also been researched, while the contribution of omics in the detection of novel biomarkers is currently under investigation. In the present review, we discuss the role of imaging modalities and potential biomarkers in diagnosing, classifying, and predicting the outcome in patients with TAI.
Collapse
Affiliation(s)
- Marios Lampros
- Department of Neurosurgery, School of Medicine, University of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| | - Nikolaos Vlachos
- Department of Neurosurgery, School of Medicine, University of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| | - Parmenion P. Tsitsopoulos
- Department of Neurosurgery, Hippokratio General Hospital, Aristotle University of Thessaloniki School of Medicine, 54942 Thessaloniki, Greece;
| | - Anastasia K. Zikou
- Department of Radiology, University of Ioannina, 45110 Ioannina, Greece; (A.K.Z.); (M.I.A.)
| | - Maria I. Argyropoulou
- Department of Radiology, University of Ioannina, 45110 Ioannina, Greece; (A.K.Z.); (M.I.A.)
| | - Spyridon Voulgaris
- Department of Neurosurgery, School of Medicine, University of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| | - George A. Alexiou
- Department of Neurosurgery, School of Medicine, University of Ioannina, St. Niarhou Avenue, 45500 Ioannina, Greece; (M.L.); (N.V.); (S.V.)
| |
Collapse
|
12
|
Xu XJ, Liu BY, Dong JQ, Ge QQ, Lu SH, Yang MS, Zhuang Y, Zhang B, Niu F. Tandem Mass Tag-based proteomics analysis reveals the vital role of inflammation in traumatic brain injury in a mouse model. Neural Regen Res 2023. [PMID: 35799536 PMCID: PMC9241417 DOI: 10.4103/1673-5374.343886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Role of the Intermediate Filament Protein Peripherin in Health and Disease. Int J Mol Sci 2022; 23:ijms232315416. [PMID: 36499746 PMCID: PMC9740141 DOI: 10.3390/ijms232315416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Intermediate filaments are the most heterogeneous class among cytoskeletal elements. While some of them have been well-characterized, little is known about peripherin. Peripherin is a class III intermediate filament protein with a specific expression in the peripheral nervous system. Epigenetic modifications are involved in this cell-type-specific expression. Peripherin has important roles in neurite outgrowth and stability, axonal transport, and axonal myelination. Moreover, peripherin interacts with proteins involved in vesicular trafficking, signal transduction, DNA/RNA processing, protein folding, and mitochondrial metabolism, suggesting a role in all these processes. This review collects information regarding peripherin gene regulation, post-translational modifications, and functions and its involvement in the onset of a number of diseases.
Collapse
|
14
|
Ma X, Niu X, Zhao J, Deng Z, Li J, Wu X, Wang B, Zhang M, Zhao Y, Guo X, Sun P, Huang T, Wang J, Song J. Downregulation of Sepina3n Aggravated Blood-Brain Barrier Disruption after Traumatic Brain Injury by Activating Neutrophil Elastase in Mice. Neuroscience 2022; 503:45-57. [PMID: 36089165 DOI: 10.1016/j.neuroscience.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death in young adults and the main cause of mortality and disability across all ages worldwide. We previously analyzed the expression profile data of TBI models obtained from the Gene Expression Omnibus (GEO) database and found that the seripina3n mRNA was markedly upregulated in the acute phase of TBI in four mRNA expression profile data sets, indicating that serpina3n may be involved in the pathophysiological process of TBI. Therefore, we further investigated the biological role and molecular mechanism of serpina3n in traumatic brain injury in this study. As a result, the endogenous level of sepina3n was markedly elevated in the cortex around the contusion sit in mice at day 1 and day 3 after TBI. Inhibiting the expression of serpina3n caused aggravation of neutrophil elastase (NE) expression, BBB disruption, and neurological deficit. With the inactivation of NE, even if serpina3n was silenced, the disruption of the BBB was not further aggravated. In vitro experiments further proved that recombinant serpina3n dose-dependently inhibited the activity of recombinant NE. Based on the above, this study demonstrated that the endogenous level of sepina3n was significantly elevated in the cortex around the contusion sit after TBI in mice, which reduced the secondary blood-brain barrier disruption by inhibiting the activity of neutrophil elastase.
Collapse
Affiliation(s)
- Xudong Ma
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaorong Niu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Junjie Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhong Deng
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiaxi Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiang Wu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Bo Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Ming Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yonglin Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Xiaoye Guo
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Peng Sun
- Department of Neurosurgery, Tangdu Hospital, Military Medical University of PLA Airforce, Xi'an, Shaanxi 710038, China
| | - Tingqin Huang
- Department of Neurosurgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jia Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinning Song
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Center for Brain Science, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
15
|
Luo W, Yang Z, Zhang W, Zhou D, Guo X, Wang S, He F, Wang Y. Quantitative Proteomics Reveals the Dynamic Pathophysiology Across Different Stages in a Rat Model of Severe Traumatic Brain Injury. Front Mol Neurosci 2022; 14:785938. [PMID: 35145378 PMCID: PMC8821658 DOI: 10.3389/fnmol.2021.785938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background Severe traumatic brain injury (TBI) has become a global health problem and causes a vast worldwide societal burden. However, distinct mechanisms between acute and subacute stages have not been systemically revealed. The present study aimed to identify differentially expressed proteins in severe TBI from the acute to subacute phase. Methods Sixty Sprague Dawley (SD) rats were randomly divided into sham surgery and model groups. The severe TBI models were induced by the controlled cortical impact (CCI) method. We evaluated the neurological deficits through the modified neurological severity score (NSS). Meanwhile, H&E staining and immunofluorescence were performed to assess the injured brain tissues. The protein expressions of the hippocampus on the wounded side of CCI groups and the same side of Sham groups were analyzed by the tandem mass tag-based (TMT) quantitative proteomics on the third and fourteenth days. Then, using the gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein–protein interaction (PPI), the shared and stage-specific differentially expressed proteins (DEPs) were screened, analyzed, and visualized. Eventually, target proteins were further verified by Western blotting (WB). Results In the severe TBI, the neurological deficits always exist from the acute stage to the subacute stage, and brain parenchyma was dramatically impaired in either period. Of the significant DEPs identified, 312 were unique to the acute phase, 76 were specific to the subacute phase, and 63 were shared in both. Of the 375 DEPs between Sham-a and CCI-a, 240 and 135 proteins were up-regulated and down-regulated, respectively. Of 139 DEPs, 84 proteins were upregulated, and 55 were downregulated in the Sham-s and CCI-s. Bioinformatics analysis revealed that the differential pathophysiology across both stages. One of the most critical shared pathways is the complement and coagulation cascades. Notably, three pathways associated with gastric acid secretion, insulin secretion, and thyroid hormone synthesis were only enriched in the acute phase. Amyotrophic lateral sclerosis (ALS) was significantly enriched in the subacute stage. WB experiments confirmed the reliability of the TMT quantitative proteomics results. Conclusion Our findings highlight the same and different pathological processes in the acute and subacute phases of severe TBI at the proteomic level. The results of potential protein biomarkers might facilitate the design of novel strategies to treat TBI.
Collapse
Affiliation(s)
- Weikang Luo
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyu Yang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhang
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Dan Zhou
- Periodical Office, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaohang Guo
- Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Shunshun Wang
- Postpartum Health Care Department, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Feng He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Wang,
| |
Collapse
|
16
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
17
|
Pedragosa J, Mercurio D, Oggioni M, Marquez-Kisinousky L, de Simoni MG, Planas AM. Mannose-binding lectin promotes blood-brain barrier breakdown and exacerbates axonal damage after traumatic brain injury in mice. Exp Neurol 2021; 346:113865. [PMID: 34547288 DOI: 10.1016/j.expneurol.2021.113865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/19/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022]
Abstract
Leukocyte infiltration and blood-brain barrier breakdown contribute to secondary brain damage after traumatic brain injury (TBI). TBI induces neuroimmune responses triggering pathogenic complement activation through different pathways, including the lectin pathway. We investigated mechanisms underlying mannose-binding lectin (MBL)-mediated brain damage focusing on neutrophil infiltration and blood-brain barrier breakdown in a TBI mouse model. Wild type mice and MBL-/- null mice were subjected to controlled cortical impact. We studied neutrophil infiltration and regional localization by confocal microscopy 1, 4 and 15 days post-trauma, and investigated neutrophil extracellular trap (NET) formation. By immunofluorescence and/or Western blotting in various brain regions we studied the presence of fibrin(ogen), pentraxin-3, albumin and immunoglobulin G. Finally, we studied neurofilament proteins, synaptophysin, and αII-spectrin, and assessed white matter content in the injured tissue. TBI triggered an acute wave of neutrophil infiltration at day 1 followed by a more discrete persistence of neutrophils in the injured tissue at least until day 15. We detected the presence of NETs and pentraxin-3 in the injured tissue, as well as accumulation of fibrin(ogen), increased blood-brain barrier permeability, and neurofilament, synaptophysin and white matter loss, and calpain-mediated αII spectrin breakdown. MBL-/- mice showed reduced number of Ly6G+ neutrophils 4 days after TBI, lower accumulation of pentraxin-3 and fibrin(ogen) in the injured tissue, reduced global plasma protein extravasation, and better preservation of axonal and white matter integrity. These results show that MBL participates in secondary neutrophil accumulation and blood-brain barrier breakdown, and promotes axonal and white matter damage after TBI in mice.
Collapse
Affiliation(s)
- Jordi Pedragosa
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Domenico Mercurio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy
| | - Marco Oggioni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy
| | - Leonardo Marquez-Kisinousky
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria-Grazia de Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
18
|
Bruggeman GF, Haitsma IK, Dirven CMF, Volovici V. Traumatic axonal injury (TAI): definitions, pathophysiology and imaging-a narrative review. Acta Neurochir (Wien) 2021; 163:31-44. [PMID: 33006648 PMCID: PMC7778615 DOI: 10.1007/s00701-020-04594-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
Introduction Traumatic axonal injury (TAI) is a condition defined as multiple, scattered, small hemorrhagic, and/or non-hemorrhagic lesions, alongside brain swelling, in a more confined white matter distribution on imaging studies, together with impaired axoplasmic transport, axonal swelling, and disconnection after traumatic brain injury (TBI). Ever since its description in the 1980s and the grading system by Adams et al., our understanding of the processes behind this entity has increased. Methods We performed a scoping systematic, narrative review by interrogating Ovid MEDLINE, Embase, and Google Scholar on the pathophysiology, biomarkers, and diagnostic tools of TAI patients until July 2020. Results We underline the misuse of the Adams classification on MRI without proper validation studies, and highlight the hiatus in the scientific literature and areas needing more research. In the past, the theory behind the pathophysiology relied on the inertial force exerted on the brain matter after severe TBI inducing a primary axotomy. This theory has now been partially abandoned in favor of a more refined theory involving biochemical processes such as protein cleavage and DNA breakdown, ultimately leading to an inflammation cascade and cell apoptosis, a process now described as secondary axotomy. Conclusion The difference in TAI definitions makes the comparison of studies that report outcomes, treatments, and prognostic factors a daunting task. An even more difficult task is isolating the outcomes of isolated TAI from the outcomes of severe TBI in general. Targeted bench-to-bedside studies are required in order to uncover further pathways involved in the pathophysiology of TAI and, ideally, new treatments.
Collapse
Affiliation(s)
- Gavin F Bruggeman
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Iain K Haitsma
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Victor Volovici
- Department of Neurosurgery, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|