1
|
Puerta R, de Rojas I, García-González P, Olivé C, Sotolongo-Grau O, García-Sánchez A, García-Gutiérrez F, Montrreal L, Tartari JP, Sanabria Á, Pytel V, Lage C, Quintela I, Aguilera N, Rodriguez-Rodriguez E, Alarcón-Martín E, Orellana A, Pastor P, Pérez-Tur J, Piñol-Ripoll G, López de Munain A, García-Alberca JM, Royo JL, Bullido MJ, Álvarez V, Real LM, Corbatón Anchuelo A, Gómez-Garre D, Martínez Larrad MT, Franco-Macías E, Mir P, Medina M, Sánchez-Valle R, Dols-Icardo O, Sáez ME, Carracedo Á, Tárraga L, Alegret M, Valero S, Marquié M, Boada M, Sánchez Juan P, Cavazos JE, Cabrera-Socorro A, Cano A, Ruiz A. Linking genomic and proteomic signatures to brain amyloid burden: insights from GR@ACE/DEGESCO. Funct Integr Genomics 2025; 25:73. [PMID: 40133566 PMCID: PMC11937198 DOI: 10.1007/s10142-025-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
Alzheimer's disease (AD) is a complex disease with a strong genetic component, yet many genetic risk factors remain unknown. We combined genome-wide association studies (GWAS) on amyloid endophenotypes measured in cerebrospinal fluid (CSF) and positron emission tomography (PET) as surrogates of amyloid pathology, which may provide insights into the underlying biology of the disease. We performed a meta-GWAS of CSF Aβ42 and PET measures combining six independent cohorts (n = 2,076). Given the opposite beta direction of Aβ phenotypes in CSF and PET measures, only genetic signals showing opposite directions were considered for analysis (n = 376,599). We explored the amyloidosis signature in the CSF proteome using SOMAscan proteomics (ACE cohort, n = 1,008), connected it with GWAS loci modulating amyloidosis and performed an enrichment analysis of overlapping hits. Finally, we compared our results with a large meta-analysis using publicly available datasets in CSF (n = 13,409) and PET (n = 13,116). After filtering the meta-GWAS, we observed genome-wide significance in the rs429358-APOE locus and annotated nine suggestive hits. We replicated the APOE loci using the large CSF-PET meta-GWAS, identifying multiple AD-associated genes including the novel GADL1 locus. Additionally, we found 1,387 FDR-significant SOMAscan proteins associated with CSF Aβ42 levels. The overlap among GWAS loci and proteins associated with amyloid burden was minimal (n = 35). The enrichment analysis revealed mechanisms connecting amyloidosis with the plasma membrane's anchored component, synapse physiology and mental disorders that were replicated in the large CSF-PET meta-analysis. Combining CSF and PET amyloid GWAS with CSF proteome analyses may effectively elucidate causative molecular mechanisms behind amyloid mobilization and AD physiopathology.
Collapse
Affiliation(s)
- Raquel Puerta
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- Doctorate in Biotechnology, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Oscar Sotolongo-Grau
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Ainhoa García-Sánchez
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Fernando García-Gutiérrez
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Laura Montrreal
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Carmen Lage
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Marqués de Valdecilla University Hospital- IDIVAL-Universidad de Cantabria, Santander, Spain
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nuria Aguilera
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Marqués de Valdecilla University Hospital- IDIVAL-Universidad de Cantabria, Santander, Spain
| | - Emilio Alarcón-Martín
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
| | - Adelina Orellana
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias I Pujol, Badalona, Barcelona, Spain
- The Germans Trias I Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Adolfo López de Munain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain
- Department of Neurosciences. Faculty of Medicine and Nursery, University of the Basque Country, San Sebastián, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
| | - Jose María García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Jose Luís Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica E Inmunología. School of Medicine, University of Malaga, Málaga, Spain
| | - María J Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
- Instituto de Investigación Sanitaria 'Hospital La Paz' (IdIPaz), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Miguel Real
- Instituto de Biomedicina de Sevilla/Hospital Universitario Virgen de Valme/CSIC/Dpto de Bioquímica Médica, Biología Molecular e Inmunología/Universidad de Sevilla, Sevilla, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Arturo Corbatón Anchuelo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
| | - Dulcenombre Gómez-Garre
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Madrid, Spain
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - María Teresa Martínez Larrad
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Emilio Franco-Macías
- Dementia Unit, Department of Neurology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), Seville, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Raquel Sánchez-Valle
- Alzheimer'S Disease and Other Cognitive Disorders Unit. Service of Neurology. Hospital Clínic of Barcelona. Institut d'Investigacions Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Oriol Dols-Icardo
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica- CIBERER-IDIS, Santiago de Compostela, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Montse Alegret
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pascual Sánchez Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Reina Sofia Alzheimer Centre, CIEN Foundation, ISCIII, Madrid, Spain
| | - Jose Enrique Cavazos
- South Texas Alzheimer's Disease Research Center, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Alfredo Cabrera-Socorro
- Neuroscience Therapeutic Area, Janssen Research & Development, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Amanda Cano
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Agustín Ruiz
- Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, C/ Marquès de Sentmenat, 57, 08029, Barcelona, Spain.
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
- Department of Microbiology, Immunology and Molecular Genetics. Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
2
|
Antal M. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. Int J Mol Sci 2025; 26:2356. [PMID: 40076973 PMCID: PMC11900602 DOI: 10.3390/ijms26052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms.
Collapse
Affiliation(s)
- Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
3
|
St Clair‐Glover M, Yousuf A, Kaul D, Dottori M, Adams DJ. GABA B Receptor Modulation of Membrane Excitability in Human Pluripotent Stem Cell-Derived Sensory Neurons by Baclofen and α-Conotoxin Vc1.1. J Neurochem 2025; 169:e70004. [PMID: 39871624 PMCID: PMC11773314 DOI: 10.1111/jnc.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/29/2025]
Abstract
GABAB receptor (GABABR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (CaV2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative. In this study, hPSCs were efficiently differentiated into peripheral DRG-induced sensory neurons (iSNs) using a combined chemical and transcription factor-driven approach via a neural crest cell intermediate. Molecular characterisation and transcriptomic analysis confirmed the expression of key DRG markers such as BRN3A, ISLET1, and PRPH, in addition to GABABR and ion channels including CaV2.2 and GIRK1 in iSNs. Functional characterisation of GABABR was conducted using whole-cell patch clamp electrophysiology, assessing neuronal excitability under current-clamp conditions in the absence and presence of GABABR agonists baclofen and α-conotoxin Vc1.1. Both baclofen (100 μM) and Vc1.1 (1 μM) significantly reduced membrane excitability by hyperpolarising the resting membrane potential and increasing the rheobase for action potential firing. In voltage-clamp mode, baclofen and Vc1.1 inhibited HVA Ca2+ channel currents, which were attenuated by the selective GABABR antagonist CGP 55845. However, modulation of GIRK channels by GABABRs was not observed in the presence of baclofen or Vc1.1, suggesting that functional GIRK1/2 channels were not coupled to GABABRs in hPSC-derived iSNs. This study is the first to report GABABR modulation of membrane excitability in iSNs by baclofen and Vc1.1, highlighting their potential as a future model for studying analgesic compounds.
Collapse
Affiliation(s)
- Mitchell St Clair‐Glover
- Molecular Horizons, Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - Arsalan Yousuf
- Molecular Horizons, Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
- Sydney Pharmacy School, Faculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Dominic Kaul
- Molecular Horizons, Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - Mirella Dottori
- Molecular Horizons, Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - David J. Adams
- Molecular Horizons, Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
4
|
AboTaleb HA, Alghamdi BS. Metformin and fibromyalgia pathophysiology: current insights and promising future therapeutic strategies. Mol Biol Rep 2024; 52:60. [PMID: 39692938 DOI: 10.1007/s11033-024-10159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Fibromyalgia (FM) is a complex, chronic pain syndrome characterized by widespread musculoskeletal pain, fatigue, and cognitive disturbances. Despite its prevalence, the pathophysiology of FM remains poorly understood, with current treatments often providing limited relief. Recent studies have suggested that metformin, a widely used antidiabetic drug, may have potential therapeutic benefits for chronic pain conditions, including FM. This review aims to provide current insights into the role of metformin in FM pathophysiology, focusing on its neurotransmitter-modulating and anti-inflammatory effects. Metformin has been shown to mitigate neuroinflammation, protect neural tissues, and modulate key neurotransmitters involved in pain and mood regulation. These effects are particularly evident in animal models, where metformin has been observed to reduce pain sensitivity, improve mood-related behaviors, and decrease levels of pro-inflammatory cytokines like interleukin 1-beta (IL-1β). Additionally, the ability of metformin to influence serotonin, norepinephrine, and glutamate levels suggests a potential mechanism for its analgesic and mood-stabilizing effects. However, the current evidence is largely preclinical, and further research is needed to confirm these findings in human studies. This review aims to encourage researchers to explore the association between metformin and FM more deeply, with the hope of uncovering new therapeutic strategies that could offer relief to FM patients.
Collapse
Affiliation(s)
- Hanin Abdulbaset AboTaleb
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Neuroscience and Geroscience Research Unit, King Fahd Medical Research Center, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Puerta R, de Rojas I, García-González P, Olivé C, Sotolongo-Grau O, García-Sánchez A, García-Gutiérrez F, Montrreal L, Pablo Tartari J, Sanabria Á, Pytel V, Lage C, Quintela I, Aguilera N, Rodriguez-Rodriguez E, Alarcón-Martín E, Orellana A, Pastor P, Pérez-Tur J, Piñol-Ripoll G, de Munian AL, García-Alberca JM, Royo JL, Bullido MJ, Álvarez V, Real LM, Anchuelo AC, Gómez-Garre D, Larrad MTM, Franco-Macías E, Mir P, Medina M, Sánchez-Valle R, Dols-Icardo O, Sáez ME, Carracedo Á, Tárraga L, Alegret M, Valero S, Marquié M, Boada M, Juan PS, Cavazos JE, Cabrera A, Cano A. Connecting genomic and proteomic signatures of amyloid burden in the brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313124. [PMID: 39281766 PMCID: PMC11398581 DOI: 10.1101/2024.09.06.24313124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background Alzheimer's disease (AD) has a high heritable component characteristic of complex diseases, yet many of the genetic risk factors remain unknown. We combined genome-wide association studies (GWAS) on amyloid endophenotypes measured in cerebrospinal fluid (CSF) and positron emission tomography (PET) as surrogates of amyloid pathology, which may be helpful to understand the underlying biology of the disease. Methods We performed a meta-analysis of GWAS of CSF Aβ42 and PET measures combining six independent cohorts (n=2,076). Due to the opposite effect direction of Aβ phenotypes in CSF and PET measures, only genetic signals in the opposite direction were considered for analysis (n=376,599). Polygenic risk scores (PRS) were calculated and evaluated for AD status and amyloid endophenotypes. We then searched the CSF proteome signature of brain amyloidosis using SOMAscan proteomic data (Ace cohort, n=1,008) and connected it with GWAS results of loci modulating amyloidosis. Finally, we compared our results with a large meta-analysis using publicly available datasets in CSF (n=13,409) and PET (n=13,116). This combined approach enabled the identification of overlapping genes and proteins associated with amyloid burden and the assessment of their biological significance using enrichment analyses. Results After filtering the meta-GWAS, we observed genome-wide significance in the rs429358-APOE locus and nine suggestive hits were annotated. We replicated the APOE loci using the large CSF-PET meta-GWAS and identified multiple AD-associated genes as well as the novel GADL1 locus. Additionally, we found a significant association between the AD PRS and amyloid levels, whereas no significant association was found between any Aβ PRS with AD risk. CSF SOMAscan analysis identified 1,387 FDR-significant proteins associated with CSF Aβ42 levels. The overlap among GWAS loci and proteins associated with amyloid burden was very poor (n=35). The enrichment analysis of overlapping hits strongly suggested several signalling pathways connecting amyloidosis with the anchored component of the plasma membrane, synapse physiology and mental disorders that were replicated in the large CSF-PET meta-analysis. Conclusions The strategy of combining CSF and PET amyloid endophenotypes GWAS with CSF proteome analyses might be effective for identifying signals associated with the AD pathological process and elucidate causative molecular mechanisms behind the amyloid mobilization in AD.
Collapse
Affiliation(s)
- Raquel Puerta
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- Universitat de Barcelona (UB)
| | - Itziar de Rojas
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Clàudia Olivé
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | | | | | | | - Laura Montrreal
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Juan Pablo Tartari
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Ángela Sanabria
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Vanesa Pytel
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Carmen Lage
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Inés Quintela
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII). Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nuria Aguilera
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | | | - Adelina Orellana
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- The Germans Trias i Pujol Research Institute (IGTP), Badalona, Barcelona, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Adolfo López de Munian
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology. Hospital Universitario Donostia. San Sebastian, Spain
- Department of Neurosciences. Faculty of Medicine and Nursery. University of the Basque Country, San Sebastián, Spain
- Neurosciences Area. Instituto Biodonostia. San Sebastian, Spain
| | - Jose María García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Jose Luís Royo
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. School of Medicine. University of Malaga. Málaga, Spain
| | - María Jesús Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC)
- Instituto de Investigacion Sanitaria ‘Hospital la Paz’ (IdIPaz), Madrid, Spain
- Universidad Autónoma de Madrid
| | - Victoria Álvarez
- Laboratorio de Genética. Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA)
| | - Luis Miguel Real
- Departamento de Especialidades Quirúrgicas, Bioquímica e Inmunología. School of Medicine. University of Malaga. Málaga, Spain
- Unidad Clínica de Enfermedades Infecciosas y Microbiología.Hospital Universitario de Valme, Sevilla, Spain
| | - Arturo Corbatón Anchuelo
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
| | - Dulcenombre Gómez-Garre
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
- Laboratorio de Riesgo Cardiovascular y Microbiota, Hospital Clínico San Carlos; Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid (UCM)
- Biomedical Research Networking Center in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - María Teresa Martínez Larrad
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Hospital Clínico San Carlos
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)
| | - Emilio Franco-Macías
- Dementia Unit, Department of Neurology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología. Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center
| | - Raquel Sánchez-Valle
- Alzheimer’s disease and other cognitive disorders unit. Service of Neurology. Hospital Clínic of Barcelona. Institut d’Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Oriol Dols-Icardo
- Department of Neurology, Sant Pau Memory Unit, Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ángel Carracedo
- Grupo de Medicina Xenómica, Centro Nacional de Genotipado (CEGEN-PRB3-ISCIII). Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica – CIBERER-IDIS, Santiago de Compostela, Spain
| | - Lluís Tárraga
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Montse Alegret
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sergi Valero
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Marta Marquié
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Mercè Boada
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pascual Sánchez Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Jose Enrique Cavazos
- South Texas Medical Science Training Program, University of Texas Health San Antonio, San Antonio
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
| | - Alfredo Cabrera
- Neuroscience Therapeutic Area, Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Amanda Cano
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alzheimer’s Disease Neuroimaging Initiative.
- Ace Alzheimer Center Barcelona – Universitat Internacional de Catalunya, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229 USA
| |
Collapse
|
6
|
Vural S, Türksoy VA, Uzun Akgeyik A, Kuşdoğan M. Heavy metal and trace element alterations in patients during a migraine attack. Headache 2024; 64:764-771. [PMID: 38932625 DOI: 10.1111/head.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE The aim of the study was to determine the heavy metal and trace element (HMTE) profile in patients with migraine (PwM) and to compare it to that of healthy individuals without migraine. BACKGROUND Migraine is a universal disease that affects more than 10% of the world's population; however, its pathophysiology is still obscure. METHODS A total of 100 participants were included in this prospective matched case-control study (50 PwM during acute attack and 50 age- and sex-matched healthy controls). The study was conducted in the university hospital in Yozgat, Turkey, where the inductively coupled plasma mass spectrometry system was used to measure the HMTE profile. The calibration curve was created with 11 points for heavy metals (arsenic [As], cadmium [Cd], cobalt [Co], lead [Pb], mercury [Hg], nickel [Ni], and tin [Sn]) and trace elements (antimony [Sb], chromium [Cr], copper [Cu], iron [Fe], magnesium [Mg], manganese [Mn], molybdenum [Mo], and zinc [Zn]). RESULTS The median age was 27 (23-37) years, and the female/male ratio was 37/13 for both groups. The PwM group had significantly higher As, Co, Pb, and Ni levels among the heavy metals (p = 0.033, 0.017, 0.022, and 0.021, respectively). Also, PwM had significantly lower Cr, Mg, and Zn levels among the trace elements (p = 0.007, 0.024, and < 0.001, respectively). The only trace element that was elevated in the PwM group was Mn (p = 0.001). The PwM and control groups did not differ in terms of Cd, Sn, Sb, Cu, Fe, and Mo (p = 0.165, 0.997, 0.195, 0.408, 0.440, and 0.252, respectively). CONCLUSION Some HMTE parameters are altered in PwM, which may provide additional insight into understanding migraine etiology.
Collapse
Affiliation(s)
- Sevilay Vural
- Department of Emergency Medicine, University Medical Center Groningen, Groningen, the Netherlands
- Department of Emergency Medicine, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Vugar Ali Türksoy
- Department of Public Health, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Aytül Uzun Akgeyik
- Science and Technology Application and Research Center, Yozgat Bozok University, Yozgat, Turkey
| | - Mikail Kuşdoğan
- Department of Emergency Medicine, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| |
Collapse
|
7
|
Castaldo G, Marino C, Atteno M, D’Elia M, Pagano I, Grimaldi M, Conte A, Molettieri P, Santoro A, Napolitano E, Puca I, Raimondo M, Parisella C, D’Ursi AM, Rastrelli L. Investigating the Effectiveness of a Carb-Free Oloproteic Diet in Fibromyalgia Treatment. Nutrients 2024; 16:1620. [PMID: 38892552 PMCID: PMC11175073 DOI: 10.3390/nu16111620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Fibromyalgia (FM), a chronic disease with a high incidence in women, poses a significant challenge for diagnosis and treatment, especially due to the absence of specific biomarkers and the multifaceted nature of its symptoms, which range from neuromuscular pain to mood disorders and intestinal dysbiosis. While diagnosis currently relies on rheumatological clinical evaluations and treatment options mainly focus on symptom management, FM seems to have possible links with systemic metabolic dysfunctions with a common inflammatory root. In this context, a new therapeutic avenue emerges: could a therapeutic nutritional approach be the missing piece of the puzzle? Indeed, diet therapies employed particularly for metabolic syndromes proved recently to be efficacious for correcting systemic dysmetabolism and a high number of chronic inflammation conditions. In particular, the very-low-calorie ketogenic diet (VLCKD) demonstrated therapeutic benefits in many disorders. In the present study, we aimed to investigate the specific effects of two dietary interventions, namely the oloproteic VLCKD and the low-glycemic insulinemic (LOGI) diet, on two groups of female FM patients (FM1 and FM2) over a 45-day period. Utilizing clinical and laboratory tests, as well as non-invasive NMR metabolomic analysis of serum, urine, and saliva samples, we sought to uncover how these dietary regimens impact the metabolic dysfunctions associated with FM.
Collapse
Affiliation(s)
- Giuseppe Castaldo
- NutriKeto_LAB Unisa—“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy (M.A.); (I.P.); (A.C.); (P.M.); (I.P.); (M.R.); (C.P.)
| | - Carmen Marino
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.M.); (E.N.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.G.); (A.S.)
| | - Mariangela Atteno
- NutriKeto_LAB Unisa—“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy (M.A.); (I.P.); (A.C.); (P.M.); (I.P.); (M.R.); (C.P.)
| | - Maria D’Elia
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy;
- Department of Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Imma Pagano
- NutriKeto_LAB Unisa—“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy (M.A.); (I.P.); (A.C.); (P.M.); (I.P.); (M.R.); (C.P.)
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.G.); (A.S.)
| | - Aurelio Conte
- NutriKeto_LAB Unisa—“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy (M.A.); (I.P.); (A.C.); (P.M.); (I.P.); (M.R.); (C.P.)
| | - Paola Molettieri
- NutriKeto_LAB Unisa—“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy (M.A.); (I.P.); (A.C.); (P.M.); (I.P.); (M.R.); (C.P.)
| | - Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.G.); (A.S.)
- Department of Pharmacy, Scuola di Specializzazione in Farmacia Ospedaliera, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Enza Napolitano
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (C.M.); (E.N.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.G.); (A.S.)
| | - Ilaria Puca
- NutriKeto_LAB Unisa—“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy (M.A.); (I.P.); (A.C.); (P.M.); (I.P.); (M.R.); (C.P.)
| | - Mariangela Raimondo
- NutriKeto_LAB Unisa—“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy (M.A.); (I.P.); (A.C.); (P.M.); (I.P.); (M.R.); (C.P.)
| | - Chiara Parisella
- NutriKeto_LAB Unisa—“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy (M.A.); (I.P.); (A.C.); (P.M.); (I.P.); (M.R.); (C.P.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy; (M.G.); (A.S.)
| | - Luca Rastrelli
- NutriKeto_LAB Unisa—“San Giuseppe Moscati” National Hospital (AORN), Contrada Amoretta, 83100 Avellino, Italy (M.A.); (I.P.); (A.C.); (P.M.); (I.P.); (M.R.); (C.P.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy;
| |
Collapse
|
8
|
Rusciano D. Molecular Mechanisms and Therapeutic Potential of Gabapentin with a Focus on Topical Formulations to Treat Ocular Surface Diseases. Pharmaceuticals (Basel) 2024; 17:623. [PMID: 38794193 PMCID: PMC11124268 DOI: 10.3390/ph17050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Gabapentin (GBP) was originally developed as a potential agonist for Gamma-Amino-Butyric-Acid (GABA) receptors, aiming to inhibit the activation of pain-signaling neurons. Contrary to initial expectations, it does not bind to GABA receptors. Instead, it exhibits several distinct pharmacological activities, including: (1) binding to the alpha-2-delta protein subunit of voltage-gated calcium channels in the central nervous system, thereby blocking the excitatory influx of calcium; (2) reducing the expression and phosphorylation of CaMKII via modulation of ERK1/2 phosphorylation; (3) inhibiting glutamate release and interfering with the activation of NMDA receptors; (4) enhancing GABA synthesis; (5) increasing cell-surface expression of δGABA_A receptors, contributing to its antinociceptive, anticonvulsant, and anxiolytic-like effects. Additionally, GBP displays (6) inhibition of NF-kB activation and subsequent production of inflammatory cytokines, and (7) stimulation of the purinergic adenosine A1 receptor, which supports its anti-inflammatory and wound-healing properties. Initially approved for treating seizures and postherpetic neuralgia, GBP is now broadly used for various conditions, including psychiatric disorders, acute and chronic neuropathic pain, and sleep disturbances. Recently, as an eye drop formulation, it has also been explored as a therapeutic option for ocular surface discomfort in conditions such as dry eye, neurotrophic keratitis, corneal ulcers, and neuropathic ocular pain. This review aims to summarize the evidence supporting the molecular effects of GBP, with a special emphasis on its applications in ocular surface diseases.
Collapse
|
9
|
Toikumo S, Vickers-Smith R, Jinwala Z, Xu H, Saini D, Hartwell EE, Pavicic M, Sullivan KA, Xu K, Jacobson DA, Gelernter J, Rentsch CT, Stahl E, Cheatle M, Zhou H, Waxman SG, Justice AC, Kember RL, Kranzler HR. A multi-ancestry genetic study of pain intensity in 598,339 veterans. Nat Med 2024; 30:1075-1084. [PMID: 38429522 DOI: 10.1038/s41591-024-02839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/27/2024] [Indexed: 03/03/2024]
Abstract
Chronic pain is a common problem, with more than one-fifth of adult Americans reporting pain daily or on most days. It adversely affects the quality of life and imposes substantial personal and economic costs. Efforts to treat chronic pain using opioids had a central role in precipitating the opioid crisis. Despite an estimated heritability of 25-50%, the genetic architecture of chronic pain is not well-characterized, in part because studies have largely been limited to samples of European ancestry. To help address this knowledge gap, we conducted a cross-ancestry meta-analysis of pain intensity in 598,339 participants in the Million Veteran Program, which identified 126 independent genetic loci, 69 of which are new. Pain intensity was genetically correlated with other pain phenotypes, level of substance use and substance use disorders, other psychiatric traits, education level and cognitive traits. Integration of the genome-wide association studies findings with functional genomics data shows enrichment for putatively causal genes (n = 142) and proteins (n = 14) expressed in brain tissues, specifically in GABAergic neurons. Drug repurposing analysis identified anticonvulsants, β-blockers and calcium-channel blockers, among other drug groups, as having potential analgesic effects. Our results provide insights into key molecular contributors to the experience of pain and highlight attractive drug targets.
Collapse
Affiliation(s)
- Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel Vickers-Smith
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Epidemiology and Environmental Health, University of Kentucky College of Public Health, Lexington, KY, USA
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Heng Xu
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divya Saini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily E Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mirko Pavicic
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kyle A Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ke Xu
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Joel Gelernter
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher T Rentsch
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- London School of Hygiene & Tropical Medicine, London, UK
| | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Martin Cheatle
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hang Zhou
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Section of Biomedical Informatics and Data Science, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G Waxman
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Amy C Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale University School of Public Health, New Haven, CT, USA
| | - Rachel L Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA.
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Otanuly M, Kubitschke M, Masseck OA. A Bright Future? A Perspective on Class C GPCR Based Genetically Encoded Biosensors. ACS Chem Neurosci 2024; 15:889-897. [PMID: 38380648 PMCID: PMC10921406 DOI: 10.1021/acschemneuro.3c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024] Open
Abstract
One of the major challenges in molecular neuroscience today is to accurately monitor neurotransmitters, neuromodulators, peptides, and various other biomolecules in the brain with high temporal and spatial resolution. Only a comprehensive understanding of neuromodulator dynamics, their release probability, and spatial distribution will unravel their ultimate role in cognition and behavior. This Perspective offers an overview of potential design strategies for class C GPCR-based biosensors. It briefly highlights current applications of GPCR-based biosensors, with a primary focus on class C GPCRs and their unique structural characteristics compared with other GPCR subfamilies. The discussion offers insights into plausible future design approaches for biosensor development targeting members of this specific GPCR subfamily. It is important to note that, at this stage, we are contemplating possibilities rather than presenting a concrete guide, as the pipeline is still under development.
Collapse
Affiliation(s)
- Margulan Otanuly
- Synthetische Biologie, Universität Bremen, Bremen 28359, Germany
| | | | | |
Collapse
|
11
|
Chen X, Tang SJ. Neural Circuitry Polarization in the Spinal Dorsal Horn (SDH): A Novel Form of Dysregulated Circuitry Plasticity during Pain Pathogenesis. Cells 2024; 13:398. [PMID: 38474361 PMCID: PMC10930392 DOI: 10.3390/cells13050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.
Collapse
Affiliation(s)
| | - Shao-Jun Tang
- Stony Brook University Pain and Anesthesia Research Center (SPARC), Department of Anesthesiology, Stony Brook University, Stony Brook, NY 11794, USA;
| |
Collapse
|
12
|
Rus A, López-Sánchez JA, Martínez-Martos JM, Ramírez-Expósito MJ, Molina F, Correa-Rodríguez M, Aguilar-Ferrándiz ME. Predictive Ability of Serum Amino Acid Levels to Differentiate Fibromyalgia Patients from Healthy Subjects. Mol Diagn Ther 2024; 28:113-128. [PMID: 37843759 DOI: 10.1007/s40291-023-00677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Fibromyalgia is a complex illness to diagnose and treat. OBJECTIVES To evaluate a broad range of circulating free amino acid (AA) levels in fibromyalgia patients as well as the ability of the AAs to differentiate fibromyalgia patients from healthy subjects. DESIGN We carried out a case-control study to evaluate AA levels in 62 patients with fibromyalgia and 78 healthy subjects. This study adheres to the STROBE guidelines. METHODS AAs content was assayed by HPLC in serum samples. The predictive value of AA levels in fibromyalgia was determined by receiver operating characteristic (ROC) curve and forward binary logistic regression analyses. RESULTS Fibromyalgia patients showed higher serum levels of aspartic acid, glutamic acid, aminoadipic acid, asparagine, histidine, 3-methyl-histidine, 5-methyl-histidine, glycine, threonine, taurine, tyrosine, valine, methionine, isoleucine, phenylalanine, leucine, ornithine, lysine, branched chain AAs (BCAAs), large neutral AAs, essential AAs (EAAs), non-essential AAs (NEAAs), basic AAs, EAAs/NEAAs ratio, phenylalanine/tyrosine ratio, and global arginine bioavailability ratio than the controls. Serum alanine levels were lower in patients than in controls. According to ROC analysis, most of these AAs may be good markers for differentiating individuals with fibromyalgia from healthy subjects. Results of logistic regression showed that the combination of glutamic acid, histidine, and alanine had the greatest predictive ability to diagnose fibromyalgia. CONCLUSIONS Our results show an imbalance in serum levels of most AAs in patients with fibromyalgia, which suggest a metabolic disturbance. The determination of serum levels of these AAs may aid in the diagnosis of fibromyalgia, in combination with clinical data of the patient.
Collapse
Affiliation(s)
- Alma Rus
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain
| | - José Alberto López-Sánchez
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012, Granada, Spain
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Avenida de la Ilustración, 60, 18016, Granada, Spain
| | | | | | - Francisco Molina
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071, Granada, Spain
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Avenida de la Ilustración, 60, 18016, Granada, Spain
| | - María Correa-Rodríguez
- Department of Nursing, Faculty of Health Sciences, University of Granada, Avenida de la Ilustración, 60, 18016, Granada, Spain.
| | - María Encarnación Aguilar-Ferrándiz
- Department of Cell Biology, University of Granada, Avenida de la Fuentenueva, s/n, 18071, Granada, Spain
- Department of Physical Therapy, Faculty of Health Sciences, University of Granada, Avenida de la Ilustración, 60, 18016, Granada, Spain
| |
Collapse
|
13
|
Shaikh A, Li YQ, Lu J. Perspectives on pain in Down syndrome. Med Res Rev 2023; 43:1411-1437. [PMID: 36924439 DOI: 10.1002/med.21954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/08/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Down syndrome (DS) or trisomy 21 is a genetic condition often accompanied by chronic pain caused by congenital abnormalities and/or conditions, such as osteoarthritis, recurrent infections, and leukemia. Although DS patients are more susceptible to chronic pain as compared to the general population, the pain experience in these individuals may vary, attributed to the heterogenous structural and functional differences in the central nervous system, which might result in abnormal pain sensory information transduction, transmission, modulation, and perception. We tried to elaborate on some key questions and possible explanations in this review. Further clarification of the mechanisms underlying such abnormal conditions induced by the structural and functional differences is needed to help pain management in DS patients.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology, and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jie Lu
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
14
|
Wu YY, Wang Q, Zhang PA, Zhu C, Xu GY. miR-1306-3p directly activates P2X3 receptors in primary sensory neurons to induce visceral pain in rats. Pain 2023; 164:1555-1565. [PMID: 36633528 PMCID: PMC10281022 DOI: 10.1097/j.pain.0000000000002853] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 01/13/2023]
Abstract
ABSTRACT Mounting evidence indicates that microRNAs (miRNAs) play critical roles in various pathophysiological conditions and diseases, but the physiological roles of extracellular miRNAs on the disease-related ion channels remain largely unknown. Here, we showed that miR-1306-3p evoked action potentials and induced inward currents of the acutely isolated rat dorsal root ganglion (DRG) neurons. The miR-1306-3p-induced effects were significantly inhibited by A317491, a potent inhibitor of the P2X3 receptor (P2X3R), or disappeared after the knockdown of P2X3Rs in DRG neurons. We further identified R180, K315, and R52 as the miR-1306-3p interaction sites on the extracellular domain of P2X3Rs, which were distinct from the orthosteric ATP-binding sites. Intrathecal injection of miR-1306-3p produced visceral pain but not somatic pain in normal control rats. Conversely, intrathecal application of a miR-1306-3p antagomir and A317491 significantly alleviated visceral pain in a rat model of chronic visceral pain. Together, our findings suggest that miR-1306-3p might function as an endogenous ligand to activate P2X3Rs, eventually leading to chronic visceral pain.
Collapse
Affiliation(s)
- Yan-Yan Wu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
- School of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, P. R. China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, Suzhou, P.R. China
| | - Ping-An Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
| | - Cheng Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
15
|
Hoffman T, Bar-Shalita T, Granovsky Y, Gal E, Kalingel-Levi M, Dori Y, Buxbaum C, Yarovinsky N, Weissman-Fogel I. Indifference or hypersensitivity? Solving the riddle of the pain profile in individuals with autism. Pain 2023; 164:791-803. [PMID: 36730631 DOI: 10.1097/j.pain.0000000000002767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/16/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Excitatory-inhibitory (E/I) imbalance is a mechanism that underlies autism spectrum disorder, but it is not systematically tested for pain processing. We hypothesized that the pain modulation profile (PMP) in autistic individuals is characterized by less efficient inhibitory processes together with a facilitative state, indicative of a pronociceptive PMP. Fifty-two adults diagnosed with autism and 52 healthy subjects, age matched and sex matched, underwent quantitative sensory testing to assess the function of the (1) pain facilitatory responses to phasic, repetitive, and tonic heat pain stimuli and (2) pain inhibitory processes of habituation and conditioned pain modulation. Anxiety, pain catastrophizing, sensory, and pain sensitivity were self-reported. The autistic group reported significantly higher pain ratings of suprathreshold single ( P = 0.001), repetitive (46°C- P = 0.018; 49°C- P = 0.003; 52°C- P < 0.001), and tonic ( P = 0.013) heat stimuli that were cross correlated ( r = 0.48-0.83; P < 0.001) and associated with sensitivity to daily life pain situations ( r = 0.39-0.45; P < 0.005) but not with psychological distress levels. Hypersensitivity to experimental pain was attributed to greater autism severity and sensory hypersensitivity to daily stimuli. Subjects with autism efficiently inhibited phasic but not tonic heat stimuli during conditioned pain modulation. In conclusion, in line with the E/I imbalance mechanism, autism is associated with a pronociceptive PMP expressed by hypersensitivity to daily stimuli and experimental pain and less-efficient inhibition of tonic pain. The latter is an experimental pain model resembling clinical pain. These results challenge the widely held belief that individuals with autism are indifferent to pain and should raise caregivers' awareness of pain sensitivity in autism.
Collapse
Affiliation(s)
- Tseela Hoffman
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Yelena Granovsky
- Department of Neurology, Rambam Health Care Center, Haifa, Israel
- Laboratory of Clinical Neurophysiology, Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Eynat Gal
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Merry Kalingel-Levi
- Department of Occupational Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Yael Dori
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| | - Chen Buxbaum
- Department of Neurology, Rambam Health Care Center, Haifa, Israel
| | - Natalya Yarovinsky
- Department of Cognitive Neurology, Rambam Health Care Center, Haifa, Israel
| | - Irit Weissman-Fogel
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
16
|
Hone AJ, McIntosh JM. Nicotinic acetylcholine receptors: Therapeutic targets for novel ligands to treat pain and inflammation. Pharmacol Res 2023; 190:106715. [PMID: 36868367 PMCID: PMC10691827 DOI: 10.1016/j.phrs.2023.106715] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have been historically defined as ligand-gated ion channels and function as such in the central and peripheral nervous systems. Recently, however, non-ionic signaling mechanisms via nAChRs have been demonstrated in immune cells. Furthermore, the signaling pathways where nAChRs are expressed can be activated by endogenous ligands other than the canonical agonists acetylcholine and choline. In this review, we discuss the involvement of a subset of nAChRs containing α7, α9, and/or α10 subunits in the modulation of pain and inflammation via the cholinergic anti-inflammatory pathway. Additionally, we review the most recent advances in the development of novel ligands and their potential as therapeutics.
Collapse
Affiliation(s)
- Arik J Hone
- School of Biological Sciences University of Utah, Salt Lake City, UT, USA; MIRECC, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - J Michael McIntosh
- School of Biological Sciences University of Utah, Salt Lake City, UT, USA; Department of Psychiatry, University of Utah, Salt Lake City, UT, USA; George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Toikumo S, Vickers-Smith R, Jinwala Z, Xu H, Saini D, Hartwell E, Venegas MP, Sullivan KA, Xu K, Jacobson DA, Gelernter J, Rentsch CT, Stahl E, Cheatle M, Zhou H, Waxman SG, Justice AC, Kember RL, Kranzler HR. The genetic architecture of pain intensity in a sample of 598,339 U.S. veterans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.09.23286958. [PMID: 36993749 PMCID: PMC10055465 DOI: 10.1101/2023.03.09.23286958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chronic pain is a common problem, with more than one-fifth of adult Americans reporting pain daily or on most days. It adversely affects quality of life and imposes substantial personal and economic costs. Efforts to treat chronic pain using opioids played a central role in precipitating the opioid crisis. Despite an estimated heritability of 25-50%, the genetic architecture of chronic pain is not well characterized, in part because studies have largely been limited to samples of European ancestry. To help address this knowledge gap, we conducted a cross-ancestry meta-analysis of pain intensity in 598,339 participants in the Million Veteran Program, which identified 125 independent genetic loci, 82 of which are novel. Pain intensity was genetically correlated with other pain phenotypes, level of substance use and substance use disorders, other psychiatric traits, education level, and cognitive traits. Integration of the GWAS findings with functional genomics data shows enrichment for putatively causal genes (n = 142) and proteins (n = 14) expressed in brain tissues, specifically in GABAergic neurons. Drug repurposing analysis identified anticonvulsants, beta-blockers, and calcium-channel blockers, among other drug groups, as having potential analgesic effects. Our results provide insights into key molecular contributors to the experience of pain and highlight attractive drug targets.
Collapse
Affiliation(s)
- Sylvanus Toikumo
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel Vickers-Smith
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Epidemiology, University of Kentucky College of Public Health; Center on Drug and Alcohol Research, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Zeal Jinwala
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Heng Xu
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Divya Saini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily Hartwell
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mirko P. Venegas
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kyle A. Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Ke Xu
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | | | - Joel Gelernter
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Christopher T. Rentsch
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
- London School of Hygiene & Tropical Medicine, London, UK
| | | | - Eli Stahl
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Martin Cheatle
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hang Zhou
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Stephen G. Waxman
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Amy C. Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
- Yale University School of Medicine, New Haven, CT, USA
- Yale University School of Public Health, New Haven, CT, USA
| | - Rachel L. Kember
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry R. Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
18
|
Day-Cooney J, Dalangin R, Zhong H, Mao T. Genetically encoded fluorescent sensors for imaging neuronal dynamics in vivo. J Neurochem 2023; 164:284-308. [PMID: 35285522 PMCID: PMC11322610 DOI: 10.1111/jnc.15608] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.
Collapse
Affiliation(s)
- Julian Day-Cooney
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Rochelin Dalangin
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, California, USA
| | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Tianyi Mao
- Vollum Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
19
|
Royse SK, Lopresti BJ, Mathis CA, Tollefson S, Narendran R. Beyond monoamines: II. Novel applications for PET imaging in psychiatric disorders. J Neurochem 2023; 164:401-443. [PMID: 35716057 DOI: 10.1111/jnc.15657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
Early applications of positron emission tomography (PET) in psychiatry sought to identify derangements of cerebral blood flow and metabolism. The need for more specific neurochemical imaging probes was soon evident, and these probes initially targeted the sites of action of neuroleptic (dopamine D2 receptors) and psychoactive (serotonin receptors) drugs. For nearly 30 years, the centrality of monoamine dysfunction in psychiatric disorders drove the development of an armamentarium of monoaminergic PET radiopharmaceuticals and imaging methodologies. However, continued investments in monoamine-enhancing drug development realized only modest gains in efficacy and tolerability. As patent protection for many widely prescribed and profitable psychiatric drugs lapsed, drug development pipelines shifted away from monoamines in search of novel targets with the promises of improved efficacy, or abandoned altogether. Over this period, PET radiopharmaceutical development activities closely parallelled drug development priorities, resulting in the development of new PET imaging agents for non-monoamine targets. In part two of this review, we survey clinical research studies using the novel targets and radiotracers described in part one across major psychiatric application areas such as substance use disorders, anxiety disorders, eating disorders, personality disorders, mood disorders, and schizophrenia. Important limitations of the studies described are discussed, as well as key methodologic issues, challenges to the field, and the status of clinical trials seeking to exploit these targets for novel therapeutics.
Collapse
Affiliation(s)
- Sarah K Royse
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J Lopresti
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chester A Mathis
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Savannah Tollefson
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajesh Narendran
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
21
|
Light-Induced Activation of a Specific Type-5 Metabotropic Glutamate Receptor Antagonist in the Ventrobasal Thalamus Causes Analgesia in a Mouse Model of Breakthrough Cancer Pain. Int J Mol Sci 2022; 23:ijms23148018. [PMID: 35887364 PMCID: PMC9323585 DOI: 10.3390/ijms23148018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022] Open
Abstract
Breakthrough cancer pain (BTcP) refers to a sudden and transient exacerbation of pain, which develops in patients treated with opioid analgesics. Fast-onset analgesia is required for the treatment of BTcP. Light-activated drugs offer a novel potential strategy for the rapid control of pain without the typical adverse effects of systemic analgesic drugs. mGlu5 metabotropic glutamate receptor antagonists display potent analgesic activity, and light-induced activation of one of these compounds (JF-NP-26) in the thalamus was found to induce analgesia in models of inflammatory and neuropathic pain. We used an established mouse model of BTcP based on the injection of cancer cells into the femur, followed, 16 days later, by systemic administration of morphine. BTcP was induced by injection of endothelin-1 (ET-1) into the tumor, 20 min after morphine administration. Mice were implanted with optic fibers delivering light in the visible spectrum (405 nm) in the thalamus or prelimbic cortex to locally activate systemically injected JF-NP-26. Light delivery in the thalamus caused rapid and substantial analgesia, and this effect was specific because light delivery in the prelimbic cortex did not relieve BTcP. This finding lays the groundwork for the use of optopharmacology in the treatment of BTcP.
Collapse
|
22
|
Wang Y, Kang H, Jin M, Wang G, Ma W, Liu Z, Xue Y, Li C. Phenotypic and Transcriptomics Analyses Reveal Underlying Mechanisms in a Mouse Model of Corneal Bee Sting. Toxins (Basel) 2022; 14:toxins14070468. [PMID: 35878206 PMCID: PMC9323056 DOI: 10.3390/toxins14070468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Corneal bee sting (CBS) is one of the most common ocular traumas and can lead to blindness. The ophthalmic manifestations are caused by direct mechanical effects of bee stings, toxic effects, and host immune responses to bee venom (BV); however, the underlying pathogenesis remains unclear. Clinically, topical steroids and antibiotics are routinely used to treat CBS patients but the specific drug targets are unknown; therefore, it is imperative to study the pathological characteristics, injury mechanisms, and therapeutic targets involved in CBS. In the present study, a CBS injury model was successfully established by injecting BV into the corneal stroma of healthy C57BL/6 mice. F-actin staining revealed corneal endothelial cell damage, decreased density, skeletal disorder, and thickened corneal stromal. The terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay showed apoptosis of both epithelial and endothelial cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that cytokine–cytokine interactions were the most relevant pathway for pathogenesis. Protein–protein interaction (PPI) network analysis showed that IL-1, TNF, and IL-6 were the most relevant nodes. RNA-seq after the application of Tobradex® (0.3% tobramycin and 0.1% dexamethasone) eye ointment showed that Tobradex® not only downregulated relevant inflammatory factors but also reduced corneal pain as well as promoted nerve regeneration by repairing axons. Here, a stable and reliable model of CBS injury was successfully established for the first time, and the pathogenesis of CBS and the therapeutic targets of Tobradex® are discussed. These hub genes are expected to be biomarkers and therapeutic targets for the diagnosis and treatment of CBS.
Collapse
Affiliation(s)
- Yanzi Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.W.); (H.K.); (M.J.); (Z.L.)
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Honghua Kang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.W.); (H.K.); (M.J.); (Z.L.)
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Mengyi Jin
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.W.); (H.K.); (M.J.); (Z.L.)
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guoliang Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
| | - Weifang Ma
- Department of Ophthalmology, No.4 West China Teaching Hospital, Sichuan University, Chengdu 610041, China;
| | - Zhen Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.W.); (H.K.); (M.J.); (Z.L.)
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
- Correspondence: (Y.X.); (C.L.); Tel./Fax: +86-592-2189698 (Y.X.)
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.W.); (H.K.); (M.J.); (Z.L.)
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
- Correspondence: (Y.X.); (C.L.); Tel./Fax: +86-592-2189698 (Y.X.)
| |
Collapse
|
23
|
[6]-Shogaol Attenuates Oxaliplatin-Induced Allodynia through Serotonergic Receptors and GABA in the Spinal Cord in Mice. Pharmaceuticals (Basel) 2022; 15:ph15060726. [PMID: 35745645 PMCID: PMC9227032 DOI: 10.3390/ph15060726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 01/27/2023] Open
Abstract
Although oxaliplatin is a well-known anti-cancer agent used for the treatment of colorectal cancer, treated patients often experience acute cold and mechanical allodynia as side effects. Unfortunately, no optimal treatment has been developed yet. In this study, [6]-shogaol (10 mg/kg, i.p.), which is one of the major bioactive components of Zingiber officinale roscoe (Z. officinale), significantly alleviated allodynia induced by oxaliplatin (6 mg/kg, i.p.) injection. Cold and mechanical allodynia were assessed by acetone drop and von Frey filament tests, respectively. The analgesic effect of [6]-shogaol was blocked by the intrathecal injection of 5-HT1A, 5-HT3, and GABAB receptor antagonists, NAN-190 (1 μg), MDL-72222 (15 μg), and CGP 55845 (10 μg), respectively. Furthermore, oxaliplatin injection lowered the GABA concentration in the superficial laminae of the spinal dorsal horn, whereas [6]-shogaol injection significantly elevated it. The GAD (glutamic acid decarboxylase) 65 concentration also increased after [6]-shogaol administration. However, pre-treatment of NAN-190 completely inhibited the increased GABA induced by [6]-shogaol in the spinal dorsal horn, whereas MDL-72222 partially blocked the effect. Altogether, these results suggest that [6]-shogaol could attenuate oxaliplatin-induced cold and mechanical allodynia through 5-HT1A and 5-HT3 receptor antagonists located in the GABAergic neurons in the spinal dorsal horn in mice.
Collapse
|
24
|
Notartomaso S, Boccella S, Antenucci N, Ricciardi F, Fazio F, Liberatore F, Scarselli P, Scioli M, Mascio G, Bruno V, Battaglia G, Nicoletti F, Maione S, Luongo L. Analgesic Activity of Cinnabarinic Acid in Models of Inflammatory and Neuropathic Pain. Front Mol Neurosci 2022; 15:892870. [PMID: 35721314 PMCID: PMC9204652 DOI: 10.3389/fnmol.2022.892870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022] Open
Abstract
Cinnabarinic acid (CA) is a trace kynurenine metabolite, which activates both type-4 metabotropic glutamate (mGlu4) and arylic hydrocarbon (Ah) receptors. We examined the action of CA in models of inflammatory and neuropathic pain moving from the evidence that mGlu4 receptors are involved in the regulation of pain thresholds. Systemic administration of low doses of CA (0.125 and 0.25 mg/kg, i.p.) reduced nocifensive behaviour in the second phase of the formalin test. CA-induced analgesia was abrogated in mGlu4 receptor knockout mice, but was unaffected by treatment with the Ah receptor antagonist, CH223191 (1 mg/Kg, s.c.). Acute injection of low doses of CA (0.25 mg/kg, i.p.) also caused analgesia in mice subjected to Chronic Constriction Injury (CCI) of the sciatic nerve. Electrophysiological recording showed no effect of CA on spinal cord nociceptive neurons and a trend to a lowering effect on the frequency and duration of excitation of the rostral ventromedial medulla (RVM) ON cells in CCI mice. However, local application of CH223191 or the group-III mGlu receptor antagonist, MSOP disclosed a substantial lowering and enhancing effect of CA on both populations of neurons, respectively. When repeatedly administered to CCI mice, CA retained the analgesic activity only when combined with CH223191. Repeated administration of CA plus CH223191 restrained the activity of both spinal nociceptive neurons and RVM ON cells, in full agreement with the analgesic activity. These findings suggest that CA is involved in the regulation of pain transmission, and its overall effect depends on the recruitment of mGlu4 and Ah receptors.
Collapse
Affiliation(s)
- Serena Notartomaso
- Department of Molecular Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Serena Boccella
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - N. Antenucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Flavia Ricciardi
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Francesco Fazio
- Department of Psychiatry and Health Science, University of California, San Diego, La Jolla, CA, United States
| | - F. Liberatore
- Department of Molecular Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - P. Scarselli
- Department of Molecular Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - M. Scioli
- Department of Molecular Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Giada Mascio
- Department of Molecular Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - V. Bruno
- Department of Molecular Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Battaglia
- Department of Molecular Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
| | - Livio Luongo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, Italy
- *Correspondence: Livio Luongo,
| |
Collapse
|
25
|
Zhao M, Shao C, Dong J, Chen Q, Ma R, Jiang P, Zhang WN, Yang K. GABA B receptors constrain glutamate presynaptic release and postsynaptic actions in substantia gelatinosa of rat spinal cord. Brain Struct Funct 2022; 227:1893-1905. [PMID: 35318502 DOI: 10.1007/s00429-022-02481-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
Abstract
The substantia gelatinosa (SG, lamina II of spinal cord gray matter) is pivotal for modulating nociceptive information from the peripheral to the central nervous system. γ-Aminobutyric acid type B receptors (GABABRs), the metabotropic GABA receptor subtype, are widely expressed in pre- and postsynaptic structures of the SG. Activation of GABABRs by exogenous agonists induces both pre- and postsynaptic inhibition. However, the actions of endogenous GABA via presynaptic GABABRs on glutamatergic synapses, and the postsynaptic GABABRs interaction with glutamate, remain elusive. In the present study, first, using in vitro whole-cell recordings and taking minimal stimulation strategies, we found that in rat spinal cord glutamatergic synapses, blockade of presynaptic GABABRs switched "silent" synapses into active ones and increased the probability of glutamate release onto SG neurons; increasing ambient GABA concentration mimicked GABABRs activation on glutamatergic terminals. Next, using holographic photostimulation to uncage glutamate on postsynaptic SG neurons, we found that postsynaptic GABABRs modified glutamate-induced postsynaptic potentials. Taken together, our data identify that endogenous GABA heterosynaptically constrains glutamate release via persistently activating presynaptic GABABRs; and postsynaptically, GABABRs modulate glutamate responses. The results give new clues for endogenous GABA in modulating the nociception circuit of the spinal dorsal horn and shed fresh light on the postsynaptic interaction of glutamate and GABA.
Collapse
Affiliation(s)
- Mingwei Zhao
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Caifeng Shao
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiaxue Dong
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qian Chen
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Rui Ma
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ping Jiang
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wei-Ning Zhang
- Department of Pathophysiology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kun Yang
- Department of Anatomy, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China. .,Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
26
|
MiR-30d Participates in Vincristine-Induced Neuropathic Pain by Down-Regulating GAD67. Neurochem Res 2021; 47:481-492. [PMID: 34623561 DOI: 10.1007/s11064-021-03462-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Vincristine is a common chemotherapeutic agent in cancer treatment, while it often causes chemotherapy-induced peripheral neuropathy(CIPN), which brings patients a great disease burden and associated economic pressure. The mechanism under CIPN remains mostly unknown. The previous study has shown that cell-type-specific spinal synaptic plasticity in the dorsal horn plays a pivotal role in neuropathic pain. Downregulation of GABA transmission, which mainly acts as an inhibitory pathway, has been reported in the growing number of research. Our present study found that GAD67, responsible for > 90% of basal GABA synthesis, is down-regulated, while its relative mRNA remains unchanged in vincristine-induced neuropathy. Considering microRNAs (miRNAs) as a post-transcription modifier by degrading targeted mRNA or repressing mRNA translation, we performed genome-wide miRNA screening and revealed that miR-30d might contribute to GAD67 down-regulation. Further investigation confirmed that miR-30d could affect the fluorescence activity of GAD67 by binding to the 3 'UTR of the GAD67 gene, and intrathecal injection of miR-30d antagomir increased the expression of GAD67, partially rescued vincristine-induced thermal hyperalgesia and mechanical allodynia. In summary, our study revealed the molecule interactions of GAD67 and miR-30d in CIPN, which has not previously been discussed in the literature. The results give more profound insight into understanding the CIPN mechanism and hopefully helps pain control.
Collapse
|
27
|
Butkevich IP, Mikhailenko VA, Vershinina EA, Barr GA. The Long-Term Effects of Neonatal Inflammatory Pain on Cognitive Function and Stress Hormones Depend on the Heterogeneity of the Adolescent Period of Development in Male and Female Rats. Front Behav Neurosci 2021; 15:691578. [PMID: 34366805 PMCID: PMC8334561 DOI: 10.3389/fnbeh.2021.691578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/21/2021] [Indexed: 11/21/2022] Open
Abstract
Exposure to stress at an early age programs the HPA axis which can lead to cognitive deficits in adults. However, it is not known whether these deficits emerge in adulthood or are expressed earlier in life. The aims of the study were to investigate (1) the immediate effects of early injury-induced stress in one-day-old (P1) and repeated stress on at P1 and P2 rat pups on plasma corticosterone levels; and (2) examine the subsequent long-term effects of this early stress on spatial learning and memory, and stress reactivity in early P26-34 and late P45-53 adolescent male and female rats. Intra-plantar injection of formalin induced prolonged and elevated levels of corticosterone in pups and impaired spatial learning and short- and long-term memory in late adolescent males and long-term memory in early adolescent females. There were sex differences in late adolescence in both learning and short-term memory. Performance on the long-term memory task was better than that on the short-term memory task for all early adolescent male and female control and stressed animals. Short-term memory was better in the late age control rats of both sexes and for formalin treated females as compared with the early age rats. These results are consistent with an impaired function of structures involved in memory (the hippocampus, amygdala, prefrontal cortex) after newborn pain. However, activation of the HPA axis by neonatal pain did not directly correlate with spatial learning and memory outcomes and the consequences of neonatal pain remain are likely multi-determined.
Collapse
Affiliation(s)
- Irina P. Butkevich
- Laboratory of Ontogenesis of the Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Viktor A. Mikhailenko
- Laboratory of Ontogenesis of the Nervous System, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Elena A. Vershinina
- Department of Information Technologies and Mathematical Modeling, Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Gordon A. Barr
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia and the Perelman School of Medicine, Philadelphia, PA, United States
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
28
|
Abstract
The application of ginkgolides as a herbal remedy reaches ancient China. Over time many studies confirmed the neuroprotective effect of standard Ginkgo biloba tree extract—the only available ginkgolide source. Ginkgolides present a wide variety of neuroregulatory properties, commonly used in the therapy process of common diseases, such as Alzheimer’s, Parkinson’s, and many other CNS-related diseases and disorders. The neuroregulative properties of ginkgolides include the conditioning of neurotransmitters action, e.g., glutamate or dopamine. Besides, natural compounds induce the inhibition of platelet-activating factors (PAF). Furthermore, ginkgolides influence the inflammatory process. This review focuses on the role of ginkgolides as neurotransmitters or neuromodulators and overviews their impact on the organism at the molecular, cellular, and physiological levels. The clinical application of ginkgolides is discussed as well.
Collapse
|
29
|
Ellerbrock I, Sandström A, Tour J, Fanton S, Kadetoff D, Schalling M, Jensen KB, Sitnikov R, Kosek E. Serotonergic gene-to-gene interaction is associated with mood and GABA concentrations but not with pain-related cerebral processing in fibromyalgia subjects and healthy controls. Mol Brain 2021; 14:81. [PMID: 33980291 PMCID: PMC8117625 DOI: 10.1186/s13041-021-00789-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
The neurotransmitter serotonin, involved in the regulation of pain and emotion, is critically regulated by the 5‐HT1A autoreceptor and the serotonin transporter (5-HTT). Polymorphisms of these genes affect mood and endogenous pain modulation, both demonstrated to be altered in fibromyalgia subjects (FMS). Here, we tested the effects of genetic variants of the 5‐HT1A receptor (CC/G-carriers) and 5-HTT (high/intermediate/low expression) on mood, pain sensitivity, cerebral processing of evoked pain (functional MRI) and concentrations of GABA and glutamate (MR spectroscopy) in rostral anterior cingulate cortex (rACC) and thalamus in FMS and healthy controls (HC). Interactions between serotonin-relevant genes were found in affective characteristics, with genetically inferred high serotonergic signalling (5-HT1A CC/5-HTThigh genotypes) being more favourable across groups. Additionally, 5‐HT1A CC homozygotes displayed higher pain thresholds than G-carriers in HC but not in FMS. Cerebral processing of evoked pressure pain differed between groups in thalamus with HC showing more deactivation than FMS, but was not influenced by serotonin-relevant genotypes. In thalamus, we observed a 5‐HT1A-by-5-HTT and group-by-5-HTT interaction in GABA concentrations, with the 5-HTT high expressing genotype differing between groups and 5‐HT1A genotypes. No significant effects were seen for glutamate or in rACC. To our knowledge, this is the first report of this serotonergic gene-to-gene interaction associated with mood, both among FMS (depression) and across groups (anxiety). Additionally, our findings provide evidence of an association between the serotonergic system and thalamic GABA concentrations, with individuals possessing genetically inferred high serotonergic signalling exhibiting the highest GABA concentrations, possibly enhancing GABAergic inhibitory effects via 5-HT.
Collapse
Affiliation(s)
- Isabel Ellerbrock
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden. .,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.
| | - Angelica Sandström
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Jeanette Tour
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Oncology, Blekinge Hospital, Karlskrona, Sweden
| | - Silvia Fanton
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Stockholm Spine Center, Löwenströmska Hospital, Upplands Väsby, Sweden
| | - Martin Schalling
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Karin B Jensen
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Rouslan Sitnikov
- MRI Research Center, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Insitutet, Nobels väg 9, 17177, Stockholm, Sweden.,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Pharmacogenomics of Lithium Response in Bipolar Disorder. Pharmaceuticals (Basel) 2021; 14:ph14040287. [PMID: 33804842 PMCID: PMC8063790 DOI: 10.3390/ph14040287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/22/2022] Open
Abstract
Despite being the most widely studied mood stabilizer, researchers have not confirmed a mechanism for lithium’s therapeutic efficacy in Bipolar Disorder (BD). Pharmacogenomic applications may be clinically useful in the future for identifying lithium-responsive patients and facilitating personalized treatment. Six genome-wide association studies (GWAS) reviewed here present evidence of genetic variations related to lithium responsivity and side effect expression. Variants were found on genes regulating the glutamate system, including GAD-like gene 1 (GADL1) and GRIA2 gene, a mutually-regulated target of lithium. In addition, single nucleotide polymorphisms (SNPs) discovered on SESTD1 may account for lithium’s exceptional ability to permeate cell membranes and mediate autoimmune and renal effects. Studies also corroborated the importance of epigenetics and stress regulation on lithium response, finding variants on long, non-coding RNA genes and associations between response and genetic loading for psychiatric comorbidities. Overall, the precision medicine model of stratifying patients based on phenotype seems to derive genotypic support of a separate clinical subtype of lithium-responsive BD. Results have yet to be expounded upon and should therefore be interpreted with caution.
Collapse
|
31
|
Jelen LA, Lythgoe DJ, Jackson JB, Howard MA, Stone JM, Egerton A. Imaging Brain Glx Dynamics in Response to Pressure Pain Stimulation: A 1H-fMRS Study. Front Psychiatry 2021; 12:681419. [PMID: 34393848 PMCID: PMC8357306 DOI: 10.3389/fpsyt.2021.681419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Glutamate signalling is increasingly implicated across a range of psychiatric, neurological and pain disorders. Reliable methodologies are needed to probe the glutamate system and understand glutamate dynamics in vivo. Functional magnetic resonance spectroscopy (1H-fMRS) is a technique that allows measurement of glutamatergic metabolites over time in response to task conditions including painful stimuli. In this study, 18 healthy volunteers underwent 1H-fMRS during a pressure-pain paradigm (8 blocks of REST and 8 blocks of PAIN) across two separate sessions. During each session, estimates of glutamate + glutamine (Glx), scaled to total creatine (tCr = creatine + phosphocreatine) were determined for averaged REST and PAIN conditions within two separate regions of interest: the anterior cingulate cortex (ACC) and dorsal ACC (dACC). A two-way repeated measures analysis of variance determined a significant main effect of CONDITION (p = 0.025), with higher Glx/tCr during PAIN compared to REST across combined sessions, in the dACC ROI only. However, increases in dACC Glx/tCr during PAIN compared to REST showed limited reliability and reproducibility across sessions. Future test-retest 1H-fMRS studies should examine modified or alternative paradigms to determine more reliable methodologies to challenge the glutamate system that may then be applied in patient groups and experimental medicine studies.
Collapse
Affiliation(s)
- Luke A Jelen
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom.,South London and Maudsley National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - David J Lythgoe
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Jade B Jackson
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom.,Medical Research Council (MRC) Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Matthew A Howard
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - James M Stone
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom.,South London and Maudsley National Health Service (NHS) Foundation Trust, London, United Kingdom.,Department of Neuroscience and Imaging, University of Sussex, Brighton, United Kingdom
| | - Alice Egerton
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
32
|
Li X, Tae HS, Chu Y, Jiang T, Adams DJ, Yu R. Medicinal chemistry, pharmacology, and therapeutic potential of α-conotoxins antagonizing the α9α10 nicotinic acetylcholine receptor. Pharmacol Ther 2020; 222:107792. [PMID: 33309557 DOI: 10.1016/j.pharmthera.2020.107792] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022]
Abstract
α-Conotoxins are disulfide-rich and well-structured peptides, most of which can block nicotinic acetylcholine receptors (nAChRs) with exquisite selectivity and potency. There are various nAChR subtypes, of which the α9α10 nAChR functions as a heteromeric ionotropic receptor in the mammalian cochlea and mediates postsynaptic transmission from the medial olivocochlear. The α9α10 nAChR subtype has also been proposed as a target for the treatment of neuropathic pain and the suppression of breast cancer cell proliferation. Therefore, α-conotoxins targeting the α9α10 nAChR are potentially useful in the development of specific therapeutic drugs and pharmacological tools. Despite dissimilarities in their amino acid sequence and structures, these conopeptides are potent antagonists of the α9α10 nAChR subtype. Consequently, the activity and stability of these peptides have been subjected to chemical modifications. The resulting synthetic analogues have not only functioned as molecular probes to explore ligand binding sites of the α9α10 nAChR, but also have the potential to become candidates for drug development. From the perspectives of medicinal chemistry and pharmacology, we highlight the structure and function of the α9α10 nAChR and review studies of α-conotoxins targeting it, including their three-dimensional structures, structure optimization strategies, and binding modes at the α9α10 nAChR, as well as their therapeutic potential.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Yanyan Chu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China
| | - Tao Jiang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, New South Wales 2522, Australia.
| | - Rilei Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China; Innovation Platform of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266100, China.
| |
Collapse
|
33
|
Abu Bakar NA, Sulaiman MR, Lajis N, Akhtar MN, Mohamad AS. Evaluation of Antinociceptive Profile of Chalcone Derivative (3-(2,5-dimethoxyphenyl)-1-(5-methylfuran-2-yl) prop-2-en-1-one (DMPF-1) in vivo. J Pharm Bioallied Sci 2020; 12:S711-S717. [PMID: 33828366 PMCID: PMC8021043 DOI: 10.4103/jpbs.jpbs_344_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/09/2020] [Accepted: 03/30/2020] [Indexed: 11/04/2022] Open
Abstract
Introduction Pain is a major global health issue, where its pharmacotherapy prompts unwanted side effects; hence, the development of effective alternative compounds from natural derivatives with lesser side effects is clinically needed. Chalcone; the precursors of flavonoid, and its derivatives have been widely investigated due to its pharmacological properties. Objective This study addressed the therapeutic effect of 3-(2,5-dimethoxyphenyl)-1-(5-methyl furan-2-yl) prop-2-en-1-one (DMPF-1); synthetic chalcone derivative, on antinociceptive activity in vivo. Materials and Methods The antinociceptive profile was evaluated using acetic-acid-induced abdominal writhing, hot plate, and formalin-induced paw licking test. Capsaicin, phorbol 12-myristate 12 acetate (PMA), and glutamate-induced paw licking test were carried out to evaluate their potential effects toward different targets. Results It was shown that the doses of 0.1, 0.5, 1, and 5 mg/kg of DMPF-1 given via intraperitoneal injection showed significant reduction in writhing responses and increased the latency time in hot-plate test where reduced time spent on licking the injected paw in formalin and dose contingency inhibition was observed. The similar results were observed in capsaicin, PMA, and glutamate-induced paw licking test. In addition, the challenge with nonselective opioid receptor antagonist (naloxone) aimed to evaluate the involvement of the opioidergic system, which showed no reversion in analgesic profile in formalin and hot-plate test. Conclusion Collectively, this study showed that DMPF-1 markedly inhibits both peripheral and central nociception through the mechanism involving an interaction with vanilloid and glutamatergic system regardless of the activation of the opioidergic system.
Collapse
Affiliation(s)
- Noor Azlina Abu Bakar
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia.,Faculty of Medicine and Health Science, Universiti Sultan Zainal Abidin (UniSZA), Kuala Terengganu, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nordin Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Nadeem Akhtar
- Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Gambang, Malaysia
| | - Azam Shah Mohamad
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
34
|
Hosseini M, Parviz M, Shabanzadeh AP, Zamani E. The effect of periaqueductal gray's metabotropic glutamate receptor subtype 8 activation on locomotor function following spinal cord injury. Scand J Pain 2020; 20:785-793. [PMID: 32692709 DOI: 10.1515/sjpain-2020-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 05/12/2020] [Indexed: 11/15/2022]
Abstract
Background and aims The pathophysiology of spinal cord injury is very complex. One of the debilitating aspects of spinal cord injury in addition to pain is a defect in motor function below the lesion surface. In this study, we tried to assess the modulatory effect of (S)-3,4-Dicarboxyphenylglycine (DCPG), a metabotropic glutamate receptor subtype 8 (mGluR8) agonist, on animal's locomotor functions in a model of compression spinal cord injury. Methods We used a contusion method (T6-T8) for induction of spinal cord injury. Male Wistar rats were randomly assigned to five equal groups (n = 10 per group). Clips compression injury model was used to induce spinal cord injury. Three weeks post injury DCPG, siRNA (small interfering Ribonucleic Acid) and normal saline (vehicle) were administered intra-ventrolaterally to the periaqueductal gray (PAG) region. Motor function, were assessed through BBB (Basso, Beattie, and Bresnahan Locomotor Rating Scale) and ladder walking test. In addition, the effects of DCPG on axonal regeneration in corticospinal tract were evaluated. Results We found that DCPG could improve motor function and axonal regeneration in corticospinal tract when compared to siRNA group. Conclusions The results revealed that activation of mGluR8 in PAG is capable to improve motor function and of axonal regeneration due to the inhibitory effect on glutamate transmission on the spinal cord surface and also the elimination of the deleterious effect of glutamate on the regeneration of the injured area as an excitatory neurotransmitter. Implications Our findings in this study showed that, more attention should be paid to glutamate and its receptors in spinal cord injury studies, whether at the spinal or cerebral level, especially in the field of motor function after spinal cord injury.
Collapse
Affiliation(s)
- Marjan Hosseini
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Parviz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza P Shabanzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zamani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Neurotoxicity in Gulf War Illness and the potential role of glutamate. Neurotoxicology 2020; 80:60-70. [DOI: 10.1016/j.neuro.2020.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
|
36
|
Kennedy AC, Belgi A, Husselbee BW, Spanswick D, Norton RS, Robinson AJ. α-Conotoxin Peptidomimetics: Probing the Minimal Binding Motif for Effective Analgesia. Toxins (Basel) 2020; 12:E505. [PMID: 32781580 PMCID: PMC7472027 DOI: 10.3390/toxins12080505] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Several analgesic α-conotoxins have been isolated from marine cone snails. Structural modification of native peptides has provided potent and selective analogues for two of its known biological targets-nicotinic acetylcholine and γ-aminobutyric acid (GABA) G protein-coupled (GABAB) receptors. Both of these molecular targets are implicated in pain pathways. Despite their small size, an incomplete understanding of the structure-activity relationship of α-conotoxins at each of these targets has hampered the development of therapeutic leads. This review scrutinises the N-terminal domain of the α-conotoxin family of peptides, a region defined by an invariant disulfide bridge, a turn-inducing proline residue and multiple polar sidechain residues, and focusses on structural features that provide analgesia through inhibition of high-voltage-activated Ca2+ channels. Elucidating the bioactive conformation of this region of these peptides may hold the key to discovering potent drugs for the unmet management of debilitating chronic pain associated with a wide range of medical conditions.
Collapse
Affiliation(s)
- Adam C. Kennedy
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| | - Alessia Belgi
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| | - Benjamin W. Husselbee
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| | - David Spanswick
- Biomedicine Discovery Institute and the Department of Physiology, Monash University, Victoria 3800, Australia;
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NeuroSolutions Ltd., Coventry CV4 7AL, UK
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia;
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Andrea J. Robinson
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia; (A.C.K.); (A.B.); (B.W.H.)
| |
Collapse
|
37
|
Khan A, Khan S, Kim YS. Insight into Pain Modulation: Nociceptors Sensitization and Therapeutic Targets. Curr Drug Targets 2020; 20:775-788. [PMID: 30706780 DOI: 10.2174/1389450120666190131114244] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/21/2022]
Abstract
Pain is a complex multidimensional concept that facilitates the initiation of the signaling cascade in response to any noxious stimuli. Action potential generation in the peripheral nociceptor terminal and its transmission through various types of nociceptors corresponding to mechanical, chemical or thermal stimuli lead to the activation of receptors and further neuronal processing produces the sensation of pain. Numerous types of receptors are activated in pain sensation which vary in their signaling pathway. These signaling pathways can be regarded as a site for modulation of pain by targeting the pain transduction molecules to produce analgesia. On the basis of their anatomic location, transient receptor potential ion channels (TRPV1, TRPV2 and TRPM8), Piezo 2, acid-sensing ion channels (ASICs), purinergic (P2X and P2Y), bradykinin (B1 and B2), α-amino-3-hydroxy-5- methylisoxazole-4-propionate (AMPA), N-methyl-D-aspartate (NMDA), metabotropic glutamate (mGlu), neurokinin 1 (NK1) and calcitonin gene-related peptide (CGRP) receptors are activated during pain sensitization. Various inhibitors of TRPV1, TRPV2, TRPM8, Piezo 2, ASICs, P2X, P2Y, B1, B2, AMPA, NMDA, mGlu, NK1 and CGRP receptors have shown high therapeutic value in experimental models of pain. Similarly, local inhibitory regulation by the activation of opioid, adrenergic, serotonergic and cannabinoid receptors has shown analgesic properties by modulating the central and peripheral perception of painful stimuli. This review mainly focused on various classes of nociceptors involved in pain transduction, transmission and modulation, site of action of the nociceptors in modulating pain transmission pathways and the drugs (both clinical and preclinical data, relevant to targets) alleviating the painful stimuli by exploiting nociceptor-specific channels and receptors.
Collapse
Affiliation(s)
- Amna Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yeong Shik Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
38
|
Hassanpour S, Rezaei H, Razavi SM. Anti-nociceptive and antioxidant activity of betaine on formalin- and writhing tests induced pain in mice. Behav Brain Res 2020; 390:112699. [PMID: 32417277 DOI: 10.1016/j.bbr.2020.112699] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/05/2023]
Abstract
Pain is a physiological response which is mediated via the central and peripheral nervous system. Betaine, is a methyl glycine derivative and a commonly used nutrient supplement. The main purpose of the current paper is to determine the possible anti-nociceptive and antioxidant activity and sedative effect of betaine in mice. Adult male albino mice were divided into two categories, formalin and writhing tests. In the formalin test, mice were injected with betaine (10, 20 and 30 mg/kg) or morphine (5 mg/kg). For co-injections mice received betaine (30 mg/kg) + naloxone (2 mg/kg) or atropine (1 mg/kg), chlorpheniramine (20 mg/kg), flumazenil (5 mg/kg), cimetidine (12.5 mg/kg) and cyproheptadine (4 mg/kg). Then the formalin test was done and paw licking time was determined. In the writhing test, injections were the same but the animals were injected with acetic acid (0.6 %) and the percentage of writhing inhibition was recorded. At the end of the study, blood antioxidant levels were determined. According to the results, betaine reduced the pain response in a dose-dependent manner. Co-administration of the naloxone + betaine or flumazenil + betaine significantly decreased the anti-nociceptive effect of betaine on the licking and biting time of the injected paw and inhibited the number of writhing movements. Betaine decreased malondialdehyde (MDA) and improved superoxide dismutase (SOD) and glutathione peroxidase (GPx) levels in formalin receiving mice. No adverse locomotion and sedation effect were observed in betaine-treated mice. These findings suggest that betaine has anti-nociceptive and antioxidant activity in mice, and its anti-nociceptive role interacts with opioidergic and GABA receptors.
Collapse
Affiliation(s)
- Shahin Hassanpour
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hadis Rezaei
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Mojtaba Razavi
- Section of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
39
|
de Sena M. Pinheiro P, Rodrigues DA, do Couto Maia R, Thota S, Fraga CA. The Use of Conformational Restriction in Medicinal Chemistry. Curr Top Med Chem 2019; 19:1712-1733. [DOI: 10.2174/1568026619666190712205025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Abstract
During the early preclinical phase, from hit identification and optimization to a lead compound,
several medicinal chemistry strategies can be used to improve potency and/or selectivity. The
conformational restriction is one of these approaches. It consists of introducing some specific structural
constraints in a lead candidate to reduce the overall number of possible conformations in order to favor
the adoption of a bioactive conformation and, as a consequence, molecular recognition by the target receptor.
In this work, we focused on the application of the conformational restriction strategy in the last
five years for the optimization of hits and/or leads of several important classes of therapeutic targets in
the drug discovery field. Thus, we recognize the importance of several kinase inhibitors to the current
landscape of drug development for cancer therapy and the use of G-protein Coupled Receptor (GPCR)
modulators. Several other targets are also highlighted, such as the class of epigenetic drugs. Therefore,
the possibility of exploiting conformational restriction as a tool to increase the potency and selectivity
and promote changes in the intrinsic activity of some ligands intended to act on many different targets
makes this strategy of structural modification valuable for the discovery of novel drug candidates.
Collapse
Affiliation(s)
- Pedro de Sena M. Pinheiro
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Daniel A. Rodrigues
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Rodolfo do Couto Maia
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Sreekanth Thota
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Carlos A.M. Fraga
- Laboratorio de Avaliacao e Síntese de Substancias Bioativas (LASSBio), Instituto de Ciencias Biomedicas, Universidade Federal do Rio de Janeiro, PO Box 68023, 21941-902, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
40
|
Sandercock DA, Barnett MW, Coe JE, Downing AC, Nirmal AJ, Di Giminiani P, Edwards SA, Freeman TC. Transcriptomics Analysis of Porcine Caudal Dorsal Root Ganglia in Tail Amputated Pigs Shows Long-Term Effects on Many Pain-Associated Genes. Front Vet Sci 2019; 6:314. [PMID: 31620455 PMCID: PMC6760028 DOI: 10.3389/fvets.2019.00314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/03/2019] [Indexed: 12/24/2022] Open
Abstract
Tail amputation by tail docking or as an extreme consequence of tail biting in commercial pig production potentially has serious implications for animal welfare. Tail amputation causes peripheral nerve injury that might be associated with lasting chronic pain. The aim of this study was to investigate the short- and long-term effects of tail amputation in pigs on caudal DRG gene expression at different stages of development, particularly in relation to genes associated with nociception and pain. Microarrays were used to analyse whole DRG transcriptomes from tail amputated and sham-treated pigs 1, 8, and 16 weeks following tail treatment at either 3 or 63 days of age (8 pigs/treatment/age/time after treatment; n = 96). Tail amputation induced marked changes in gene expression (up and down) compared to sham-treated intact controls for all treatment ages and time points after tail treatment. Sustained changes in gene expression in tail amputated pigs were still evident 4 months after tail injury. Gene correlation network analysis revealed two co-expression clusters associated with amputation: Cluster A (759 down-regulated) and Cluster B (273 up-regulated) genes. Gene ontology (GO) enrichment analysis identified 124 genes in Cluster A and 61 genes in Cluster B associated with both “inflammatory pain” and “neuropathic pain.” In Cluster A, gene family members of ion channels e.g., voltage-gated potassium channels (VGPC) and receptors e.g., GABA receptors, were significantly down-regulated compared to shams, both of which are linked to increased peripheral nerve excitability after axotomy. Up-regulated gene families in Cluster B were linked to transcriptional regulation, inflammation, tissue remodeling, and regulatory neuropeptide activity. These findings, demonstrate that tail amputation causes sustained transcriptomic expression changes in caudal DRG cells involved in inflammatory and neuropathic pain pathways.
Collapse
Affiliation(s)
- Dale A Sandercock
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Mark W Barnett
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jennifer E Coe
- Animal and Veterinary Science Research Group, Scotland's Rural College, Roslin Institute Building, Edinburgh, United Kingdom
| | - Alison C Downing
- Edinburgh Genomics, The University of Edinburgh, Edinburgh, United Kingdom
| | - Ajit J Nirmal
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Pierpaolo Di Giminiani
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sandra A Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Tom C Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
41
|
Flack K, Pankey C, Ufholz K, Johnson L, Roemmich JN. Genetic variations in the dopamine reward system influence exercise reinforcement and tolerance for exercise intensity. Behav Brain Res 2019; 375:112148. [PMID: 31404557 DOI: 10.1016/j.bbr.2019.112148] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Exercise is a reinforcing behavior and finding exercise highly reinforcing is characteristic of habitual exercisers. Genotypes related to dopamine metabolism moderate the reinforcing value of behaviors, but genetic moderators of exercise reinforcement have not been established. PURPOSE Determine whether singular nucleotide polymorphisms (SNPs) that moderate central reward pathways and pain neurotransmission are associated with exercise reinforcement, tolerance for exercise intensity, and usual physical activity. METHODS Adults (n = 178) were measured for the reinforcing value of exercise relative to sedentary activities (RRVexercise), minutes of moderate-to-vigorous physical activity (MVPA) and completed the Preference for and Tolerance of the Intensity of Exercise Questionnaire. Genotyping of 23 SNPs known to influence central dopamine tone, pain, or physical activity was performed. ANOVA tested differences in RRVexercise, tolerance, and MVPA among genotype groups. Linear regression controlling for BMI, sex, and liking of exercise was used to further predict the association of genotype on RRVexercise, tolerance, and MVPA. RESULTS Having at least one copy of the G allele for the DRD2/ANKK1 polymorphism (rs1800497) conferred greater RRVexercise. Greater tolerance for exercise intensity was observed among those homozygous for the T allele for the CNR1 polymorphism (rs6454672), had at least one copy of the G allele for the GABRG3 polymorphism (rs8036270), or had at least one copy of the T allele for the LPR polymorphism (rs12405556). Homozygous individuals for the T allele at rs6454672 exhibited greater MVPA. CONCLUSION Similar to other reinforcing behaviors, there is a genetic contribution to exercise reinforcement, tolerance for exercise intensity, and MVPA.
Collapse
Affiliation(s)
- Kyle Flack
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY, USA; USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2ndAve N., Grand Forks, ND, USA.
| | - Christopher Pankey
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2ndAve N., Grand Forks, ND, USA; Department of Biomedical Sciences, West Virginia School of Osteopathic Medicine, Lewisburg, WV, USA
| | - Kelsey Ufholz
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2ndAve N., Grand Forks, ND, USA
| | - LuAnn Johnson
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2ndAve N., Grand Forks, ND, USA
| | - James N Roemmich
- USDA, Agricultural Research Service, Grand Forks Human Nutrition Research Center, 2420 2ndAve N., Grand Forks, ND, USA
| |
Collapse
|
42
|
Martínez-Campos Z, Pastor N, Pineda-Urbina K, Gómez-Sandoval Z, Fernández-Zertuche M, Razo-Hernández RS. In silico structure-based design of GABA B receptor agonists using a combination of docking and QSAR. Chem Biol Drug Des 2019; 94:1782-1798. [PMID: 31207116 DOI: 10.1111/cbdd.13580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 12/27/2022]
Abstract
The study of γ-aminobutyric acid B receptor (GABAB ) activation is of great interest for several brain disorders. The search of new GABAB receptor agonists has been carried out by many research groups. As a result, Baclofen has become the prototypical GABAB receptor agonist. However, several attempts have been made to modify its structure to generate derivatives with improved activity. In this work, we carried out a theoretical and computational study for a wide range of GABAB receptor agonists reported in the literature. Molecular docking and QSAR techniques were combined by using the interaction energies of the agonists with the key residues of GABAB receptor, as molecular descriptors for the QSAR construction. The resulting mathematical model suggests that the activity of GABAB receptor agonists is influenced by three factors: their shape and molecular size (PW5 and PJI2), their constitutional features (ELUMO and T(N…O)) and the energy interaction with GABAB receptor (ETRP278 ). This model was validated by the QUIK, REDUNDANCY and OVERFITTING rules, and its predicted ability was tasted by the QLOO , QASYM , R 0 2 and r m 2 rules. Finally, six new compounds are proposed (35-40) with high potential to be used as GABAB receptor agonists.
Collapse
Affiliation(s)
- Zuleyma Martínez-Campos
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Nina Pastor
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | | | - Mario Fernández-Zertuche
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Rodrigo Said Razo-Hernández
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
43
|
Bar-Shalita T, Granovsky Y, Parush S, Weissman-Fogel I. Sensory Modulation Disorder (SMD) and Pain: A New Perspective. Front Integr Neurosci 2019; 13:27. [PMID: 31379526 PMCID: PMC6659392 DOI: 10.3389/fnint.2019.00027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/01/2019] [Indexed: 01/17/2023] Open
Abstract
Sensory modulation disorder (SMD) affects sensory processing across single or multiple sensory systems. The sensory over-responsivity (SOR) subtype of SMD is manifested clinically as a condition in which non-painful stimuli are perceived as abnormally irritating, unpleasant, or even painful. Moreover, SOR interferes with participation in daily routines and activities (Dunn, 2007; Bar-Shalita et al., 2008; Chien et al., 2016), co-occurs with daily pain hyper-sensitivity, and reduces quality of life due to bodily pain. Laboratory behavioral studies have confirmed abnormal pain perception, as demonstrated by hyperalgesia and an enhanced lingering painful sensation, in children and adults with SMD. Advanced quantitative sensory testing (QST) has revealed the mechanisms of altered pain processing in SOR whereby despite the existence of normal peripheral sensory processing, there is enhanced facilitation of pain-transmitting pathways along with preserved but delayed inhibitory pain modulation. These findings point to central nervous system (CNS) involvement as the underlying mechanism of pain hypersensitivity in SOR. Based on the mutual central processing of both non-painful and painful sensory stimuli, we suggest shared mechanisms such as cortical hyper-excitation, an excitatory-inhibitory neuronal imbalance, and sensory modulation alterations. This is supported by novel findings indicating that SOR is a risk factor and comorbidity of chronic non-neuropathic pain disorders. This is the first review to summarize current empirical knowledge investigating SMD and pain, a sensory modality not yet part of the official SMD realm. We propose a neurophysiological mechanism-based model for the interrelation between pain and SMD. Embracing the pain domain could significantly contribute to the understanding of this condition’s pathogenesis and how it manifests in daily life, as well as suggesting the basis for future potential mechanism-based therapies.
Collapse
Affiliation(s)
- Tami Bar-Shalita
- Department of Occupational Therapy, School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yelena Granovsky
- Laboratory of Clinical Neurophysiology, Department of Neurology, Faculty of Medicine, Technion-Israel Institute of Technology, Rambam Health Care Campus, Haifa, Israel
| | - Shula Parush
- School of Occupational Therapy, Faculty of Medicine of Hadassah, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irit Weissman-Fogel
- Physical Therapy Department, Faculty of Social Welfare and Health Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
44
|
Dehkordi FM, Kaboutari J, Zendehdel M, Javdani M. The antinociceptive effect of artemisinin on the inflammatory pain and role of GABAergic and opioidergic systems. Korean J Pain 2019; 32:160-167. [PMID: 31257824 PMCID: PMC6615442 DOI: 10.3344/kjp.2019.32.3.160] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Pain is a complex mechanism which involves different systems, including the opioidergic and GABAergic systems. Due to the side effects of chemical analgesic agents, attention toward natural agents have been increased. Artemisinin is an herbal compound with widespread modern and traditional therapeutic indications, which its interaction with the GABAergic system and antinoniceptive effects on neuropathic pain have shown. Therefore, this study was designed to evaluate the antinociceptive effects of artemisinin during inflammatory pain and interaction with the GABAergic and opioidergic systems by using a writhing response test. METHODS On the whole, 198 adult male albino mice were used in 4 experiments, including 9 groups (n = 6) each with three replicates, by intraperitoneal (i.p.) administration of artemisinin (2.5, 5, and 10 mg/kg), naloxone (2 mg/kg), bicuculline (2 mg/kg), saclofen (2 mg/kg), indomethacin (5 mg/kg), and ethanol (10 mL/kg). Writhing test responses were induced by i.p. injection of 10 mL/kg of 0.6% acetic acid, and the percentage of writhing inhibition was recorded. RESULTS Results showed significant dose dependent anti-nociceptive effects from artemisinin which, at a 10 mg/kg dose, was statistically similar to indomethacin. Neither saclofen nor naloxone had antinociceptive effects and did not antagonize antinociceptive effects of artemisinin, whereas bicuculline significantly inhibited the antinocicptive effect of artemisinin. CONCLUSIONS It seems that antinocicptive effects of artemisinin are mediated by GABAA receptors.
Collapse
Affiliation(s)
- Faraz Mahdian Dehkordi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord,
Iran
| | - Jahangir Kaboutari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord,
Iran
| | - Morteza Zendehdel
- Department of Physiology, Faculty of Veterinary Medicine, University of Tehran, Tehran,
Iran
| | - Moosa Javdani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord,
Iran
| |
Collapse
|
45
|
Onishi T, Watanabe T, Sasaki M, Kamiya Y, Horie M, Tsukano H, Hishida R, Kohno T, Takebayashi H, Baba H, Shibuki K. Acute spatial spread of NO-mediated potentiation during hindpaw ischaemia in mice. J Physiol 2019; 597:3441-3455. [PMID: 31087329 PMCID: PMC6851834 DOI: 10.1113/jp277615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
Key points Neuropathic pain spreads spatially beyond the injured sites, and the mechanism underlying the spread has been attributed to inflammation occurring in the spinal cord. However, the spatial spread of spinal/cortical potentiation induced by conduction block of the peripheral nerves can be observed prior to inflammation. In the present study, we found that spreading potentiation and hypersensitivity acutely induced by unilateral hindpaw ischaemia are nitric oxide (NO)‐dependent and that NO is produced by ischaemia and quickly diffuses within the spinal cord. We also found that NO production induced by ischaemia is not observed in the presence of an antagonist for group II metabotropic glutamate receptors (mGluRs) and that neuronal NO synthase‐positive dorsal horn neurons express group II mGluRs. These results suggest strongly that NO‐mediated spreading potentiation in the spinal cord is one of the trigger mechanisms for neuropathic pain.
Abstract Cortical/spinal responses to hindpaw stimulation are bilaterally potentiated by unilateral hindpaw ischaemia in mice. We tested the hypothesis that hindpaw ischaemia produces nitric oxide (NO), which diffuses in the spinal cord to induce spatially spreading potentiation. Using flavoprotein fluorescence imaging, we confirmed that the spreading potentiation in hindpaw responses was induced during ischaemia in the non‐stimulated hindpaw. This spreading potentiation was blocked by spinal application of l‐NAME, an inhibitor of NO synthase (NOS). Furthermore, no spreading potentiation was observed in neural NOS (nNOS) knockout mice. Spinal application of an NO donor was enough to induce cortical potentiation and mechanical hypersensitivity. The spatial distribution of NO during unilateral hindpaw ischaemia was visualized using 4‐amino‐5‐methylamino‐2′,7′‐difluorofluorescein (DAF‐FM). An increase in fluorescence derived from the complex of DAF‐FM with NO was observed on the ischaemic side of the spinal cord. A similar but smaller increase was also observed on the contralateral side. Somatosensory potentiation after hindpaw ischaemia is known to be inhibited by spinal application of LY354740, an agonist of group II metabotropic glutamate receptors (mGluRs). We confirmed that the spinal DAF‐FM fluorescence increases during hindpaw ischaemia were not observed in the presence of LY354740. We also confirmed that approximately half of the nNOS‐positive neurons in the superficial laminae of the dorsal horn expressed mGluR2 mRNA. These results suggest that disinhibition of mGluR2 produces NO which in turn induces a spreading potentiation in a wide area of the spinal cord. Such spreading, along with the consequent non‐specific potentiation in the spinal cord, may trigger neuropathic pain. Neuropathic pain spreads spatially beyond the injured sites, and the mechanism underlying the spread has been attributed to inflammation occurring in the spinal cord. However, the spatial spread of spinal/cortical potentiation induced by conduction block of the peripheral nerves can be observed prior to inflammation. In the present study, we found that spreading potentiation and hypersensitivity acutely induced by unilateral hindpaw ischaemia are nitric oxide (NO)‐dependent and that NO is produced by ischaemia and quickly diffuses within the spinal cord. We also found that NO production induced by ischaemia is not observed in the presence of an antagonist for group II metabotropic glutamate receptors (mGluRs) and that neuronal NO synthase‐positive dorsal horn neurons express group II mGluRs. These results suggest strongly that NO‐mediated spreading potentiation in the spinal cord is one of the trigger mechanisms for neuropathic pain.
Collapse
Affiliation(s)
- Takeshi Onishi
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.,Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Tatsunori Watanabe
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Mika Sasaki
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Yoshinori Kamiya
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Masao Horie
- Department of Morphological Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Hiroaki Tsukano
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Ryuichi Hishida
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Tatsuro Kohno
- Department of Anesthesiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, 983-8536, Japan
| | - Hirohide Takebayashi
- Department of Neurobiology and Anatomy, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Hiroshi Baba
- Department of Anesthesiology, Faculty of Medicine, Niigata University, Niigata, 951-8510, Japan
| | - Katsuei Shibuki
- Department of Neurophysiology, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| |
Collapse
|
46
|
Ricart-Ortega M, Font J, Llebaria A. GPCR photopharmacology. Mol Cell Endocrinol 2019; 488:36-51. [PMID: 30862498 DOI: 10.1016/j.mce.2019.03.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
New technologies for spatial and temporal remote control of G protein-coupled receptors (GPCRs) are necessary to unravel the complexity of GPCR signalling in cells, tissues and living organisms. An effective approach, recently developed, consists on the design of light-operated ligands whereby light-dependent GPCR activity regulation can be achieved. In this context, the use of light provides an advantage as it combines safety, easy delivery, high resolution and it does not interfere with most cellular processes. In this review we summarize the most relevant successful achievements in GPCR photopharmacology. These recent findings constitute a significant advance in research studies on the molecular dynamics of receptor activation and their physiological roles in vivo. Moreover, these molecules hold potential toward clinical uses as light-operated drugs, which can overcome some of the problems of conventional pharmacology.
Collapse
Affiliation(s)
- Maria Ricart-Ortega
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain; IGF, CNRS, INSERM, University de Montpellier, F-34094, Montpellier, France.
| | - Joan Font
- IGF, CNRS, INSERM, University de Montpellier, F-34094, Montpellier, France.
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| |
Collapse
|
47
|
Fedoseeva LA, Klimov LO, Ershov NI, Efimov VM, Markel AL, Orlov YL, Redina OE. The differences in brain stem transcriptional profiling in hypertensive ISIAH and normotensive WAG rats. BMC Genomics 2019; 20:297. [PMID: 32039698 PMCID: PMC7226933 DOI: 10.1186/s12864-019-5540-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The development of essential hypertension is associated with a wide range of mechanisms. The brain stem neurons are essential for the homeostatic regulation of arterial pressure as they control baroreflex and sympathetic nerve activity. The ISIAH (Inherited Stress Induced Arterial Hypertension) rats reproduce the human stress-sensitive hypertensive disease with predominant activation of the neuroendocrine hypothalamic-pituitary-adrenal and sympathetic adrenal axes. RNA-Seq analysis of the brain stems from the hypertensive ISIAH and normotensive control WAG (Wistar Albino Glaxo) rats was performed to identify the differentially expressed genes (DEGs) and the main central mechanisms (biological processes and metabolic pathways) contributing to the hypertensive state in the ISIAH rats. RESULTS The study revealed 224 DEGs. Their annotation in databases showed that 22 of them were associated with hypertension and blood pressure (BP) regulation, and 61 DEGs were associated with central nervous system diseases. In accordance with the functional annotation of DEGs, the key role of hormonal metabolic processes and, in particular, the enhanced biosynthesis of aldosterone in the brain stem of ISIAH rats was proposed. Multiple DEGs associated with several Gene Ontology (GO) terms essentially related to modulation of BP were identified. Abundant groups of DEGs were related to GO terms associated with responses to different stimuli including response to organic (hormonal) substance, to external stimulus, and to stress. Several DEGs making the most contribution to the inter-strain differences were detected including the Ephx2, which was earlier defined as a major candidate gene in the studies of transcriptional profiles in different tissues/organs (hypothalamus, adrenal gland and kidney) of ISIAH rats. CONCLUSIONS The results of the study showed that inter-strain differences in ISIAH and WAG brain stem functioning might be a result of the imbalance in processes leading to the pathology development and those, exerting the compensatory effects. The data obtained in this study are useful for a better understanding of the genetic mechanisms underlying the complexity of the brain stem processes in ISIAH rats, which are a model of stress-sensitive form of hypertension.
Collapse
Affiliation(s)
- Larisa A. Fedoseeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
| | - Leonid O. Klimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Nikita I. Ershov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
| | - Vadim M. Efimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Arcady L. Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Yuriy L. Orlov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| | - Olga E. Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentyeva, 10, Novosibirsk, Russian Federation 630090
- Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
48
|
Molecular mechanisms of the antispasticity effects of baclofen on spinal ventral horn neurons. Neuroreport 2019; 30:19-25. [DOI: 10.1097/wnr.0000000000001155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
49
|
Tardiolo G, Bramanti P, Mazzon E. Overview on the Effects of N-Acetylcysteine in Neurodegenerative Diseases. Molecules 2018; 23:molecules23123305. [PMID: 30551603 PMCID: PMC6320789 DOI: 10.3390/molecules23123305] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), which is an acetylated cysteine compound, has aroused scientific interest for decades due to its important medical applications. It also represents a nutritional supplement in the human diet. NAC is a glutathione precursor and shows antioxidant and anti-inflammatory activities. In addition to the uses quoted in the literature, NAC may be considered helpful in therapies to counteract neurodegenerative and mental health diseases. Furthermore, this compound has been evaluated for its neuroprotective potential in the prevention of cognitive aging dementia. NAC is inexpensive, commercially available and no relevant side effects were observed after its administration. The purpose of this paper is to give an overview on the effects and applications of NAC in Parkinson's and Alzheimer's disorders and in neuropathic pain and stroke.
Collapse
Affiliation(s)
- Giuseppe Tardiolo
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi "Bonino-Pulejo", Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy.
| |
Collapse
|
50
|
Radwani H, Roca-Lapirot O, Aby F, Lopez-Gonzalez MJ, Benazzouz R, Errami M, Favereaux A, Landry M, Fossat P. Group I metabotropic glutamate receptor plasticity after peripheral inflammation alters nociceptive transmission in the dorsal of the spinal cord in adult rats. Mol Pain 2018; 13:1744806917737934. [PMID: 29020860 PMCID: PMC5661751 DOI: 10.1177/1744806917737934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract The dorsal horn of the spinal cord is a crucial site for pain transmission and modulation. Dorsal horn neurons of the spinal cord express group I metabotropic glutamate receptors (group I mGluRs) that exert a complex role in nociceptive transmission. In particular, group I mGluRs promote the activation of L-type calcium channels, voltage-gated channels involved in short- and long-term sensitization to pain. In this study, we analyzed the role of group I mGluRs in spinal nociceptive transmission and the possible cooperation between these receptors and L-type calcium channels in the pathophysiology of pain transmission in the dorsal horn of the spinal cord. We demonstrate that the activation of group I mGluRs induces allodynia and L-type calcium channel-dependent increase in nociceptive field potentials following sciatic nerve stimulation. Surprisingly, in a model of persistent inflammation induced by complete Freund’s adjuvant, the activation of group I mGluRs induced an analgesia and a decrease in nociceptive field potentials. Among the group I mGluRs, mGluR1 promotes the activation of L-type calcium channels and increased nociceptive transmission while mGluR5 induces the opposite through the inhibitory network. These results suggest a functional switch exists in pathological conditions that can change the action of group I mGluR agonists into possible analgesic molecules, thereby suggesting new therapeutic perspectives to treat persistent pain in inflammatory settings.
Collapse
Affiliation(s)
- Houda Radwani
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Olivier Roca-Lapirot
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Franck Aby
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | | | - Rabia Benazzouz
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Mohammed Errami
- University of Abdelmalek Essaâdi, Faculty of Sciences, Laboratory: ''Physiology and Physiopathology''. Tetouan, Morocco
| | - Alexandre Favereaux
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Marc Landry
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | | |
Collapse
|