1
|
Almohmadi NH, Al-Kuraishy HM, Al-Gareeb AI, Albuhadily AK, Abdelaziz AM, Jabir MS, Alexiou A, Papadakis M, Batiha GES. Glutamatergic dysfunction in neurodegenerative diseases focusing on Parkinson's disease: Role of glutamate modulators. Brain Res Bull 2025; 225:111349. [PMID: 40252703 DOI: 10.1016/j.brainresbull.2025.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder resulting from the degeneration of dopamenergic neurons in the substantia nigra pars compacta (SNpc). Research has predominantly centered on understanding the dysfunction of dopaminergic neurotransmission in PD. Recently, more studies discussed the potential role of other neurotransmitters in PD neuropathology. One of the most important non-dopaminergic neurotransmitters involved in the pathogenesis of PD is glutamate, which is widely involved in glutamatergic neurotransmission in different brain regions, including SNpc. The development and progression of PD neuropathology and levodopa-induced dyskinesias (LID) are associated with glutamate neurotoxicity. Therefore, this review seeks to explore the possible involvement of glutamatergic signaling in PD development and assess the therapeutic potential of glutamate receptor antagonists in treating the disorder.
Collapse
Affiliation(s)
- Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq; Jabir ibn Hayyan Medical University Al-Ameer Qu, Po. Box (13), Kufa, Najaf, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University-Arish Branch, Arish 45511, Egypt.
| | - Majid S Jabir
- Department of Applied Science, University of Technology-Iraq, Baghdad, Iraq.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia; University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur, AlBeheira 22511, Egypt.
| |
Collapse
|
2
|
Bajaj S, Mahesh R. Converged avenues: depression and Alzheimer's disease- shared pathophysiology and novel therapeutics. Mol Biol Rep 2024; 51:225. [PMID: 38281208 DOI: 10.1007/s11033-023-09170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Depression, a highly prevalent disorder affecting over 280 million people worldwide, is comorbid with many neurological disorders, particularly Alzheimer's disease (AD). Depression and AD share overlapping pathophysiology, and the search for accountable biological substrates made it an essential and intriguing field of research. The paper outlines the neurobiological pathways coinciding with depression and AD, including neurotrophin signalling, the hypothalamic-pituitary-adrenal axis (HPA), cellular apoptosis, neuroinflammation, and other aetiological factors. Understanding overlapping pathways is crucial in identifying common pathophysiological substrates that can be targeted for effective management of disease state. Antidepressants, particularly monoaminergic drugs (first-line therapy), are shown to have modest or no clinical benefits. Regardless of the ineffectiveness of conventional antidepressants, these drugs remain the mainstay for treating depressive symptoms in AD. To overcome the ineffectiveness of traditional pharmacological agents in treating comorbid conditions, a novel therapeutic class has been discussed in the paper. This includes neurotransmitter modulators, glutamatergic system modulators, mitochondrial modulators, antioxidant agents, HPA axis targeted therapy, inflammatory system targeted therapy, neurogenesis targeted therapy, repurposed anti-diabetic agents, and others. The primary clinical challenge is the development of therapeutic agents and the effective diagnosis of the comorbid condition for which no specific diagnosable scale is present. Hence, introducing Artificial Intelligence (AI) into the healthcare system is revolutionary. AI implemented with interdisciplinary strategies (neuroimaging, EEG, molecular biomarkers) bound to have accurate clinical interpretation of symptoms. Moreover, AI has the potential to forecast neurodegenerative and psychiatric illness much in advance before visible/observable clinical symptoms get precipitated.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
3
|
Frisardi V. Editorial: Case reports in aging psychiatry. Front Psychiatry 2023; 14:1305521. [PMID: 38025445 PMCID: PMC10648110 DOI: 10.3389/fpsyt.2023.1305521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Vincenza Frisardi
- Geriatric Acute Care, Orthogeriatric Unit and Center for Diagnosis of Cognitive Disorders and Dementia, Istituto di RicerCa a Carattere Scientifico (IRCCS), Azienda Ospedaliera Universitaria Bologna (AOUBO), Bologna, Italy
| |
Collapse
|
4
|
Zhang M, Liu LY, Xu Y, Wang WZ, Qiu NZ, Zhang FF, Zhang F, Wang XD, Chen W, Xu XY, Gao YF, Chen MH, Li YQ, Zhang HT, Wang H. Imbalance of multiple neurotransmitter pathways leading to depression-like behavior and cognitive dysfunction in the triple transgenic mouse model of Alzheimer disease. Metab Brain Dis 2023; 38:2465-2476. [PMID: 37256468 DOI: 10.1007/s11011-023-01242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/25/2023] [Indexed: 06/01/2023]
Abstract
Depression is among the most frequent psychiatric comorbid conditions in Alzheimer disease (AD). However, pharmacotherapy for depressive disorders in AD is still a big challenge, and the data on the efffcacy of current antidepressants used clinically for depressive symptoms in patients with AD remain inconclusive. Here we investigated the mechanism of the interactions between depression and AD, which we believe would aid in the development of pharmacological therapeutics for the comorbidity of depression and AD. Female APP/PS1/Tau triple transgenic (3×Tg-AD) mice at 24 months of age and age- and sex-matched wild-type (WT) mice were used. The shuttle-box passive avoidance test (PAT) were implemented to assess the abilities of learning and memory, and the open field test (OFT) and the tail suspension test (TST) were used to assess depression-like behavior. High-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) was used to detect the level of neurotransmitters related to depression in the hippocampus of mice. The data was identified by orthogonal projections to latent structures discriminant analysis (OPLS-DA). Most neurotransmitters exert their effects by binding to the corresponding receptor, so the expression of relative receptors in the hippocampus of mice was detected using Western blot. Compared to WT mice, 3×Tg-AD mice displayed significant cognitive impairment in the PAT and depression-like behavior in the OFT and TST. They also showed significant decreases in the levels of L-tyrosine, norepinephrine, vanillylmandelic acid, 5-hydroxytryptamine, and acetylcholine, in contrast to significant increases in 5-hydroxyindoleacetic acid, L-histidine, L-glutamine, and L-arginine in the hippocampus. Moreover, the expression of the alpha 1a adrenergic receptor (ADRA1A), serotonin 1 A receptor (5HT1A), and γ-aminobutyric acid A receptor subunit alpha-2 (GABRA2) was significantly downregulated in the hippocampus of 3×Tg-AD mice, while histamine H3 receptor (H3R) expression was significantly upregulated. In addition, the ratio of phosphorylated cAMP-response element-binding protein (pCREB) and CREB was significantly decreased in the hippocampus of 3×Tg-AD mice than WT mice. We demonstrated in the present study that aged female 3×Tg-AD mice showed depression-like behavior accompanied with cognitive dysfunction. The complex and diverse mechanism appears not only relevant to the imbalance of multiple neurotransmitter pathways, including the transmitters and receptors of the monoaminergic, GABAergic, histaminergic, and cholinergic systems, but also related to the changes in L-arginine and CREB signaling molecules.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Li-Yuan Liu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Yong Xu
- Taian City Central Hospital, Tai'an, Shandong, 271016, China
| | - Wen-Zhi Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Nian-Zhuang Qiu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Fang-Fang Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Feng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Xiao-Dan Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Wei Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Xiao-Yan Xu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Yong-Feng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Mei-Hua Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China
| | - Yu-Qin Li
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China.
| | - Han-Ting Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China.
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, Shandong, 266073, China.
| | - Hao Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, 271016, China.
| |
Collapse
|
5
|
Vesztergom D, Nánássy L, Polgár C, Krádi A, Rosta V, Varga S, Novák Z. [Fertility preservation in female cancer patients.]. Orv Hetil 2023; 164:1094-1101. [PMID: 37454332 DOI: 10.1556/650.2023.32823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 07/18/2023]
Abstract
The incidence of cancer increases with age and as family planning is being delayed, there is a growing number of cancer patients whose fertility may be affected by oncological treatments. International guidelines recommend that all reproductive age cancer patients, including adolescent patients, should be referred for fertility preservation consultation, and if necessary, fertility preservation procedures should be performed. Fertility preservation enables cancer survivors to offer a chance for biological parenthood after recovery. In this review, the gonadotoxic effects of oncological therapies and the fertility preservation possibilities for female cancer patients based on international recommendations and literature are discussed. Our next review will provide detailed information on the special fertility preservation possibilities for different cancer types. The two reviews may help to elaborate a national guidance. Orv Hetil. 2023; 164(28): 1094-1101.
Collapse
Affiliation(s)
- Dóra Vesztergom
- 1 Országos Kórházi Főigazgatóság, Humánreprodukciós Igazgatóság Budapest Magyarország
- 3 Szegedi Tudományegyetem, Szentgyörgyi Albert Orvostudományi Kar, Klinikai Orvostudományi Doktori Iskola Szeged Magyarország
- 6 Semmelweis Egyetem, Általános Orvostudományi Kar, Asszisztált Reprodukciós Centrum Budapest Magyarország
| | | | - Csaba Polgár
- 4 Országos Onkológiai Intézet Budapest Magyarország
- 7 Semmelweis Egyetem, Általános Orvostudományi Kar, Onkológiai Tanszék Budapest Magyarország
| | - Anna Krádi
- 1 Országos Kórházi Főigazgatóság, Humánreprodukciós Igazgatóság Budapest Magyarország
| | - Viktória Rosta
- 2 Országos Onkológiai Intézet, Nőgyógyászati Osztály Budapest Magyarország
| | - Szilvia Varga
- 5 Országos Onkológiai Intézet, Sugárterápiás Központ Budapest Magyarország
| | - Zoltán Novák
- 2 Országos Onkológiai Intézet, Nőgyógyászati Osztály Budapest Magyarország
- 3 Szegedi Tudományegyetem, Szentgyörgyi Albert Orvostudományi Kar, Klinikai Orvostudományi Doktori Iskola Szeged Magyarország
| |
Collapse
|
6
|
Modrego PJ, de Cerio LD, Lobo A. The Interface between Depression and Alzheimer's Disease. A Comprehensive Approach. Ann Indian Acad Neurol 2023; 26:315-325. [PMID: 37970263 PMCID: PMC10645209 DOI: 10.4103/aian.aian_326_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 11/17/2023] Open
Abstract
Depression and Alzheimer's disease (AD) are frequent interacting diseases in the elderly with a negative impact on the quality of life of patients and caregivers. Late-life depression may be regarded either as an early symptom of AD or a risk factor for AD, depending on the context. This review was focused on the latest developments in the fields of the neurobiological basis and treatment of depression in AD. We found that some plausible hypotheses are emerging to correlate with depression in AD, such as neuroinflammation and dysimmune regulation. It seems that depression is not related to amyloid deposition, but this issue is not completely resolved. The response to antidepressants is controversial according to the evidence from 10 small double-blind randomized placebo-controlled clinical trials with antidepressants in AD patients with depression: four with sertraline, one with three arms (sertraline, mirtazapine, placebo), one with fluoxetine, one with imipramine, one with clomipramine, one with escitalopram, and one with vortioxetine. The total number of treated patients completing the trials was 638. The main criterion of a positive response was a reduction in the scores of clinical scales for depression of at least 50%. The weighted OR (odds ratio) was calculated with the method of Mantel-Haenszel: 1.29; 95% CI: 0.77-2.16. No significant differences were found compared with placebo. Antidepressants did not have a meaningful negative influence on cognition, which was measured with the mini-mental state examination (MMSE) in 18 clinical trials. Alternatives other than drugs are also discussed. Although there have been important advances in this field, pathophysiology and treatment deserve further research.
Collapse
Affiliation(s)
- Pedro J. Modrego
- Servicio de Neurologia, Hospital Miguel Servet de Zaragoza, Spain
| | | | - Antonio Lobo
- Department of Psychiatry, University of Zaragoza, Spain
| |
Collapse
|
7
|
Lu Z, Wang H, Gu J, Gao F. Association between abnormal brain oscillations and cognitive performance in patients with bipolar disorder; Molecular mechanisms and clinical evidence. Synapse 2022; 76:e22247. [PMID: 35849784 DOI: 10.1002/syn.22247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Brain oscillations have gained great attention in neuroscience during recent decades as functional building blocks of cognitive-sensory processes. Research has shown that oscillations in "alpha," "beta," "gamma," "delta," and "theta" frequency windows are highly modified in brain pathology, including in patients with cognitive impairment like bipolar disorder (BD). The study of changes in brain oscillations can provide fundamental knowledge for exploring neurophysiological biomarkers in cognitive impairment. The present article reviews findings from the role and molecular basis of abnormal neural oscillation and synchronization in the symptoms of patients with BD. An overview of the results clearly demonstrates that, in cognitive-sensory processes, resting and evoked/event-related electroencephalogram (EEG) spectra in the delta, theta, alpha, beta, and gamma bands are abnormally changed in patients with BD showing psychotic features. Abnormal oscillations have been found to be associated with several neural dysfunctions and abnormalities contributing to BD, including abnormal GABAergic neurotransmission signaling, hippocampal cell discharge, abnormal hippocampal neurogenesis, impaired cadherin and synaptic contact-based cell adhesion processes, extended lateral ventricles, decreased prefrontal cortical gray matter, and decreased hippocampal volume. Mechanistically, impairment in calcium voltage-gated channel subunit alpha1 I, neurotrophic tyrosine receptor kinase proteins, genes involved in brain neurogenesis and synaptogenesis like WNT3 and ACTG2, genes involved in the cell adhesion process like CDH12 and DISC1, and gamma-aminobutyric acid (GABA) signaling have been reported as the main molecular contributors to the abnormalities in resting-state low-frequency oscillations in BD patients. Findings also showed the association of impaired synaptic connections and disrupted membrane potential with abnormal beta/gamma oscillatory activity in patients with BD. Of note, the synaptic GABA neurotransmitter has been found to be a fundamental requirement for the occurrence of long-distance synchronous gamma oscillations necessary for coordinating the activity of neural networks between various brain regions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhou Lu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Huixiao Wang
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| | - Feng Gao
- Department of Neurosurgery, The Affiliated People's Hospital of NingBo University, NingBo, 315000, China
| |
Collapse
|
8
|
Narzt MS, Kremslehner C, Golabi B, Nagelreiter IM, Malikovic J, Hussein AM, Plasenzotti R, Korz V, Lubec G, Gruber F, Lubec J. Molecular species of oxidized phospholipids in brain differentiate between learning- and memory impaired and unimpaired aged rats. Amino Acids 2022; 54:1311-1326. [PMID: 35817992 PMCID: PMC9372013 DOI: 10.1007/s00726-022-03183-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/17/2022] [Indexed: 02/08/2023]
Abstract
Loss of cognitive function is a typical consequence of aging in humans and rodents. The extent of decline in spatial memory performance of rats, assessed by a hole-board test, reaches from unimpaired and comparable to young individuals to severely memory impaired. Recently, proteomics identified peroxiredoxin 6, an enzyme important for detoxification of oxidized phospholipids, as one of several synaptosomal proteins discriminating between aged impaired and aged unimpaired rats. In this study, we investigated several components of the epilipidome (modifications of phospholipids) of the prefrontal cortex of young, aged memory impaired (AI) and aged unimpaired (AU) rats. We observed an age-related increase in phospholipid hydroperoxides and products of phospholipid peroxidation, including reactive aldehydophospholipids. This increase went in hand with cortical lipofuscin autofluorescence. The memory impairment, however, was paralleled by additional specific changes in the aged rat brain epilipidome. There was a profound increase in phosphocholine hydroxides, and a significant decrease in phosphocholine-esterified azelaic acid. As phospholipid-esterified fatty acid hydroxides, and especially those deriving from arachidonic acid are both markers and effectors of inflammation, the findings suggest that in addition to age-related reactive oxygen species (ROS) accumulation, age-related impairment of spatial memory performance has an additional and distinct (neuro-) inflammatory component.
Collapse
Affiliation(s)
- Marie-Sophie Narzt
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, Linz/Vienna, Austria
| | | | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Ionela-Mariana Nagelreiter
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Ahmed M Hussein
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Roberto Plasenzotti
- Center for Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, Himberg, Austria
| | - Volker Korz
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria
| | - Florian Gruber
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Private Medical University, Salzburg, Austria.
| |
Collapse
|
9
|
Nam G, Suh JM, Yi Y, Lim MH. Drug repurposing: small molecules against Cu(II)-amyloid-β and free radicals. J Inorg Biochem 2021; 224:111592. [PMID: 34482237 DOI: 10.1016/j.jinorgbio.2021.111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/21/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) presents a complex pathology entangling numerous pathological factors, including amyloid-β (Aβ), metal ions, and reactive oxygen species (ROS). Increasing evidence reveals pathological connections among these distinct components in AD. For instance, the association between the amyloid cascade and metal ion hypotheses has introduced a novel pathogenic target: metal-bound Aβ. Investigation of such interconnections requires substantial research and can be expedited by chemical reagents that are able to modify multiple pathogenic factors in AD. Drug repurposing is an efficient approach for rediscovering previously utilized molecules with desirable biological and pharmaceutical properties as chemical reagents. Herein, we report the evaluation of three pre-approved drug molecules, selected based on their chemical structure and properties, as chemical reagents that can be used for elucidating the complicated pathology of AD.
Collapse
Affiliation(s)
- Geewoo Nam
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jong-Min Suh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
10
|
Wei JP, Wen W, Dai Y, Qin LX, Wen YQ, Duan DD, Xu SJ. Drinking water temperature affects cognitive function and progression of Alzheimer's disease in a mouse model. Acta Pharmacol Sin 2021; 42:45-54. [PMID: 32451415 PMCID: PMC7921420 DOI: 10.1038/s41401-020-0407-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 03/23/2020] [Indexed: 12/22/2022]
Abstract
Lifestyle factors may affect mental health and play a critical role in the development of neurodegenerative diseases including Alzheimer's disease (AD). However, whether the temperatures of daily beverages have any impact on cognitive function and AD development has never been studied. In this study, we investigated the effects of daily drinking water temperatures on cognitive function and AD development and progression in mice and the underlying mechanisms. Cognitive function of mice was assessed using passive avoidance test, open field test, and Morris water maze. Wild-type Kunming mice receiving intragastric water (IW, 10 mL/kg, 2 times/day) at 0 °C for consecutive 15 days displayed significant cognitive defects accompanied by significant decrease in gain of body weight, gastric emptying rate, pepsin activity, and an increase in the energy charge in the cortex when compared with mice receiving the same amount of IW at 25 °C (a temperature mimicking most common drinking habits in human), suggesting the altered neuroenergetics may cause cognitive decline. Similarly, in the transgenic APPwse/PS1De9 familial AD mice and their age- and gender-matched wild-type C57BL/6 mice, receiving IW at 0 °C, but not at 25 °C, for 35 days caused a significant time-dependent decrease in body weight and cognitive function, accompanied by a decreased expression of PI3K, Akt, the glutamate/GABA ratio, as well as neuropathy with significant amyloid lesion in the cortex and hippocampus. All of these changes were significantly aggravated in the APPwse/PS1De9 mice than in the control C57BL/6 mice. These data demonstrate that daily beverage at 0 °C may alter brain insulin-mediated neuroenergetics, glutamate/GABA ratio, cause cognitive decline and neuropathy, and promote AD progression.
Collapse
Affiliation(s)
- Jiang-Ping Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wen Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuan Dai
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Xia Qin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yue-Qiang Wen
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dayue Darrel Duan
- Center for Phenomics of Traditional Chinese Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Shi-Jun Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
11
|
Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T. The Dual Role of Glutamatergic Neurotransmission in Alzheimer's Disease: From Pathophysiology to Pharmacotherapy. Int J Mol Sci 2020; 21:ijms21207452. [PMID: 33050345 PMCID: PMC7589203 DOI: 10.3390/ijms21207452] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related dementia and neurodegenerative disorder, characterized by Aβ and tau protein deposition impairing learning, memory and suppressing synaptic plasticity of neurons. Increasing evidence suggests that there is a link between the glucose and glutamate alterations with age that down-regulates glucose utilization reducing glutamate levels in AD patients. Deviations in brain energy metabolism reinforce the development of AD by hampering glutamate levels in the brain. Glutamate is a nonessential amino acid and the major excitatory neurotransmitter synthesized from glucose. Alterations in cerebral glucose and glutamate levels precede the deposition of Aβ plaques. In the brain, over 40% of neuronal synapses are glutamatergic and disturbances in glutamatergic function have been implicated in pathophysiology of AD. Nevertheless, targeting the glutamatergic system seems to be a promising strategy to develop novel, improved therapeutics for AD. Here, we review data supporting the involvement of the glutamatergic system in AD pathophysiology as well as the efficacy of glutamatergic agents in this neurodegenerative disorder. We also discuss exciting new prospects for the development of improved therapeutics for this devastating disorder.
Collapse
Affiliation(s)
- Vidyasagar Naik Bukke
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Moola Archana
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Antonino Davide Romano
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Agata Wawrzyniak
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Krzysztof Balawender
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Stanislaw Orkisz
- Morphological Science Department of Human Anatomy, Medical Faculty University of Rzeszów, 35-310 Rzeszów, Poland; (A.W.); (K.B.); (S.O.)
| | - Sarah Beggiato
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Gaetano Serviddio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.A.); (R.V.); (A.D.R.); (G.S.)
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- Correspondence:
| |
Collapse
|
12
|
Wang W, Jiang Y, Cai E, Li B, Zhao Y, Zhu H, Zhang L, Gao Y. L-menthol exhibits antidepressive-like effects mediated by the modification of 5-HTergic, GABAergic and DAergic systems. Cogn Neurodyn 2018; 13:191-200. [PMID: 30956723 DOI: 10.1007/s11571-018-9513-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 11/13/2018] [Accepted: 11/23/2018] [Indexed: 12/14/2022] Open
Abstract
Major depression disorder, also known as depression, with a significant and persistent low mood as the main clinical features, is the main type of mood disorders. L-menthol (LM), the main active ingredient of mint, has been considered as safe and healthy natural ingredient by the Food and Drug Administration in the USA. In this study, LM (40 mg/kg, i.g.) produced antidepressant-like effect in the forced swimming test (FST) in mice. The sub-effective dose (5 mg/kg, i.g.) of LM combined with the sub-effective dose of fluoxetine (5 mg/kg, i.p.) or reboxetine (2.5 mg/kg, i.p.) could significantly shorten the immobility time in the FST. Pretreatment with ondansetron (a highly selective 5-HT3 receptor antagonist, 8 mg/kg, i.p.), bicuculline [a competitive γ-aminobutyric acid (GABA) antagonist, 4 mg/kg, i.p.] and haloperidol (a non-selective D2 receptor antagonist, 0.2 mg/kg, i.p.) significantly reversed the antidepressant-like effect of LM (40 mg/kg, i.g.). In contrast, prazosin (a α1-adrenoceptor antagonist, 1 mg/kg, i.p.) and N-methyl-d-aspartic acid (an agonist at the glutamate site, 75 mg/kg, i.p.) did not eliminate the antidepressant-like effect of LM. All of these above indicated that LM is able to induce an antidepressant-like effect mediated by the modification of 5-HTergic, GABAergic and DAergic systems in the FST. LM might be used as combination therapy in depressed patients and is a potential antidepressant.
Collapse
Affiliation(s)
- Weidong Wang
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Yuanyuan Jiang
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Enbo Cai
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Bingchen Li
- Antu Forestry Co., Ltd, Yanbian, 133600 Jilin China
| | - Yan Zhao
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Hongyan Zhu
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Lianxue Zhang
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| | - Yugang Gao
- 1College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, 130118 Jilin China
| |
Collapse
|
13
|
Bonham LW, Evans DS, Liu Y, Cummings SR, Yaffe K, Yokoyama JS. Neurotransmitter Pathway Genes in Cognitive Decline During Aging: Evidence for GNG4 and KCNQ2 Genes. Am J Alzheimers Dis Other Demen 2018; 33:153-165. [PMID: 29338302 PMCID: PMC6209098 DOI: 10.1177/1533317517739384] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND/RATIONALE Experimental studies support the role of neurotransmitter genes in dementia risk, but human studies utilizing single variants in candidate genes have had limited success. METHODS We used the gene-based testing program Versatile Gene-based Association Study to assess whether aggregate variation across 6 neurotransmitter pathways influences risk of cognitive decline in 8159 cognitively normal elderly (≥65 years old) adults from 3 community-based cohorts. RESULTS Common genetic variation in GNG4 and KCNQ2 was associated with cognitive decline. In human brain tissue data sets, both GNG4 and KCNQ2 show higher expression in hippocampus relative to other brain regions; GNG4 expression decreases with advancing age. Both GNG4 and KCNQ2 show highest expression in fetal astrocytes. CONCLUSION Genetic variation analyses and gene expression data suggest that GNG4 and KCNQ2 may be associated with cognitive decline in normal aging. Gene-based testing of neurotransmitter pathways may confirm and reveal novel risk genes in future studies of healthy cognitive aging.
Collapse
Affiliation(s)
- Luke W. Bonham
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Daniel S. Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Yongmei Liu
- Department of Epidemiology and Prevention, Public Health Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Steven R. Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Kristine Yaffe
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Department of Veterans Affairs, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
- Department of Psychiatry, University of California, San Francisco, CA, USA
| | - Jennifer S. Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Hesse R, Lausser L, Gummert P, Schmid F, Wahler A, Schnack C, Kroker KS, Otto M, Tumani H, Kestler HA, Rosenbrock H, von Arnim CAF. Reduced cGMP levels in CSF of AD patients correlate with severity of dementia and current depression. Alzheimers Res Ther 2017; 9:17. [PMID: 28274265 PMCID: PMC5343324 DOI: 10.1186/s13195-017-0245-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/13/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder, primarily affecting memory. That disorder is thought to be a consequence of neuronal network disturbances and synapse loss. Decline in cognitive function is associated with a high burden of neuropsychiatric symptoms (NPSs) such as depression. The cyclic nucleotides cyclic adenosine-3',5'-monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) are essential second messengers that play a crucial role in memory processing as well as synaptic plasticity and are potential therapeutic targets. Biomarkers that are able to monitor potential treatment effects and that reflect the underlying pathology are of crucial interest. METHODS In this study, we measured cGMP and cAMP in cerebrospinal fluid (CSF) in a cohort of 133 subjects including 68 AD patients and 65 control subjects. To address the association with disease progression we correlated cognitive status with cyclic nucleotide levels. Because a high burden of NPSs is associated with decrease in cognitive function, we performed an exhaustive evaluation of AD-relevant marker combinations in a depressive subgroup. RESULTS We show that cGMP, but not cAMP, levels in the CSF of AD patients are significantly reduced compared with the control group. Reduced cGMP levels in AD patients correlate with memory impairment based on Mini-Mental State Examination score (r = 0.17, p = 0.048) and tau as a marker of neurodegeneration (r = -0.28, p = 0.001). Moreover, we were able to show that AD patients suffering from current depression show reduced cGMP levels (p = 0.07) and exhibit a higher degree of cognitive impairment than non-depressed AD patients. CONCLUSION These results provide further evidence for an involvement of cGMP in AD pathogenesis and accompanying co-morbidities, and may contribute to elucidating synaptic plasticity alterations during disease progression.
Collapse
Affiliation(s)
- Raphael Hesse
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Ludwig Lausser
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Pauline Gummert
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Florian Schmid
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Anke Wahler
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Cathrin Schnack
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Katja S. Kroker
- Department of Drug Discovery Support, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081 Ulm, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Holger Rosenbrock
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | | |
Collapse
|
15
|
Başar E, Schmiedt-Fehr C, Mathes B, Femir B, Emek-Savaş D, Tülay E, Tan D, Düzgün A, Güntekin B, Özerdem A, Yener G, Başar-Eroğlu C. What does the broken brain say to the neuroscientist? Oscillations and connectivity in schizophrenia, Alzheimer's disease, and bipolar disorder. Int J Psychophysiol 2016; 103:135-48. [DOI: 10.1016/j.ijpsycho.2015.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
16
|
Jayaweera HK, Lagopoulos J, Duffy SL, Lewis SJG, Hermens DF, Norrie L, Hickie IB, Naismith SL. Spectroscopic markers of memory impairment, symptom severity and age of onset in older people with lifetime depression: Discrete roles of N-acetyl aspartate and glutamate. J Affect Disord 2015; 183:31-8. [PMID: 26000754 DOI: 10.1016/j.jad.2015.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 04/10/2015] [Accepted: 04/10/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Glutamate (Glu) and N-acetyl aspartate (NAA) are markers of excitatory processes and neuronal compromise respectively. Increased Glu and decreased NAA concentrations have been implicated in the pathophysiology of depression and cognitive impairment respectively. OBJECTIVE To determine the relationship between NAA, Glu, memory and key clinical features in older people with lifetime depression compared to comparison subjects. METHOD Thirty-five health-seeking older adults (mean age=63.57 years), with a lifetime depression diagnosis, and 21 age-matched healthy comparison subjects (mean age=65.48 years) underwent neuropsychological testing, psychiatric assessment and proton magnetic resonance spectroscopy from which Glu and NAA were measured (reported as a ratio to creatine). RESULTS Compared to comparison subjects, the depressed subjects showed poorer verbal learning and memory retention. Hippocampal NAA and Glu did not differ significantly between groups. However, in comparison subjects, lower levels of hippocampal Glu were associated with poorer memory retention (r=0.55, p=0.018). In the depressed subjects, lower levels of hippocampal NAA were related to poorer verbal learning (r=0.44, p=0.008) and memory retention (r=0.41, p=0.018). Greater hippocampal Glu was associated with more severe depressive symptoms (r=0.35, p=0.039) and an earlier age of illness onset (r=-0.37, p=0.031). LIMITATIONS This is a cross sectional study with a heterogeneous group of depressed subjects. CONCLUSION Our findings highlight that hippocampal neurometabolites are entwined with both clinical and cognitive features associated with depression in older adults and further suggest that differential mechanisms may underpin these features.
Collapse
Affiliation(s)
- Hirosha K Jayaweera
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Jim Lagopoulos
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Shantel L Duffy
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia; School of Psychology, University of Sydney NSW Australia
| | - Simon J G Lewis
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Daniel F Hermens
- Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Louisa Norrie
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Ian B Hickie
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia
| | - Sharon L Naismith
- Healthy Brain Ageing Program, Brain & Mind Research Institute, University of Sydney NSW Australia; Clinical Research Unit, Brain & Mind Research Institute, University of Sydney NSW Australia; School of Psychology, University of Sydney NSW Australia.
| |
Collapse
|
17
|
Age-related hearing impairment—a risk factor and frailty marker for dementia and AD. Nat Rev Neurol 2015; 11:166-75. [DOI: 10.1038/nrneurol.2015.12] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Ménard C, Gaudreau P, Quirion R. Signaling pathways relevant to cognition-enhancing drug targets. Handb Exp Pharmacol 2015; 228:59-98. [PMID: 25977080 DOI: 10.1007/978-3-319-16522-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aging is generally associated with a certain cognitive decline. However, individual differences exist. While age-related memory deficits can be observed in humans and rodents in the absence of pathological conditions, some individuals maintain intact cognitive functions up to an advanced age. The mechanisms underlying learning and memory processes involve the recruitment of multiple signaling pathways and gene expression, leading to adaptative neuronal plasticity and long-lasting changes in brain circuitry. This chapter summarizes the current understanding of how these signaling cascades could be modulated by cognition-enhancing agents favoring memory formation and successful aging. It focuses on data obtained in rodents, particularly in the rat as it is the most common animal model studied in this field. First, we will discuss the role of the excitatory neurotransmitter glutamate and its receptors, downstream signaling effectors [e.g., calcium/calmodulin-dependent protein kinase II (CaMKII), protein kinase C (PKC), extracellular signal-regulated kinases (ERK), mammalian target of rapamycin (mTOR), cAMP response element-binding protein (CREB)], associated immediate early gene (e.g., Homer 1a, Arc and Zif268), and growth factors [insulin-like growth factors (IGFs) and brain-derived neurotrophic factor (BDNF)] in synaptic plasticity and memory formation. Second, the impact of the cholinergic system and related modulators on memory will be briefly reviewed. Finally, since dynorphin neuropeptides have recently been associated with memory impairments in aging, it is proposed as an attractive target to develop novel cognition-enhancing agents.
Collapse
Affiliation(s)
- Caroline Ménard
- Douglas Mental Health University Institute, McGill University, Perry Pavilion, 6875 LaSalle Boulevard, Montreal, QC, Canada, H4H 1R3
| | | | | |
Collapse
|
19
|
Sachs-Ericsson N, Moxley JH, Corsentino E, Rushing NC, Sheffler J, Selby EA, Gotlib I, Steffens DC. Melancholia in later life: late and early onset differences in presentation, course, and dementia risk. Int J Geriatr Psychiatry 2014; 29:943-51. [PMID: 24677247 PMCID: PMC11886663 DOI: 10.1002/gps.4083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/08/2014] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Depression is a risk factor for cognitive decline and dementia. This risk may vary with age of onset and depression subtype. Late onset depression (LOD, 60 years and older) is associated with more cognitive decline, whereas early onset depression (EOD, before 60 years) is associated with more residual depressive symptoms. Potential differences may reflect divergent etiologies. These onset differences, however, have not been examined in the melancholic subtype of depression in older adults. METHODS Data were obtained from the Neurocognitive Outcomes of Depression in the Elderly study. Participants (N = 284, 73% EOD-melancholic (EOD-M) and 27% LOD-melancholic (LOD-M)) were followed up over 3 years. Factor analyses examined differences in baseline depressive symptoms. Hierarchical linear growth curve models examined changes in depressive symptoms (Montgomery-Asberg Depression Rating Scale) and cognition (mini mental state examination). An annual clinical review panel assigned diagnoses of dementia. RESULTS The LOD-M participants had more vegetative symptoms at baseline. LOD-M exhibited greater cognitive decline but fewer residual depressive symptoms than EOD-M. Among participants who remained in the study for at least 1 year, in uncontrolled analyses, a greater percentage of LOD-M compared with EOD-M developed dementia (23.0% vs. 7.8%). Whereas in logistic analyses, controlling for baseline demographics, age at onset remained a predictor of dementia, the odds ratio suggested that the effect was relatively small. CONCLUSIONS The EOD-M and LOD-M participants have a different presentation and course. LOD-M may represent a syndrome of neuropsychiatric deterioration with expression of both depressive symptoms and cognitive decline.
Collapse
|
20
|
van Gool AJ, Hendrickson RC. The proteomic toolbox for studying cerebrospinal fluid. Expert Rev Proteomics 2014; 9:165-79. [DOI: 10.1586/epr.12.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
21
|
Jellinger KA. Organic bases of late-life depression: a critical update. J Neural Transm (Vienna) 2013; 120:1109-25. [PMID: 23355089 DOI: 10.1007/s00702-012-0945-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
Late-life depression (LLD) is frequently associated with cognitive impairment and increases the risk of subsequent dementia. Cerebrovascular disease, deep white matter lesions, Alzheimer disease (AD) and dementia with Lewy bodies (DLB) have all been hypothesized to contribute to this increased risk, and a host of studies have looked at the interplay between cerebrovascular disease and LLD. This has resulted in new concepts of LLD, such as "vascular depression", but despite multiple magnetic resonance imaging (MRI) studies in this field, the relationship between structural changes in human brain and LLD is still controversial. While pathological findings of suicide in some elderly persons revealed multiple lacunes, small vessel cerebrovascular disease, AD-related lesions or multiple neurodegenerative pathologies, recent autopsy data challenged the role of subcortical lacunes and white matter lesions as major morphological substrates of depressive symptoms as well as poorer executive function and memory. Several neuropathological studies, including a personal clinico-pathological study in a small cohort of elderly persons with LLD and age-matched controls confirmed that lacunes, periventricular and deep white matter demyelination as well as AD-related lesions are usually unrelated to the occurrence of LLD. In the same line, neuropathological data show that early-onset depression is not associated with an acceleration of age-related neurodegenerative changes. Very recent data on the critical role of glia-modulating neuronal dysfunction and degeneration in depression are discussed.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse 18, 1070 Vienna, Austria.
| |
Collapse
|
22
|
Smith DF, Jakobsen S. Molecular Neurobiology of Depression: PET Findings on the Elusive Correlation with Symptom Severity. Front Psychiatry 2013; 4:8. [PMID: 23459670 PMCID: PMC3586775 DOI: 10.3389/fpsyt.2013.00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/11/2013] [Indexed: 01/08/2023] Open
Abstract
Molecular mechanisms in the brain are assumed to cause the symptoms and severity of neuropsychiatric disorders. This review concerns the elusive nature of relationships between the severity of depressive disorders and neuromolecular processes studied by positron emission tomography (PET). Recent PET studies of human depression have focused on serotonergic, dopaminergic, muscarinic, nicotinic, and GABAergic receptors, as well as central processes dependent on monoamine oxidase, phosphodiesterase type 4, amyloid plaques, neurofibrillar tangles, and P-glycoprotein. We find that reliable causal links between neuromolecular mechanisms and relief from depressive disorders have yet to be convincingly demonstrated. This situation may contribute to the currently limited use of PET for exploring the neuropathways that are currently viewed as being responsible for beneficial effects of antidepressant treatment regimes.
Collapse
Affiliation(s)
- Donald F Smith
- Center for Psychiatric Research, Psychiatric Hospital of Aarhus University Risskov, Denmark
| | | |
Collapse
|
23
|
Stranahan AM, Mattson MP. Metabolic reserve as a determinant of cognitive aging. J Alzheimers Dis 2012; 30 Suppl 2:S5-13. [PMID: 22045480 DOI: 10.3233/jad-2011-110899] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mild cognitive impairment (MCI) and Alzheimer's disease (AD) represent points on a continuum of cognitive performance in aged populations. Cognition may be impaired or preserved in the context of brain aging. One theory to account for memory maintenance in the context of extensive pathology involves 'cognitive reserve', or the ability to compensate for neuropathology through greater recruitment of remaining neurons. In this review, we propose a complementary hypothesis of 'metabolic reserve', where a brain with high metabolic reserve is characterized by the presence of neuronal circuits that respond adaptively to perturbations in cellular and somatic energy metabolism and thereby protects against declining cognition. Lifestyle determinants of metabolic reserve, such as exercise, reduced caloric intake, and intake of specific dietary components can promote neuroprotection, while pathological states arising from sedentary lifestyles and excessive caloric intake contribute to neuronal endangerment. This bidirectional relationship between metabolism and cognition may be mediated by alterations in central insulin and neurotrophic factor signaling and glucose metabolism, with downstream consequences for accumulation of amyloid-β and hyperphosphorylated tau. The metabolic reserve hypothesis is supported by epidemiological findings and the spectrum of individual cognitive trajectories during aging, with additional data from animal models identifying potential mechanisms for this relationship. Identification of biomarkers for metabolic reserve could assist in generating a predictive model for the likelihood of cognitive decline with aging.
Collapse
Affiliation(s)
- Alexis M Stranahan
- Physiology Department, Georgia Health Sciences University, Augusta, Georgia, GA 30912, USA.
| | | |
Collapse
|
24
|
Current world literature. Curr Opin Psychiatry 2012; 25:565-73. [PMID: 23037966 DOI: 10.1097/yco.0b013e328359edae] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Farooqui AA, Farooqui T, Panza F, Frisardi V. Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 2012; 69:741-62. [PMID: 21997383 PMCID: PMC11115054 DOI: 10.1007/s00018-011-0840-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/08/2011] [Accepted: 09/15/2011] [Indexed: 02/07/2023]
Abstract
The metabolic syndrome is a cluster of common pathologies: abdominal obesity linked to an excess of visceral fat, insulin resistance, dyslipidemia and hypertension. At the molecular level, metabolic syndrome is accompanied not only by dysregulation in the expression of adipokines (cytokines and chemokines), but also by alterations in levels of leptin, a peptide hormone released by white adipose tissue. These changes modulate immune response and inflammation that lead to alterations in the hypothalamic 'bodyweight/appetite/satiety set point,' resulting in the initiation and development of metabolic syndrome. Metabolic syndrome is a risk factor for neurological disorders such as stroke, depression and Alzheimer's disease. The molecular mechanism underlying the mirror relationship between metabolic syndrome and neurological disorders is not fully understood. However, it is becoming increasingly evident that all cellular and biochemical alterations observed in metabolic syndrome like impairment of endothelial cell function, abnormality in essential fatty acid metabolism and alterations in lipid mediators along with abnormal insulin/leptin signaling may represent a pathological bridge between metabolic syndrome and neurological disorders such as stroke, Alzheimer's disease and depression. The purpose of this review is not only to describe the involvement of brain in the pathogenesis of metabolic syndrome, but also to link the pathogenesis of metabolic syndrome with neurochemical changes in stroke, Alzheimer's disease and depression to a wider audience of neuroscientists with the hope that this discussion will initiate more studies on the relationship between metabolic syndrome and neurological disorders.
Collapse
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH 43221, USA.
| | | | | | | |
Collapse
|