1
|
Ibañez S, Sengupta N, Luebke JI, Wimmer K, Weaver CM. Myelin dystrophy impairs signal transmission and working memory in a multiscale model of the aging prefrontal cortex. eLife 2024; 12:RP90964. [PMID: 39028036 PMCID: PMC11259433 DOI: 10.7554/elife.90964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.
Collapse
Affiliation(s)
- Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
- Centre de Recerca Matemàtica, Edifici C, Campus BellaterraBellaterraSpain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici CBellaterraSpain
| | - Nilapratim Sengupta
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
- Department of Mathematics, Franklin and Marshall CollegeLancasterUnited States
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of MedicineBostonUnited States
| | - Klaus Wimmer
- Centre de Recerca Matemàtica, Edifici C, Campus BellaterraBellaterraSpain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici CBellaterraSpain
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall CollegeLancasterUnited States
| |
Collapse
|
2
|
Guan Y, Cheng CH, Bellomo LI, Narain S, Bigornia SJ, Garelnabi MO, Scott T, Ordovás JM, Tucker KL, Bhadelia R, Koo BB. APOE4 allele-specific associations between diet, multimodal biomarkers, and cognition among Puerto Rican adults in Massachusetts. Front Aging Neurosci 2023; 15:1285333. [PMID: 38035273 PMCID: PMC10684694 DOI: 10.3389/fnagi.2023.1285333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Background Apolipoprotein E (APOE) is the strongest genetic risk factor for sporadic Alzheimer's Disease (AD), and the ε4 allele (APOE4) may interact with lifestyle factors that relate to brain structural changes, underlying the increased risk of AD. However, the exact role of APOE4 in mediating interactions between the peripheral circulatory system and the central nervous system, and how it may link to brain and cognitive aging requires further elucidation. In this analysis, we investigated the association between APOE4 carrier status and multimodal biomarkers (diet, blood markers, clinical diagnosis, brain structure, and cognition) in the context of gene-environment interactions. Methods Participants were older adults from a longitudinal observational study, the Boston Puerto Rican Health Study (BPRHS), who self-identified as of Puerto Rican descent. Demographics, APOE genotype, diet, blood, and clinical data were collected at baseline and at approximately 12th year, with the addition of multimodal brain magnetic resonance imaging (MRI) (T1-weighted and diffusion) and cognitive testing acquired at 12-year. Measures were compared between APOE4 carriers and non-carriers, and associations between multimodal variables were examined using correlation and multivariate network analyses within each group. Results A total of 156 BPRHS participants (mean age at imaging = 68 years, 77% female, mean follow-up 12.7 years) with complete multimodal data were included in the current analysis. APOE4 carriers (n = 43) showed reduced medial temporal lobe (MTL) white matter (WM) microstructural integrity and lower mini-mental state examination (MMSE) score than non-carriers (n = 113). This pattern was consistent with an independent sample from the Alzheimer's Disease Neuroimaging Initiative (ADNI) of n = 283 non-Hispanic White adults without dementia (mean age = 75, 40% female). Within BPRHS, carriers showed distinct connectivity patterns between multimodal biomarkers, characterized by stronger direct network connections between baseline diet/blood markers with 12-year blood/clinical measures, and between blood markers (especially lipids and cytokines) and WM. Cardiovascular burden (i.e., hypertension and diabetes status) was associated with WM integrity for both carriers and non-carriers. Conclusion APOE4 carrier status affects interactions between dietary factors, multimodal blood biomarkers, and MTL WM integrity across ~12 years of follow-up, which may reflect increased peripheral-central systems crosstalk following blood-brain barrier breakdown in carriers.
Collapse
Affiliation(s)
- Yi Guan
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Chia Hsin Cheng
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Luis I. Bellomo
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Sriman Narain
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Sherman J. Bigornia
- Department of Agriculture, Nutrition, and Food Systems, College of Life Sciences and Agriculture, University of New Hampshire, Durham, NH, United States
| | - Mahdi O. Garelnabi
- Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Tammy Scott
- School of Medicine, Tufts University, Boston, MA, United States
| | - José M. Ordovás
- Nutrition and Genomics Laboratory, J.M.-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
- IMDEA Alimentacion, Madrid, Spain
- CIBER Fisiopatologia de la Obesidad y la Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Katherine L. Tucker
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA, United States
- Center for Population Health, University of Massachusetts Lowell, Lowell, MA, United States
| | - Rafeeque Bhadelia
- Neuroradiology Section, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Bang-Bon Koo
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
He S, Guan Y, Cheng CH, Moore TL, Luebke JI, Killiany RJ, Rosene DL, Koo BB, Ou Y. Human-to-monkey transfer learning identifies the frontal white matter as a key determinant for predicting monkey brain age. Front Aging Neurosci 2023; 15:1249415. [PMID: 38020785 PMCID: PMC10646581 DOI: 10.3389/fnagi.2023.1249415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The application of artificial intelligence (AI) to summarize a whole-brain magnetic resonance image (MRI) into an effective "brain age" metric can provide a holistic, individualized, and objective view of how the brain interacts with various factors (e.g., genetics and lifestyle) during aging. Brain age predictions using deep learning (DL) have been widely used to quantify the developmental status of human brains, but their wider application to serve biomedical purposes is under criticism for requiring large samples and complicated interpretability. Animal models, i.e., rhesus monkeys, have offered a unique lens to understand the human brain - being a species in which aging patterns are similar, for which environmental and lifestyle factors are more readily controlled. However, applying DL methods in animal models suffers from data insufficiency as the availability of animal brain MRIs is limited compared to many thousands of human MRIs. We showed that transfer learning can mitigate the sample size problem, where transferring the pre-trained AI models from 8,859 human brain MRIs improved monkey brain age estimation accuracy and stability. The highest accuracy and stability occurred when transferring the 3D ResNet [mean absolute error (MAE) = 1.83 years] and the 2D global-local transformer (MAE = 1.92 years) models. Our models identified the frontal white matter as the most important feature for monkey brain age predictions, which is consistent with previous histological findings. This first DL-based, anatomically interpretable, and adaptive brain age estimator could broaden the application of AI techniques to various animal or disease samples and widen opportunities for research in non-human primate brains across the lifespan.
Collapse
Affiliation(s)
- Sheng He
- Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yi Guan
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Chia Hsin Cheng
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Jennifer I. Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Ronald J. Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Bang-Bon Koo
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| | - Yangming Ou
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
4
|
Li S, Rosen MC, Chang S, David S, Freedman DJ. Alterations of neural activity in the prefrontal cortex associated with deficits in working memory performance. Front Behav Neurosci 2023; 17:1213435. [PMID: 37915531 PMCID: PMC10616307 DOI: 10.3389/fnbeh.2023.1213435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Working memory (WM), a core cognitive function, enables the temporary holding and manipulation of information in mind to support ongoing behavior. Neurophysiological recordings conducted in nonhuman primates have revealed neural correlates of this process in a network of higher-order cortical regions, particularly the prefrontal cortex (PFC). Here, we review the circuit mechanisms and functional importance of WM-related activity in these areas. Recent neurophysiological data indicates that the absence of these neural correlates at different stages of WM is accompanied by distinct behavioral deficits, which are characteristic of various disease states/normal aging and which we review here. Finally, we discuss emerging evidence of electrical stimulation ameliorating these WM deficits in both humans and non-human primates. These results are important for a basic understanding of the neural mechanisms supporting WM, as well as for translational efforts to developing therapies capable of enhancing healthy WM ability or restoring WM from dysfunction.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Matthew C. Rosen
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Suha Chang
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Samuel David
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
| | - David J. Freedman
- Department of Neurobiology, The University of Chicago, Chicago, IL, United States
- Neuroscience Institute, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
5
|
Ibañez S, Sengupta N, Luebke JI, Wimmer K, Weaver CM. Myelin dystrophy in the aging prefrontal cortex leads to impaired signal transmission and working memory decline: a multiscale computational study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.30.555476. [PMID: 37693412 PMCID: PMC10491254 DOI: 10.1101/2023.08.30.555476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Normal aging leads to myelin alternations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are often correlated with cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First we built a multicompartment pyramidal neuron model fit to monkey dlPFC data, with axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions, to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination in a population of neurons. Lasso regression identified distinctive parameter sets likely to modulate an axon's susceptibility to CV changes following demyelination versus remyelination. Next we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from electron microscopy up to behavior on aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.
Collapse
Affiliation(s)
- Sara Ibañez
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Nilapratim Sengupta
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, USA 17604
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA USA 02118
| | - Klaus Wimmer
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Christina M Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, USA 17604
| |
Collapse
|
6
|
Datta D. Interrogating the Etiology of Sporadic Alzheimer's Disease Using Aging Rhesus Macaques: Cellular, Molecular, and Cortical Circuitry Perspectives. J Gerontol A Biol Sci Med Sci 2023; 78:1523-1534. [PMID: 37279946 PMCID: PMC10460555 DOI: 10.1093/gerona/glad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 06/08/2023] Open
Abstract
Aging is the most significant risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) associated with profound socioeconomic and personal costs. Consequently, there is an urgent need for animal models that recapitulate the age-related spatial and temporal complexity and patterns of pathology identical to human AD. Our research in aging nonhuman primate models involving rhesus macaques has revealed naturally occurring amyloid and tau pathology, including the formation of amyloid plaques and neurofibrillary tangles comprising hyperphosphorylated tau. Moreover, rhesus macaques exhibit synaptic dysfunction in association cortices and cognitive impairments with advancing age, and thus can be used to interrogate the etiological mechanisms that generate neuropathological cascades in sporadic AD. Particularly, unique molecular mechanisms (eg, feedforward cyclic adenosine 3',5'-monophosphate [cAMP]-Protein kinase A (PKA)-calcium signaling) in the newly evolved primate dorsolateral prefrontal cortex are critical for persistent firing required for subserving higher-order cognition. For example, dendritic spines in primate dorsolateral prefrontal cortex contain a specialized repertoire of proteins to magnify feedforward cAMP-PKA-calcium signaling such as N-methyl-d-aspartic acid receptors and calcium channels on the smooth endoplasmic reticulum (eg, ryanodine receptors). This process is constrained by phosphodiesterases (eg, PDE4) that hydrolyze cAMP and calcium-buffering proteins (eg, calbindin) in the cytosol. However, genetic predispositions and age-related insults exacerbate feedforward cAMP-Protein kinase A-calcium signaling pathways that induce a myriad of downstream effects, including the opening of K+ channels to weaken network connectivity, calcium-mediated dysregulation of mitochondria, and activation of inflammatory cascades to eliminate synapses, thereby increasing susceptibility to atrophy. Therefore, aging rhesus macaques provide an invaluable model to explore novel therapeutic strategies in sporadic AD.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Moore TL, Medalla M, Ibañez S, Wimmer K, Mojica CA, Killiany RJ, Moss MB, Luebke JI, Rosene DL. Neuronal properties of pyramidal cells in lateral prefrontal cortex of the aging rhesus monkey brain are associated with performance deficits on spatial working memory but not executive function. GeroScience 2023:10.1007/s11357-023-00798-2. [PMID: 37106282 PMCID: PMC10400510 DOI: 10.1007/s11357-023-00798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Age-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood. The prefrontal cortex (PFC) is known to mediate EF and WM and is an area that shows a vulnerability to age-related alterations in neuronal morphology. In the current study, we show that performance on EF and WM tasks exhibited significant changes with age, and these impairments correlate with changes in biophysical properties of layer 3 (L3) pyramidal neurons in lateral LPFC (LPFC). Specifically, there was a significant age-related increase in excitability of L3 LPFC pyramidal neurons, consistent with previous studies. Further, this age-related hyperexcitability of LPFC neurons was significantly correlated with age-related decline on a task of WM, but not an EF task. The current study characterizes age-related performance on tasks of WM and EF and provides insight into the neural substrates that may underlie changes in both WM and EF with age.
Collapse
Affiliation(s)
- Tara L Moore
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA.
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA.
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Sara Ibañez
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193, Bellaterra, Spain
| | - Klaus Wimmer
- Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193, Bellaterra, Spain
| | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
| | - Ronald J Killiany
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Mark B Moss
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Jennifer I Luebke
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, 700 Albany Street, W701, MA, 02118, Boston, USA
- Center for Systems Neuroscience, Boston University, MA, 02115, Boston, USA
| |
Collapse
|
8
|
Freire-Cobo C, Rothwell ES, Varghese M, Edwards M, Janssen WGM, Lacreuse A, Hof PR. Neuronal vulnerability to brain aging and neurodegeneration in cognitively impaired marmoset monkeys (Callithrix jacchus). Neurobiol Aging 2023; 123:49-62. [PMID: 36638681 PMCID: PMC9892246 DOI: 10.1016/j.neurobiolaging.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
The investigation of neurobiological and neuropathological changes that affect synaptic integrity and function with aging is key to understanding why the aging brain is vulnerable to Alzheimer's disease. We investigated the cellular characteristics in the cerebral cortex of behaviorally characterized marmosets, based on their trajectories of cognitive learning as they transitioned to old age. We found increased astrogliosis, increased phagocytic activity of microglial cells and differences in resting and reactive microglial cell phenotypes in cognitively impaired compared to nonimpaired marmosets. Differences in amyloid beta deposition were not related to cognitive trajectory. However, we found age-related changes in density and morphology of dendritic spines in pyramidal neurons of layer 3 in the dorsolateral prefrontal cortex and the CA1 field of the hippocampus between cohorts. Overall, our data suggest that an accelerated aging process, accompanied by neurodegeneration, that takes place in cognitively impaired aged marmosets and affects the plasticity of dendritic spines in cortical areas involved in cognition and points to mechanisms of neuronal vulnerability to aging.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Emily S Rothwell
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mélise Edwards
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - William G M Janssen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Moore TL, Medalla M, Iba Ez S, Wimmer K, Mojica CA, Killiany RJ, Moss MB, Luebke JI, Rosene DL. Neuronal properties of pyramidal cells in lateral prefrontal cortex of the aging rhesus monkey brain are associated with performance deficits on spatial working memory but not executive function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527321. [PMID: 36798388 PMCID: PMC9934587 DOI: 10.1101/2023.02.07.527321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Age-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood. The prefrontal cortex (PFC) is known to mediate EF and WM and is an area that shows a vulnerability to age-related alterations in neuronal morphology. In the current study, we show that performance on EF and WM tasks exhibited significant changes with age and these impairments correlate with changes in biophysical properties of L3 pyramidal neurons in lateral LPFC (LPFC). Specifically, there was a significant age-related increase in excitability of Layer 3 LPFC pyramidal neurons, consistent with previous studies. Further, this age-related hyperexcitability of LPFC neurons was significantly correlated with age-related decline on a task of WM, but not an EF task. The current study characterizes age-related performance on tasks of WM and EF and provides insight into the neural substrates that may underlie changes in both WM and EF with age.
Collapse
|
10
|
Chiou KL, DeCasien AR, Rees KP, Testard C, Spurrell CH, Gogate AA, Pliner HA, Tremblay S, Mercer A, Whalen CJ, Negrón-Del Valle JE, Janiak MC, Bauman Surratt SE, González O, Compo NR, Stock MK, Ruiz-Lambides AV, Martínez MI, Wilson MA, Melin AD, Antón SC, Walker CS, Sallet J, Newbern JM, Starita LM, Shendure J, Higham JP, Brent LJN, Montague MJ, Platt ML, Snyder-Mackler N. Multiregion transcriptomic profiling of the primate brain reveals signatures of aging and the social environment. Nat Neurosci 2022; 25:1714-1723. [PMID: 36424430 PMCID: PMC10055353 DOI: 10.1038/s41593-022-01197-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
Abstract
Aging is accompanied by a host of social and biological changes that correlate with behavior, cognitive health and susceptibility to neurodegenerative disease. To understand trajectories of brain aging in a primate, we generated a multiregion bulk (N = 527 samples) and single-nucleus (N = 24 samples) brain transcriptional dataset encompassing 15 brain regions and both sexes in a unique population of free-ranging, behaviorally phenotyped rhesus macaques. We demonstrate that age-related changes in the level and variance of gene expression occur in genes associated with neural functions and neurological diseases, including Alzheimer's disease. Further, we show that higher social status in females is associated with younger relative transcriptional ages, providing a link between the social environment and aging in the brain. Our findings lend insight into biological mechanisms underlying brain aging in a nonhuman primate model of human behavior, cognition and health.
Collapse
Affiliation(s)
- Kenneth L Chiou
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Department of Psychology, University of Washington, Seattle, WA, USA.
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA, USA.
| | - Alex R DeCasien
- Department of Anthropology, New York University, New York, NY, USA.
- New York Consortium in Evolutionary Primatology, New York, NY, USA.
| | - Katherina P Rees
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Camille Testard
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Aishwarya A Gogate
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Hannah A Pliner
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Sébastien Tremblay
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Arianne Mercer
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Connor J Whalen
- Department of Anthropology, New York University, New York, NY, USA
| | | | - Mareike C Janiak
- School of Science, Engineering, & Environment, University of Salford, Salford, UK
| | | | - Olga González
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Nicole R Compo
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Michala K Stock
- Department of Sociology and Anthropology, Metropolitan State University of Denver, Denver, CO, USA
| | | | - Melween I Martínez
- Caribbean Primate Research Center, University of Puerto Rico, San Juan, PR, USA
| | - Melissa A Wilson
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Susan C Antón
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Christopher S Walker
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, Université Lyon, Lyon, France
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Lea M Starita
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - James P Higham
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Lauren J N Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, UK
| | - Michael J Montague
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael L Platt
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Marketing Department, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Department of Psychology, University of Washington, Seattle, WA, USA.
- Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Washington, Seattle, WA, USA.
- Center for Studies in Demography & Ecology, University of Washington, Seattle, WA, USA.
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, USA.
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
11
|
Gullstrand J, Claidière N, Fagot J. Age effect in expert cognitive flexibility in Guinea baboons (Papio papio). Behav Brain Res 2022; 434:114043. [PMID: 35933047 DOI: 10.1016/j.bbr.2022.114043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/02/2022]
Abstract
Cognitive flexibility in non-human primates is traditionally measured with the conceptual set shifting task (CSST). In our laboratory, Guinea baboons (N = 24) were continuously tested with a CSST task during approximately 10 years. Our task involved the presentation of three stimuli on a touch screen all made from 3 possible colours and 3 shapes. The subjects had to touch the stimulus containing the stimulus dimension (e.g., green) that was constantly rewarded until the stimulus dimension changed. Analysis of perseveration responses, scores and response times collected during the last two years of testing (approximately 1.6 million trials) indicate (1) that the baboons have developed an "expert" form of cognitive flexibility and (2) that their performance was age-dependent, it was at a developing stage in juveniles, optimal in adults, declining in middle-aged, and strongly impaired in the oldest age group. A direct comparison with the data collected by Bonté , Flemming & Fagot (2011) on some of the same baboons and same task as in the current study indicates that (3) the performance of all age groups has improved after 10 years of training, even for the now old individuals. All these data validate the use of non-human primates as models of human cognitive flexibility and suggest that cognitive flexibility in humans has a long evolutionary history.
Collapse
Affiliation(s)
- Julie Gullstrand
- Laboratory of Cognitive Psychology, CNRS, Aix-Marseille University, and Primatology Station of the CNRS-Celphedia, France.
| | - Nicolas Claidière
- Laboratory of Cognitive Psychology, CNRS, Aix-Marseille University, and Primatology Station of the CNRS-Celphedia, France
| | - Joel Fagot
- Laboratory of Cognitive Psychology, CNRS, Aix-Marseille University, and Primatology Station of the CNRS-Celphedia, France.
| |
Collapse
|
12
|
Guevara EE, Hopkins WD, Hof PR, Ely JJ, Bradley BJ, Sherwood CC. Epigenetic aging of the prefrontal cortex and cerebellum in humans and chimpanzees. Epigenetics 2022; 17:1774-1785. [PMID: 35603816 DOI: 10.1080/15592294.2022.2080993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Epigenetic age has emerged as an important biomarker of biological aging. It has revealed that some tissues age faster than others, which is vital to understanding the complex phenomenon of aging and developing effective interventions. Previous studies have demonstrated that humans exhibit heterogeneity in pace of epigenetic aging among brain structures that are consistent with differences in structural and microanatomical deterioration. Here, we add comparative data on epigenetic brain aging for chimpanzees, humans' closest relatives. Such comparisons can further our understanding of which aspects of human aging are evolutionarily conserved or specific to our species, especially given that humans are distinguished by a long lifespan, large brain, and, potentially, more severe neurodegeneration with age. Specifically, we investigated epigenetic aging of the dorsolateral prefrontal cortex and cerebellum, of humans and chimpanzees by generating genome-wide CpG methylation data and applying established epigenetic clock algorithms to produce estimates of biological age for these tissues. We found that both species exhibit relatively slow epigenetic aging in the brain relative to blood. Between brain structures, humans show a faster rate of epigenetic aging in the dorsolateral prefrontal cortex compared to the cerebellum, which is consistent with previous findings. Chimpanzees, in contrast, show comparable rates of epigenetic aging in the two brain structures. Greater epigenetic change in the human dorsolateral prefrontal cortex compared to the cerebellum may reflect both the protracted development of this structure in humans and its greater age-related vulnerability to neurodegenerative pathology.
Collapse
Affiliation(s)
- Elaine E Guevara
- Department of Anthropology, University of North Carolina Wilmington, Wilmington, NC 28403, USA.,Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - William D Hopkins
- Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,New York Consortium in Evolutionary Primatology, New York, NY 10124, USA
| | - John J Ely
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA.,MAEBIOS, Alamogordo, NM 88310, USA
| | - Brenda J Bradley
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
13
|
Pur DR, Preti MG, de Ribaupierre A, Van De Ville D, Eagleson R, Mella N, de Ribaupierre S. Mapping of Structure-Function Age-Related Connectivity Changes on Cognition Using Multimodal MRI. Front Aging Neurosci 2022; 14:757861. [PMID: 35663581 PMCID: PMC9158434 DOI: 10.3389/fnagi.2022.757861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
The relationship between age-related changes in brain structural connectivity (SC) and functional connectivity (FC) with cognition is not well understood. Furthermore, it is not clear whether cognition is represented via a similar spatial pattern of FC and SC or instead is mapped by distinct sets of distributed connectivity patterns. To this end, we used a longitudinal, within-subject, multimodal approach aiming to combine brain data from diffusion-weighted MRI (DW-MRI), and functional MRI (fMRI) with behavioral evaluation, to better understand how changes in FC and SC correlate with changes in cognition in a sample of older adults. FC and SC measures were derived from the multimodal scans acquired at two time points. Change in FC and SC was correlated with 13 behavioral measures of cognitive function using Partial Least Squares Correlation (PLSC). Two of the measures indicate an age-related change in cognition and the rest indicate baseline cognitive performance. FC and SC—cognition correlations were expressed across several cognitive measures, and numerous structural and functional cortical connections, mainly cingulo-opercular, dorsolateral prefrontal, somatosensory and motor, and temporo-parieto-occipital, contributed both positively and negatively to the brain-behavior relationship. Whole-brain FC and SC captured distinct and independent connections related to the cognitive measures. Overall, we examined age-related function-structure associations of the brain in a comprehensive and integrated manner, using a multimodal approach. We pointed out the behavioral relevance of age-related changes in FC and SC. Taken together, our results highlight that the heterogeneity in distributed FC and SC connectivity patterns provide unique information about the variable nature of healthy cognitive aging.
Collapse
Affiliation(s)
- Daiana Roxana Pur
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- *Correspondence: Daiana Roxana Pur
| | - Maria Giulia Preti
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | | | - Dimitri Van De Ville
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Roy Eagleson
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
| | - Nathalie Mella
- Department of Psychology, University of Geneva, Geneva, Switzerland
| | - Sandrine de Ribaupierre
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- The Brain and Mind Institute, Western University, London, ON, Canada
- Department of Clinical Neurological Sciences, Schulich School of Medicine, Western University, London, ON, Canada
| |
Collapse
|
14
|
Chang W, Weaver CM, Medalla M, Moore TL, Luebke JI. Age-related alterations to working memory and to pyramidal neurons in the prefrontal cortex of rhesus monkeys begin in early middle-age and are partially ameliorated by dietary curcumin. Neurobiol Aging 2022; 109:113-124. [PMID: 34715442 PMCID: PMC8671373 DOI: 10.1016/j.neurobiolaging.2021.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 01/03/2023]
Abstract
Layer 3 (L3) pyramidal neurons in aged rhesus monkey lateral prefrontal cortex (LPFC) exhibit significantly elevated excitability in vitro and reduced spine density compared to neurons in young subjects. The time-course of these alterations, and whether they can be ameliorated in middle age by the powerful anti-oxidant curcumin is unknown. We compared the properties of L3 pyramidal neurons from the LPFC of behaviorally characterized rhesus monkeys over the adult lifespan using whole-cell patch clamp recordings and neuronal reconstructions. Working memory (WM) impairment, neuronal hyperexcitability, and spine loss began in middle age. There was no significant relationship between neuronal properties and WM performance. Middle-aged subjects given curcumin exhibited better WM performance and less neuronal excitability compared to control subjects. These findings suggest that the appropriate time frame for intervention for age-related cognitive changes is early middle age, and points to the efficacy of curcumin in delaying WM decline. Because there was no relationship between excitability and behavior, the effects of curcumin on these measures appear to be independent.
Collapse
Affiliation(s)
- W Chang
- Department of Anatomy & Neurobiology, Boston University School of Medicine 650 Albany St., Boston MA 02118 USA
| | - C M Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster PA 17604 USA
| | - M Medalla
- Department of Anatomy & Neurobiology, Boston University School of Medicine 650 Albany St., Boston MA 02118 USA
| | - T L Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine 650 Albany St., Boston MA 02118 USA
| | - J I Luebke
- Department of Anatomy & Neurobiology, Boston University School of Medicine 650 Albany St., Boston MA 02118 USA.
| |
Collapse
|
15
|
Freire-Cobo C, Edler MK, Varghese M, Munger E, Laffey J, Raia S, In SS, Wicinski B, Medalla M, Perez SE, Mufson EJ, Erwin JM, Guevara EE, Sherwood CC, Luebke JI, Lacreuse A, Raghanti MA, Hof PR. Comparative neuropathology in aging primates: A perspective. Am J Primatol 2021; 83:e23299. [PMID: 34255875 PMCID: PMC8551009 DOI: 10.1002/ajp.23299] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 12/27/2022]
Abstract
While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes. We present a comparative overview of existing neuropathologic observations across the primate order, including classic age-related changes such as cell loss, amyloid deposition, amyloid angiopathy, and tau accumulation. We also review existing cellular and ultrastructural data on neuronal changes, such as dendritic attrition and spine alterations, synaptic loss and pathology, and axonal and myelin pathology, and discuss their repercussions on cellular and systems function and cognition.
Collapse
Affiliation(s)
- Carmen Freire-Cobo
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Melissa K Edler
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emily Munger
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Jessie Laffey
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sophia Raia
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Selena S In
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bridget Wicinski
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Joseph M Erwin
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Elaine E Guevara
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Center for Systems Neuroscience, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Agnès Lacreuse
- Psychological and Brain Sciences, University of Massachusetts, Amherst, Massachusetts, USA
| | - Mary A Raghanti
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
- Department of Anthropology, Kent State University, Kent, Ohio, USA
- Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
Differential Circuit Mechanisms of Young and Aged Visual Cortex in the Mammalian Brain. NEUROSCI 2021. [DOI: 10.3390/neurosci2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The main goal of this review is to summarize and discuss (1) age-dependent structural reorganization of mammalian visual cortical circuits underlying complex visual behavior functions in primary visual cortex (V1) and multiple extrastriate visual areas, and (2) current evidence supporting the notion of compensatory mechanisms in aged visual circuits as well as the use of rehabilitative therapy for the recovery of neural plasticity in normal and diseased aging visual circuit mechanisms in different species. It is well known that aging significantly modulates both the structural and physiological properties of visual cortical neurons in V1 and other visual cortical areas in various species. Compensatory aged neural mechanisms correlate with the complexity of visual functions; however, they do not always result in major circuit alterations resulting in age-dependent decline in performance of a visual task or neurodegenerative disorders. Computational load and neural processing gradually increase with age, and the complexity of compensatory mechanisms correlates with the intricacy of higher form visual perceptions that are more evident in higher-order visual areas. It is particularly interesting to note that the visual perceptual processing of certain visual behavior functions does not change with age. This review aims to comprehensively discuss the effect of normal aging on neuroanatomical alterations that underlie critical visual functions and more importantly to highlight differences between compensatory mechanisms in aged neural circuits and neural processes related to visual disorders. This type of approach will further enhance our understanding of inter-areal and cortico-cortical connectivity of visual circuits in normal aging and identify major circuit alterations that occur in different visual deficits, thus facilitating the design and evaluation of potential rehabilitation therapies as well as the assessment of the extent of their rejuvenation.
Collapse
|
17
|
Stonebarger GA, Urbanski HF, Woltjer RL, Vaughan KL, Ingram DK, Schultz PL, Calderazzo SM, Siedeman JA, Mattison JA, Rosene DL, Kohama SG. Amyloidosis increase is not attenuated by long-term calorie restriction or related to neuron density in the prefrontal cortex of extremely aged rhesus macaques. GeroScience 2020; 42:1733-1749. [PMID: 32876855 PMCID: PMC7732935 DOI: 10.1007/s11357-020-00259-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/24/2020] [Indexed: 01/30/2023] Open
Abstract
As human lifespan increases and the population ages, diseases of aging such as Alzheimer's disease (AD) are a major cause for concern. Although calorie restriction (CR) as an intervention has been shown to increase healthspan in many species, few studies have examined the effects of CR on brain aging in primates. Using postmortem tissue from a cohort of extremely aged rhesus monkeys (22-44 years old, average age 31.8 years) from a longitudinal CR study, we measured immunohistochemically labeled amyloid beta plaques in Brodmann areas 32 and 46 of the prefrontal cortex, areas that play key roles in cognitive processing, are sensitive to aging and, in humans, are also susceptible to AD pathogenesis. We also evaluated these areas for cortical neuron loss, which has not been observed in younger cohorts of aged monkeys. We found a significant increase in plaque density with age, but this was unaffected by diet. Moreover, there was no change in neuron density with age or treatment. These data suggest that even in the oldest-old rhesus macaques, amyloid beta plaques do not lead to overt neuron loss. Hence, the rhesus macaque serves as a pragmatic animal model for normative human aging but is not a complete model of the neurodegeneration of AD. This model of aging may instead prove most useful for determining how even the oldest monkeys are protected from AD, and this information may therefore yield valuable information for clinical AD treatments.
Collapse
Affiliation(s)
- G A Stonebarger
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - H F Urbanski
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - R L Woltjer
- Department of Pathology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - K L Vaughan
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, NIH, Dickerson, MD, 20842, USA
- Charles River, Wilmington, MA, 01867, USA
| | - D K Ingram
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808, USA
| | - P L Schultz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - S M Calderazzo
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - J A Siedeman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - J A Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, NIH, Dickerson, MD, 20842, USA
| | - D L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MD, 02218, USA
| | - S G Kohama
- Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR, 97006, USA.
| |
Collapse
|
18
|
Zagrebelsky M, Tacke C, Korte M. BDNF signaling during the lifetime of dendritic spines. Cell Tissue Res 2020; 382:185-199. [PMID: 32537724 PMCID: PMC7529616 DOI: 10.1007/s00441-020-03226-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Dendritic spines are tiny membrane specialization forming the postsynaptic part of most excitatory synapses. They have been suggested to play a crucial role in regulating synaptic transmission during development and in adult learning processes. Changes in their number, size, and shape are correlated with processes of structural synaptic plasticity and learning and memory and also with neurodegenerative diseases, when spines are lost. Thus, their alterations can correlate with neuronal homeostasis, but also with dysfunction in several neurological disorders characterized by cognitive impairment. Therefore, it is important to understand how different stages in the life of a dendritic spine, including formation, maturation, and plasticity, are strictly regulated. In this context, brain-derived neurotrophic factor (BDNF), belonging to the NGF-neurotrophin family, is among the most intensively investigated molecule. This review would like to report the current knowledge regarding the role of BDNF in regulating dendritic spine number, structure, and plasticity concentrating especially on its signaling via its two often functionally antagonistic receptors, TrkB and p75NTR. In addition, we point out a series of open points in which, while the role of BDNF signaling is extremely likely conclusive, evidence is still missing.
Collapse
Affiliation(s)
- Marta Zagrebelsky
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr 7, 38106, Braunschweig, Germany.
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124, Braunschweig, Germany.
| | - Charlotte Tacke
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr 7, 38106, Braunschweig, Germany
| | - Martin Korte
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr 7, 38106, Braunschweig, Germany.
- Helmholtz Centre for Infection Research, AG NIND, Inhoffenstr. 7, D-38124, Braunschweig, Germany.
| |
Collapse
|
19
|
Ibañez S, Luebke JI, Chang W, Draguljić D, Weaver CM. Network Models Predict That Pyramidal Neuron Hyperexcitability and Synapse Loss in the dlPFC Lead to Age-Related Spatial Working Memory Impairment in Rhesus Monkeys. Front Comput Neurosci 2020; 13:89. [PMID: 32009920 PMCID: PMC6979278 DOI: 10.3389/fncom.2019.00089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/18/2019] [Indexed: 01/04/2023] Open
Abstract
Behavioral studies have shown spatial working memory impairment with aging in several animal species, including humans. Persistent activity of layer 3 pyramidal dorsolateral prefrontal cortex (dlPFC) neurons during delay periods of working memory tasks is important for encoding memory of the stimulus. In vitro studies have shown that these neurons undergo significant age-related structural and functional changes, but the extent to which these changes affect neural mechanisms underlying spatial working memory is not understood fully. Here, we confirm previous studies showing impairment on the Delayed Recognition Span Task in the spatial condition (DRSTsp), and increased in vitro action potential firing rates (hyperexcitability), across the adult life span of the rhesus monkey. We use a bump attractor model to predict how empirically observed changes in the aging dlPFC affect performance on the Delayed Response Task (DRT), and introduce a model of memory retention in the DRSTsp. Persistent activity-and, in turn, cognitive performance-in both models was affected much more by hyperexcitability of pyramidal neurons than by a loss of synapses. Our DRT simulations predict that additional changes to the network, such as increased firing of inhibitory interneurons, are needed to account for lower firing rates during the DRT with aging reported in vivo. Synaptic facilitation was an essential feature of the DRSTsp model, but it did not compensate fully for the effects of the other age-related changes on DRT performance. Modeling pyramidal neuron hyperexcitability and synapse loss simultaneously led to a partial recovery of function in both tasks, with the simulated level of DRSTsp impairment similar to that observed in aging monkeys. This modeling work integrates empirical data across multiple scales, from synapse counts to cognitive testing, to further our understanding of aging in non-human primates.
Collapse
Affiliation(s)
- Sara Ibañez
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Jennifer I. Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Wayne Chang
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Danel Draguljić
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, United States
| | - Christina M. Weaver
- Department of Mathematics, Franklin and Marshall College, Lancaster, PA, United States
| |
Collapse
|
20
|
Datta D, Leslie SN, Morozov YM, Duque A, Rakic P, van Dyck CH, Nairn AC, Arnsten AFT. Classical complement cascade initiating C1q protein within neurons in the aged rhesus macaque dorsolateral prefrontal cortex. J Neuroinflammation 2020; 17:8. [PMID: 31906973 PMCID: PMC6945481 DOI: 10.1186/s12974-019-1683-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/17/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cognitive impairment in schizophrenia, aging, and Alzheimer's disease is associated with spine and synapse loss from the dorsolateral prefrontal cortex (dlPFC) layer III. Complement cascade signaling is critical in driving spine loss and disease pathogenesis. Complement signaling is initiated by C1q, which tags synapses for elimination. C1q is thought to be expressed predominately by microglia, but its expression in primate dlPFC has never been examined. The current study assayed C1q levels in aging primate dlPFC and rat medial PFC (mPFC) and used immunoelectron microscopy (immunoEM), immunoblotting, and co-immunoprecipitation (co-IP) to reveal the precise anatomical distribution and interactions of C1q. METHODS Age-related changes in C1q levels in rhesus macaque dlPFC and rat mPFC were examined using immunoblotting. High-spatial resolution immunoEM was used to interrogate the subcellular localization of C1q in aged macaque layer III dlPFC and aged rat layer III mPFC. co-IP techniques quantified protein-protein interactions for C1q and proteins associated with excitatory and inhibitory synapses in macaque dlPFC. RESULTS C1q levels were markedly increased in the aged macaque dlPFC. Ultrastructural localization found the expected C1q localization in glia, including those ensheathing synapses, but also revealed extensive localization within neurons. C1q was found near synapses, within terminals and in spines, but was also observed in dendrites, often near abnormal mitochondria. Similar analyses in aging rat mPFC corroborated the findings in rhesus macaques. C1q protein increasingly associated with PSD95 with age in macaque, consistent with its synaptic localization as evidenced by EM. CONCLUSIONS These findings reveal novel, intra-neuronal distribution patterns for C1q in the aging primate cortex, including evidence of C1q in dendrites. They suggest that age-related changes in the dlPFC may increase C1q expression and synaptic tagging for glial phagocytosis, a possible mechanism for age-related degeneration.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA.
| | - Shannon N Leslie
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
| | - Alvaro Duque
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
| | - Christopher H van Dyck
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA.
| |
Collapse
|
21
|
Attia H, Taha M, Abdellatif A. Effects of aging on the myelination of the optic nerve in rats. Int J Neurosci 2018; 129:320-324. [PMID: 30260726 DOI: 10.1080/00207454.2018.1529670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
AIM OF THE STUDY Cognitive decline due to aging is most probably the result of changes in the white matter in the central nervous system (CNS) and/or demyelination. MATERIAL AND METHODS We used electron microscopic analysis of the morphological changes in aging rats' optic nerves as an easily accessible part of the CNS. RESULTS Several age changes were observed in aging rats (36 months) vs. young adult rats (6 months), namely degeneration of axons, decreased packing density and morphological alterations of myelination, including the ballooning of some myelin sheaths, separation of myelin lamellae and degenerative changes in the oligodendrocytes population. CONCLUSION Cognitive decline related to aging may occur in part due to the disturbed myelination of axons in CNS white matter.
Collapse
Affiliation(s)
- Hamdino Attia
- a Department of Anatomy, Faculty of Medicine , Al-Azhar University , Damietta , Egypt and Faculty of Physical Therapy, Horus University, Damietta, Egypt
| | - Medhat Taha
- b Department of Anatomy , College of Medicine , Mansoura , Egypt
| | - Ahmed Abdellatif
- c Department of Biology, School of Sciences & Engineering , American University in Cairo , New Cairo , Egypt
| |
Collapse
|
22
|
Selective Loss of Thin Spines in Area 7a of the Primate Intraparietal Sulcus Predicts Age-Related Working Memory Impairment. J Neurosci 2018; 38:10467-10478. [PMID: 30355632 DOI: 10.1523/jneurosci.1234-18.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/21/2022] Open
Abstract
Brodmann area 7a of the parietal cortex is active during working memory tasks in humans and nonhuman primates, but the composition and density of dendritic spines in area 7a and their relevance both to working memory and cognitive aging remain unexplored. Aged monkeys have impaired working memory, and we have previously shown that this age-induced cognitive impairment is partially mediated by a loss of thin spines in prefrontal cortex area 46, a critical area for working memory. Because area 46 is reciprocally connected with area 7a of the parietal cortex and 7a mediates visual attention integration, we hypothesized that thin spine density in area 7a would correlate with working memory performance as well. To investigate the synaptic profile of area 7a and its relevance to working memory and cognitive aging, we investigated differences in spine type and density in layer III pyramidal cells of area 7a in young and aged, male and female rhesus macaques (Macaca mulatta) that were cognitively assessed using the delayed response test of working memory. Area 7a shows age-related loss of thin spines, and thin spine density positively correlates with delayed response performance in aged monkeys. In contrast, these cells show no age-related changes in dendritic length or branching. These changes mirror age-related changes in area 46 but are distinct from other neocortical regions, such as V1. These findings support our hypothesis that cognitive aging is driven primarily by synaptic changes, and more specifically by changes in thin spines, in key association areas.SIGNIFICANCE STATEMENT This study advances our understanding of cognitive aging by demonstrating the relevance of area 7a thin spines to working memory performance. This study is the first to look at cognitive aging in the intraparietal sulcus, and also the first to report spine or dendritic measures for area 7a in either young adult or aged nonhuman primates. These results contribute to the hypothesis that thin spines support working memory performance and confirm our prior observation that cognitive aging is driven by synaptic changes rather than changes in dendritic morphology or neuron death. Importantly, these data show that age-related working memory changes are not limited to disruptions of the prefrontal cortex but also include an association region heavily interconnected with prefrontal cortex.
Collapse
|
23
|
Motley SE. Relationship Between Neuromodulation and Working Memory in the Prefrontal Cortex: It's Complicated. Front Neural Circuits 2018; 12:31. [PMID: 29740288 PMCID: PMC5928252 DOI: 10.3389/fncir.2018.00031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/04/2018] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sarah E Motley
- Department of Neuroscience, Graduate School of Biomedical Sciences and Fishberg, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,California National Primate Research Center, Davis, CA, United States
| |
Collapse
|
24
|
How plastic are human spinal cord motor circuitries? Exp Brain Res 2017; 235:3243-3249. [PMID: 28776155 DOI: 10.1007/s00221-017-5037-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 07/17/2017] [Indexed: 12/27/2022]
Abstract
Human and animal studies have documented that neural circuitries in the spinal cord show adaptive changes caused by altered supraspinal and/or afferent input to the spinal circuitry in relation to learning, immobilization, injury and neurorehabilitation. Reversible adaptations following, e.g. the acquisition or refinement of a motor skill rely heavily on the functional integration between supraspinal and sensory inputs to the spinal cord networks. Accordingly, what is frequently conceived as a change in the spinal circuitry may be a change in either descending or afferent input or in the relative integration of these, i.e. a change in the neuronal weighting. This is evident from findings documenting only task-specific functional changes after periods of altered inputs whereas resting responses remain unaffected. In fact, the proximity of the spinal circuitry to the outer world may demand a more rigid organization compared to the highly flexible cortical circuits. The understanding of all of this is important for the planning and execution of neurorehabilitation.
Collapse
|
25
|
Abstract
Structural plasticity of the axon initial segment (AIS), the site of action potential initiation, is observed as part of the normal early development of the cortex, as well as in association with injury and disease. Here, we show that structural AIS plasticity also occurs with normal aging in adult marmosets. Immunohistochemical techniques were used to reveal the extent of the AIS of layer 2/3A pyramidal cells in 8 neocortical areas. We found that the AIS length varied significantly between areas in young adult (2-3 years old) marmosets, with neurons in frontal area 14C having the longest AIS, and those in the primary visual cortex the shortest. Similar interareal differences were observed in aged (12-14 year old) monkeys, but the AIS was significantly shortened in many areas, relative to the corresponding length in young adults. Shortening of the AIS is likely to represent a compensatory response to changes in the excitation-inhibition balance, associated with the loss of GABAergic interneurons in the aged cortex.
Collapse
Affiliation(s)
- Nafiseh Atapour
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, Victoria, Australia.
| | - Marcello G P Rosa
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia; Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Gilman JP, Medalla M, Luebke JI. Area-Specific Features of Pyramidal Neurons-a Comparative Study in Mouse and Rhesus Monkey. Cereb Cortex 2017; 27:2078-2094. [PMID: 26965903 DOI: 10.1093/cercor/bhw062] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A principal challenge of systems neuroscience is to understand the unique characteristics of cortical neurons and circuits that enable area- and species-specific sensory encoding, motor function, cognition, and behavior. To address this issue, we compared properties of layer 3 pyramidal neurons in 2 cortical areas that span a broad range of cortical function-primary sensory (V1), to cognitive (frontal)-in the mouse and the rhesus monkey. Hierarchical clustering and discriminant analyses of 15 physiological and 25 morphological variables revealed 2 fundamental principles. First, V1 and frontal neurons are remarkably similar with regard to nearly every property in the mouse, while the opposite is true in the monkey, with V1 and frontal neurons exhibiting significant differences in nearly every property assessed. Second, neurons within visual and frontal areas differ significantly between the mouse and the monkey. Neurons in mouse and monkey V1 are the same size, but differ in nearly every other way; mouse frontal cortical neurons are smaller than those in the monkey and also differ substantially with regard to most other properties. These findings have broad implications for understanding the differential contributions of heterogeneous neuronal types in construction of cortical microcircuitry in diverse brain areas and species.
Collapse
Affiliation(s)
- Joshua P Gilman
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
27
|
Luebke JI. Pyramidal Neurons Are Not Generalizable Building Blocks of Cortical Networks. Front Neuroanat 2017; 11:11. [PMID: 28326020 PMCID: PMC5339252 DOI: 10.3389/fnana.2017.00011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
A key challenge in cortical neuroscience is to gain a comprehensive understanding of how pyramidal neuron heterogeneity across different areas and species underlies the functional specialization of individual neurons, networks, and areas. Comparative studies have been important in this endeavor, providing data relevant to the question of which of the many inherent properties of individual pyramidal neurons are necessary and sufficient for species-specific network and areal function. In this mini review, the importance of pyramidal neuron structural properties for signaling are outlined, followed by a summary of our recent work comparing the structural features of mouse (C57/BL6 strain) and rhesus monkey layer 3 (L3) pyramidal neurons in primary visual and frontal association cortices and their implications for neuronal and areal function. Based on these and other published data, L3 pyramidal neurons plausibly might be considered broadly “generalizable” from one area to another in the mouse neocortex due to their many similarities, but major differences in the properties of these neurons in diverse areas in the rhesus monkey neocortex rules this out in the primate. Further, fundamental differences in the dendritic topology of mouse and rhesus monkey pyramidal neurons highlight the implausibility of straightforward scaling and/or extrapolation from mouse to primate neurons and cortical networks.
Collapse
Affiliation(s)
- Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
28
|
Li Y, Zhao L, Gu B, Cai J, Lv Y, Yu L. Aerobic exercise regulates Rho/cofilin pathways to rescue synaptic loss in aged rats. PLoS One 2017; 12:e0171491. [PMID: 28152068 PMCID: PMC5289643 DOI: 10.1371/journal.pone.0171491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/20/2017] [Indexed: 11/23/2022] Open
Abstract
Purpose The role of exercise to prevent or reverse aging-induced cognitive decline has been widely reported. This neuroprotection is associated with changes in the synaptic structure plasticity. However, the mechanisms of exercise-induced synaptic plasticity in the aging brain are still unclear. Thus, the aim of the present study is to investigate the aging-related alterations of Rho-GTPase and the modulatory influences of exercise training. Methods Young and old rats were used in this study. Old rats were subjected to different schedules of aerobic exercise (12 m/min, 60 min/d, 3d/w or 5d/w) or kept sedentary for 12 w. After 12 w of aerobic exercise, the synapse density in the cortex and hippocampus was detected with immunofluorescent staining using synaptophysin as a marker. The total protein levels of RhoA, Rac1, Cdc42 and cofilin in the cortex and hippocampus were detected with Western Blot. The activities of RhoA, Rac1 and Cdc42 were determined using a pull down assay. Results We found that synapse loss occurred in aging rats. However, the change of expression and activity of RhoA, Rac1 and Cdc42 was different in the cortex and hippocampus. In the cortex, the expression and activity of Rac1 and Cdc42 was greatly increased with aging, whereas there were no changes in the expression and activity of RhoA. In the hippocampus, the expression and activity of Rac1 and Cdc42 was greatly decreased and there were no changes in the expression and activity of RhoA. As a major downstream substrate of the Rho GTPase family, the increased expression of cofilin was only observed in the cortex. High frequency exercise ameliorated all aging-related changes in the cortex and hippocampus. Conclusions These data suggest that aerobic exercise reverses synapse loss in the cortex and hippocampus in aging rats, which might be related to the regulation of Rho GTPases.
Collapse
Affiliation(s)
- Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
- * E-mail:
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Jiajia Cai
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Laikang Yu
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
29
|
Morozov YM, Datta D, Paspalas CD, Arnsten AFT. Ultrastructural evidence for impaired mitochondrial fission in the aged rhesus monkey dorsolateral prefrontal cortex. Neurobiol Aging 2016; 51:9-18. [PMID: 28027494 DOI: 10.1016/j.neurobiolaging.2016.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/19/2022]
Abstract
Dorsolateral prefrontal cortex mediates high-order cognitive functions that are impaired early in the aging process in monkeys and humans. Here, we report pronounced changes in mitochondrial morphology in dendrites of dorsolateral prefrontal cortex neurons from aged rhesus macaques. Electron microscopy paired with 3D reconstruction from serial sections revealed an age-related increase in mitochondria with thin segments that intermingled with enlarged ones, the 'mitochondria-on-a-string' phenotype, similar to those recently reported in patients with Alzheimer's disease. The thin mitochondrial segments were associated with endoplasmic reticulum cisterns, and the mitochondrial proteins Fis1 and Drp1, all of which initiate mitochondrial fission. These data suggest that the 'mitochondria-on-a-string' phenotype may reflect malfunction in mitochondrial dynamics, whereby fission is initiated, but the process is incomplete due to malfunction of subsequent step(s). Thus, aged rhesus monkeys may be particularly helpful in exploring the age-related changes that render higher cortical circuits so vulnerable to degeneration.
Collapse
Affiliation(s)
- Yury M Morozov
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | | | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
30
|
Abstract
The number, location, extent, and functional properties of the cortical areas that occupy the medial parieto-occipital cortex (mPOC) have been, and still is, a matter of scientific debate. The mPOC is a convoluted region of the brain that presents a high level of individual variability, and the fact that many areas of mPOC are located within very deep sulci further limits the possibility to investigate their anatomo-functional properties. In the present review, we summarize the location and extent of mPOC areas in the macaque brain as obtained by architectural, connectional, and functional data. The different approaches lead to a subdivision of mPOC that includes areas V2, V3, V6, V6Av, and V6Ad. Extrastriate areas V2 and V3 occupy the posterior wall of the parieto-occipital sulcus (POs). The fundus of POs and the ventralmost part of the anterior wall of the sulcus are occupied by a retinotopically organized visual area, called V6, which represents the contralateral part of the visual field and emphasizes its periphery. The remaining part of the anterior wall of POs is occupied by two areas, V6Av and V6Ad, which contain visual as well as arm reaching neurons. Our analyses suggest that areas V6 and V6Av, together, occupy the cortical territory previously described as area PO. Functionally, area V6 is a motion area particularly sensitive to the real motion of objects in the animal's field of view, while V6Av and V6Ad are visuomotor areas likely involved in the visual guidance of arm movement and object prehension.
Collapse
|
31
|
Lacreuse A, Mong JA, Hara Y. Neurocognitive effects of estrogens across the adult lifespan in nonhuman primates: State of knowledge and new perspectives. Horm Behav 2015; 74:157-66. [PMID: 25762288 DOI: 10.1016/j.yhbeh.2015.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 01/29/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". This review discusses the unique contribution of nonhuman primate research to our understanding of the neurocognitive effects of estrogens throughout the adult lifespan in females. Mounting evidence indicates that estrogens affect many aspects of hippocampal, prefrontal and cholinergic function in the primate brain and the underlying mechanisms are beginning to be elucidated. In addition, estrogens may also influence cognitive function indirectly, via the modulation of other systems that impact cognition. We will focus on the effects of estrogens on sleep and emphasize the need for primate models to better understand these complex interactions. Continued research with nonhuman primates is essential for the development of therapies that are optimal for the maintenance of women's cognitive health throughout the lifespan.
Collapse
Affiliation(s)
- Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts at Amherst, MA, USA.
| | - Jessica A Mong
- Department of Pharmacology, University of Maryland, School of Medicine, Baltimore, MD, USA
| | - Yuko Hara
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
32
|
Mohedano-Moriano A, Muñoz-López M, Sanz-Arigita E, Pró-Sistiaga P, Martínez-Marcos A, Legidos-Garcia ME, Insausti AM, Cebada-Sánchez S, Arroyo-Jiménez MDM, Marcos P, Artacho-Pérula E, Insausti R. Prefrontal cortex afferents to the anterior temporal lobe in theMacaca fascicularismonkey. J Comp Neurol 2015; 523:2570-98. [DOI: 10.1002/cne.23805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 11/30/2014] [Accepted: 04/29/2015] [Indexed: 01/22/2023]
Affiliation(s)
| | - Mónica Muñoz-López
- Department of Health Sciences; University of Castilla-La Mancha; Albacete 02006 Spain
| | - Ernesto Sanz-Arigita
- Radiology and Image Analysis Center - Free University Medical center (VUmc); Amsterdam The Netherlands
| | | | - Alino Martínez-Marcos
- Department of Health Sciences; University of Castilla-La Mancha; Ciudad Real 13071 Spain
| | | | - Ana María Insausti
- Department of Health; Physical Therapy School; Public University of Navarre; Tudela Campus 31005 Tudela Spain
| | - Sandra Cebada-Sánchez
- Department of Health Sciences; University of Castilla-La Mancha; Albacete 02006 Spain
| | | | - Pilar Marcos
- Department of Health Sciences; University of Castilla-La Mancha; Albacete 02006 Spain
| | - Emilio Artacho-Pérula
- Department of Health Sciences; University of Castilla-La Mancha; Albacete 02006 Spain
| | - Ricardo Insausti
- Department of Health Sciences; University of Castilla-La Mancha; Albacete 02006 Spain
| |
Collapse
|
33
|
Hara Y, Waters EM, McEwen BS, Morrison JH. Estrogen Effects on Cognitive and Synaptic Health Over the Lifecourse. Physiol Rev 2015; 95:785-807. [PMID: 26109339 PMCID: PMC4491541 DOI: 10.1152/physrev.00036.2014] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Estrogen facilitates higher cognitive functions by exerting effects on brain regions such as the prefrontal cortex and hippocampus. Estrogen induces spinogenesis and synaptogenesis in these two brain regions and also initiates a complex set of signal transduction pathways via estrogen receptors (ERs). Along with the classical genomic effects mediated by activation of ER α and ER β, there are membrane-bound ER α, ER β, and G protein-coupled estrogen receptor 1 (GPER1) that can mediate rapid nongenomic effects. All key ERs present throughout the body are also present in synapses of the hippocampus and prefrontal cortex. This review summarizes estrogen actions in the brain from the standpoint of their effects on synapse structure and function, noting also the synergistic role of progesterone. We first begin with a review of ER subtypes in the brain and how their abundance and distributions are altered with aging and estrogen loss (e.g., ovariectomy or menopause) in the rodent, monkey, and human brain. As there is much evidence that estrogen loss induced by menopause can exacerbate the effects of aging on cognitive functions, we then review the clinical trials of hormone replacement therapies and their effectiveness on cognitive symptoms experienced by women. Finally, we summarize studies carried out in nonhuman primate models of age- and menopause-related cognitive decline that are highly relevant for developing effective interventions for menopausal women. Together, we highlight a new understanding of how estrogen affects higher cognitive functions and synaptic health that go well beyond its effects on reproduction.
Collapse
Affiliation(s)
- Yuko Hara
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Elizabeth M Waters
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - Bruce S McEwen
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| | - John H Morrison
- Fishberg Department of Neuroscience and Kastor Neurobiology of Aging Laboratories, Friedman Brain Institute, Department of Geriatrics and Palliative Medicine, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York
| |
Collapse
|
34
|
Calabrese E, Badea A, Coe CL, Lubach GR, Shi Y, Styner MA, Johnson GA. A diffusion tensor MRI atlas of the postmortem rhesus macaque brain. Neuroimage 2015; 117:408-16. [PMID: 26037056 DOI: 10.1016/j.neuroimage.2015.05.072] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/22/2015] [Accepted: 05/24/2015] [Indexed: 12/27/2022] Open
Abstract
The rhesus macaque (Macaca mulatta) is the most widely used nonhuman primate for modeling the structure and function of the brain. Brain atlases, and particularly those based on magnetic resonance imaging (MRI), have become important tools for understanding normal brain structure, and for identifying structural abnormalities resulting from disease states, exposures, and/or aging. Diffusion tensor imaging (DTI)-based MRI brain atlases are widely used in both human and macaque brain imaging studies because of the unique contrasts, quantitative diffusion metrics, and diffusion tractography that they can provide. Previous MRI and DTI atlases of the rhesus brain have been limited by low contrast and/or low spatial resolution imaging. Here we present a microscopic resolution MRI/DTI atlas of the rhesus brain based on 10 postmortem brain specimens. The atlas includes both structural MRI and DTI image data, a detailed three-dimensional segmentation of 241 anatomic structures, diffusion tractography, cortical thickness estimates, and maps of anatomic variability among atlas specimens. This atlas incorporates many useful features from previous work, including anatomic label nomenclature and ontology, data orientation, and stereotaxic reference frame, and further extends prior analyses with the inclusion of high-resolution multi-contrast image data.
Collapse
Affiliation(s)
- Evan Calabrese
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alexandra Badea
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher L Coe
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI 53715, USA
| | - Gabriele R Lubach
- Harlow Center for Biological Psychology, University of Wisconsin, Madison, WI 53715, USA
| | - Yundi Shi
- Department of Computer Science, Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Martin A Styner
- Department of Computer Science, Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Department of Radiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Coskren PJ, Luebke JI, Kabaso D, Wearne SL, Yadav A, Rumbell T, Hof PR, Weaver CM. Functional consequences of age-related morphologic changes to pyramidal neurons of the rhesus monkey prefrontal cortex. J Comput Neurosci 2015; 38:263-83. [PMID: 25527184 PMCID: PMC4352129 DOI: 10.1007/s10827-014-0541-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/21/2014] [Accepted: 12/03/2014] [Indexed: 11/26/2022]
Abstract
Layer 3 (L3) pyramidal neurons in the lateral prefrontal cortex (LPFC) of rhesus monkeys exhibit dendritic regression, spine loss and increased action potential (AP) firing rates during normal aging. The relationship between these structural and functional alterations, if any, is unknown. To address this issue, morphological and electrophysiological properties of L3 LPFC pyramidal neurons from young and aged rhesus monkeys were characterized using in vitro whole-cell patch-clamp recordings and high-resolution digital reconstruction of neurons. Consistent with our previous studies, aged neurons exhibited significantly reduced dendritic arbor length and spine density, as well as increased input resistance and firing rates. Computational models using the digital reconstructions with Hodgkin-Huxley and AMPA channels allowed us to assess relationships between demonstrated age-related changes and to predict physiological changes that have not yet been tested empirically. For example, the models predict that in both backpropagating APs and excitatory postsynaptic currents (EPSCs), attenuation is lower in aged versus young neurons. Importantly, when identical densities of passive parameters and voltage- and calcium-gated conductances were used in young and aged model neurons, neither input resistance nor firing rates differed between the two age groups. Tuning passive parameters for each model predicted significantly higher membrane resistance (R m ) in aged versus young neurons. This R m increase alone did not account for increased firing rates in aged models, but coupling these R m values with subtle differences in morphology and membrane capacitance did. The predicted differences in passive parameters (or parameters with similar effects) are mathematically plausible, but must be tested empirically.
Collapse
Affiliation(s)
- Patrick J. Coskren
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Jennifer I. Luebke
- Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118 USA
| | - Doron Kabaso
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Susan L. Wearne
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Aniruddha Yadav
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Timothy Rumbell
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Christina M. Weaver
- Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
- Department of Mathematics and Computer Science, Franklin and Marshall College, Lancaster, PA 17604 USA
| |
Collapse
|
36
|
Diversity of glutamatergic synaptic strength in lateral prefrontal versus primary visual cortices in the rhesus monkey. J Neurosci 2015; 35:112-27. [PMID: 25568107 DOI: 10.1523/jneurosci.3426-14.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Understanding commonalities and differences in glutamatergic synaptic signaling is essential for understanding cortical functional diversity, especially in the highly complex primate brain. Previously, we have shown that spontaneous EPSCs differed markedly in layer 3 pyramidal neurons of two specialized cortical areas in the rhesus monkey, the high-order lateral prefrontal cortex (LPFC) and the primary visual cortex (V1). Here, we used patch-clamp recordings and confocal and electron microscopy to determine whether these distinct synaptic responses are due to differences in firing rates of presynaptic neurons and/or in the features of presynaptic or postsynaptic entities. As with spontaneous EPSCs, TTX-insensitive (action potential-independent) miniature EPSCs exhibited significantly higher frequency, greater amplitude, and slower kinetics in LPFC compared with V1 neurons. Consistent with these physiological differences, LPFC neurons possessed higher densities of spines, and the mean width of large spines was greater compared with those on V1 neurons. Axospinous synapses in layers 2-3 of LPFC had larger postsynaptic density surface areas and a higher proportion of large perforated synapses compared with V1. Axonal boutons in LPFC were also larger in volume and contained ∼ 1.6× more vesicles than did those in V1. Further, LPFC had a higher density of AMPA GluR2 receptor labeling than V1. The properties of spines and synaptic currents of individual layer 3 pyramidal neurons measured here were significantly correlated, consistent with the idea that significantly more frequent and larger synaptic currents are likely due to more numerous, larger, and more powerful synapses in LPFC compared with V1.
Collapse
|
37
|
Csete G, Bognár A, Csibri P, Kaposvári P, Sáry G. Aging alters visual processing of objects and shapes in inferotemporal cortex in monkeys. Brain Res Bull 2014; 110:76-83. [PMID: 25526896 DOI: 10.1016/j.brainresbull.2014.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 12/14/2022]
Abstract
Visual perception declines with age. Perceptual deficits may originate not only in the optical system serving vision but also in the neural machinery processing visual information. Since homologies between monkey and human vision permit extrapolation from monkeys to humans, data from young, middle aged and old monkeys were analyzed to show age-related changes in the neuronal activity in the inferotemporal cortex, which is critical for object and shape vision. We found an increased neuronal response latency, and a decrease in the stimulus selectivity in the older animals and suggest that these changes may underlie the perceptual uncertainties found frequently in the elderly.
Collapse
Affiliation(s)
- G Csete
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary; Department of Neurology, Faculty of Medicine, Semmelweis u. 6, H-6725 Szeged, Hungary.
| | - A Bognár
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - P Csibri
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - P Kaposvári
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| | - Gy Sáry
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720 Szeged, Hungary.
| |
Collapse
|
38
|
Young ME, Ohm DT, Dumitriu D, Rapp PR, Morrison JH. Differential effects of aging on dendritic spines in visual cortex and prefrontal cortex of the rhesus monkey. Neuroscience 2014; 274:33-43. [PMID: 24853052 DOI: 10.1016/j.neuroscience.2014.05.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/22/2014] [Accepted: 05/02/2014] [Indexed: 01/11/2023]
Abstract
Aging decreases the density of spines and the proportion of thin spines in the non-human primate (NHP) dorsolateral prefrontal cortex (dlPFC). In this study, we used confocal imaging of dye-loaded neurons to expand upon previous results regarding the effects of aging on spine density and morphology in the NHP dlPFC and compared these results to the effects of aging on pyramidal neurons in the primary visual cortex (V1). We confirmed that spine density, and particularly the density of thin spines, decreased with age in the dlPFC of rhesus monkeys. Furthermore, the average head diameter of non-stubby spines in the dlPFC was a better predictor than chronological age of the number of trials required to reach criterion on both the delayed response test of visuospatial working memory and the delayed nonmatching-to-sample test of recognition memory. By contrast, total spine density was lower on neurons in V1 than in dlPFC, and neither total spine density, thin spine density, nor spine size in V1 was affected by aging. Our results highlight the importance and selective vulnerability of dlPFC thin spines for optimal prefrontal-mediated cognitive function. Understanding the nature of the selective vulnerability of dlPFC thin spines as compared to the resilience of thin spines in V1 may be a promising area of research in the quest to prevent or ameliorate age-related cognitive decline.
Collapse
Affiliation(s)
- M E Young
- Fishberg Department of Neuroscience, The Friedman Brain Institute, Kastor Neurobiology of Aging Laboratory, and The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D T Ohm
- Fishberg Department of Neuroscience, The Friedman Brain Institute, Kastor Neurobiology of Aging Laboratory, and The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D Dumitriu
- Fishberg Department of Neuroscience, The Friedman Brain Institute, Kastor Neurobiology of Aging Laboratory, and The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - P R Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - J H Morrison
- Fishberg Department of Neuroscience, The Friedman Brain Institute, Kastor Neurobiology of Aging Laboratory, and The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Geriatrics and Palliative Care, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
39
|
Xie F, Liang P, Fu H, Zhang JC, Chen J. Effects of normal aging on myelin sheath ultrastructures in the somatic sensorimotor system of rats. Mol Med Rep 2014; 10:459-66. [PMID: 24818843 DOI: 10.3892/mmr.2014.2228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 04/01/2014] [Indexed: 11/06/2022] Open
Abstract
Previous studies have presented qualitative and quantitative data regarding the morphological changes that occur peripherally in myelin sheaths and nerve fibers of rats during their lifespan. However, studies on ultrastructural features of myelinated fibers (MFs) in the central nervous system (CNS) remain limited. In the present study, morphological analyses of the somatic sensorimotor MFs in rats at time‑points between postnatal day 14 and postnatal month (PNM) 26 were conducted using electron microscopy. Significant alterations in the myelin sheath were observed in the sensorimotor system of aging and aged rats, which became aggravated with age. The ultrastructural pattern of myelin lamellae also exhibited age dependence. The transformation of the myelin intraperiod line from complete to incomplete fusion occurred after PNM 5, leading to an expansion of periodicity in myelin lamellae. These pathological changes in the myelin structure occurred very early and showed a significant correlation with age, indicating that myelin was the part of the CNS with the highest susceptibility to the influence of aging, and may be the main target of aging effects. In addition to the myelin breakdown, continued myelin production and remyelination were observed in the aging sensorimotor system, suggesting the presence of endogenous mechanisms of myelin repair.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ping Liang
- School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jiu-Cong Zhang
- Department of Gastroenterology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
40
|
Xie F, Fu H, Zhang JC, Chen XF, Wang XL, Chen J. Gene profiling in the dynamic regulation of the lifespan of the myelin sheath structure in the optic nerve of rats. Mol Med Rep 2014; 10:217-22. [PMID: 24818667 DOI: 10.3892/mmr.2014.2227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 04/01/2014] [Indexed: 11/06/2022] Open
Abstract
Aging of the nervous system leads to impairments in cognition and motor skills, and is a major risk factor for several neurological disorders. Recently, numerous nerve function deficits that appear with aging have been found to be a consequence of myelin abnormalities; however, the genetic mechanism of the age‑related alterations in the myelin sheath has not yet been fully elucidated. In the present study, the morphology of the myelin sheath in the optic nerve of rats was analyzed at 10 time‑points throughout life. Marked alterations in the myelin sheath were observed in aging and aged optic nerves, and these became progressively more severe with time. To determine the biological processes affected by aging in the myelin sheath, the age‑related profiling of the myelin sheath in rat optic nerves was established using microarray hybridization at 10 time‑points throughout life, between birth and senescence. From the results, 3,826 transcripts associated with the age‑related alterations in the myelin sheath of the optic nerve were identified. It was found that the biological processes most significantly altered by aging were lipid metabolism, the immune response and transmitter transport. This suggests that the downregulation of lipid synthesis genes and the upregulation of immune and neurotransmitter transport genes in aging may be the genetic basis for the age‑related alterations observed in the myelin sheath.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jiu-Cong Zhang
- Department of Gastroenterology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Xue-Feng Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
41
|
Adluru N, Destiche DJ, Lu SYF, Doran ST, Birdsill AC, Melah KE, Okonkwo OC, Alexander AL, Dowling NM, Johnson SC, Sager MA, Bendlin BB. White matter microstructure in late middle-age: Effects of apolipoprotein E4 and parental family history of Alzheimer's disease. NEUROIMAGE-CLINICAL 2014; 4:730-42. [PMID: 24936424 PMCID: PMC4053649 DOI: 10.1016/j.nicl.2014.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Little is still known about the effects of risk factors for Alzheimer's disease (AD) on white matter microstructure in cognitively healthy adults. The purpose of this cross-sectional study was to assess the effect of two well-known risk factors for AD, parental family history and APOE4 genotype. METHODS This study included 343 participants from the Wisconsin Registry for Alzheimer's Prevention, who underwent diffusion tensor imaging (DTI). A region of interest analysis was performed on fractional anisotropy maps, in addition to mean, radial, and axial diffusivity maps, aligned to a common template space using a diffeomorphic, tensor-based registration method. The analysis focused on brain regions known to be affected in AD including the corpus callosum, superior longitudinal fasciculus, fornix, cingulum, and uncinate fasciculus. Analyses assessed the impact of APOE4, parental family history of AD, age, and sex on white matter microstructure in late middle-aged participants (aged 47-76 years). RESULTS Both APOE4 and parental family history were associated with microstructural white matter differences. Participants with parental family history of AD had higher FA in the genu of the corpus callosum and the superior longitudinal fasciculus. We observed an interaction between family history and APOE4, where participants who were family history positive but APOE4 negative had lower axial diffusivity in the uncinate fasciculus, and participants who were both family history positive and APOE4 positive had higher axial diffusivity in this region. We also observed an interaction between APOE4 and age, whereby older participants (=65 years of age) who were APOE4 carriers, had higher MD in the superior longitudinal fasciculus and in the portion of the cingulum bundle running adjacent to the cingulate cortex, compared to non-carriers. Older participants who were APOE4 carriers also showed higher radial diffusivity in the genu compared to non-carriers. Across all participants, age had an effect on FA, MD, and axial and radial diffusivities. Sex differences were observed in FA and radial diffusivity. CONCLUSION APOE4 genotype, parental family history of AD, age, and sex are all associated with microstructural white matter differences in late middle-aged adults. In participants at risk for AD, alterations in diffusion characteristics-both expected and unexpected-may represent cellular changes occurring at the earliest disease stages, but further work is needed. Higher mean, radial, and axial diffusivities were observed in participants who are more likely to be experiencing later stage preclinical pathology, including participants who were both older and carried APOE4, or who were positive for both APOE4 and parental family history of AD.
Collapse
Affiliation(s)
- Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, Madison, WI, USA
| | | | | | - Samuel T Doran
- Waisman Laboratory for Brain Imaging and Behavior, Madison, WI, USA
| | - Alex C Birdsill
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Department of Medicine, 600 Highland Avenue, Madison, WI 53792, USA
| | - Kelsey E Melah
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Department of Medicine, 600 Highland Avenue, Madison, WI 53792, USA
| | - Ozioma C Okonkwo
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Department of Medicine, 600 Highland Avenue, Madison, WI 53792, USA
| | - Andrew L Alexander
- Waisman Laboratory for Brain Imaging and Behavior, Madison, WI, USA ; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA ; University of Wisconsin School of Medicine and Public Health, Department of Psychiatry, 6001 Research Park Blvd, Madison, WI 53719, USA
| | - N Maritza Dowling
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Department of Medicine, 600 Highland Avenue, Madison, WI 53792, USA ; Department of Biostatistics and Medical Informatics, 600 Highland Avenue, Madison, WI 53792, USA
| | - Sterling C Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Department of Medicine, 600 Highland Avenue, Madison, WI 53792, USA ; Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veteran's Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA ; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, 7818 Big Sky Drive, Madison, WI 53719, USA
| | - Mark A Sager
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Department of Medicine, 600 Highland Avenue, Madison, WI 53792, USA ; Geriatric Research, Education and Clinical Center (GRECC), William S. Middleton Memorial Veteran's Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA ; Wisconsin Alzheimer's Institute, University of Wisconsin School of Medicine and Public Health, 7818 Big Sky Drive, Madison, WI 53719, USA
| | - Barbara B Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, Department of Medicine, 600 Highland Avenue, Madison, WI 53792, USA
| |
Collapse
|
42
|
Samson RD, Barnes CA. Impact of aging brain circuits on cognition. Eur J Neurosci 2013; 37:1903-15. [PMID: 23773059 DOI: 10.1111/ejn.12183] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 01/01/2023]
Abstract
Brain networks that engage the hippocampus and prefrontal cortex are central for enabling effective interactions with our environment. Some of the cognitive processes that these structures mediate, such as encoding and retrieving episodic experience, wayfinding, working memory and attention are known to be altered across the lifespan. As illustrated by examples given below, there is remarkable consistency across species in the pattern of age-related neural and cognitive change observed in healthy humans and other animals. These include changes in cognitive operations that are known to be dependent on the hippocampus, as well as those requiring intact prefrontal cortical circuits. Certain cognitive constructs that reflect the function of these areas lend themselves to investigation across species, allowing brain mechanisms at different levels of analysis to be studied in greater depth.
Collapse
Affiliation(s)
- Rachel D Samson
- Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
43
|
Luebke JI, Medalla M, Amatrudo JM, Weaver CM, Crimins JL, Hunt B, Hof PR, Peters A. Age-related changes to layer 3 pyramidal cells in the rhesus monkey visual cortex. Cereb Cortex 2013; 25:1454-68. [PMID: 24323499 DOI: 10.1093/cercor/bht336] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The effects of normal aging on morphologic and electrophysiologic properties of layer 3 pyramidal neurons in rhesus monkey primary visual cortex (V1) were assessed with whole-cell, patch-clamp recordings in in vitro slices. In another cohort of monkeys, the ultrastructure of synapses in the layers 2-3 neuropil of V1 was assessed using electron microscopy. Distal apical dendritic branching complexity was reduced in aged neurons, as was the total spine density, due to specific loss of mushroom spines from the apical tree and of thin spines from the basal tree. There was also an age-related decrease in the numerical density of symmetric and asymmetric synapses. In contrast to these structural changes, intrinsic membrane, action potential (AP), and excitatory and inhibitory synaptic current properties were the same in aged and young neurons. Computational modeling using morphologic reconstructions predicts that reduced dendritic complexity leads to lower attenuation of voltage outward from the soma (e.g., backpropagating APs) in aged neurons. Importantly, none of the variables that changed with age differed in neurons from cognitively impaired versus unimpaired aged monkeys. In summary, there are age-related alterations to the structural properties of V1 neurons, but these are not associated with significant electrophysiologic changes or with cognitive decline.
Collapse
Affiliation(s)
- Jennifer I Luebke
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA and
| | - Maria Medalla
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | - Christina M Weaver
- Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA and Department of Mathematics, Franklin and Marshall College, Lancaster, PA 17604, USA
| | | | - Brendan Hunt
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute Computational Neurobiology and Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA and
| | - Alan Peters
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
44
|
Kaller CP, Reisert M, Katzev M, Umarova R, Mader I, Hennig J, Weiller C, Köstering L. Predicting planning performance from structural connectivity between left and right mid-dorsolateral prefrontal cortex: moderating effects of age during postadolescence and midadulthood. Cereb Cortex 2013; 25:869-83. [PMID: 24108808 DOI: 10.1093/cercor/bht276] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Complex cognitive abilities such as planning are known to critically rely on activity of bilateral mid-dorsolateral prefrontal cortex (mid-dlPFC). However, the functional relevance of the structural connectivity between left and right mid-dlPFC is yet unknown. Here, we applied global tractography to derive streamline counts as estimates of the structural connectivity between mid-dlPFC homologs and related it to planning performance in the Tower of London task across early to midadulthood, assuming a moderating effect of age. Multiple regression analyses with interaction effects revealed that streamline counts between left and right mid-dlPFC were negatively associated with planning performance specifically in early postadolescence. From the fourth life decade on, there was a trend for a reversed, positive association. These differential findings were corroborated by converging results from fractional anisotropy and white-matter density estimates in the genu of the corpus callosum where fibers connecting mid-dlPFC homologs traversed. Moreover, the results for streamline counts were regionally specific, marking the strength of mid-dlPFC connectivity as critical in predicting interindividual differences in planning performance across different stages of adulthood. Taken together, present findings provide first evidence for nonadditive effects of age on the relation between complex cognitive abilities and the structural connectivity of mid-dlPFC homologs.
Collapse
Affiliation(s)
- Christoph P Kaller
- Department of Neurology, University Medical Center Freiburg Brain Imaging Center BrainLinks-BrainTools Cluster of Excellence
| | - Marco Reisert
- Freiburg Brain Imaging Center Medical Physics, Department of Radiology, University Medical Center Freiburg
| | - Michael Katzev
- Department of Neurology, University Medical Center Freiburg Brain Imaging Center
| | - Roza Umarova
- Department of Neurology, University Medical Center Freiburg Brain Imaging Center
| | - Irina Mader
- Freiburg Brain Imaging Center Department of Neuroradiology, University Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Jürgen Hennig
- Freiburg Brain Imaging Center BrainLinks-BrainTools Cluster of Excellence Medical Physics, Department of Radiology, University Medical Center Freiburg
| | - Cornelius Weiller
- Department of Neurology, University Medical Center Freiburg Brain Imaging Center BrainLinks-BrainTools Cluster of Excellence
| | - Lena Köstering
- Department of Neurology, University Medical Center Freiburg Brain Imaging Center
| |
Collapse
|
45
|
Koo BB, Oblak AL, Zhao Y, Farris CW, Bowley B, Rosene DL, Killiany RJ. Hippocampal network connections account for differences in memory performance in the middle-aged rhesus monkey. Hippocampus 2013; 23:1179-88. [PMID: 23780752 DOI: 10.1002/hipo.22156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2013] [Indexed: 11/05/2022]
Abstract
Recent neurophysiological and functional neuroimaging studies suggest that the memory decline found with normal aging is not solely due to regional disruptions in the hippocampus, but also is brought about by alterations in the functional coupling between the hippocampus and long-distance neocortical regions. However, the anatomical basis for this functional "dyscoupling" has not been fully revealed. In this study, we applied a multimodal magnetic resonance imaging technique to noninvasively examine the large-scale anatomical and functional hippocampal network of a group of middle aged rhesus monkeys. Using diffusion spectrum imaging, we have found that monkeys with lower memory performance had weaker structural white matter connections between the hippocampus and neocortical association areas. Resting state functional imaging revealed somewhat of an opposite result. Monkeys with low memory performance displayed elevated coupling strengths in the network between the hippocampus and the neocortical areas. Taken together with recent findings, this contradictory pattern may be the result of either underlying physiological burden or abnormal neuronal decoupling due to the structural alterations, which induce a neuronal compensation mechanism for the structural loss or interference on task related neuronal activation, respectively.
Collapse
Affiliation(s)
- Bang-Bon Koo
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts
| | | | | | | | | | | | | |
Collapse
|
46
|
Barbas H, García-Cabezas MÁ, Zikopoulos B. Frontal-thalamic circuits associated with language. BRAIN AND LANGUAGE 2013; 126:49-61. [PMID: 23211411 PMCID: PMC3615046 DOI: 10.1016/j.bandl.2012.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 09/20/2012] [Accepted: 10/18/2012] [Indexed: 05/20/2023]
Abstract
Thalamic nuclei associated with language including the ventral lateral, ventral anterior, intralaminar and mediodorsal form a hub that uniquely receives the output of the basal ganglia and cerebellum, and is connected with frontal (premotor and prefrontal) cortices through two parallel circuits: a thalamic pathway targets the middle frontal cortical layers focally, and the other innervates widely cortical layer 1, poised to recruit other cortices and thalamic nuclei for complex cognitive operations. Return frontal pathways to the thalamus originate from cortical layers 6 and 5. Information through this integrated thalamo-cortical system is gated by the inhibitory thalamic reticular nucleus and modulated by dopamine, representing a specialization in primates. The intricate dialogue of distinct thalamic nuclei with the basal ganglia, cerebellum, and specific dorsolateral prefrontal and premotor cortices associated with language, suggests synergistic roles in the complex but seemingly effortless sequential transformation of cognitive operations for speech production in humans.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
47
|
Zahr NM, Mayer D, Rohlfing T, Chanraud S, Gu M, Sullivan EV, Pfefferbaum A. In vivo glutamate measured with magnetic resonance spectroscopy: behavioral correlates in aging. Neurobiol Aging 2013; 34:1265-76. [PMID: 23116877 PMCID: PMC3545108 DOI: 10.1016/j.neurobiolaging.2012.09.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 09/11/2012] [Accepted: 09/12/2012] [Indexed: 02/07/2023]
Abstract
Altered availability of the brain biochemical glutamate might contribute to the neural mechanisms underlying age-related changes in cognitive and motor functions. To investigate the contribution of regional glutamate levels to behavior in the aging brain, we used an in vivo magnetic resonance spectroscopy protocol optimized for glutamate detection in 3 brain regions targeted by cortical glutamatergic efferents-striatum, cerebellum, and pons. Data from 61 healthy men and women ranging in age from 20 to 86 years were used. Older age was associated with lower glutamate levels in the striatum, but not cerebellum or pons. Older age was also predictive of poorer performance on tests of visuomotor skills and balance. Low striatal glutamate levels were associated with high systolic blood pressure and worse performance on a complex visuomotor task, the Grooved Pegboard. These findings suggest that low brain glutamate levels are related to high blood pressure and that changes in brain glutamate levels might mediate the behavioral changes noted in normal aging.
Collapse
Affiliation(s)
- Natalie M. Zahr
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd. Stanford, CA, United States, Phone: 650-859-2880, Fax: 650-859-2743
- Neuroscience Program, SRI International, Menlo Park, CA 94025, United States
| | - Dirk Mayer
- Neuroscience Program, SRI International, Menlo Park, CA 94025, United States
- Radiology Department, Lucas MRS/I Center, Stanford University, 1201 Welch Road, P-273, Stanford, CA, 94305-5488, United States
| | - Torsten Rohlfing
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd. Stanford, CA, United States, Phone: 650-859-2880, Fax: 650-859-2743
| | - Sandra Chanraud
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd. Stanford, CA, United States, Phone: 650-859-2880, Fax: 650-859-2743
| | - Meng Gu
- Radiology Department, Lucas MRS/I Center, Stanford University, 1201 Welch Road, P-273, Stanford, CA, 94305-5488, United States
| | - Edith V. Sullivan
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd. Stanford, CA, United States, Phone: 650-859-2880, Fax: 650-859-2743
| | - Adolf Pfefferbaum
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd. Stanford, CA, United States, Phone: 650-859-2880, Fax: 650-859-2743
- Neuroscience Program, SRI International, Menlo Park, CA 94025, United States
| |
Collapse
|
48
|
Differential balance of prefrontal synaptic activity in successful versus unsuccessful cognitive aging. J Neurosci 2013; 33:1344-56. [PMID: 23345211 DOI: 10.1523/jneurosci.3258-12.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Normal aging is associated with a variable decline in cognitive functions. Among these, executive function, decision-making, and working memory are primarily associated with the prefrontal cortex. Although a number of studies have examined the structural substrates of cognitive decline associated with aging within this cortical area, their functional correlates remain poorly understood. To fill this gap, we aimed to identify functional synaptic substrates of age-associated frontal-dependent deficits in layer 2/3 pyramidal neurons of medial prefrontal cortex of 3-, 9-, and ≥ 23-month-old Fischer 344 rats. We combined, in the same animals, novelty recognition and exploratory behavioral tasks with assessment of structural and functional aspects of prefrontal synaptic properties. We found that subsets of aged animals displayed stereotyped exploratory behavior or memory deficits. Despite an age-dependent dendritic spine loss, patch-clamp recording of synaptic activity revealed an increase in miniature EPSC frequency restricted to aged animals with preserved exploratory behavior. In contrast, we found a strong positive relationship between miniature IPSC frequency and the occurrence of both stereotyped exploratory behavior and novelty-related memory deficits. The enhanced miniature inhibitory tone was accompanied by a deficit in activity-driven inhibition, also suggesting an impaired dynamic range for modulation of inhibition in the aged, cognitively impaired animals. Together, our data indicate that differential changes in the balance of inhibitory to excitatory synaptic tone may underlie distinct trajectories in the evolution of cognitive performance during aging.
Collapse
|
49
|
Abstract
Great effort has been dedicated to mapping the functional architecture of the brain in health and disease. The neural centers that support cognition and behavior are the "hubs" defining the salient geographic landmarks of the cerebral topography. Similar to urban cartography, however, the functionality of these hubs is critically dependent on the infrastructure permitting the transfer of relevant information from site to site, and this infrastructure is susceptible to deterioration. The groundwork of the brain lies in the form of the complexly organized myelinated nerve fibers responsible for the inter-regional transmission of electrical impulses among distinct neural areas. Damage to the myelin sheath and reduction in the total number of nerve fibers with aging are thought to result in a degradation in the efficiency of communication among neural regions and to contribute to the decline of function in older adults. This article describes selected studies that are relevant to understanding the deterioration in structural connectivity of the aging brain with a focus on potential consequences to functional network activity. First, the neural substrates of connectivity and techniques used in the study of connectivity are described with a focus on neuroimaging methodologies. This is followed with discussion of the negative effects of age on connective integrity, and the possible mechanisms and neural and cognitive consequences of this progressive disconnection. Given the potential for natural repair of certain elements of the connective network, understanding the basis of age-associated decline in connectivity could have important implications with regard to the amelioration of neural dysfunction and the restoration of the infrastructure necessary for optimal function in older adults.
Collapse
Affiliation(s)
- David H Salat
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
| |
Collapse
|
50
|
Influence of highly distinctive structural properties on the excitability of pyramidal neurons in monkey visual and prefrontal cortices. J Neurosci 2013; 32:13644-60. [PMID: 23035077 DOI: 10.1523/jneurosci.2581-12.2012] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whole-cell patch-clamp recordings and high-resolution 3D morphometric analyses of layer 3 pyramidal neurons in in vitro slices of monkey primary visual cortex (V1) and dorsolateral granular prefrontal cortex (dlPFC) revealed that neurons in these two brain areas possess highly distinctive structural and functional properties. Area V1 pyramidal neurons are much smaller than dlPFC neurons, with significantly less extensive dendritic arbors and far fewer dendritic spines. Relative to dlPFC neurons, V1 neurons have a significantly higher input resistance, depolarized resting membrane potential, and higher action potential (AP) firing rates. Most V1 neurons exhibit both phasic and regular-spiking tonic AP firing patterns, while dlPFC neurons exhibit only tonic firing. Spontaneous postsynaptic currents are lower in amplitude and have faster kinetics in V1 than in dlPFC neurons, but are no different in frequency. Three-dimensional reconstructions of V1 and dlPFC neurons were incorporated into computational models containing Hodgkin-Huxley and AMPA receptor and GABA(A) receptor gated channels. Morphology alone largely accounted for observed passive physiological properties, but led to AP firing rates that differed more than observed empirically, and to synaptic responses that opposed empirical results. Accordingly, modeling predicts that active channel conductances differ between V1 and dlPFC neurons. The unique features of V1 and dlPFC neurons are likely fundamental determinants of area-specific network behavior. The compact electrotonic arbor and increased excitability of V1 neurons support the rapid signal integration required for early processing of visual information. The greater connectivity and dendritic complexity of dlPFC neurons likely support higher level cognitive functions including working memory and planning.
Collapse
|