1
|
Friuli M, Eramo B, Sepe C, Kiani M, Casolini P, Zuena AR. The endocannabinoid and paracannabinoid systems in natural reward processes: possible pharmacological targets? Physiol Behav 2025; 296:114929. [PMID: 40274041 DOI: 10.1016/j.physbeh.2025.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Natural rewards such as food, mating, and social interaction are essential for survival and species preservation, and their regulation involves a complex interplay of motivational, cognitive, and emotional processes. Over the past two decades, increasing attention has been directed toward the endocannabinoid system and its paracannabinoid counterpart as key modulators of these behaviors. This review aims to provide an integrated overview of the roles played by the endocannabinoid and paracannabinoid systems in regulating natural reward-driven behaviors, focusing on feeding, reproductive behavior, and social interaction. We highlight how the endocannabinoid system - mainly through CB1 receptor signaling - modulates central and peripheral circuits involved in energy homeostasis, reward processing, and emotional regulation. In parallel, we explore the role of paracannabinoids, such as oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and stearoylethanolamide (SEA), which act primarily via non-cannabinoid receptors and contribute to the regulation of appetite, sexual motivation, and social behavior. Special attention is given to the relevance of these systems in the pathophysiology of obesity, eating disorders, sexual dysfunctions, and social impairments, as well as their potential as pharmacological targets. Overall, the evidence discussed supports a broader conceptualization of endocannabinoid and paracannabinoid signaling as pivotal regulators of natural rewards and opens new avenues for the development of targeted interventions for motivational and reward-related disorders.
Collapse
Affiliation(s)
- Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy.
| | - Barbara Eramo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Christian Sepe
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Mitra Kiani
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy; Department of Pharmacology & Experimental Therapeutics, School of Medicine, Boston University, Boston, MA 02118, USA
| | - Paola Casolini
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Anna Rita Zuena
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Shi Y, Lei J, Cui C, Yao Y, Ren K, Luo G, Yang X, Peng X, Li M, Yang J, Li T, Chen S, Du J, Tian B, Zhang P. Theta oscillation synchronize VTA and mPFC during ethanol-induced conditioned place preference and stress-evoked anxiety. Transl Psychiatry 2025; 15:206. [PMID: 40537491 DOI: 10.1038/s41398-025-03427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 05/16/2025] [Accepted: 06/09/2025] [Indexed: 06/22/2025] Open
Abstract
Addiction and anxiety are two prevalent psychiatric conditions characterized by complex neurobiological mechanisms. It is supported by theta-range (4-12 Hz) neural oscillations that coordinate distant brain regions, such as ventral tegmental area (VTA) and medial prefrontal cortex (mPFC). However, the systematic investigation comparing the analogous and distinct mechanisms of theta oscillations in the mPFC and VTA across these two psychiatric disorders is still needed. Here, we investigate the theta-range (4-12 Hz) local field potential (LFP) signals of the mPFC and VTA in the ethanol-induced conditioned place preference (CPP) and emotional stress-related anxiety-like behavior animal models. We found that the theta oscillation exhibits a significant correlation between the mPFC and VTA in both the two models of male mice. Granger causality suggests that the VTA clearly drives the mPFC in theta band. Our findings suggest potential parallels between the mechanisms of addiction and anxiety, as indicated by the observed theta changes. Further investigation into the mechanisms underlying these changes and their functional impact is necessary to substantiate this link.
Collapse
Affiliation(s)
- Yulong Shi
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jie Lei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Chi Cui
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Yibo Yao
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Kun Ren
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Gangan Luo
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xueke Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xiang Peng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Ming Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Jian Yang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Tongxia Li
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Sitong Chen
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Junsong Du
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Bo Tian
- School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, P. R. China.
| | - Pei Zhang
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China.
- Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, Hubei, P. R. China.
| |
Collapse
|
3
|
Khanmohammadi R, Inanlu M, Manesh VR. Region-specific cognitive effects of HD-tDCS in older adults: M1, DLPFC, and cerebellum. Behav Brain Res 2025; 486:115571. [PMID: 40174444 DOI: 10.1016/j.bbr.2025.115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/13/2025] [Accepted: 03/31/2025] [Indexed: 04/04/2025]
Abstract
While regions like the primary motor cortex (M1), left dorsolateral prefrontal cortex (DLPFC), and cerebellum are linked to cognitive functions, it is unclear which offers the greatest cognitive benefit. This study aimed to assess the effects of high-definition transcranial direct current stimulation (HD-tDCS) on these regions, focusing on inhibitory control, cognitive flexibility, and working memory. This parallel, randomized, double-blinded, and controlled trial involved 80 older adults, randomly assigned to one of four groups: anodal stimulation of M1, left DLPFC, cerebellum, or sham. Inhibitory control was assessed using reaction time (RT) and rate-correct score (RCS) from a Go/No-Go task. Trail Making Test A (TMT-A) and B (TMT-B) measured processing speed and cognitive flexibility, while the backward digit span test evaluated working memory. All assessments were conducted pre- and post-stimulation. Notably, cerebellum stimulation significantly improved working memory (p = 0.010), whereas M1, DLPFC, and sham did not. Significant interaction effects emerged for TMT-A and TMT-B, with both M1 and DLPFC stimulation enhancing performance (TMT-A: p = 0.005, p = 0.025; TMT-B: p < 0.001, p = 0.045, respectively), while cerebellum and sham had no significant impact. Additionally, RT and RCS showed no significant effects. Anodal stimulation of M1 and DLPFC improved cognitive flexibility and processing speed, whereas cerebellum stimulation selectively enhanced working memory. However, inhibitory control did not improve, highlighting the need for further tailored interventions. These findings underscore distinct region-specific effects of tDCS on cognitive performance in older adults.
Collapse
Affiliation(s)
- Roya Khanmohammadi
- Department of Physical Therapy, School of Rehabilitation Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehrnaz Inanlu
- Department of Physical Therapy, School of Rehabilitation Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Rafiee Manesh
- Department of Physical Therapy, School of Rehabilitation Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Jones MJ, Uzuneser TC, Laviolette SR. Fatty acid binding proteins and their involvement in anxiety and mood disorders. Neurobiol Dis 2025; 212:106952. [PMID: 40360026 DOI: 10.1016/j.nbd.2025.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/15/2025] Open
Abstract
Anxiety and mood disorders represent the most prevalent neuropsychiatric conditions. Nevertheless, current pharmacotherapies often have a host of adverse side effects. Emerging evidence suggests modulation of lipid signaling pathways - particularly those involved in the endocannabinoid (eCB) system, may offer promising new targets for the treatment of anxiety and depression. Polyunsaturated fatty acids (PUFA) and their metabolic derivatives, including the eCB ligands, have garnered significant attention for their roles in neuropsychiatric disease mechanisms. Intracellular transportation of these lipids is facilitated by fatty acid binding proteins (FABP), which are increasingly recognized as key regulators of lipid signaling. Accumulating evidence indicates that FABPs may impact the development of neuropsychiatric disorders by mediating the signaling pathways of PUFAs and eCB ligands. In this review, we investigate the role of FABPs in two major categories of neuropsychiatric conditions - anxiety disorders and clinical depression. We begin by examining several neuropathophysiological mechanisms through which FABPs can impact these conditions, focusing on their role as lipid chaperones. These mechanisms include the trafficking of eCB ligands, as well as oleoylethanolamide and palmitoylethanolamide; modulation of inflammatory responses through PUFA transport and PPAR activation; regulation of PUFA availability to support neurogenesis; influence on stress-related pathways, including NMDA receptor activation and the hypothalamic-pituitary-adrenal axis; and the facilitation of dopamine receptor trafficking and localization. Next, we discuss preclinical evidence linking FABP function to anxiety- and depression-related behaviours. Finally, we propose that pharmacologically targeting FABP-mediated pathways holds considerable potential as a novel therapeutic strategy for addressing the symptoms associated with mood and anxiety disorders.
Collapse
Affiliation(s)
- Matthew J Jones
- Department of Neuroscience, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Lawson Health Research Institute, St. Joseph's Health Care London, London, Ontario, Canada
| | - Taygun C Uzuneser
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Steven R Laviolette
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada; Department of Psychiatry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Lawson Health Research Institute, St. Joseph's Health Care London, London, Ontario, Canada.
| |
Collapse
|
5
|
Hochheimer M, Ellis JD, Strickland JC, Rabinowitz JA, Hobelmann JG, Huhn AS. Insomnia symptoms are associated with return to use and non-fatal overdose following opioid use disorder treatment. Sleep 2025; 48:zsae284. [PMID: 39657100 DOI: 10.1093/sleep/zsae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
STUDY OBJECTIVES Opioid use disorder (OUD) is a chronic, relapse-prone condition, often accompanied by sleep disturbances such as insomnia. While sleep disturbances have been implicated in negative treatment outcomes, no large-scale studies have examined the relationship between insomnia disorder and outcomes for persons completing an acute OUD treatment episode. This study assessed the association between insomnia symptoms at treatment intake, during treatment, and following acute treatment with post-treatment episode return to use and non-fatal overdose outcomes. METHODS This study analyzed data from 1905 individuals with OUD who received one of three forms of acute OUD treatment: supervised withdrawal, intensive outpatient, or residential treatment at 70 programs in the United States in 2021. Insomnia was assessed using the Insomnia Severity Index (ISI). Logistic regression and mixed regression analyses were performed to evaluate the association between insomnia and return to substance use or non-fatal overdose following a treatment episode. RESULTS Higher ISI scores at intake were significantly associated with increased odds of return to use one-month post-treatment episode (p-value = .006). Reduction in ISI scores during treatment correlated with lower return-to-use rates (p-value = .015). Post-treatment episode, ISI scores indicative of insomnia were associated with return to use (p-values < .001) and non-fatal overdose (p-values < .004) at months one, three, and six. CONCLUSIONS These findings underscore the significant role of insomnia in return to opioid use following OUD treatment, highlighting the importance of addressing sleep disturbances early in OUD treatment. This study also suggests that maintaining sleep health during and after treatment could improve the long-term prognosis for OUD. Interventions targeting insomnia are a promising avenue to improve OUD treatment outcomes.
Collapse
Affiliation(s)
- Martin Hochheimer
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer D Ellis
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jill A Rabinowitz
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| | - J Gregory Hobelmann
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Ashley Addiction Treatment, Havre de Grace, MD, USA
| | - Andrew S Huhn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Ashley Addiction Treatment, Havre de Grace, MD, USA
| |
Collapse
|
6
|
Faustino B. Biopsychosocial and contextual pressures: Contributions to a metatheoretical disorder theory from neuroscience, evolutionary, developmental, and ecological perspectives. APPLIED NEUROPSYCHOLOGY. ADULT 2025:1-14. [PMID: 40094438 DOI: 10.1080/23279095.2025.2469249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Human internal and external pressures that drive cognition, emotion, motivation, and interpersonal behavior are critical aspects of clinical psychology and psychotherapy's perspectives on psychopathology. Different theoretical orientations suggest that difficulties with emotional needs, interpersonal motivations, psychosocial stages, and maturational tasks lie at the core of psychopathology. From an evolutionary and neurobiological perspective, several affective systems were shaped through the interaction between genetic and environmental pressures and can be described as the neural basis for several emotion-based behavioral tendencies. However, efforts to integrate these constructs from basic neural science, evolutionary psychology, and clinical psychology have been sparse. In this sense, the present article aims to briefly review the literature on such clinically relevant constructs and make a proposal in a coherent metatheoretical perspective to integrate and make sense of these phenomena as an unified rationale. From affective neuroscience to evolutionary psychology, developmental psychopathology, and ecological systems perspectives, biopsychosocial and contextual pressures are suggested as a heuristic for a contemporary, coherent, and transtheoretical theory of the disorder.
Collapse
Affiliation(s)
- Bruno Faustino
- HEI-Lab: Digital Human-Environment Interaction Labs, Lusófona University, Lisbon, Portugal
- Faculdade de Psicologia da, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
7
|
Câmara AB, Brandão IA. The neuroinflammatory effects of Nociceptin/Orphanin FQ receptor activation can be related to depressive-like behavior. J Psychiatr Res 2025; 183:174-188. [PMID: 39978292 DOI: 10.1016/j.jpsychires.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
There is limited information on the role of the Nociceptin/Orphanin FQ receptor (NOPR) in neuroinflammation, and there is growing interest in the participation of the NOPR in depression etiology. This study aims to evaluate the neuroinflammatory effects of the NOPR activation in mice submitted to social defeat protocol (SDP). Firstly, male Swiss mice were submitted to the social defeat protocol during 10 or 20 days and treated with the NOPR agonist Ro 65-6570 (1.5 or 2 mg/kg; ip). Subsequently, behavioral tests were applied to evaluate depressive-like behaviors. Finally, inflammatory cytokines were measured in the animals' brains and blood. A meta-analysis, including 11 experiments, was also conducted to evaluate if the NOPR activation contributes to inflammation. The studies' weights, odds ratios, and confidence intervals were used to calculate the average effect size as the main outcome measure. The software SPSS v.29 and R programming language were used to analyze the data. The SDP and/or NOP agonist reduced distance traveled and exploration rate in the open field test. The SDP and/or the NOP agonist also increased immobility time in the tail suspension test, as well as reduced social interaction. Additionally, the NOP agonist increased the concentration of IL-6 and TNF alpha in the hippocampus, as well as reduced the IL-10 concentration in the hippocampus, but not in prefrontal cortex and serum. The SDP increased the concentration of IL-6 and TNF alpha in animals' serum and prefrontal cortex, but not in the hippocampus. The role of NOPR in neuroinflammation was regardless of the social defeat stress in the hippocampus. Meta-analysis also demonstrated the participation of NOPR activation in inducing inflammation in mice models. We suggest that upregulation of NOPR can activate signaling pathways involved in neuroinflammation, contributing to depression etiology.
Collapse
Affiliation(s)
| | - Igor Augusto Brandão
- Bioinformatics Multidisciplinary Environment, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
8
|
Muzik O, Diwadkar VA. Human regulatory systems in the age of abundance: A predictive processing perspective. Ann N Y Acad Sci 2025; 1545:16-27. [PMID: 40022426 DOI: 10.1111/nyas.15302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Human regulatory systems largely evolved under conditions of food and information scarcity but are now being forced to deal with abundance. The impact of abundance and the inability of human regulatory systems to adapt to it have fed a surge in dual health challenges: (1) a rise in obesity related to food abundance and (2) a rise in stress and anxiety related to information abundance. No single framework has been developed to describe why and how the transition from scarcity to abundance has been so challenging. Here, we provide a speculative model based on predictive processing. We suggest that whereas scarcity (above destructive lower bounds like famine or information voids) preserves the fidelity of the relationship between prediction errors and predictions, abundance distorts this relationship. Furthermore, prediction error minimization is enhanced under scarcity (as the number of competing states in the niche is restricted), whereas the opposite is true under abundance. We also discuss how abundance warps the fundamental drive for seeking novelty by fueling the brain's exploration (as opposed to exploitation) mode. Ameliorative strategies for regulating food and information abundance may largely depend on simulating scarcity, that environmental condition to which human regulatory systems have adapted over millennia.
Collapse
Affiliation(s)
- Otto Muzik
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Vaibhav A Diwadkar
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
9
|
Babková J, Repiská G. The Molecular Basis of Love. Int J Mol Sci 2025; 26:1533. [PMID: 40003999 PMCID: PMC11855673 DOI: 10.3390/ijms26041533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Love as a complex interplay of emotions and behaviors is underpinned by an intricate network of neurobiological mechanisms. This review provides insight into the molecular basis of love, focusing on the role of key hormones and neuromodulators. The aim of the paper is to report how these biochemical messengers influence various aspects of love, including attraction, attachment, and long-term bonding. By examining the effects of hormones such as dopamine, oxytocin, vasopressin, and serotonin, we aim to elucidate the intricate relationship between biology and behavior. Additionally, the potential impact of modern lifestyle factors on hormonal balance and their subsequent influence on love and social interactions are outlined. This review provides a useful overview of the molecular underpinnings of love, offering insights into the biological mechanisms that shape human relationships.
Collapse
Affiliation(s)
| | - Gabriela Repiská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 81372 Bratislava, Slovakia;
| |
Collapse
|
10
|
Gu A, Chan CL, Xu X, Dexter JP, Becker B, Zhao Z. Real-Time fMRI Neurofeedback Modulation of Dopaminergic Midbrain Activity in Young Adults With Elevated Internet Gaming Disorder Risk: Randomized Controlled Trial. J Med Internet Res 2025; 27:e64687. [PMID: 39879613 PMCID: PMC11822309 DOI: 10.2196/64687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/28/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
This study provides preliminary evidence for real-time functional magnetic resonance imaging neurofeedback (rt-fMRI NF) as a potential intervention approach for internet gaming disorder (IGD). In a preregistered, randomized, single-blind trial, young individuals with elevated IGD risk were trained to downregulate gaming addiction-related brain activity. We show that, after 2 sessions of neurofeedback training, participants successfully downregulated their brain responses to gaming cues, suggesting the therapeutic potential of rt-fMRI NF for IGD (Trial Registration: ClinicalTrials.gov NCT06063642; https://clinicaltrials.gov/study/NCT06063642).
Collapse
Affiliation(s)
- Anqi Gu
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| | - Cheng Lam Chan
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| | - Xiaolei Xu
- School of Psychology, Shandong Normal University, Jinan, China
| | - Joseph P Dexter
- Centre for Data Science, Institute of Collaborative Innovation, University of Macau, Macau, China
- Department of Computer and Information Science, Faculty of Science and Technology, University of Macau, Macau, China
| | - Benjamin Becker
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Zhiying Zhao
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau, China
| |
Collapse
|
11
|
Giacolini T, Alcaro A, Conversi D, Tarsitani L. Depression in adolescence and young adulthood: the difficulty to integrate motivational/emotional systems. Front Psychol 2025; 15:1391664. [PMID: 39834756 PMCID: PMC11743547 DOI: 10.3389/fpsyg.2024.1391664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Depression is presented as a multi-factorial bio-psycho-social expression that has evolved primarily as an effect of stressors related to the motivational/emotional systems that regulate the BrainMind in our relationship with conspecifics. These stressors may be caused by two sources of threat, firstly, the loss of bonding with the caregiver and later with a partner and/or group which relates to the SEPARATION (PANIC/GRIEF) system, secondly, social defeat as an expression of the social competition and social dominance. The sexual maturity drives the individual to social competition and social dominance, even if the latter often occurs before sexual maturity, e.g., chickens, dogs, non-human primates, and humans. Depression is an evolutionarily conserved mechanism in mammals to terminate both separation anxiety, so as to protect the vulnerable social brain from the consequences of prolonged separation anxiety, and the stress of social competition when social defeat is predictable. Adolescence and Young adulthood are particularly susceptible to these two types of threat because of human developmental characteristics that are summarized by the term neoteny. This refers to the slowing down of growth and development, resulting in both a prolonged period of dependence on a caring/protective adult and the persistence of juvenile characteristics throughout life. Therefore, neoteny makes the transition from childhood to sexual maturity more dramatic, making the integration of the SEPARATION (PANIC/GRIEF) system with the dynamics of social competition and dominance more stressful and a source of depression. Stress is an expression of the HPA-Hypothalamic-Pituitary-Adrenal axis that articulates with other systems, mainly the autonomic nervous system and the immune-inflammatory system. The latter is believed to be one of the most significant components in the dynamics of depressive processes, connected to the prodromes of its activation in childhood, under the pressure of environmental and relational stressors which can lead to learned helplessness. The recurrence of stressors makes it easier for the immune-inflammatory system to be activated in later life, which could make a significant contribution to the establishment of a depressive disease. The possible contribution of children's identification processes with their parents' depressive personalities through observational learning is considered.
Collapse
Affiliation(s)
- Teodosio Giacolini
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Antonio Alcaro
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - David Conversi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Tarsitani
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Brudzynski SM, Burgdorf JS, Moskal JR. From emotional arousal to executive action. Role of the prefrontal cortex. Brain Struct Funct 2024; 229:2327-2338. [PMID: 39096390 PMCID: PMC11611949 DOI: 10.1007/s00429-024-02837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/12/2024] [Indexed: 08/05/2024]
Abstract
Emotional arousal is caused by the activity of two parallel ascending systems targeting mostly the subcortical limbic regions and the prefrontal cortex. The aversive, negative arousal system is initiated by the activity of the mesolimbic cholinergic system and the hedonic, appetitive, arousal is initiated by the activity of the mesolimbic dopaminergic system. Both ascending projections have a diffused nature and arise from the rostral, tegmental part of the brain reticular activating system. The mesolimbic cholinergic system originates in the laterodorsal tegmental nucleus and the mesolimbic dopaminergic system in the ventral tegmental area. Cholinergic and dopaminergic arousal systems have converging input to the medial prefrontal cortex. The arousal system can modulate cortical EEG with alpha rhythms, which enhance synaptic strength as shown by an increase in long-term potentiation (LTP), whereas delta frequencies are associated with decreased arousal and a decrease in synaptic strength as shown by an increase in long-term depotentiation (LTD). It is postulated that the medial prefrontal cortex is an adaptable node with decision making capability and may control the switch between positive and negative affect and is responsible for modifying or changing emotional state and its expression.
Collapse
Affiliation(s)
| | - Jeffrey S Burgdorf
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Joseph R Moskal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
13
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Van VDP, Nagao K, Sahasrabudhe A, Paniagua EV, Frey EJ, Kim YJ, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton J, Anikeeva P. Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408154. [PMID: 39506430 PMCID: PMC12053509 DOI: 10.1002/adma.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and fluorescent indicator imaging. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | | | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Ethan J. Frey
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ye Ji Kim
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jill Venton
- The University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
14
|
Ruffini G, Castaldo F, Lopez-Sola E, Sanchez-Todo R, Vohryzek J. The Algorithmic Agent Perspective and Computational Neuropsychiatry: From Etiology to Advanced Therapy in Major Depressive Disorder. ENTROPY (BASEL, SWITZERLAND) 2024; 26:953. [PMID: 39593898 PMCID: PMC11592617 DOI: 10.3390/e26110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Major Depressive Disorder (MDD) is a complex, heterogeneous condition affecting millions worldwide. Computational neuropsychiatry offers potential breakthroughs through the mechanistic modeling of this disorder. Using the Kolmogorov theory (KT) of consciousness, we developed a foundational model where algorithmic agents interact with the world to maximize an Objective Function evaluating affective valence. Depression, defined in this context by a state of persistently low valence, may arise from various factors-including inaccurate world models (cognitive biases), a dysfunctional Objective Function (anhedonia, anxiety), deficient planning (executive deficits), or unfavorable environments. Integrating algorithmic, dynamical systems, and neurobiological concepts, we map the agent model to brain circuits and functional networks, framing potential etiological routes and linking with depression biotypes. Finally, we explore how brain stimulation, psychotherapy, and plasticity-enhancing compounds such as psychedelics can synergistically repair neural circuits and optimize therapies using personalized computational models.
Collapse
Affiliation(s)
- Giulio Ruffini
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Francesca Castaldo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
| | - Edmundo Lopez-Sola
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Roser Sanchez-Todo
- Brain Modeling Department, Neuroelectrics, 08035 Barcelona, Spain; (E.L.-S.); (R.S.-T.)
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
| | - Jakub Vohryzek
- Computational Neuroscience Group, UPF, 08005 Barcelona, Spain;
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford OX3 9BX, UK
| |
Collapse
|
15
|
Yu RC, Chan L, Chou SY, Lin LF, Hu CJ, Hong CT. Mild behavioural impairment in Parkinson's disease: a systematic review. Age Ageing 2024; 53:afae247. [PMID: 39523602 DOI: 10.1093/ageing/afae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/24/2024] [Indexed: 11/16/2024] Open
Abstract
Behavioural symptoms are common manifestations of Parkinson's disease (PD). Early behavioural symptoms characterise mild behavioural impairment (MBI). The prevalence and intensity of MBI in people with PD (PwP) have been studied across various cohorts. However, methodological differences have obscured our understanding of MBI in these individuals. This systematic review examines and synthesises findings from relevant studies, enhancing understanding of the symptoms and implications of MBI in PD. Nine studies from five separate research institutions were identified. The conceptualisation of MBI varied considerably, affecting the reported prevalence rates of MBI in individuals with early-stage PD. Among PwP, MBI was associated higher education and impaired cognition. Affective dysregulation and impulse control disorders were primary contributors to MBI; abnormal perception was least contributor. This systematic review underscores the specific characteristics and incidence of MBI in early-stage PD. Mood and impulse control disorders are primary concerns associated with MBI. Future longitudinal studies are required to clarify the progression of these symptoms and evaluate MBI's potential as an indicator for PD-related dementia or increased dependency.
Collapse
Affiliation(s)
- Ruan-Ching Yu
- Department of Psychiatry, University College London, London, UK
| | - Lung Chan
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Szu-Yi Chou
- Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei 11031, Taiwan
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Fong Lin
- School of Gerontology & Long-Term Care, College of Nursing, Taipei Medical University, Taiwan
- Department of Physical Medicine and Rehabilitation, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Oh S, Liu C, Kitchen M, Hahm HC. Prescription Opioid Misuse, Comorbid Substance Use, and Suicidal Behaviors Among US Young Adults: Findings from 2015-2019 National Survey on Drug Use and Health. Subst Use Misuse 2024; 60:195-201. [PMID: 39497235 DOI: 10.1080/10826084.2024.2422950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND Few studies to date have examined the number of comorbid substances used alongside Prescription Opioid Misuse (POM) to predict suicidal behaviors among US young adults. OBJECTIVE This study investigated the relationship between comorbid substance use with POM and suicidal behaviors among the US young adults. METHODS Data were from individuals aged 18-25 (N = 69,204, 51.8% female) in the 2015-2019 National Surveys on Drug Use and Health (NSDUH). The final analytic sample for logistic regression was 36,892 young adults. RESULTS After controlling for key covariates, the combination of POM and three or more illicit drugs were at the greatest odds of suicidal ideation (OR = 2.57, 95% CI = 1.61 - 4.11, p < 0.001) and attempts (OR = 3.57, 95% CI = 1.89 - 6.76, p < 0.001) compared to those without POM or drug use. CONCLUSIONS The study provides evidence of a dose-response relationship between the number of illicit drugs uses alongside POM and the suicide risk as a clinically important phenomenon with implication for intervention. Findings highlight that POM, with or without illicit drug use, can serve as a behavioral and clinical indicator for identifying young adults at heightened risk of suicidality. This group warrants prioritized intervention targets to ensure timely access to developmentally appropriate clinical treatment, aiming to mitigate addiction progression and prevent harm and mortality.
Collapse
Affiliation(s)
- Seungbin Oh
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine
| | - Cindy Liu
- Departments of Pediatrics and Psychiatry, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
17
|
Jiao ZL, Zhang M, Wu YN, Li SS, Gao MT, Zhang W, Xu XH. Acute Recruitment of VTA Dopamine Neurons by mPOA Esr1+ Neurons to Facilitate Consummatory Male Mating Actions. Neurosci Bull 2024; 40:1745-1750. [PMID: 39244513 DOI: 10.1007/s12264-024-01288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/18/2024] [Indexed: 09/09/2024] Open
Affiliation(s)
- Zhuo-Lei Jiao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya-Nan Wu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuai-Shuai Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng-Tong Gao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wen Zhang
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
18
|
Eckardt D, Helion C, Schmidt H, Chen J, Murty VP. Storytelling changes the content and perceived value of event memories. Cognition 2024; 251:105884. [PMID: 39047582 DOI: 10.1016/j.cognition.2024.105884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 04/17/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
Memories are not only stored for personal recall, but also to communicate knowledge to others in service of adaptive decision-making. Prior research shows that goals to share information can change which content is communicated in memory as well as the linguistic style embedded in this communication. Yet, little is known as to how communication-related alterations in memory narration drive differences of value processing in listeners. Here, we test how memory communication alters multi-featural recall for complex events and the downstream consequence on value estimations in naïve listeners. Participants recalled a memory of playing an exploratory videogame at a 24-h delay under instructions to either share (i.e., social condition) or recall (i.e., control condition) their memory. Sharing goals systematically altered the content and linguistic style of recall, such that narrators from the social condition were biased towards recall of non-episodic details and communicated their memories with more clout, less formality, and less authenticity. Across two independent samples of naïve listeners, these features differentially influenced value estimations of the video game. We found that greater clout was associated with greater enjoyment while listening to memories (hedonic value), and that greater inclusion of non-episodic details resulted in greater willingness to purchase the video game (motivational drive). These findings indicate that sharing an experience as a story can change the content and linguistic tone of memory recall, which in turn shape perceived value in naïve listeners.
Collapse
Affiliation(s)
- Devlin Eckardt
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19130, United States of America
| | - Chelsea Helion
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19130, United States of America
| | - Helen Schmidt
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA 19130, United States of America
| | - Janice Chen
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, United States of America
| | - Vishnu P Murty
- Department of Psychology, University of Oregon, Eugene, OR 97043, United States of America.
| |
Collapse
|
19
|
Balconi M, Angioletti L, Rovelli K. Neurophysiological response to social feedback in stressful situations. Eur J Neurosci 2024; 60:6030-6045. [PMID: 39291392 DOI: 10.1111/ejn.16528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024]
Abstract
The relationship between external feedback and cognitive and neurophysiological performance has been extensively investigated in social neuroscience. However, few studies have considered the role of positive and negative external social feedback on electroencephalographic (EEG) and moderate stress response. Twenty-six healthy adults underwent a moderately stressful job interview consisting of a modified version of the Trier Social Stress Test. After each preparation, feedback was provided by an external committee, ranging from positive to negative with increasing impact on subjects. Stress response was measured by analysing response times (RTs) during the speech phase, while cognitive performance was assessed using a Stroop-like task before and after the test. Results indicate that RTs used to deliver the final speeches with negative feedback were significantly lower compared with those used for the initial speech with positive feedback. Moreover, a generalized improvement in Stroop-like task performance was observed in the post-SST compared with the pre-SST. Consistent with behavioural results, EEG data indicated greater delta, theta, and alpha band responses in right prefrontal and left central areas, and for delta and theta bands, also in parietal areas in response to positive feedback compared with aversive-neutral feedback, highlighting greater cognitive effort required by the former. Conversely, an increase in these bands in right and left temporal and left occipital areas was observed following negative and aversive feedback, indicative of an adaptive response to stress and emotion-regulatory processes. These findings suggest that negative social feedback in moderately stressful and noncritical conditions could contribute to improving individual cognitive performance.
Collapse
Affiliation(s)
- Michela Balconi
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Laura Angioletti
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Katia Rovelli
- International research center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
20
|
Kniffin AR, Briand LA. Sex differences in glutamate transmission and plasticity in reward related regions. Front Behav Neurosci 2024; 18:1455478. [PMID: 39359325 PMCID: PMC11445661 DOI: 10.3389/fnbeh.2024.1455478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024] Open
Abstract
Disruptions in glutamate homeostasis within the mesolimbic reward circuitry may play a role in the pathophysiology of various reward related disorders such as major depressive disorders, anxiety, and substance use disorders. Clear sex differences have emerged in the rates and symptom severity of these disorders which may result from differing underlying mechanisms of glutamatergic signaling. Indeed, preclinical models have begun to uncover baseline sex differences throughout the brain in glutamate transmission and synaptic plasticity. Glutamatergic synaptic strength can be assessed by looking at morphological features of glutamatergic neurons including spine size, spine density, and dendritic branching. Likewise, electrophysiology studies evaluate properties of glutamatergic neurons to provide information of their functional capacity. In combination with measures of glutamatergic transmission, synaptic plasticity can be evaluated using protocols that induce long-term potentiation or long-term depression. This review will consider preclinical rodent literature directly comparing glutamatergic transmission and plasticity in reward related regions of males and females. Additionally, we will suggest which regions are exhibiting evidence for sexually dimorphic mechanisms, convergent mechanisms, or no sex differences in glutamatergic transmission and plasticity and highlight gaps in the literature for future investigation.
Collapse
Affiliation(s)
- Alyssa R. Kniffin
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, United States
| | - Lisa A. Briand
- Department of Psychology & Neuroscience, Temple University, Philadelphia, PA, United States
- Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Reybrouck M, Podlipniak P, Welch D. Music Listening as Exploratory Behavior: From Dispositional Reactions to Epistemic Interactions with the Sonic World. Behav Sci (Basel) 2024; 14:825. [PMID: 39336040 PMCID: PMC11429034 DOI: 10.3390/bs14090825] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Listening to music can span a continuum from passive consumption to active exploration, relying on processes of coping with the sounds as well as higher-level processes of sense-making. Revolving around the major questions of "what" and "how" to explore, this paper takes a naturalistic stance toward music listening, providing tools to objectively describe the underlying mechanisms of musical sense-making by weakening the distinction between music and non-music. Starting from a non-exclusionary conception of "coping" with the sounds, it stresses the exploratory approach of treating music as a sound environment to be discovered by an attentive listener. Exploratory listening, in this view, is an open-minded and active process, not dependent on simply recalling pre-existing knowledge or information that reduces cognitive processing efforts but having a high cognitive load due to the need for highly focused attention and perceptual readiness. Music, explored in this way, is valued for its complexity, surprisingness, novelty, incongruity, puzzlingness, and patterns, relying on processes of selection, differentiation, discrimination, and identification.
Collapse
Affiliation(s)
- Mark Reybrouck
- Musicology Research Group, Faculty of Arts, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Institute for Psychoacoustics and Electronic Music (IPEM), Department of Art History, Musicology and Theatre Studies, 9000 Ghent, Belgium
| | - Piotr Podlipniak
- Institute of Musicology, Adam Mickiewicz University in Poznań, 61-712 Poznań, Poland
| | - David Welch
- Institute Audiology Section, School of Population Health, University of Auckland, Auckland 2011, New Zealand
| |
Collapse
|
22
|
Carbone MG, Maremmani I. Chronic Cocaine Use and Parkinson's Disease: An Interpretative Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1105. [PMID: 39200714 PMCID: PMC11354226 DOI: 10.3390/ijerph21081105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024]
Abstract
Over the years, the growing "epidemic" spread of cocaine use represents a crucial public health and social problem worldwide. According to the 2023 World Drug Report, 0.4% of the world's population aged 15 to 64 report using cocaine; this number corresponds to approximately 24.6 million cocaine users worldwide and approximately 1 million subjects with cocaine use disorder (CUD). While we specifically know the short-term side effects induced by cocaine, unfortunately, we currently do not have exhaustive information about the medium/long-term side effects of the substance on the body. The scientific literature progressively highlights that the chronic use of cocaine is related to an increase in cardio- and cerebrovascular risk and probably to a greater incidence of psychomotor symptoms and neurodegenerative processes. Several studies have highlighted an increased risk of antipsychotic-induced extrapyramidal symptoms (EPSs) in patients with psychotic spectrum disorders comorbid with psychostimulant abuse. EPSs include movement dysfunction such as dystonia, akathisia, tardive dyskinesia, and characteristic symptoms of Parkinsonism such as rigidity, bradykinesia, and tremor. In the present paper, we propose a model of interpretation of the neurobiological mechanisms underlying the hypothesized increased vulnerability in chronic cocaine abusers to neurodegenerative disorders with psychomotor symptoms. Specifically, we supposed that the chronic administration of cocaine produces significant neurobiological changes, causing a complex dysregulation of various neurotransmitter systems, mainly affecting subcortical structures and the dopaminergic pathways. We believe that a better understanding of these cellular and molecular mechanisms involved in cocaine-induced neuropsychotoxicity may have helpful clinical implications and provide targets for therapeutic intervention.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Division of Psychiatry, Department of Medicine and Surgery, University of Insubria, Viale Luigi Borri 57, 21100 Varese, Italy;
- VP Dole Research Group, G. De Lisio Institute of Behavioural Sciences, Via di Pratale 3, 56121 Pisa, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Icro Maremmani
- VP Dole Research Group, G. De Lisio Institute of Behavioural Sciences, Via di Pratale 3, 56121 Pisa, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
- Addiction Research Methods Institute, World Federation for the Treatment of Opioid Dependence, 225 Varick Street, Suite 402, New York, NY 10014, USA
| |
Collapse
|
23
|
Gramling G, Wu M, Kolta B, Alleyne S. Distinguishing Reality: A Case of Delusional Misidentification Syndrome in a 39-Year-Old Male. Cureus 2024; 16:e67001. [PMID: 39280508 PMCID: PMC11402481 DOI: 10.7759/cureus.67001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Capgras syndrome (CS) is a type of delusional misidentification syndrome where an individual is under the impression that a person they know has been switched with an identical imposter. One theory for the development of CS is a disturbance among the frontal, limbic, and temporal areas, which creates an alteration in an individual's ability to recognize a person's face and provoke a response emotionally. The primary risk factors for the development of CS include having a neurological disorder and a diagnosis of schizophrenia. We present a case of a 39-year-old male with a past medical history of traumatic brain injury and familial history of schizophrenia who presented to the Emergency Department with paranoia and the belief that his father had been switched with an imposter. After ruling out organic causes, he was stabilized on olanzapine before discharge to outpatient follow-up. This case highlights the importance of prompt recognition of the symptomatology associated with CS and treatment with olanzapine for a favorable outcome.
Collapse
Affiliation(s)
- Grant Gramling
- Osteopathic Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Clearwater, USA
| | - Michelle Wu
- Psychiatry Residency Program, Lakeland Regional Health, Lakeland, USA
| | - Bishoy Kolta
- Medical Education, Lakeland Regional Health, Lakeland, USA
| | | |
Collapse
|
24
|
Hinckley JD, Adams ZW, Dellucci TV, Berkowitz S. Co-occurring trauma- and stressor-related and substance-related disorders in youth: A narrative review. MEDICAL RESEARCH ARCHIVES 2024; 12:10.18103/mra.v12i8.5688. [PMID: 39606025 PMCID: PMC11600332 DOI: 10.18103/mra.v12i8.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Adolescence is characterized by ongoing neurodevelopment and psychosocial development, resulting in a unique window to the adverse effects of traumatic events and substance use. In addition, trauma- and stressor-related disorders and substance use disorders (SUDs) commonly co-occur in adolescents. Youth with interpersonal violence and who have experienced multiple past traumas, or poly-victimization, are at the highest risk of developing these co-occurring disorders. There is a strong bidirectional relationship between traumatic events and substance use that predisposes youth to developing post-traumatic stress symptoms (PTSS) and SUDs. PTSD and states of substance intoxication and withdrawal also exhibit overlap in symptomatology. High rates of comorbidity may be explained in part by the self-medication hypothesis, that posits that individuals use substances to temporarily alleviate trauma-related symptoms. However, this results in negative reinforcement, often with increasing patterns of substance use and worsening symptoms of hyperarousal, dysphoria, and anxiety. In addition, PTSS and substance use problems share common risk factors and neurobiologic etiology, conceptualized as the susceptibility hypothesis. Youth who experience traumatic events and/or have substance use problems access the healthcare system at multiple levels, including through acute care and crisis services. Notably, substance use in adolescence increases the likelihood of experiencing a traumatic event, and youth presenting to the emergency department for substance-related problems are at higher risk of having a PTSD. Youth presenting for mental health, behavioral, or substance-related problems should be screened for PTSS and substance use problems. Given the strong clinical overlap and bidirectional relationship, evidence-based treatment integrates management of both disorders. An interdisciplinary approach with psychotherapy, psychopharmacologic therapy, and case management is often vital to engaging and maintaining youth in treatment.
Collapse
Affiliation(s)
- Jesse D Hinckley
- Department of Psychiatry, University of Colorado School of Medicine
| | - Zachary W Adams
- Department of Psychiatry, Indiana University School of Medicine
| | - Trey V Dellucci
- Department of Psychiatry, Indiana University School of Medicine
| | - Steven Berkowitz
- Department of Psychiatry, University of Colorado School of Medicine
- START Center, Department of Psychiatry, University of Colorado School of Medicine
| |
Collapse
|
25
|
Burnand A, Rookes T, Mahmood F, Davies N, Walters K, Orleans-Foli S, Sajid M, Vickerstaff V, Frost R. Non-Pharmacological Interventions in the Management of Dementia-Related Psychosis: A Systematic Review and Meta-Analysis. Int J Geriatr Psychiatry 2024; 39:e6129. [PMID: 39112442 DOI: 10.1002/gps.6129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE As populations age globally, there is an increasing prevalence of dementia, with an estimated 153 million living with dementia by 2050. Up to 70% of people with dementia experience dementia-related psychosis (D-RP). Antipsychotic medications are associated with many adverse effects in older people. This review aims to evaluate the evidence of non-pharmacological interventions in managing D-RP. METHOD The search of Medline, EMBASE, Web of Science, CINAHL, PsycINFO, and Cochrane included randomised controlled trials that evaluated non-pharmacological interventions. Data extraction and assessment of quality were assessed independently by two researchers. Heterogenous interventions were pooled using meta-analysis. RESULTS A total of 18 articles (n = 2040 participants) were included and categorised into: sensory-, activity-, cognitive- and multi-component-orientated. Meta-analyses showed no significant impact in reducing hallucinations or delusions but person-centred care, cognitive rehabilitation, music therapy, and robot pets showed promise in single studies. CONCLUSIONS AND IMPLICATIONS Future interventions should be developed and evaluated with a specific focus on D-RP as this was not the aim for many of the included articles.
Collapse
Affiliation(s)
- Alice Burnand
- Centre for Ageing Population Studies, Research Department of Primary Care and Population Health, University College London, London, UK
| | - Tasmin Rookes
- Centre for Ageing Population Studies, Research Department of Primary Care and Population Health, University College London, London, UK
| | - Farah Mahmood
- Centre for Ageing Population Studies, Research Department of Primary Care and Population Health, University College London, London, UK
| | - Nathan Davies
- Centre for Ageing Population Studies, Research Department of Primary Care and Population Health, University College London, London, UK
| | - Kate Walters
- Centre for Ageing Population Studies, Research Department of Primary Care and Population Health, University College London, London, UK
| | - Stephen Orleans-Foli
- Cognitive Impairment and Dementia Services (CIDS), West London NHS Trust, Southall, UK
| | | | - Victoria Vickerstaff
- Research Department of Primary Care and Population Health, PRIMENT Clinical Trials Unit, University College London, London, UK
| | - Rachael Frost
- Centre for Ageing Population Studies, Research Department of Primary Care and Population Health, University College London, London, UK
- School of Public and Allied Health, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
26
|
Wu B, Castagnola E, McClung CA, Cui XT. PEDOT/CNT Flexible MEAs Reveal New Insights into the Clock Gene's Role in Dopamine Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308212. [PMID: 38430532 PMCID: PMC11251561 DOI: 10.1002/advs.202308212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Indexed: 03/04/2024]
Abstract
Substantial evidence has shown that the Circadian Locomotor Output Cycles Kaput (Clock) gene is a core transcription factor of circadian rhythms that regulates dopamine (DA) synthesis. To shed light on the mechanism of this interaction, flexible multielectrode arrays (MEAs) are developed that can measure both DA concentrations and electrophysiology chronically. The dual functionality is enabled by conducting polymer PEDOT doped with acid-functionalized carbon nanotubes (CNT). The PEDOT/CNT microelectrode coating maintained stable electrochemical impedance and DA detection by square wave voltammetry for 4 weeks in vitro. When implanted in wild-type (WT) and Clock mutation (MU) mice, MEAs measured tonic DA concentration and extracellular neural activity with high spatial and temporal resolution for 4 weeks. A diurnal change of DA concentration in WT is observed, but not in MU, and a higher basal DA concentration and stronger cocaine-induced DA increase in MU. Meanwhile, striatal neuronal firing rate is found to be positively correlated with DA concentration in both animal groups. These findings offer new insights into DA dynamics in the context of circadian rhythm regulation, and the chronically reliable performance and dual measurement capability of this technology hold great potential for a broad range of neuroscience research.
Collapse
Affiliation(s)
- Bingchen Wu
- Department of BioengineeringUniversity of PittsburghPittsburghPA15213USA
- Center for the Neural Basis of CognitionPittsburghPA15213USA
| | - Elisa Castagnola
- Department of BioengineeringUniversity of PittsburghPittsburghPA15213USA
- Department of Biomedical EngineeringLouisiana Tech UniversityRustonLA71272USA
| | | | - Xinyan Tracy Cui
- Department of BioengineeringUniversity of PittsburghPittsburghPA15213USA
- Center for the Neural Basis of CognitionPittsburghPA15213USA
- McGowan Institute for Regenerative MedicinePittsburghPA15219USA
| |
Collapse
|
27
|
Skånberg L, Holt RV, Newberry RC, Estevez I, McCrea K, Keeling LJ. Making the most of life: environmental choice during rearing enhances the ability of laying hens to take opportunities. Front Vet Sci 2024; 11:1425851. [PMID: 38948678 PMCID: PMC11211632 DOI: 10.3389/fvets.2024.1425851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The potential of aviary housing for improving laying hen (Gallus gallus domesticus) welfare will be constrained if rearing conditions limit the hens' behavioral ability to take opportunities. Incorporating theories on developmental plasticity and animal agency, this study aimed to determine: (1) whether a choice of litter and perch types during rearing would promote long-lasting changes in use of novel locations and resources, and (2) the influence of timing of choice provision. Methods Laying hen chicks were assigned to either a "Single-choice" (one litter and perch type) or "Multi-choice" environment (four litter and perch types) during "Early" (day 1-week 4) and "Late" rearing (week 5-15). The environments were switched in half of the 16 pens in week 5, resulting in a 2 × 2 factorial design with four choice environment by period combinations. The allocation of perch and litter space was the same across all treatment combinations. In week 16, all groups were moved to standard aviary laying pens (Laying period, week 16-27). Results When first moved to the laying pens, hens with Multi-choice in either or both rearing periods were quicker to spread out in their pen than hens with Single-choice throughout rearing. Multi-choice in Early rearing also reduced the latency to use novel elevated structures (perches and nests) in the laying pens. Multi-choice during Late rearing increased success in finding and consuming hidden mealworms (tested in weeks 9-17) and increased the proportion of eggs laid on elevated nesting trays. Numerically, hens switched from Multi-choice to Single-choice in week 5 used the outdoor range less than hens switched from Single-choice to Multi-choice. Discussion These results support the hypothesis that offering multiple resource choices during rearing improves hens' ability to make the most of new opportunities by being more proactive in exploring and exploiting newly available resources. In different opportunity challenges, hens showed positive outcomes in response to choice during Early, Late or both stages of rearing, suggesting that best results can be obtained by offering environmental choice throughout rearing.
Collapse
Affiliation(s)
- Lena Skånberg
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Regine V. Holt
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ruth C. Newberry
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Inma Estevez
- Neiker Basque Institute for Agricultural Research, Basque Research and Technology Alliance, Vitoria, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Kirste McCrea
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Linda J. Keeling
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
28
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Phi Van VD, Nagao K, Sahasrabudhe A, Vargas E, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton J, Anikeeva P. Fiber-based Probes for Electrophysiology, Photometry, Optical and Electrical Stimulation, Drug Delivery, and Fast-Scan Cyclic Voltammetry In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598004. [PMID: 38895451 PMCID: PMC11185794 DOI: 10.1101/2024.06.07.598004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by simultaneously interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | | | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jill Venton
- The University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
29
|
Bhimani RV, Rzepecki L, Park J, Mietlicki-Baase EG. Ventral Tegmental Area Amylin Receptor Activation Differentially Modulates Mesolimbic Dopamine Signaling in Response to Fat versus Sugar. eNeuro 2024; 11:ENEURO.0133-24.2024. [PMID: 38806231 PMCID: PMC11164843 DOI: 10.1523/eneuro.0133-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
Amylin, a pancreatic hormone that is cosecreted with insulin, has been highlighted as a potential treatment target for obesity. Amylin receptors are distributed widely throughout the brain and are coexpressed on mesolimbic dopamine neurons. Activation of amylin receptors is known to reduce food intake, but the neurochemical mechanisms behind this remain to be elucidated. Amylin receptor activation in the ventral tegmental area (VTA), a key dopaminergic nucleus in the mesolimbic reward system, has a potent ability to suppress intake of palatable fat and sugar solutions. Although previous work has demonstrated that VTA amylin receptor activation can dampen mesolimbic dopamine signaling elicited by random delivery of sucrose, whether this is also the case for fat remains unknown. Herein we tested the hypothesis that amylin receptor activation in the VTA of male rats would attenuate dopamine signaling in the nucleus accumbens core in response to random intraoral delivery of either fat or sugar solutions. Results show that fat solution produces a greater potentiation of accumbens dopamine than an isocaloric sucrose solution. Moreover, activation of VTA amylin receptors elicits a more robust suppression of accumbens dopamine signaling in response to fat solution than to sucrose. Taken together these results shed new light on the amylin system as a therapeutic target for obesity and emphasize the reinforcing nature of high-fat/high-sugar diets.
Collapse
Affiliation(s)
- Rohan V Bhimani
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
| | - Lily Rzepecki
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
| | - Jinwoo Park
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
- Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
- Department of Pharmacology and Toxicology, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
| | - Elizabeth G Mietlicki-Baase
- Neuroscience Program, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, New York 14214-3005
| |
Collapse
|
30
|
Chmiel J, Kurpas D, Rybakowski F, Leszek J. The Effectiveness of Transcranial Direct Current Stimulation (tDCS) in Binge Eating Disorder (BED)-Review and Insight into the Mechanisms of Action. Nutrients 2024; 16:1521. [PMID: 38794759 PMCID: PMC11123682 DOI: 10.3390/nu16101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Binge eating disorder (BED) is the most common eating disorder among those contributing to the development of obesity, and thus acts as a significant burden on the lives and health of patients. It is characterized by complex neurobiology, which includes changes in brain activity and neurotransmitter secretion. Existing treatments are moderately effective, and so the search for new therapies that are effective and safe is ongoing. AIM AND METHODS This review examines the use of transcranial direct current stimulation (tDCS) in the treatment of binge eating disorder. Searches were conducted on the PubMed/Medline, Research Gate, and Cochrane databases. RESULTS Six studies were found that matched the review topic. All of them used the anodal stimulation of the right dorsolateral prefrontal cortex (DLPFC) in BED patients. tDCS proved effective in reducing food cravings, the desire to binge eat, the number of binging episodes, and food intake. It also improved the outcomes of inhibitory control and the treatment of eating disorder psychopathology. The potential mechanisms of action of tDCS in BED are explained, limitations in current research are outlined, and recommendations for future research are provided. CONCLUSIONS Preliminary evidence suggests that the anodal application of tDCS to the right DLPFC reduces the symptoms of BED. However, caution should be exercised in the broader use of tDCS in this context due to the small number of studies performed and the small number of patients included. Future studies should incorporate neuroimaging and neurophysiological measurements to elucidate the potential mechanisms of action of tDCS in BED.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Donata Kurpas
- Department of Family and Pediatric Nursing, Faculty of Health Sciences, Wrocław Medical University, 51-618 Wrocław, Poland
| | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
31
|
Vilela J, Rasga C, Santos JX, Martiniano H, Marques AR, Oliveira G, Vicente AM. Bridging Genetic Insights with Neuroimaging in Autism Spectrum Disorder-A Systematic Review. Int J Mol Sci 2024; 25:4938. [PMID: 38732157 PMCID: PMC11084239 DOI: 10.3390/ijms25094938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is an early onset neurodevelopmental disorder characterized by impaired social interaction and communication, and repetitive patterns of behavior. Family studies show that ASD is highly heritable, and hundreds of genes have previously been implicated in the disorder; however, the etiology is still not fully clear. Brain imaging and electroencephalography (EEG) are key techniques that study alterations in brain structure and function. Combined with genetic analysis, these techniques have the potential to help in the clarification of the neurobiological mechanisms contributing to ASD and help in defining novel therapeutic targets. To further understand what is known today regarding the impact of genetic variants in the brain alterations observed in individuals with ASD, a systematic review was carried out using Pubmed and EBSCO databases and following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This review shows that specific genetic variants and altered patterns of gene expression in individuals with ASD may have an effect on brain circuits associated with face processing and social cognition, and contribute to excitation-inhibition imbalances and to anomalies in brain volumes.
Collapse
Affiliation(s)
- Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
| | - Astrid Moura Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| |
Collapse
|
32
|
Wang Y, Lak A, Manohar SG, Bogacz R. Dopamine encoding of novelty facilitates efficient uncertainty-driven exploration. PLoS Comput Biol 2024; 20:e1011516. [PMID: 38626219 PMCID: PMC11051659 DOI: 10.1371/journal.pcbi.1011516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/26/2024] [Accepted: 03/23/2024] [Indexed: 04/18/2024] Open
Abstract
When facing an unfamiliar environment, animals need to explore to gain new knowledge about which actions provide reward, but also put the newly acquired knowledge to use as quickly as possible. Optimal reinforcement learning strategies should therefore assess the uncertainties of these action-reward associations and utilise them to inform decision making. We propose a novel model whereby direct and indirect striatal pathways act together to estimate both the mean and variance of reward distributions, and mesolimbic dopaminergic neurons provide transient novelty signals, facilitating effective uncertainty-driven exploration. We utilised electrophysiological recording data to verify our model of the basal ganglia, and we fitted exploration strategies derived from the neural model to data from behavioural experiments. We also compared the performance of directed exploration strategies inspired by our basal ganglia model with other exploration algorithms including classic variants of upper confidence bound (UCB) strategy in simulation. The exploration strategies inspired by the basal ganglia model can achieve overall superior performance in simulation, and we found qualitatively similar results in fitting model to behavioural data compared with the fitting of more idealised normative models with less implementation level detail. Overall, our results suggest that transient dopamine levels in the basal ganglia that encode novelty could contribute to an uncertainty representation which efficiently drives exploration in reinforcement learning.
Collapse
Affiliation(s)
- Yuhao Wang
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Armin Lak
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sanjay G. Manohar
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Mbiydzenyuy NE, Joanna Hemmings SM, Shabangu TW, Qulu-Appiah L. Exploring the influence of stress on aggressive behavior and sexual function: Role of neuromodulator pathways and epigenetics. Heliyon 2024; 10:e27501. [PMID: 38486749 PMCID: PMC10937706 DOI: 10.1016/j.heliyon.2024.e27501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Stress is a complex and multifaceted phenomenon that can significantly influence both aggressive behavior and sexual function. This review explores the intricate relationship between stress, neuromodulator pathways, and epigenetics, shedding light on the various mechanisms that underlie these connections. While the role of stress in both aggression and sexual behavior is well-documented, the mechanisms through which it exerts its effects are multifarious and not yet fully understood. The review begins by delving into the potential influence of stress on the Hypothalamic-Pituitary-Adrenal (HPA) axis, glucocorticoids, and the neuromodulators involved in the stress response. The intricate interplay between these systems, which encompasses the regulation of stress hormones, is central to understanding how stress may contribute to aggressive behavior and sexual function. Several neuromodulator pathways are implicated in both stress and behavior regulation. We explore the roles of norepinephrine, serotonin, oxytocin, and androgens in mediating the effects of stress on aggression and sexual function. It is important to distinguish between general sexual behavior, sexual motivation, and the distinct category of "sexual aggression" as separate constructs, each necessitating specific examination. Additionally, epigenetic mechanisms emerge as crucial factors that link stress to changes in gene expression patterns and, subsequently, to behavior. We then discuss how epigenetic modifications can occur in response to stress exposure, altering the regulation of genes associated with stress, aggression, and sexual function. While numerous studies support the association between epigenetic changes and stress-induced behavior, more research is necessary to establish definitive links. Throughout this exploration, it becomes increasingly clear that the relationship between stress, neuromodulator pathways, and epigenetics is intricate and multifaceted. The review emphasizes the need for further research, particularly in the context of human studies, to provide clinical significance and to validate the existing findings from animal models. By better understanding how stress influences aggressive behavior and sexual function through neuromodulator pathways and epigenetic modifications, this research aims to contribute to the development of innovative protocols of precision medicine and more effective strategies for managing the consequences of stress on human behavior. This may also pave way for further research into risk factors and underlying mechanisms that may associate stress with sexual aggression which finds application not only in neuroscience, but also law, ethics, and the humanities in general.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Basic Science Department, School of Medicine, Copperbelt University, P.O Box 71191, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Sian Megan Joanna Hemmings
- Division of Molecular Biology & Human Genetics, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Thando W. Shabangu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Lihle Qulu-Appiah
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| |
Collapse
|
34
|
Ansari MF, Prasad S, Bhardwaj S, Kamble N, Rakesh K, Holla VV, Yadav R, Mahale RR, Saini J, Pal PK. Morphometric alterations of the mesocorticolimbic network in Parkinson's disease with impulse control disorders. J Neural Transm (Vienna) 2024; 131:229-237. [PMID: 38216706 DOI: 10.1007/s00702-023-02735-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/21/2023] [Indexed: 01/14/2024]
Abstract
Impulse control disorders (ICDs) are a group of non-motor symptoms of Parkinson disease (PD) leading to significant psychosocial detrimental outcome. The mesocorticolimbic network plays a distinctive role in reward learning and executive decision making and has been suggested to be involved in ICDs in PD. To study morphometric changes of the mesocorticolimbic network in PD with ICD. A total of 18 patients of PD with ICD (PD + ICD), 19 patients of PD without ICD (PD - ICD) and 19 healthy controls (HC) were included in the study. ICDs were diagnosed using Questionnaire for Impulsive-Compulsive Disorders in PD-Rating Scale (QUIP-RS). MRI was done using a 3T scanner and assessment of cortical thickness and subcortical volumes were done using FreeSurfer. Brain regions known to be part of the mesocorticolimbic network were extracted and included for statistical analysis. There was no difference between PD + ICD and PD - ICD with regard to duration of illness or total dopaminergic medication. In comparison to HC, patients with PD + ICD demonstrated atrophy of the left frontal pole, and this atrophy neared significance in comparison to PD - ICD. The QUIP-RS had a negative correlation with left caudate volume in PD + ICD. The PD + ICD group showed distinct morphometric changes in regions involved in the mesocorticolimbic system which may contribute to the presence of ICD.
Collapse
Affiliation(s)
- Mohammed Farhan Ansari
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Shweta Prasad
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Sujas Bhardwaj
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India
| | - K Rakesh
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Rohan R Mahale
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Hosur Road, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
35
|
Mann LG, Claassen DO. Mesial temporal dopamine: From biology to behaviour. Eur J Neurosci 2024; 59:1141-1152. [PMID: 38057945 DOI: 10.1111/ejn.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023]
Abstract
While colloquially recognized for its role in pleasure, reward, and affect, dopamine is also necessary for proficient action control. Many motor studies focus on dopaminergic transmission along the nigrostriatal pathway, using Parkinson's disease as a model of a dorsal striatal lesion. Less attention to the mesolimbic pathway and its role in motor control has led to an important question related to the limbic-motor network. Indeed, secondary targets of the mesolimbic pathway include the hippocampus and amygdala, and these are linked to the motor cortex through the substantia nigra and thalamus. The modulatory impact of dopamine in the hippocampus and amygdala in humans is a focus of current investigations. This review explores dopaminergic activity in the mesial temporal lobe by summarizing dopaminergic networks and transmission in these regions and examining their role in behaviour and disease.
Collapse
Affiliation(s)
- Leah G Mann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Salazar J, Duran P, Garrido B, Parra H, Hernández M, Cano C, Añez R, García-Pacheco H, Cubillos G, Vasquez N, Chacin M, Bermúdez V. Weight Regain after Metabolic Surgery: Beyond the Surgical Failure. J Clin Med 2024; 13:1143. [PMID: 38398456 PMCID: PMC10888585 DOI: 10.3390/jcm13041143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/20/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Patients undergoing metabolic surgery have factors ranging from anatomo-surgical, endocrine metabolic, eating patterns and physical activity, mental health and psychological factors. Some of the latter can explain the possible pathophysiological neuroendocrine, metabolic, and adaptive mechanisms that cause the high prevalence of weight regain in postbariatric patients. Even metabolic surgery has proven to be effective in reducing excess weight in patients with obesity; some of them regain weight after this intervention. In this vein, several studies have been conducted to search factors and mechanisms involved in weight regain, to stablish strategies to manage this complication by combining metabolic surgery with either lifestyle changes, behavioral therapies, pharmacotherapy, endoscopic interventions, or finally, surgical revision. The aim of this revision is to describe certain aspects and mechanisms behind weight regain after metabolic surgery, along with preventive and therapeutic strategies for this complication.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Heliana Parra
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Marlon Hernández
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Clímaco Cano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela
| | - Roberto Añez
- Departamento de Endocrinología y Nutrición, Hospital Quirónsalud, 28009 Madrid, Spain
| | - Henry García-Pacheco
- Facultad de Medicina, Departamento de Cirugía, Universidad del Zulia, Hospital General del Sur, Dr. Pedro Iturbe, Maracaibo 4004, Venezuela
- Unidad de Cirugía para Obesidad y Metabolismo (UCOM), Maracaibo 4004, Venezuela
| | | | | | - Maricarmen Chacin
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080001, Colombia
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080001, Colombia
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080001, Colombia
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080001, Colombia
| |
Collapse
|
37
|
Panov G, Panova P. Neurobiochemical Disturbances in Psychosis and their Implications for Therapeutic Intervention. Curr Top Med Chem 2024; 24:1784-1798. [PMID: 38265370 DOI: 10.2174/0115680266282773240116073618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024]
Abstract
Psychosis, marked by the emergence of psychotic symptoms, delves into the intricate dance of neurotransmitter dynamics, prominently featuring dopamine as a key orchestrator. In individuals living with psychotic conditions, the finely tuned balance of dopamine becomes disrupted, setting off a cascade of perceptual distortions and the manifestation of psychotic symptoms. A lot of factors can impact dopamine metabolism, further complicating its effects. From genetic predispositions to environmental stressors and inflammation, the delicate equilibrium is susceptible to various influences. The sensorium, the origin of incoming information, loses its intrinsic valence in this complex interplay. The concept of the "signal-to-noise ratio" encapsulates dopamine's role as a molecular switch in neural networks, influencing the flow of information serving the basic biological functions. This nuanced modulation acts as a cognitive prism, shaping how the world is perceived. However, in psychosis, this balance is disrupted, steering individuals away from a shared reality. Understanding dopamine's centrality requires acknowledging its unique status among neurotransmitters. Unlike strictly excitatory or inhibitory counterparts, dopamine's versatility allows it to toggle between roles and act as a cognitive director in the neural orchestra. Disruptions in dopamine synthesis, exchange, and receptor representation set off a chain reaction, impacting the delivery of biologically crucial information. The essence of psychosis is intricately woven into the delicate biochemical ballet choreographed by dopamine. The disruption of this neurotransmitter not only distorts reality but fundamentally reshapes the cognitive and behavioral field of our experience. Recognizing dopamine's role as a cognitive prism provides vital insights into the multifaceted nature of psychotic conditions, offering avenues for targeted therapeutic interventions aimed at restoring this delicate neurotransmitter balance.
Collapse
Affiliation(s)
- Georgi Panov
- Psychiatric Clinic, University Hospital for Active Treatment "Prof. Dr. Stoyan Kirkovich," Trakia University, Stara Zagora, 6000, Bulgaria
- Department "Neurology, Psychiatry, Psychology," Medical Faculty of University "Prof. Dr. Asen Zlatarov," Burgas, 8000, Bulgaria
| | | |
Collapse
|
38
|
Buemann B. Does activation of oxytocinergic reward circuits postpone the decline of the aging brain? Front Psychol 2023; 14:1250745. [PMID: 38222845 PMCID: PMC10786160 DOI: 10.3389/fpsyg.2023.1250745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/20/2023] [Indexed: 01/16/2024] Open
Abstract
Oxytocin supports reproduction by promoting sexual- and nursing behavior. Moreover, it stimulates reproductive organs by different avenues. Oxytocin is released to the blood from terminals of oxytocinergic neurons which project from the hypothalamus to the pituitary gland. Concomitantly, the dendrites of these neurons discharge oxytocin into neighboring areas of the hypothalamus. At this location it affects other neuroendocrine systems by autocrine and paracrine mechanisms. Moreover, sensory processing, affective functions, and reward circuits are influenced by oxytocinergic neurons that reach different sites in the brain. In addition to its facilitating impact on various aspects of reproduction, oxytocin is revealed to possess significant anti-inflammatory, restoring, and tranquilizing properties. This has been demonstrated both in many in-vivo and in-vitro studies. The oxytocin system may therefore have the capacity to alleviate detrimental physiological- and mental stress reactions. Thus, high levels of endogenous oxytocin may counteract inadequate inflammation and malfunctioning of neurons and supportive cells in the brain. A persistent low-grade inflammation increasing with age-referred to as inflammaging-may lead to a cognitive decline but may also predispose to neurodegenerative diseases such as Alzheimer's and Parkinson. Interestingly, animal studies indicate that age-related destructive processes in the body can be postponed by techniques that preserve immune- and stem cell functions in the hypothalamus. It is argued in this article that sexual activity-by its stimulating impact on the oxytocinergic activity in many regions of the brain-has the capacity to delay the onset of age-related cerebral decay. This may also postpone frailty and age-associated diseases in the body. Finally, oxytocin possesses neuroplastic properties that may be applied to expand sexual reward. The release of oxytocin may therefore be further potentiated by learning processes that involves oxytocin itself. It may therefore be profitable to raise the consciousness about the potential health benefits of sexual activity particularly among the seniors.
Collapse
|
39
|
Chmiel J, Gladka A, Leszek J. The Effect of Transcranial Direct Current Stimulation (tDCS) on Anorexia Nervosa: A Narrative Review. Nutrients 2023; 15:4455. [PMID: 37892530 PMCID: PMC10610104 DOI: 10.3390/nu15204455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Introduction: Anorexia nervosa (AN) is a severe, debilitating disease with high incidence and high mortality. The methods of treatment used so far are moderately effective. Evidence from neuroimaging studies helps to design modern methods of therapy. One of them is transcranial direct current stimulation (tDCS), a non-invasive brain neuromodulation technique. (2) Methods: The purpose of this narrative review is to bring together all studies investigating the use of tDCS in the treatment of AN and to evaluate its effect and efficiency. Searches were conducted in the Pubmed/Medline, Research Gate, and Cochrane databases. (3) Results: The literature search resulted in five articles. These studies provide preliminary evidence that tDCS has the potential to alter eating behaviour, body weight, and food intake. Additionally, tDCS reduced symptoms of depression. Throughout all trials, stimulation targeted the left dorsolateral prefrontal cortex (DLPFC). Although the number of studies included is limited, attempts were made to elucidate the potential mechanisms underlying tDCS action in individuals with AN. Recommendations for future tDCS research in AN were issued. (4) Conclusions: The included studies have shown that tDCS stimulation of the left DLPFC has a positive effect on AN clinical symptoms and may improve them, as measured by various assessment measures. It is important to conduct more in-depth research on the potential benefits of using tDCS for treating AN. This should entail well-designed studies incorporating advanced neuroimaging techniques, such as fMRI. The aim is to gain a better understanding of how tDCS works in AN.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | - Anna Gladka
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
40
|
Bode A. Romantic love evolved by co-opting mother-infant bonding. Front Psychol 2023; 14:1176067. [PMID: 37915523 PMCID: PMC10616966 DOI: 10.3389/fpsyg.2023.1176067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/18/2023] [Indexed: 11/03/2023] Open
Abstract
For 25 years, the predominant evolutionary theory of romantic love has been Fisher's theory of independent emotion systems. That theory suggests that sex drive, romantic attraction (romantic love), and attachment are associated with distinct neurobiological and endocrinological systems which evolved independently of each other. Psychological and neurobiological evidence, however, suggest that a competing theory requires attention. A theory of co-opting mother-infant bonding sometime in the recent evolutionary history of humans may partially account for the evolution of romantic love. I present a case for this theory and a new approach to the science of romantic love drawing on human psychological, neurobiological, and (neuro)endocrinological studies as well as animal studies. The hope is that this theoretical review, along with other publications, will generate debate in the literature about the merits of the theory of co-opting mother-infant bonding and a new evolutionary approach to the science of romantic love.
Collapse
|
41
|
Kocakaya H, Say B. Evaluation of emotional dysregulation in patients with restless legs syndrome. Sleep Biol Rhythms 2023; 21:447-454. [PMID: 38476182 PMCID: PMC10899912 DOI: 10.1007/s41105-023-00467-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/21/2023] [Indexed: 03/14/2024]
Abstract
The aim of this study is to examine patients with restless legs syndrome (RLS) in terms of difficulty in emotion regulation and insomnia. A total of 52 patients with RLS and 57 healthy volunteers were enrolled. Difficulties in Emotion Regulation Scale Short Form (DERS-16), Insomnia Severity Index (ISI), Hospital Anxiety and Depression Scale (HADS), and International Restless Legs Syndrome rating scale were applied to participants. The mean age was 34.00 ± 8.27 years in patients and 31.70 ± 9.12 years in control. The scores of DERS-16, ISI, HADS-A, and HADS-D were significantly higher in the patients than the controls (p = 0.000). The DERS-16 total score showed a significant correlation with age (r = 0.404, p = 0.003), ISI (r = 0.281, p = 0.043), IRLS score (r = 0.422, p = 0.002), HADS-A (r = 0.409, p = 0.003), and HADS-D (r = 0.416, p = 0.002). The factors (age, gender, ferritin, ISI, and IRLS scores) that may be associated with the DERS-16 total scores were assessed with stepwise regression analysis. It was seen that the IRLSs variable had the most ability and could predict 45% (β = 0.625, p < 0.001, ∆R2 = 0.450) of difficulty in emotion regulation. In addition, the variable of insomnia could predict difficulty in emotion regulation by 17% (β = 0.097, p = 0.001, ∆R2 = 0.170). Patients with RLS may experience more emotion regulation difficulties than healthy controls. RLS severity and insomnia may be factors affecting emotion regulation difficulties in patients with RLS. According to our knowledge and our literature review, this finding seems to be the first report in the literature.
Collapse
Affiliation(s)
- Hanife Kocakaya
- Faculty of Medicine, Department of Psychiatry, Kirikkale University, Kirikkale, Turkey
| | - Bahar Say
- Faculty of Medicine, Department of Psychiatry, Kirikkale University, Kirikkale, Turkey
- Faculty of Medicine, Department of Neurology, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
42
|
Billar R, Kappen P, Mohammadian S, van den Berg C, de Rijke Y, van den Akker E, van Rosmalen J, Schnater JM, Vincent A, Dirven C, Klimek M, Wijnen R, Jeekel J, Huygen F, Tiemensma J. The effect of recorded music on pain endurance (CRESCENDo) - A randomized controlled trial. Complement Ther Med 2023; 77:102969. [PMID: 37579996 DOI: 10.1016/j.ctim.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
INTRODUCTION Clarifying the effect of music on pain endurance in an experimental design could aid in how music should be applied during both surgical and non-surgical interventions. This study aims to investigate the effect of music on pain endurance and the involvement of the sympathetic adrenomedullary axis (SAM) and the hypothalamic-pituitary-adrenocortical axis (HPA). MATERIALS AND METHODS In this randomized controlled trial all participants received increasing electric stimuli through their non-dominant index finger. Participants were randomly assigned to the music group (M) receiving a 20-minute music intervention or control group (C) receiving a 20-minute resting period. The primary outcome was pain endurance, defined as amount milliampere tolerated. Secondary outcomes included anxiety level, SAM-axis based on heart rate variability (HRV) and salivary alpha-amylase, and HPA-axis activity based on salivary cortisol. RESULTS In the intention-to-treat analysis, the effect of music on pain tolerance did not statistically differ between the M and C group. A significant positive effect of music on pain endurance was noted after excluding participants with a high skin impedance (p = 0.013, CI 0.35; 2.85). Increased HRV was observed in the M-group compared to the C-group for SDNN (B/95%CI:13.80/2.22;25.39, p = 0.022), RMSSD (B/95%CI:15.97/1.64;30.31, p = 0.032), VLF (B/95%CI:212.08/60.49;363.67, p = 0.008) and HF (B/95%CI:821.15/150.78;1491.52, p = 0.0190). No statistical significance was observed in other secondary outcomes. CONCLUSIONS The effect of the music intervention on pain endurance was not statistically significant in the intention-to-treat analysis. The subgroup analyses revealed an increase in pain endurance in the music group after correcting for skin impedance, which could be attributed to increased parasympathetic activation.
Collapse
Affiliation(s)
- Ryan Billar
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands.
| | - Pablo Kappen
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Sepehr Mohammadian
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Corinne van den Berg
- Department of Anesthesiology, Center for Pain Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yolanda de Rijke
- Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Erica van den Akker
- Department of Pediatric Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Joost van Rosmalen
- Department of Biostatistics, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - J Marco Schnater
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Arnaud Vincent
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Clemens Dirven
- Department of Anesthesiology, Center for Pain Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Markus Klimek
- Department of Anesthesiology, Center for Pain Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - René Wijnen
- Department of Pediatric Surgery, Erasmus Medical Center - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Johannes Jeekel
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Frank Huygen
- Department of Anesthesiology, Center for Pain Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jitske Tiemensma
- Department of Anesthesiology, Center for Pain Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Ventura-Aquino E, Paredes RG. Being friendly: paced mating for the study of physiological, behavioral, and neuroplastic changes induced by sexual behavior in females. Front Behav Neurosci 2023; 17:1184897. [PMID: 37840548 PMCID: PMC10568070 DOI: 10.3389/fnbeh.2023.1184897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
Paced mating in rats is an experimental condition that allows the evaluation of sexual behavior in a way that closely resembles what occurs in seminatural and natural conditions enabling the female to control the rate of the sexual interaction. In conventional non-paced mating tests, females cannot escape from male approaches, which may lead to an unrewarding overstimulation. Paced mating is an alternative laboratory procedure that improves animal welfare and has a higher ethological relevance. The use of this procedure contributed to the identification of physiological and behavioral factors that favor reproduction. Paced mating includes motivational and behavioral components differentiating quantitative and qualitative characteristics that are critical for the induction of the rewarding properties of mating. These positive consequences ensure that the behavior will be repeated, favoring the species' survival. Sexual reward is an immediate consequence of paced mating, mediated mainly by the endogenous opioid system. Paced mating also induces long-lasting neuroplastic changes, including gene expression, synthesis of proteins, and neurogenesis in sex-relevant brain areas. The interest in paced mating is growing since the complexity of its elements and consequences at different levels in a laboratory setting resembles what occurs in natural conditions. In this review, we analyze the classic studies and recent publications demonstrating the advantages of using paced mating to evaluate different aspects of sexual behavior in females.
Collapse
Affiliation(s)
- Elisa Ventura-Aquino
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Raúl G. Paredes
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| |
Collapse
|
44
|
Nimgampalle M, Chakravarthy H, Sharma S, Shree S, Bhat AR, Pradeepkiran JA, Devanathan V. Neurotransmitter systems in the etiology of major neurological disorders: Emerging insights and therapeutic implications. Ageing Res Rev 2023; 89:101994. [PMID: 37385351 DOI: 10.1016/j.arr.2023.101994] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder. However, more recent research points to a distinct pathogenic role for each neurotransmitter system in more than one neurological disorder of the central nervous system. In this context, the review provides recently updated information on each neurotransmitter system, including the pathways involved in their biochemical synthesis and regulation, their physiological functions, pathogenic roles in diseases, current diagnostics, new therapeutic targets, and the currently used drugs for associated neurological disorders. Finally, a brief overview of the recent developments in neurotransmitter-based therapeutics for selected neurological disorders is offered, followed by future perspectives in that area of research.
Collapse
Affiliation(s)
- Mallikarjuna Nimgampalle
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Harshini Chakravarthy
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| | - Sapana Sharma
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Shruti Shree
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | - Anoop Ramachandra Bhat
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India
| | | | - Vasudharani Devanathan
- Department of Biology, Indian Institute of Science Education and Research Tirupati (IISER T), Transit campus, Karakambadi Road, Mangalam, Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
45
|
Jayanti S, Dalla Verde C, Tiribelli C, Gazzin S. Inflammation, Dopaminergic Brain and Bilirubin. Int J Mol Sci 2023; 24:11478. [PMID: 37511235 PMCID: PMC10380707 DOI: 10.3390/ijms241411478] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Dopamine is a well-known neurotransmitter due to its involvement in Parkinson's disease (PD). Dopamine is not only involved in PD but also controls multiple mental and physical activities, such as the pleasure of food, friends and loved ones, music, art, mood, cognition, motivation, fear, affective disorders, addiction, attention deficit disorder, depression, and schizophrenia. Dopaminergic neurons (DOPAn) are susceptible to stressors, and inflammation is a recognized risk for neuronal malfunctioning and cell death in major neurodegenerative diseases. Less is known for non-neurodegenerative conditions. Among the endogenous defenses, bilirubin, a heme metabolite, has been shown to possess important anti-inflammatory activity and, most importantly, to prevent DOPAn demise in an ex vivo model of PD by acting on the tumor necrosis factor-alpha (TNFα). This review summarizes the evidence linking DOPAn, inflammation (when possible, specifically TNFα), and bilirubin as an anti-inflammatory in order to understand what is known, the gaps that need filling, and the hypotheses of anti-inflammatory strategies to preserve dopamine homeostasis with bilirubin included.
Collapse
Affiliation(s)
- Sri Jayanti
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
- Eijkman Research Centre for Molecular Biology, Research Organization for Health, National Research and Innovation Agency, Cibinong 16915, Indonesia
| | - Camilla Dalla Verde
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Claudio Tiribelli
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| | - Silvia Gazzin
- Italian Liver Foundation, Liver Brain Unit “Rita Moretti”, Area Science Park, Bldg. Q, SS 14, Km 163,5, 34149 Trieste, Italy; (S.J.); (C.D.V.); (S.G.)
| |
Collapse
|
46
|
Fuchshuber J, Prandstätter T, Andres D, Roithmeier L, Schmautz B, Freund A, Schwerdtfeger A, Unterrainer HF. The German version of the brief affective neuroscience personality scales including a LUST scale (BANPS-GL). Front Hum Neurosci 2023; 17:1213156. [PMID: 37484921 PMCID: PMC10359993 DOI: 10.3389/fnhum.2023.1213156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
Objectives This study presents the German version of the Brief Affective Neuroscience Personality Scales (BANPS), which includes an additional subscale for the dimension LUST. The BANPS represents a shortened version of the Affective Neuroscience Personality Scales (ANPS), a self-report instrument to assess individual dispositions toward primary emotional systems as proposed by Jaak Panksepp. Methods In a large sample (N = 926), the reliability and various facets of validity of the German translation of the BANPS were examined together with the newly included LUST scale. The BANPS-GL was related to the Big Five Inventory (BFI) and Sexual Sensation Seeking Scale (SSSS) and analyzed via confirmatory factor analysis (CFA). Results Overall, the BANPS-GL exhibited reliabilities ranging from McDonald's ω = 0.70 (CARE) to α = 0.86 (SADNESS) and plausible correlations with external criteria. For CFA a correlated 7-factor model demonstrated good fit [TLI = 0.95; RMSEA = 0.04 (90% CI: 0.04, 0.05); SRMR = 0.06]. A similar fit was demonstrated for a 2-higher-factor model [TLI = 0.93; RMSEA = 0.05 (90% CI: 0.05, 0.06); SRMR = 0.07]. Conclusion In broad agreement with the results of the original English version, the BANPS-GL showed good reliability and acceptable factorial validity, and overall improved the psychometric properties of the original long form. Finally, the inclusion of the dimension LUST allows for a complete coverage of the primary emotion dispositions as originally conceptualized by Panksepp.
Collapse
Affiliation(s)
- Jürgen Fuchshuber
- Center for Integrative Addiction Research (CIAR), Grüner Kreis Society, Vienna, Austria
- Department of Psychoanalysis and Psychotherapy, Medical University Vienna, Vienna, Austria
| | | | - Deborah Andres
- Institute of Psychology, University of Graz, Graz, Austria
| | | | - Beate Schmautz
- Institute of Psychology, University of Graz, Graz, Austria
| | - Anton Freund
- Faculty of Psychology, University of Vienna, Vienna, Austria
| | | | - Human-Friedrich Unterrainer
- Center for Integrative Addiction Research (CIAR), Grüner Kreis Society, Vienna, Austria
- Institute of Psychology, University of Graz, Graz, Austria
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University Graz, Graz, Austria
- Department of Religious Studies, University of Vienna, Vienna, Austria
- Faculty of Psychotherapy Science, Sigmund Freud University, Vienna, Austria
| |
Collapse
|
47
|
Colonnello V, Leonardi G, Farinelli M, Russo PM. The relationship of psychological health and primary emotional traits in medical students. MEDICAL TEACHER 2023; 45:717-723. [PMID: 36488198 DOI: 10.1080/0142159x.2022.2152662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Several studies have called for attention to medical students' well-being. Building on the neuroevolutionary affective neuroscience perspective that views primary emotional systems as central to well-being and the foundation of personality, this study investigated the facets of medical students' psychological well-being that are challenged and the relationships between emotional traits, psychological well-being, and depression. METHODS In a single-center cross-sectional study, medical students' primary emotional traits (SEEKING, FEAR, ANGER, SADNESS, CARE, PLAY and Spirituality), psychological well-being dimensions (autonomy, environmental mastery, positive relations, self-acceptance, purpose in life, and personal growth), and depressive symptoms were assessed using the Affective Neuroscience Personality Scale; the Psychological Well-being Scale, which provides normative data; and the Beck Depression Inventory. RESULTS Compared with the normative data, the medical students perceived lower psychological autonomy, positive relations, and self-acceptance but higher purpose in life. The medical students' emotional traits were related to specific psychological well-being facets and depression. SEEKING and, inversely, FEAR were related to well-being across dimensions and depressive symptoms. CONCLUSION Our findings are the first to show a link between emotional traits and specific facets of psychological health in medical students. Thus, this study encourages medical teachers to set learning environments that target multiple facets of well-being that harness primary emotional traits.
Collapse
Affiliation(s)
- Valentina Colonnello
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | | | - Marina Farinelli
- Clinical Psychology Service, Villa Bellombra Rehabilitation Hospital, Colibrì Consortium, Bologna, Italy
| | - Paolo M Russo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Rahdar M, Farbod Y, Seydinejad S, Zarrin M. The effect of chronic experimental toxoplasmosis on some brain neurotransmitters level and behavior changes. Exp Parasitol 2023:108575. [PMID: 37394088 DOI: 10.1016/j.exppara.2023.108575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Toxoplasma is capable of causing long-lasting brain cysts in its hosts, which can lead to physiological disturbances in brain neurotransmitters and result in changes in the host's behavior. This study aimed to investigate these changes using an experimental model. Twenty-five female Wistar rats, weighing 220-220 g and six weeks old, were selected for the study. The rats were divided into two control and experimental groups. The experimental group was injected with 5 × 105 tachyzoites of Toxoplasma gondii (virulent RH strain) intra-peritoneally. Four months after the injection, the rats were subjected to behavioral tests, including learning, memory, depression, and locomotor activity tests. The rats were then euthanized, and their brain and serum samples were analyzed for dopamine and serotonin levels. To ensure the presence of cysts in the brain tissue, a PCR test and preparation of pathological slides from the brain tissue were performed. The results showed that the amount of dopamine in the brain of the infected group was significantly higher than that of the control group, while the level of serotonin in brain of the infected group was significantly lower than that of the control group (P < 0.05). However, no significant difference was observed in the amount of these neurotransmitters in the blood of the two groups (P > 0.05). Behavioral changes were evaluated, and it was found that the learning and memory levels of the infected rats were significantly lower than those of the control group (P < 0.05), but no difference was observed in locomotor activity between the two groups (P > 0.05). This experimental infection model indicated that changes in neurotransmitter levels lead to behavior changes. CONCLUSION: The presence of parasite cysts in the brain can affect some of the host's behaviors through changes in neurotransmitter levels. Therefore, there is a possibility that there is a relationship between the presence of Toxoplasma cysts in the brain and neurological disorders. The results of this study suggest that chronic toxoplasmosis may play a role in behavior changes in psychotic diseases.
Collapse
Affiliation(s)
- Mahmoud Rahdar
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoub Farbod
- Department of Medical Physiology Department, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samira Seydinejad
- Department of Medical Parasitology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Zarrin
- Department of Medical Mycology, Medical School, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
49
|
Allen A, Heisler E, Kittelberger JM. Dopamine injections to the midbrain periaqueductal gray inhibit vocal-motor production in a teleost fish. Physiol Behav 2023; 263:114131. [PMID: 36796532 DOI: 10.1016/j.physbeh.2023.114131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Across vertebrates, the midbrain periaqueductal gray (PAG) plays a critical role in social and vocal behavior. Dopaminergic neurotransmission also modulates these behaviors, and dopaminergic innervation of the PAG has been well documented. Nonetheless, the potential role of dopamine in shaping vocal production at the level of the PAG is not well understood. Here, we tested the hypothesis that dopamine modulates vocal production in the PAG, using a well-characterized vertebrate model system for the study of vocal communication, the plainfin midshipman fish, Porichthys notatus. We found that focal dopamine injections to the midshipman PAG rapidly and reversibly inhibited vocal production triggered by stimulation of known vocal-motor structures in the preoptic area / anterior hypothalamus. While dopamine inhibited vocal-motor output, it did not alter behaviorally-relevant parameters of this output, such as vocalization duration and frequency. Dopamine-induced inhibition of vocal production was prevented by the combined blockade of D1- and D2-like receptors but was unaffected by isolated blockade of either D1-receptors or D2-receptors. Our results suggest dopamine neuromodulation in the midshipman PAG may inhibit natural vocal behavior, in courtship and/or agonistic social contexts.
Collapse
Affiliation(s)
- Alexander Allen
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, United States
| | - Elizabeth Heisler
- Department of Biology, Gettysburg College, Gettysburg, PA 17325, United States
| | | |
Collapse
|
50
|
Xu H, Owens MM, Farncombe T, Noseworthy M, MacKillop J. Molecular brain differences and cannabis involvement: A systematic review of positron emission tomography studies. J Psychiatr Res 2023; 162:44-56. [PMID: 37088043 DOI: 10.1016/j.jpsychires.2023.03.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND An increasing number of studies have used positron emission tomography (PET) to investigate molecular neurobiological differences in individuals who use cannabis. This study aimed to systematically review PET imaging research in individuals who use cannabis or have cannabis use disorder (CUD). METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria, a comprehensive systematic review was undertaken using the PubMed, Scopus, PsycINFO and Web of Science databases. RESULTS In total, 20 studies were identified and grouped into three themes: (1) studies of the dopamine system primarily found that cannabis use was associated with abnormal striatal dopamine synthesis capacity, which was in turn correlated with clinical symptoms; (2) studies of the endocannabinoid system found that cannabis use and CUD are associated with lower cannabinoid receptor type 1 availability and global reductions in fatty acid amide hydrolase binding; (3) studies of brain metabolism found that individuals who use cannabis exhibit lower normalized glucose metabolism in both cortical and subcortical brain regions, and reduced cerebral blood flow in the lateral prefrontal cortex during experimental tasks. Heterogeneity across studies prevented meta-analysis. CONCLUSION Existing PET imaging research reveals substantive molecular differences in cannabis users in the dopamine and endocannabinoid systems, and in global brain metabolism, although the heterogeneity of designs and approaches is very high, and whether these differences are causal versus consequential is largely unclear.
Collapse
Affiliation(s)
- Hui Xu
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada
| | - Max M Owens
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada
| | - Troy Farncombe
- Department of Radiology, McMaster University, 1280 Main St W, Hamilton, L8S 4L8, ON, Canada
| | - Michael Noseworthy
- School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, L8S 4L8, ON, Canada
| | - James MacKillop
- Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada; Michael G. DeGroote Centre for Medicinal Cannabis Research, St. Joseph's Healthcare Hamilton, McMaster University, 100 West 5th Street, Hamilton, L8P 3R2, ON, Canada.
| |
Collapse
|