1
|
Grennan I, Perry B, Verghese A, Jones M, Härmson O, McNamara CG, Sharott A. Phase-dependent closed-loop deep brain stimulation of the fornix provides bidirectional manipulation of hippocampal theta oscillations. Brain Stimul 2025; 18:993-1003. [PMID: 40306616 DOI: 10.1016/j.brs.2025.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 05/02/2025] Open
Abstract
INTRODUCTION Alzheimer's disease (AD) has very limited treatment options and therapies to prevent or reverse neurodegeneration remain elusive. Deep brain stimulation (DBS), whereby high-frequency pulses of electricity are delivered continuously to a specific part of the brain, has been trialled as an experimental treatment for AD. In AD patients, continuous, high frequency DBS targeted to the fornix (fx-DBS) has been shown to be safe, but not reliably effective across patients. In movement disorders, high-frequency DBS is thought to act as a virtual lesion, disrupting pathophysiological activity. In AD, it may be more advantageous to use stimulation to reinforce or rebuild oscillatory activities that are disrupted by the disease process. A primary candidate for such a target is the hippocampal theta oscillation, which provides a temporal framework for mnemonic processing and is altered in rodent models of AD. MATERIAL AND METHODS We applied closed-loop electrical stimulation to the fornix of rats traversing a linear track, triggered by different phases of the ongoing theta oscillation in the hippocampal local field potential (LFP) using the OscillTrack algorithm. RESULTS Stimulation at different target phases could robustly suppress or amplify the theta oscillation, and these effects were significantly larger than those caused by open-loop replay of the same stimulation pattern. Amplification of the theta oscillation could be achieved irrespective of the locomotor speed of the animal, showing that it did not result from a secondary effect of behavioural change. CONCLUSIONS Our findings demonstrate that closed-loop fx-DBS is a viable method of modulating the amplitude of hippocampal theta oscillations that could be applied in human devices to provide a constructive intervention with the potential to boost memory circuit function in AD.
Collapse
Affiliation(s)
- Isaac Grennan
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Brook Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anna Verghese
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Melissa Jones
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Oliver Härmson
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Colin G McNamara
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Andrew Sharott
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Perez FP, Walker B, Morisaki J, Kanakri H, Rizkalla M. Neurostimulation devices to treat Alzheimer's disease. EXPLORATION OF NEUROSCIENCE 2025; 4:100674. [PMID: 40084342 PMCID: PMC11904933 DOI: 10.37349/en.2025.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
The use of neurostimulation devices for the treatment of Alzheimer's disease (AD) is a growing field. In this review, we examine the mechanism of action and therapeutic indications of these neurostimulation devices in the AD process. Rapid advancements in neurostimulation technologies are providing non-pharmacological relief to patients affected by AD pathology. Neurostimulation therapies include electrical stimulation that targets the circuitry-level connection in important brain areas such as the hippocampus to induce therapeutic neuromodulation of dysfunctional neural circuitry and electromagnetic field (EMF) stimulation that targets anti-amyloid molecular pathways to promote the degradation of beta-amyloid (Aβ). These devices target specific or diffuse cortical and subcortical brain areas to modulate neuronal activity at the electrophysiological or molecular pathway level, providing therapeutic effects for AD. This review attempts to determine the most effective and safe neurostimulation device for AD and provides an overview of potential and current clinical indications. Several EMF devices have shown a beneficial or harmful effect in cell cultures and animal models but not in AD human studies. These contradictory results may be related to the stimulation parameters of these devices, such as frequency, penetration depth, power deposition measured by specific absorption rate, time of exposure, type of cell, and tissue dielectric properties. Based on this, determining the optimal stimulation parameters for EMF devices in AD and understanding their mechanism of action is essential to promote their clinical application, our review suggests that repeated EMF stimulation (REMFS) is the most appropriate device for human AD treatments. Before its clinical application, it is necessary to consider the complicated and interconnected genetic and epigenetic effects of REMFS-biological system interaction. This will move forward the urgently needed therapy of EMF in human AD.
Collapse
Affiliation(s)
- Felipe P. Perez
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brett Walker
- Department of Medicine, Division of General Internal Medicine and Geriatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Haitham Kanakri
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Purdue University, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Świetlik D. Deep Brain Stimulation Combined with NMDA Antagonist Therapy in the Treatment of Alzheimer's Disease: In Silico Trials. J Clin Med 2024; 13:7759. [PMID: 39768683 PMCID: PMC11728097 DOI: 10.3390/jcm13247759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Deep brain stimulation (DBS) is employed to adjust the activity of impaired brain circuits. The variability in clinical trial outcomes for treating Alzheimer's disease with memantine is not yet fully understood. We conducted a randomized in silico study comparing virtual DBS therapies with treatment involving an NMDA antagonist combined with DBS in patients with Alzheimer's disease. Methods: Neural network models representing Alzheimer's disease (AD) patients were randomly assigned to four groups: AD, memantine treatment, DBS, and DBS and memantine. Out of 100 unique neural networks created to model moderate and severe AD with varying hippocampal synaptic loss, 20 were randomly selected to represent AD patients. Virtual treatments-memantine, DBS, and DBS and memantine-were applied, resulting in a total of 80 simulations. Results: The normalized mean number of spikes in the CA1 region among the virtual AD hippocampi treated with memantine, DBS therapy, and DBS and memantine differed significantly (p < 0.0001). The normalized mean number of spikes in the virtual AD hippocampi was 0.33 (95% CI, 0.29-0.36) and was significantly lower compared to the number of spikes in the virtual AD hippocampi treated with memantine, which was 0.53 (95% CI, 0.48-0.59) (p = 0.0162), and in the DBS and memantine group, which was 0.67 (95% CI, 0.57-0.78) (p = 0.0001). Conclusions: Our simulation results indicate the effectiveness of virtual memantine and DBS therapy compared to memantine monotherapy for Alzheimer's disease.
Collapse
Affiliation(s)
- Dariusz Świetlik
- Division of Biostatistics and Neural Networks, Medical University of Gdansk, Debinki 1 St., 80-211 Gdansk, Poland
| |
Collapse
|
4
|
Covolan L, Motta Pollo ML, Dos Santos PB, Betta VHC, Saad Barbosa FF, Covolan LAM, Gimenes C, Hamani C. Effects and mechanisms of anterior thalamus nucleus deep brain stimulation for epilepsy: A scoping review of preclinical studies. Neuropharmacology 2024; 260:110137. [PMID: 39218248 DOI: 10.1016/j.neuropharm.2024.110137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a safe and effective intervention for the treatment of certain forms of epilepsy. In preclinical models, electrical stimulation of the ANT has antiepileptogenic effects but its underlying mechanisms remain unclear. In this review, we searched multiple databases for studies that described the effects and mechanisms of ANT low or high frequency stimulation (LFS or HFS) in models of epilepsy. Out of 289 articles identified, 83 were pooled for analysis and 34 were included. Overall, ANT DBS was most commonly delivered at high frequency to rodents injected with kainic acid, pilocarpine, or pentylenetetrazole. In most studies, this therapy increased the latency to the first spontaneous seizure and reduced the frequency of seizures by 20%-80%. Electrophysiology data suggested that DBS reduces the severity of electrographic seizures, decreases the duration and increases the threshold of afterdischarges, reduces the power of low-frequency and increase the power high-frequency bands. Mechanistic studies revealed that ANT DBS leads to a series of short- and long-term changes at multiple levels. Some of its anticonvulsant effects were proposed to occur via the modulation of serotonergic and adenosinergic transmission. The latter seems to be derived from the downregulation of adenosine kinase (ADK). ANT DBS was also shown to increase hippocampal levels of lactate, alter the expression of genes involved in calcium signaling, synaptic glutamate, and the NOD-like receptor signaling pathway. When delivered during status epilepticus or following the injection of convulsant agents, DBS was found to reduce the expression of proinflammatory cytokines and apoptosis. When administered chronically, ANT DBS increased the expression of proteins involved in axonal guidance, changed functional connectivity in limbic circuits, and increased the number of hippocampal cells in epileptic animals, suggesting a neuroprotective effect.
Collapse
Affiliation(s)
- Luciene Covolan
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil.
| | - Maria Luiza Motta Pollo
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | - Pedro Bastos Dos Santos
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | | | | | | | - Christiane Gimenes
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo - SP, 04023-062, Brazil
| | - Clement Hamani
- Sunnybrook Research Institute, Harquail Centre for Neuromodulation, Division of Neurosurgery, University of Toronto, ON, M4N3M5, Canada
| |
Collapse
|
5
|
Tang M, Guo JJ, Guo RX, Xu SJ, Lou Q, Hu QX, Li WY, Yu JB, Yao Q, Wang QW. Progress of research and application of non-pharmacologic intervention in Alzheimer's disease. J Alzheimers Dis 2024; 102:275-294. [PMID: 39573867 DOI: 10.1177/13872877241289396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by amyloid-β (Aβ) deposition and neurofibrillary tangles formed by high phosphorylation of tau protein. At present, drug therapy is the main strategy of AD treatment, but its effects are limited to delaying or alleviating AD. Recently, non-pharmacologic intervention has attracted more attention, and more studies have confirmed that non-pharmacologic intervention in AD can improve the patient's cognitive function and quality of life. This paper summarizes the current non-pharmacologic intervention in AD, to provide useful supplementary means for AD intervention.
Collapse
Affiliation(s)
- Min Tang
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jie-Jie Guo
- The First People's Hospital of Wenling, Taizhou, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Rong-Xia Guo
- School of Teacher Education, Ningbo University, Ningbo, Zhejiang, China
| | - Shu-Jun Xu
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Qiong Lou
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qiao-Xia Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wan-Yi Li
- Ningbo Rehabilitation Hospital, Ningbo, Zhejiang, China
| | - Jing-Bo Yu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qi Yao
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Qin-Wen Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
6
|
Hu J, Hua Y, Li C, Zhang A, Wang Y, Bai Y. Resting-State Functional Magnetic Resonance Imaging Reveals the Effects of rTMS on Neural Activity and Brain Connectivity After Experimental Stroke. CNS Neurosci Ther 2024; 30:e70104. [PMID: 39496513 PMCID: PMC11534484 DOI: 10.1111/cns.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
AIMS Limited understanding of neurobiological mechanisms of repetitive transcranial magnetic stimulation (rTMS) prevents us from choosing optimal therapeutic regimen for patients to improve therapeutic efficiency. Resting-state functional magnetic resonance imaging (rs-fMRI) has been demonstrated to obtain comparable functional readouts across species. METHODS Intermittent and continuous theta burst stimulation were used to stimulate ipsilesional and contralesional hemisphere, respectively, during the subacute phase after stroke. We used a rat middle cerebral artery occlusion stroke model. The amplitude of low-frequency fluctuations and functional connectivity analyses of rs-fMRI were chosen to detect neuron activity and functional connectivity. The expression of neuron activation marker c-Fos and axonal plasticity marker GAP43 was examined by an immunochemistry method to corroborate the results of rs-fMRI. RESULTS iTBS altered the long-term neuronal activity in bilateral sensorimotor cortex, whereas cTBS influenced immediate neuronal activity of bilateral sensorimotor cortex. In addition, cTBS enhanced interhemispheric and intrahemisheric functional connectivity in contralesional hemisphere, accompanied by axonal and dendritic remodeling in the perilesional cortical areas and contralesional homologous areas after large stroke. CONCLUSION rTMS exerted complex effects on brain structural and functional connectivity in addition to affecting cortical excitability. cTBS promoted the compensatory effect of contralesional hemisphere after stroke with large lesions.
Collapse
Affiliation(s)
- Jian Hu
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Congqin Li
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Anjing Zhang
- Shanghai First Rehabilitation HospitalShanghaiChina
| | - Yuyuan Wang
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
7
|
Rabelo TK, Campos ACP, Almeida Souza TH, Mahmud F, Popovic MR, Covolan L, Betta VHC, DaCosta L, Lipsman N, Diwan M, Hamani C. Deep brain stimulation mitigates memory deficits in a rodent model of traumatic brain injury. Brain Stimul 2024; 17:1186-1196. [PMID: 39419474 DOI: 10.1016/j.brs.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major life-threatening event. In addition to neurological deficits, it can lead to long-term impairments in attention and memory. Deep brain stimulation (DBS) is an established therapy for movement disorders that has been recently investigated for memory improvement in various disorders. In models of TBI, stimulation delivered to different brain targets has been administered to rodents long after the injury with the objective of treating motor deficits, coordination and memory impairment. OBJECTIVE To test the hypothesis that DBS administered soon after TBI may prevent the development of memory deficits and exert neuroprotective effects. METHODS Male rats were implanted with DBS electrodes in the anterior nucleus of the thalamus (ANT) one week prior to lateral fluid percussion injury (FPI). Immediately after TBI, animals received active or sham stimulation for 6 h. Four days later, they were assessed in a novel object/novel location recognition test (NOR/NLR) and a Barnes maze paradigm. After the experiments, hippocampal cells were counted. Separate groups of animals were sacrificed at different timepoints after TBI to measure cytokines and brain derived neurotrophic factor (BDNF). In a second set of experiments, TBI-exposed animals receiving active or sham stimulation were injected with the tropomyosin receptor kinase B (TrkB) antagonist ANA-12, followed by behavioural testing. RESULTS Rats exposed to TBI given DBS had an improvement in several variables of the Barnes maze, but no significant improvements in NOR/NLR compared to Sham DBS TBI animals or non-implanted controls. Animals receiving stimulation had a significant increase in BDNF levels, as well as in hippocampal cell counts in the hilus, CA3 and CA1 regions. DBS failed to normalize the increased levels of TNFα and the proinflammatory cytokine IL1β in the perilesional cortex and the hippocampus of the TBI-exposed animals. Pharmacological experiments revealed that ANA-12 administered alongside DBS did not counter the memory improvement observed in ANT stimulated animals. CONCLUSIONS DBS delivered immediately after TBI mitigated memory deficits, increased the expression of BDNF and the number of hippocampal cells in rats. Mechanisms for these effects were not related to an anti-inflammatory effect or mediated via TrkB receptors.
Collapse
Affiliation(s)
| | | | | | - Faiza Mahmud
- Sunnybrook Research Institute, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering University of Toronto, ON, Canada
| | - Milos R Popovic
- Institute of Biomaterials and Biomedical Engineering University of Toronto, ON, Canada; Toronto Rehabilitation Institute, University Health Network, Toronto, ON, Canada
| | - Luciene Covolan
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Victor H C Betta
- Department of Physiology, Federal University of São Paulo, São Paulo, SP, Brazil
| | - Leodante DaCosta
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Clement Hamani
- Sunnybrook Research Institute, Toronto, ON, Canada; Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
8
|
Yan S, Yang X, Duan Z. Controlling Alzheimer's disease by deep brain stimulation based on a data-driven cortical network model. Cogn Neurodyn 2024; 18:3157-3180. [PMID: 39555293 PMCID: PMC11564625 DOI: 10.1007/s11571-024-10148-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 11/19/2024] Open
Abstract
This work aims to explore the control effect of DBS on Alzheimer's disease (AD) from a neurocomputational perspective. Firstly, a data-driven cortical network model is constructed using the Diffusion Tensor Imaging data. Then, a typical electrophysiological feature of EEG slowing in AD is reproduced by reducing the synaptic connectivity parameters. The corresponding changes in kinetic behavior mainly include an oscillation decrease in the amplitude and frequency of the pyramidal neuron population. Subsequently, DBS current with specific parameters is introduced into three potential targets of the hippocampus, the nucleus accumbens and the olfactory tubercle, respectively. The results indicate that applying DBS to simulated mild AD patients induces an increase in relative alpha power, a decrease in relative theta power, and a significant rightward shift of the dominant frequency. This is consistent with the EEG reversal in pharmacological treatments for AD. Further, the optimal stimulation strategy of DBS is investigated through spectral and statistical analyses. Specifically, the pathological symptoms of AD could be alleviated by adjusting the critical parameters of DBS, and the control effect of DBS on various targets is that the hippocampus is superior to the olfactory tubercle and nucleus accumbens. Finally, using correlation analysis between the power increments and the nodal degrees, it is concluded that the control effect of DBS is related to the importance of the nodes in the brain network. This study provides a theoretical guidance for determining DBS targets and parameters, which may have a substantial impact on the development of DBS treatment for AD.
Collapse
Affiliation(s)
- SiLu Yan
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - ZhiXi Duan
- School of Mathematics and Statistics, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| |
Collapse
|
9
|
Salimi M, Nazari M, Shahsavar P, Dehghan S, Javan M, Mirnajafi‐Zadeh J, Raoufy MR. Olfactory bulb stimulation mitigates Alzheimer's-like disease progression. CNS Neurosci Ther 2024; 30:e70056. [PMID: 39404073 PMCID: PMC11474698 DOI: 10.1111/cns.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) has demonstrated potential in mitigating Alzheimer's disease (AD). However, the invasive nature of DBS presents challenges for its application. The olfactory bulb (OB), showing early AD-related changes and extensive connections with memory regions, offers an attractive entry point for intervention, potentially restoring normal activity in deteriorating memory circuits. AIMS Our study examined the impact of electrically stimulating the OB on working memory as well as pathological and electrophysiological alterations in the OB, medial prefrontal cortex, hippocampus, and entorhinal cortex in amyloid beta (Aβ) AD model rats. METHODS Male Wistar rats underwent surgery for electrode implantation in brain regions, inducing Alzheimer's-like disease. Bilateral olfactory bulb (OB) electrical stimulation was performed for 1 hour daily to the OB of stimulation group animals for 18 consecutive days, followed by the evaluations of histological, behavioral, and local field potential signal processing. RESULTS OB stimulation counteracted Aβ plaque accumulation and prevented AD-induced working memory impairments. Furthermore, it prompted an increase in power across diverse frequency bands and enhanced functional connectivity, particularly in the gamma band, within the investigated regions during a working memory task. CONCLUSION This preclinical investigation highlights the potential of olfactory pathway-based brain stimulation to modulate the activity of deep-seated memory networks for AD treatment. Importantly, the accessibility of this pathway via the nasal cavity lays the groundwork for the development of minimally invasive approaches targeting the olfactory pathway for brain modulation.
Collapse
Affiliation(s)
- Morteza Salimi
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Milad Nazari
- Department of Molecular Biology and GeneticsAarhus UniversityAarhusDenmark
- The Danish Research Institute of Translational Neuroscience, DANDRITEAarhus UniversityAarhusDenmark
| | - Payam Shahsavar
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research CenterIran University of Medical SciencesTehranIran
- The Five Senses Institute, Eye Research CenterRassoul Akram Hospital, Iran University of Medical SciencesTehranIran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| | - Javad Mirnajafi‐Zadeh
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain Sciences and CognitionTarbiat Modares UniversityTehranIran
| |
Collapse
|
10
|
Tampellini D. Activity-dependent mechanisms of neuroprotection: promising avenues against dementia. Neural Regen Res 2024; 19:1409-1410. [PMID: 38051871 PMCID: PMC10883486 DOI: 10.4103/1673-5374.387985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/23/2023] [Indexed: 12/07/2023] Open
Affiliation(s)
- Davide Tampellini
- U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France; Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Karimani F, Asgari Taei A, Abolghasemi-Dehaghani MR, Safari MS, Dargahi L. Impairment of entorhinal cortex network activity in Alzheimer's disease. Front Aging Neurosci 2024; 16:1402573. [PMID: 38882526 PMCID: PMC11176617 DOI: 10.3389/fnagi.2024.1402573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
The entorhinal cortex (EC) stands out as a critical brain region affected in the early phases of Alzheimer's disease (AD), with some of the disease's pathological processes originating from this area, making it one of the most crucial brain regions in AD. Recent research highlights disruptions in the brain's network activity, characterized by heightened excitability and irregular oscillations, may contribute to cognitive impairment. These disruptions are proposed not only as potential therapeutic targets but also as early biomarkers for AD. In this paper, we will begin with a review of the anatomy and function of EC, highlighting its selective vulnerability in AD. Subsequently, we will discuss the disruption of EC network activity, exploring changes in excitability and neuronal oscillations in this region during AD and hypothesize that, considering the advancements in neuromodulation techniques, addressing the disturbances in the network activity of the EC could offer fresh insights for both the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Farnaz Karimani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mir-Shahram Safari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Dargahi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Aljeradat B, Kumar D, Abdulmuizz S, Kundu M, Almealawy YF, Batarseh DR, Atallah O, Ennabe M, Alsarafandi M, Alan A, Weinand M. Neuromodulation and the Gut-Brain Axis: Therapeutic Mechanisms and Implications for Gastrointestinal and Neurological Disorders. PATHOPHYSIOLOGY 2024; 31:244-268. [PMID: 38804299 PMCID: PMC11130832 DOI: 10.3390/pathophysiology31020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
The gut-brain axis (GBA) represents a complex, bidirectional communication network that intricately connects the gastrointestinal tract with the central nervous system (CNS). Understanding and intervening in this axis opens a pathway for therapeutic advancements for neurological and gastrointestinal diseases where the GBA has been proposed to play a role in the pathophysiology. In light of this, the current review assesses the effectiveness of neuromodulation techniques in treating neurological and gastrointestinal disorders by modulating the GBA, involving key elements such as gut microbiota, neurotrophic factors, and proinflammatory cytokines. Through a comprehensive literature review encompassing PubMed, Google Scholar, Web of Science, and the Cochrane Library, this research highlights the role played by the GBA in neurological and gastrointestinal diseases, in addition to the impact of neuromodulation on the management of these conditions which include both gastrointestinal (irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gastroesophageal reflux disease (GERD)) and neurological disorders (Parkinson's disease (PD), Alzheimer's disease (AD), autism spectrum disorder (ASD), and neuropsychiatric disorders). Despite existing challenges, the ability of neuromodulation to adjust disrupted neural pathways, alleviate pain, and mitigate inflammation is significant in improving the quality of life for patients, thereby offering exciting prospects for future advancements in patient care.
Collapse
Affiliation(s)
- Baha’ Aljeradat
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Danisha Kumar
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Dow Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan
| | - Sulaiman Abdulmuizz
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Health Sciences, University of Ilorin, Ilorin 240003, Kwara, Nigeria
| | - Mrinmoy Kundu
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Institute of Medical Sciences and SUM Hospital, Bhubaneswar 751029, India
| | - Yasser F. Almealawy
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Faculty of Medicine, University of Kufa, Kufa P.O. Box 21, Iraq
| | - Dima Ratib Batarseh
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Oday Atallah
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Department of Neurosurgery, Hannover Medical School, 30625 Hannover, Germany
| | - Michelle Ennabe
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Medicine, The University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Muath Alsarafandi
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- College of Medicine, Islamic University of Gaza, Rafa Refugee Camp, Rafa P.O. Box 108, Palestine
- Faculty of Medicine, Islamic University of Gaza, Gaza P.O. Box 108, Palestine
| | - Albert Alan
- Global Neurosurgical Alliance, Tucson, AZ 85716, USA; (B.A.); (D.K.); (S.A.); (M.K.); (Y.F.A.); (D.R.B.); (O.A.); (M.E.); (M.A.)
- Department of Neurosurgery, University of Arizona, Tucson, AZ 85724, USA;
- College of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85004, USA
| | - Martin Weinand
- Department of Neurosurgery, University of Arizona, Tucson, AZ 85724, USA;
- College of Medicine, The University of Arizona College of Medicine, Tucson, AZ 85004, USA
| |
Collapse
|
13
|
Rapaka D, Tebogo MO, Mathew EM, Adiukwu PC, Bitra VR. Targeting papez circuit for cognitive dysfunction- insights into deep brain stimulation for Alzheimer's disease. Heliyon 2024; 10:e30574. [PMID: 38726200 PMCID: PMC11079300 DOI: 10.1016/j.heliyon.2024.e30574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Hippocampus is the most widely studied brain area coupled with impairment of memory in a variety of neurological diseases and Alzheimer's disease (AD). The limbic structures within the Papez circuit have been linked to various aspects of cognition. Unfortunately, the brain regions that include this memory circuit are often ignored in terms of understanding cognitive decline in these diseases. To properly comprehend where cognition problems originate, it is crucial to clarify any aberrant contributions from all components of a specific circuit -on both a local and a global level. The pharmacological treatments currently available are not long lasting. Deep Brain Stimulation (DBS) emerged as a new powerful therapeutic approach for alleviation of the cognitive dysfunctions. Metabolic, functional, electrophysiological, and imaging studies helped to find out the crucial nodes that can be accessible for DBS. Targeting these nodes within the memory circuit produced significant improvement in learning and memory by disrupting abnormal circuit activity and restoring the physiological network. Here, we provide an overview of the neuroanatomy of the circuit of Papez along with the mechanisms and various deep brain stimulation targets of the circuit structures which could be significant for improving cognitive dysfunctions in AD.
Collapse
Affiliation(s)
| | - Motshegwana O. Tebogo
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | - Elizabeth M. Mathew
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| | | | - Veera Raghavulu Bitra
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana, P/Bag-0022
| |
Collapse
|
14
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
15
|
Kumbhare D, Rajagopal M, Toms J, Freelin A, Weistroffer G, McComb N, Karnam S, Azghadi A, Murnane KS, Baron MS, Holloway KL. Deep Brain Stimulation of Nucleus Basalis of Meynert improves learning in rat model of dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588271. [PMID: 38645266 PMCID: PMC11030230 DOI: 10.1101/2024.04.05.588271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has been preliminarily investigated as a potential treatment for dementia. The degeneration of NBM cholinergic neurons is a pathological feature of many forms of dementia. Although stimulation of the NBM has been demonstrated to improve learning, the ideal parameters for NBM stimulation have not been elucidated. This study assesses the differential effects of varying stimulation patterns and duration on learning in a dementia rat model. Methods 192-IgG-saporin (or vehicle) was injected into the NBM to produce dementia in rats. Next, all rats underwent unilateral implantation of a DBS electrode in the NBM. The experimental groups consisted of i-normal, ii-untreated demented, and iii-demented rats receiving NBM DBS. The stimulation paradigms included testing different modes (tonic and burst) and durations (1-hr, 5-hrs, and 24-hrs/day) over 10 daily sessions. Memory was assessed pre- and post-stimulation using two established learning paradigms: novel object recognition (NOR) and auditory operant chamber learning. Results Both normal and stimulated rats demonstrated improved performance in NOR and auditory learning as compared to the unstimulated demented group. The burst stimulation groups performed better than the tonic stimulated group. Increasing the daily stimulation duration to 24-hr did not further improve cognitive performance in an auditory recognition task and degraded the results on a NOR task as compared with 5-hr. Conclusion The present findings suggest that naturalistic NBM burst DBS may offer a potential effective therapy for treating dementia and suggests potential strategies for the reevaluation of current human NBM stimulation paradigms.
Collapse
|
16
|
Eser P, Kocabicak E, Bekar A, Temel Y. Insights into neuroinflammatory mechanisms of deep brain stimulation in Parkinson's disease. Exp Neurol 2024; 374:114684. [PMID: 38199508 DOI: 10.1016/j.expneurol.2024.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
Parkinson's disease, a progressive neurodegenerative disorder, involves gradual degeneration of the nigrostriatal dopaminergic pathway, leading to neuronal loss within the substantia nigra pars compacta and dopamine depletion. Molecular factors, including neuroinflammation, impaired protein homeostasis, and mitochondrial dysfunction, contribute to the neuronal loss. Deep brain stimulation, a form of neuromodulation, applies electric current through stereotactically implanted electrodes, effectively managing motor symptoms in advanced Parkinson's disease patients. Deep brain stimulation exerts intricate effects on neuronal systems, encompassing alterations in neurotransmitter dynamics, microenvironment restoration, neurogenesis, synaptogenesis, and neuroprotection. Contrary to initial concerns, deep brain stimulation demonstrates antiinflammatory effects, influencing cytokine release, glial activation, and neuronal survival. This review investigates the intricacies of deep brain stimulation mechanisms, including insertional effects, histological changes, and glial responses, and sheds light on the complex interplay between electrodes, stimulation, and the brain. This exploration delves into understanding the role of neuroinflammatory pathways and the effects of deep brain stimulation in the context of Parkinson's disease, providing insights into its neuroprotective capabilities.
Collapse
Affiliation(s)
- Pinar Eser
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey.
| | - Ersoy Kocabicak
- Ondokuz Mayis University, Health Practise and Research Hospital, Neuromodulation Center, Samsun, Turkey
| | - Ahmet Bekar
- Bursa Uludag University School of Medicine, Department of Neurosurgery, Bursa, Turkey
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
17
|
Davidson B, Vetkas A, Germann J, Tang-Wai D, Lozano AM. Deep brain stimulation for Alzheimer's disease - current status and next steps. Expert Rev Med Devices 2024; 21:285-292. [PMID: 38573133 DOI: 10.1080/17434440.2024.2337298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) requires novel therapeutic approaches due to limited efficacy of current treatments. AREAS COVERED This article explores AD as a manifestation of neurocircuit dysfunction and evaluates deep brain stimulation (DBS) as a potential intervention. Focusing on fornix-targeted stimulation (DBS-f), the article summarizes safety, feasibility, and outcomes observed in phase 1/2 trials, highlighting findings such as cognitive improvement, increased metabolism, and hippocampal growth. Topics for further study include optimization of electrode placement, and the role of stimulation-induced autobiographical-recall. Nucleus basalis of Meynert (DBS-NBM) DBS is also discussed and compared with DBS-f. Challenges with both DBS-f and DBS-NBM are identified, emphasizing the need for further research on optimal stimulation parameters. The article also reviews alternative DBS targets, including medial temporal lobe structures and the ventral capsule/ventral striatum. EXPERT OPINION Looking ahead, a phase-3 DBS-f trial, and the prospect of closed-loop stimulation using EEG-derived biomarkers or hippocampal theta activity are highlighted. Recent FDA-approved therapies and other neuromodulation techniques like temporal interference and low-intensity ultrasound are considered. The article concludes by underscoring the importance of imaging-based diagnosis and staging to allow for circuit-targeted therapies, given the heterogeneity of AD and varied stages of neurocircuit dysfunction.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Krembil Research Institute, Toronto, ON, Canada
| | - David Tang-Wai
- Krembil Research Institute, Toronto, ON, Canada
- Department of Neurology, Toronto Western Hospital, University Health Network, Toronto, University of Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
- Krembil Research Institute, Toronto, ON, Canada
| |
Collapse
|
18
|
El Hajj R, Al Sagheer T, Ballout N. Optogenetics in chronic neurodegenerative diseases, controlling the brain with light: A systematic review. J Neurosci Res 2024; 102:e25321. [PMID: 38588013 DOI: 10.1002/jnr.25321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 04/10/2024]
Abstract
Neurodegenerative diseases are progressive disorders characterized by synaptic loss and neuronal death. Optogenetics combines optical and genetic methods to control the activity of specific cell types. The efficacy of this approach in neurodegenerative diseases has been investigated in many reviews, however, none of them tackled it systematically. Our study aimed to review systematically the findings of optogenetics and its potential applications in animal models of chronic neurodegenerative diseases and compare it with deep brain stimulation and designer receptors exclusively activated by designer drugs techniques. The search strategy was performed based on the PRISMA guidelines and the risk of bias was assessed following the Systematic Review Centre for Laboratory Animal Experimentation tool. A total of 247 articles were found, of which 53 were suitable for the qualitative analysis. Our data revealed that optogenetic manipulation of distinct neurons in the brain is efficient in rescuing memory impairment, alleviating neuroinflammation, and reducing plaque pathology in Alzheimer's disease. Similarly, this technique shows an advanced understanding of the contribution of various neurons involved in the basal ganglia pathways with Parkinson's disease motor symptoms and pathology. However, the optogenetic application using animal models of Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis was limited. Optogenetics is a promising technique that enhanced our knowledge in the research of neurodegenerative diseases and addressed potential therapeutic solutions for managing these diseases' symptoms and delaying their progression. Nevertheless, advanced investigations should be considered to improve optogenetic tools' efficacy and safety to pave the way for their translatability to the clinic.
Collapse
Affiliation(s)
- Rojine El Hajj
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Tareq Al Sagheer
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Nissrine Ballout
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
19
|
Garrudo FFF, Linhardt RJ, Ferreira FC, Morgado J. Designing Electrical Stimulation Platforms for Neural Cell Cultivation Using Poly(aniline): Camphorsulfonic Acid. Polymers (Basel) 2023; 15:2674. [PMID: 37376320 DOI: 10.3390/polym15122674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/01/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Electrical stimulation is a powerful strategy to improve the differentiation of neural stem cells into neurons. Such an approach can be implemented, in association with biomaterials and nanotechnology, for the development of new therapies for neurological diseases, including direct cell transplantation and the development of platforms for drug screening and disease progression evaluation. Poly(aniline):camphorsulfonic acid (PANI:CSA) is one of the most well-studied electroconductive polymers, capable of directing an externally applied electrical field to neural cells in culture. There are several examples in the literature on the development of PANI:CSA-based scaffolds and platforms for electrical stimulation, but no review has examined the fundamentals and physico-chemical determinants of PANI:CSA for the design of platforms for electrical stimulation. This review evaluates the current literature regarding the application of electrical stimulation to neural cells, specifically reviewing: (1) the fundamentals of bioelectricity and electrical stimulation; (2) the use of PANI:CSA-based systems for electrical stimulation of cell cultures; and (3) the development of scaffolds and setups to support the electrical stimulation of cells. Throughout this work, we critically evaluate the revised literature and provide a steppingstone for the clinical application of the electrical stimulation of cells using electroconductive PANI:CSA platforms/scaffolds.
Collapse
Affiliation(s)
- Fábio F F Garrudo
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Biology and Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
| | - Frederico Castelo Ferreira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Jorge Morgado
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
20
|
Kumro J, Tripathi A, Lei Y, Sword J, Callahan P, Terry A, Lu XY, Kirov SA, Pillai A, Blake DT. Chronic basal forebrain activation improves spatial memory, boosts neurotrophin receptor expression, and lowers BACE1 and Aβ42 levels in the cerebral cortex in mice. Cereb Cortex 2023; 33:7627-7641. [PMID: 36939283 PMCID: PMC10267632 DOI: 10.1093/cercor/bhad066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
The etiology of Alzheimer's dementia has been hypothesized in terms of basal forebrain cholinergic decline, and in terms of reflecting beta-amyloid neuropathology. To study these different biological elements, we activated the basal forebrain in 5xFAD Alzheimer's model mice and littermates. Mice received 5 months of 1 h per day intermittent stimulation of the basal forebrain, which includes cholinergic projections to the cortical mantle. Then, mice were behaviorally tested followed by tissue analysis. The 5xFAD mice performed worse in water-maze testing than littermates. Stimulated groups learned the water maze better than unstimulated groups. Stimulated groups had 2-3-fold increases in frontal cortex immunoblot measures of the neurotrophin receptors for nerve growth factor and brain-derived neurotrophic factor, and a more than 50% decrease in the expression of amyloid cleavage enzyme BACE1. Stimulation also led to lower Aβ42 in 5xFAD mice. These data support a causal relationship between basal forebrain activation and both neurotrophin activation and reduced Aβ42 generation and accumulation. The observation that basal forebrain activation suppresses Aβ42 accumulation, combined with the known high-affinity antagonism of nicotinic receptors by Aβ42, documents bidirectional antagonism between acetylcholine and Aβ42.
Collapse
Affiliation(s)
- Jacob Kumro
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Ashutosh Tripathi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, United States
| | - Yun Lei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Jeremy Sword
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Patrick Callahan
- Department of Pharmacology/Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Alvin Terry
- Department of Pharmacology/Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Xin-yun Lu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Sergei A Kirov
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| | - Anilkumar Pillai
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, United States
- Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
- Research and Development, Charlie Norwood VA Medical Center, Augusta, GA 30904, United States
| | - David T Blake
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
21
|
Xiao T, Wu K, Wang P, Ding Y, Yang X, Chang C, Yang Y. Sensory input-dependent gain modulation of the optokinetic nystagmus by mid-infrared stimulation in pigeons. eLife 2023; 12:78729. [PMID: 36853228 PMCID: PMC9977280 DOI: 10.7554/elife.78729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 02/12/2023] [Indexed: 03/01/2023] Open
Abstract
Neuromodulation serves as a cornerstone for brain sciences and clinical applications. Recent reports suggest that mid-infrared stimulation (MIRS) causes non-thermal modulation of brain functions. Current understanding of its mechanism hampers the routine application of MIRS. Here, we examine how MIRS influences the sensorimotor transformation in awaking-behaving pigeons, from neuronal signals to behavior. We applied MIRS and electrical stimulation (ES) to the pretectal nucleus lentiformis mesencephali (nLM), an essential retinorecipient structure in the pretectum, and examined their influences on the optokinetic nystagmus, a visually guided eye movement. We found MIRS altered eye movements by modulating a specific gain depending on the strength of visual inputs, in a manner different than the effect of ES. Simultaneous extracellular recordings and stimulation showed that MIRS could either excite and inhibit the neuronal activity in the same pretectal neuron depending on its ongoing sensory responsiveness levels in awake-behaving animals. Computational simulations suggest that MIRS modulates the resonance of a carbonyl group of the potassium channel, critical to the action potential generation, altering neuronal responses to sensory inputs and as a consequence, guiding behavior. Our findings suggest that MIRS could be a promising approach toward modulating neuronal functions for brain research and treating neurological diseases.
Collapse
Affiliation(s)
- Tong Xiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Kaijie Wu
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Peiliang Wang
- University of Chinese Academy of SciencesBeijingChina
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- Key Laboratory of Electromagnetic Radiation and Sensing Technology, Aerospace Information Research Institute, Chinese Academy of sciencesBeijingChina
| | - Yali Ding
- University of Chinese Academy of SciencesBeijingChina
| | - Xiao Yang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics, National Innovation Institute of Defense TechnologyBeijingChina
- School of Physics, Peking UniversityBeijingChina
| | - Yan Yang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Institute of Artificial Intelligence, Hefei Comprehensive National Science CenterHefeiChina
| |
Collapse
|
22
|
Akwa Y, Di Malta C, Zallo F, Gondard E, Lunati A, Diaz-de-Grenu LZ, Zampelli A, Boiret A, Santamaria S, Martinez-Preciado M, Cortese K, Kordower JH, Matute C, Lozano AM, Capetillo-Zarate E, Vaccari T, Settembre C, Baulieu EE, Tampellini D. Stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau in cellular and mouse models of tauopathies. Autophagy 2023; 19:660-677. [PMID: 35867714 PMCID: PMC9851246 DOI: 10.1080/15548627.2022.2095791] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Synapses represent an important target of Alzheimer disease (AD), and alterations of their excitability are among the earliest changes associated with AD development. Synaptic activation has been shown to be protective in models of AD, and deep brain stimulation (DBS), a surgical strategy that modulates neuronal activity to treat neurological and psychiatric disorders, produced positive effects in AD patients. However, the molecular mechanisms underlying the protective role(s) of brain stimulation are still elusive. We have previously demonstrated that induction of synaptic activity exerts protection in mouse models of AD and frontotemporal dementia (FTD) by enhancing the macroautophagy/autophagy flux and lysosomal degradation of pathological MAPT/Tau. We now provide evidence that TFEB (transcription factor EB), a master regulator of lysosomal biogenesis and autophagy, is a key mediator of this cellular response. In cultured primary neurons from FTD-transgenic mice, synaptic stimulation inhibits MTORC1 signaling, thus promoting nuclear translocation of TFEB, which, in turn, induces clearance of MAPT/Tau oligomers. Conversely, synaptic activation fails to promote clearance of toxic MAPT/Tau in neurons expressing constitutively active RRAG GTPases, which sequester TFEB in the cytosol, or upon TFEB depletion. Activation of TFEB is also confirmed in vivo in DBS-stimulated AD mice. We also demonstrate that DBS reduces pathological MAPT/Tau and promotes neuroprotection in Parkinson disease patients with tauopathy. Altogether our findings indicate that stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau. This mechanism, underlying the protective effect of DBS, provides encouraging support for the use of synaptic stimulation as a therapeutic treatment against tauopathies.Abbreviations: 3xTg-AD: triple transgenic AD mice; AD: Alzheimer disease; CSA: cyclosporine A; DBS: deep brain stimulation; DIV: days in vitro; EC: entorhinal cortex; FTD: frontotemporal dementia; gLTP: glycine-induced long-term potentiation; GPi: internal segment of the globus pallidus; PD: Parkinson disease; STN: subthalamic nucleus; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Yvette Akwa
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department. of Translational Medicine, Medical Genetics, Federico II University, Naples, Italy
| | - Fátima Zallo
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Elise Gondard
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Adele Lunati
- Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Lara Z. Diaz-de-Grenu
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain,TECNALIA, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Angela Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
| | - Anne Boiret
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Sara Santamaria
- Cellular Electron Microscopy Lab, DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Maialen Martinez-Preciado
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Katia Cortese
- Cellular Electron Microscopy Lab, DIMES, Department of Experimental Medicine, University of Genoa, Genova, Italy
| | - Jeffrey H. Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA,College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain
| | - Andres M. Lozano
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Estibaliz Capetillo-Zarate
- Achucarro Basque Center for Neuroscience, Departamento de Neurociencias, Universidad del País Vasco (UPV/EHU) and Centro de Investigación en Red de Enfermedades, Neurodegenerativas (CIBERNED), Leioa, Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Thomas Vaccari
- Department of Biosciences, University of Milan, Milan, Italy
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy,Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Etienne E. Baulieu
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France
| | - Davide Tampellini
- Department of Diseases and Hormones of the Nervous System, U1195 INSERM - Université Paris-Saclay, Le Kremlin-Bicêtre, France,Institut Professeur Baulieu, Le Kremlin-Bicêtre, France,CONTACT Davide Tampellini CHU Bicêtre, U 1195 Inserm - Université Paris-Saclay. Secteur Marron, Bât. G. Pincus, door 47, 80, rue du General Leclerc 94276 Kremlin-Bicêtre CedexFrance
| |
Collapse
|
23
|
Luo Y, Sun Y, Wen H, Wang X, Zheng X, Ge H, Yin Y, Wu X, Li W, Hou W. Deep brain stimulation of the entorhinal cortex modulates CA1 theta-gamma oscillations in mouse models of preclinical Alzheimer's disease. Biocybern Biomed Eng 2023. [DOI: 10.1016/j.bbe.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Huynh QS, Elangovan S, Holsinger RMD. Non-Pharmacological Therapeutic Options for the Treatment of Alzheimer's Disease. Int J Mol Sci 2022; 23:11037. [PMID: 36232336 PMCID: PMC9570337 DOI: 10.3390/ijms231911037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease is a growing global crisis in need of urgent diagnostic and therapeutic strategies. The current treatment strategy mostly involves immunotherapeutic medications that have had little success in halting disease progress. Hypotheses for pathogenesis and development of AD have been expanded to implicate both organ systems as well as cellular reactions. Non-pharmacologic interventions ranging from minimally to deeply invasive have attempted to address these diverse contributors to AD. In this review, we aim to delineate mechanisms underlying such interventions while attempting to provide explanatory links between the observed differences in disease states and postulated metabolic or structural mechanisms of change. The techniques discussed are not an exhaustive list of non-pharmacological interventions against AD but provide a foundation to facilitate a deeper understanding of the area of study.
Collapse
Affiliation(s)
- Quy-Susan Huynh
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Shalini Elangovan
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
| | - R. M. Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2050, Australia
- Neuroscience, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Li R, Zhang C, Rao Y, Yuan TF. Deep brain stimulation of fornix for memory improvement in Alzheimer's disease: A critical review. Ageing Res Rev 2022; 79:101668. [PMID: 35705176 DOI: 10.1016/j.arr.2022.101668] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Memory reflects the brain function in encoding, storage and retrieval of the data or information, which is a fundamental ability for any live organism. The development of approaches to improve memory attracts much attention due to the underlying mechanistic insight and therapeutic potential to treat neurodegenerative diseases with memory loss, such as Alzheimer's disease (AD). Deep brain stimulation (DBS), a reversible, adjustable, and non-ablative therapy, has been shown to be safe and effective in many clinical trials for neurodegenerative and neuropsychiatric disorders. Among all potential regions with access to invasive electrodes, fornix is considered as it is the major afferent and efferent connection of the hippocampus known to be closely associated with learning and memory. Indeed, clinical trials have demonstrated that fornix DBS globally improved cognitive function in a subset of patients with AD, indicating fornix can serve as a potential target for neurosurgical intervention in treating memory impairment in AD. The present review aims to provide a better understanding of recent progresses in the application of fornix DBS for ameliorating memory impairments in AD patients.
Collapse
Affiliation(s)
- Ruofan Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxia Rao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Laboratory Animal Science, Fudan University, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
26
|
Jiang Y, Liu D, Zhang X, Liu H, Zhang C, Zhang J. Modulation of the rat hippocampal-cortex network and episodic-like memory performance following entorhinal cortex stimulation. CNS Neurosci Ther 2022; 28:448-457. [PMID: 34964261 PMCID: PMC8841309 DOI: 10.1111/cns.13795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
AIMS Entorhinal cortex (EC) deep brain stimulation (DBS) has shown a memory enhancement effect. However, its brain network modulation mechanisms remain unclear. The present study aimed to investigate the functional connectivity in the rat hippocampal-cortex network and episodic-like memory performance following EC-DBS. METHODS 7.0 T functional MRI (fMRI) scans and episodic-like memory tests were performed 3 days and 28 days after EC-DBS in healthy rats. The fMRI data processing was focused on the power spectra, functional connectivity, and causality relationships in the hippocampal-cortex network. In addition, the exploration ratio for each object and the discrimination ratio of the "when" and "where" factors were calculated in the behavioral tests. RESULTS EC-DBS increased the power spectra and the functional connectivity in the prefrontal- and hippocampal-related networks 3 days after stimulation and recovered 4 weeks later. Both networks exhibited a strengthened connection with the EC after EC-DBS. Further seed-based functional connectivity comparisons showed increased connectivity among the prefrontal cortex, hippocampus and EC, especially on the ipsilateral side of DBS. The dentate gyrus is a hub region closely related to both the EC and the prefrontal cortex and receives information flow from both. Moreover, acute EC-DBS also enhanced the discrimination ratio of the "where" factor in the episodic-like memory test on Day 3. CONCLUSION EC-DBS caused a reversible modulation effect on functional connectivity in the hippocampal-cortex network and episodic-like memory performance.
Collapse
Affiliation(s)
- Yin Jiang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - De‐Feng Liu
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xin Zhang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Huan‐Guang Liu
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chao Zhang
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jian‐Guo Zhang
- Department of Functional NeurosurgeryBeijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
- Department of Functional NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
27
|
Bowirrat A, Ashkenazi S, Bowirrat A, Pinhasov A. Does the Application of Deep Brain Stimulation to Modulate Memory and Neural Circuity in AD Hold Substantial Promise? Neurosci Bull 2022; 38:553-557. [PMID: 35050484 PMCID: PMC9106774 DOI: 10.1007/s12264-021-00815-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- Abdalla Bowirrat
- Adelson School of Medicine and Department of Molecular Biology, Ariel University, 40700, Ariel, Israel.
| | - Shai Ashkenazi
- Adelson School of Medicine, Ariel University, 40700, Ariel, Israel
| | - Aia Bowirrat
- Department of Orthopedic Surgery, Hasharon Hospital, Rabin Medical Center, Tel Aviv University, 4941492, Petah-Tikva, Israel
| | - Albert Pinhasov
- Adelson School of Medicine and Department of Molecular Biology, Ariel University, 40700, Ariel, Israel
| |
Collapse
|
28
|
Yang X, Zhang R, Sun Z, Kurths J. Controlling Alzheimer's Disease Through the Deep Brain Stimulation to Thalamic Relay Cells. Front Comput Neurosci 2021; 15:636770. [PMID: 34819845 PMCID: PMC8606419 DOI: 10.3389/fncom.2021.636770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 10/11/2021] [Indexed: 11/23/2022] Open
Abstract
Experimental and clinical studies have shown that the technique of deep brain stimulation (DBS) plays a potential role in the regulation of Alzheimer’s disease (AD), yet it still desires for ongoing studies including clinical trials, theoretical approach and action mechanism. In this work, we develop a modified thalamo-cortico-thalamic (TCT) model associated with AD to explore the therapeutic effects of DBS on AD from the perspective of neurocomputation. First, the neuropathological state of AD resulting from synapse loss is mimicked by decreasing the synaptic connectivity strength from the Inter-Neurons (IN) neuron population to the Thalamic Relay Cells (TRC) neuron population. Under such AD condition, a specific deep brain stimulation voltage is then implanted into the neural nucleus of TRC in this TCT model. The symptom of AD is found significantly relieved by means of power spectrum analysis and nonlinear dynamical analysis. Furthermore, the therapeutic effects of DBS on AD are systematically examined in different parameter space of DBS. The results demonstrate that the controlling effect of DBS on AD can be efficient by appropriately tuning the key parameters of DBS including amplitude A, period P and duration D. This work highlights the critical role of thalamus stimulation for brain disease, and provides a theoretical basis for future experimental and clinical studies in treating AD.
Collapse
Affiliation(s)
- XiaoLi Yang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - RuiXi Zhang
- School of Mathematics and Statistics, Shaanxi Normal University, Xi'an, China
| | - ZhongKui Sun
- Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, China
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam, Germany.,Department of Physics, Humboldt University of Berlin, Berlin, Germany.,Centre for Analysis of Complex Systems, World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
29
|
Sun YW, Luo YP, Zheng XL, Wu XY, Wen HZ, Hou WS. Multiple Sessions of Entorhinal Cortex Deep Brain Stimulation in C57BL/6J Mice Increases Exploratory Behavior and Hippocampal Neurogenesis . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6390-6393. [PMID: 34892574 DOI: 10.1109/embc46164.2021.9629978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Deep brain stimulation (DBS) has been a medical intervention for a variety of nervous system diseases and mental diseases. The input of DBS in the entorhinal cortex (EC) regulates the neurophysiological activities in its downstream regions, such as the dentate gyrus (DG) area. EC DBS may play a role in the treatment of diseases through hippocampal neurogenesis. This study we examined the effect of multiple sessions of EC DBS on the regulation of hippocampal neurogenesis. 4-month-old male C57BL/6J mice received bilateral multiple sessions of EC DBS (130 Hz, 90 μs, 100 μA, 1 h/d, 21 days), and the DBS parameters used are close to the high-frequency DBS parameters in clinical studies. The open field test (OFT) was used to test the exploratory behavior of mice, and hippocampal neurogenesis was detected by immunofluorescence staining with anti-doublecortin (DCX). We found that multiple sessions of EC DBS were tolerated in C57BL/6J mice, significantly increased exploratory behavior and the number of DCX-positive neurons in the DG area.Clinical Relevance- Hippocampal neurogenesis may be part of the reason for DBS to improve memory, and the results of this study show that multiple sessions of EC DBS increases exploratory behavior and hippocampal neurogenesis, which is conducive to the application of DBS in nervous system diseases and mental diseases related to memory impairment.
Collapse
|
30
|
Pople CB, Meng Y, Li DZ, Bigioni L, Davidson B, Vecchio LM, Hamani C, Rabin JS, Lipsman N. Neuromodulation in the Treatment of Alzheimer's Disease: Current and Emerging Approaches. J Alzheimers Dis 2021; 78:1299-1313. [PMID: 33164935 DOI: 10.3233/jad-200913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuromodulation as a treatment strategy for psychiatric and neurological diseases has grown in popularity in recent years, with the approval of repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression being one such example. These approaches offer new hope in the treatment of diseases that have proven largely intractable to traditional pharmacological approaches. For this reason, neuromodulation is increasingly being explored for the treatment of Alzheimer's disease. However, such approaches have variable, and, in many cases, very limited evidence for safety and efficacy, with most human evidence obtained in small clinical trials. Here we review work in animal models and humans with Alzheimer's disease exploring emerging neuromodulation modalities. Approaches reviewed include deep brain stimulation, transcranial magnetic stimulation, transcranial electrical stimulation, ultrasound stimulation, photobiomodulation, and visual or auditory stimulation. In doing so, we clarify the current evidence for these approaches in treating Alzheimer's disease and identify specific areas where additional work is needed to facilitate their clinical translation.
Collapse
Affiliation(s)
- Christopher B Pople
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ying Meng
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Daniel Z Li
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Luca Bigioni
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin Davidson
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Laura M Vecchio
- Biological Sciences Platform, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto ON, Canada
| | - Nir Lipsman
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| |
Collapse
|
31
|
Fontaine D, Santucci S. Deep brain stimulation in Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:69-87. [PMID: 34446251 DOI: 10.1016/bs.irn.2021.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Benefits from symptomatic and etiologic treatments in Alzheimer's Disease (AD), the most frequent dementia, are still insufficient. During the last decade, several studies showed that electrical stimulation of memory circuits could enhance memory in humans without memory impairment. First, improvement of verbal recollection was reported after deep brain stimulation (DBS) of the fornix in the hypothalamus in a patient treated for morbid obesity. Several studies in epileptic patients explored by deep electrodes reported that visuo-spatial memorization was facilitated by electrical stimulation of the entorhinal cortex or theta burst stimulation of the fornix. Recent studies suggested that DBS could be useful to modulate memory circuits in patients with cognitive decline. Phase I and II studies (about 50 patients) showed that chronic fornix DBS was safe and could achieved to stabilize or slow the memory decline of some patients with mild to moderate AD, especially older ones with less severe and/or advanced disease. DBS of the cholinergic nucleus of Meynert also has been explored in phase I studies in AD and Parkinson-related dementia. Growing experimental data suggest several mechanisms of action: restoration of hippocampal theta rhythms, enhanced long term potentiation, increase of hippocampal neurogenesis, neuroprotection by release of neurotrophic factors, diffuse reactivation of hypoactive neocortical associative regions. However, DBS in AD is still investigational and numerous issues remain to be solved before envisaging its use in clinical practice, including optimal anatomical DBS target, stimulation modalities (continuous, intermittent, theta-bursts, closed loop stimulation), best candidate patients, relevant targeted symptoms, ethical considerations.
Collapse
Affiliation(s)
- Denys Fontaine
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France.
| | - Serena Santucci
- Department of Neurosurgery, Université Côte d'Azur, CHU de Nice, Nice, France
| |
Collapse
|
32
|
White B, Lyketsos CG, Rosenberg PB, Oh ES, Chen L. Multiple Neurodegenerative Pathologies in an Alzheimer's Disease Patient Treated with Fornical Deep Brain Stimulation. J Alzheimers Dis 2021; 80:1383-1387. [PMID: 33682715 DOI: 10.3233/jad-201415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As an established treatment for movement disorders, deep brain stimulation (DBS) has been adapted for the treatment of Alzheimer's disease (AD) by modulating fornix activity. Although it is generally regarded as a safe intervention in patients over 65 years of age, the complex neurophysiology and interconnection within circuits connected to the fornix warrants a careful ongoing evaluation of the true benefit and risk potential of DBS on slowing cognitive decline in AD patients. Here we report on a patient who died long after being implanted with a DBS device who donated her brain for neuropathologic study. The autopsy confirmed multiple proteinopathies including AD-related change, diffuse neocortical Lewy body disease, TDP-43 proteinopathy, and a nonspecific tauopathy. We discuss the possible mechanisms of these overlapping neurodegenerative disorders and caution that future studies of DBS for AD will need to take these findings into consideration.
Collapse
Affiliation(s)
- Bartholomew White
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Current affiliation: Department of Pathology, Emory School of Medicine, Atlanta, GA, USA
| | - Constantine G Lyketsos
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Esther S Oh
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Liam Chen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA.,Current affiliation: Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
33
|
Slater C, Wang Q. Alzheimer's disease: An evolving understanding of noradrenergic involvement and the promising future of electroceutical therapies. Clin Transl Med 2021; 11:e397. [PMID: 33931975 PMCID: PMC8087948 DOI: 10.1002/ctm2.397] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) poses a significant global health concern over the next several decades. Multiple hypotheses have been put forth that attempt to explain the underlying pathophysiology of AD. Many of these are briefly reviewed here, but to-date no disease-altering therapy has been achieved. Despite this, recent work expanding on the role of noradrenergic system dysfunction in both the pathogenesis and symptomatic exacerbation of AD has shown promise. The role norepinephrine (NE) plays in AD remains complicated but pre-tangle tau has consistently been shown to arise in the locus coeruleus (LC) of patients with AD decades before symptom onset. The current research reviewed here indicates NE can facilitate neuroprotective and memory-enhancing effects through β adrenergic receptors, while α2A adrenergic receptors may exacerbate amyloid toxicity through a contribution to tau hyperphosphorylation. AD appears to involve a disruption in the balance between these two receptors and their various subtypes. There is also a poorly characterized interplay between the noradrenergic and cholinergic systems. LC deterioration leads to maladaptation in the remaining LC-NE system and subsequently inhibits cholinergic neuron function, eventually leading to the classic cholinergic disruption seen in AD. Understanding AD as a dysfunctional noradrenergic system, provides new avenues for the use of advanced neural stimulation techniques to both study and therapeutically target the earliest stages of neuropathology. Direct LC stimulation and non-invasive vagus nerve stimulation (VNS) have both demonstrated potential use as AD therapeutics. Significant work remains, though, to better understand the role of the noradrenergic system in AD and how electroceuticals can provide disease-altering treatments.
Collapse
Affiliation(s)
- Cody Slater
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
- Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNew YorkUSA
| | - Qi Wang
- Department of Biomedical EngineeringColumbia UniversityNew YorkNew YorkUSA
| |
Collapse
|
34
|
Luo Y, Sun Y, Tian X, Zheng X, Wang X, Li W, Wu X, Shu B, Hou W. Deep Brain Stimulation for Alzheimer's Disease: Stimulation Parameters and Potential Mechanisms of Action. Front Aging Neurosci 2021; 13:619543. [PMID: 33776742 PMCID: PMC7990787 DOI: 10.3389/fnagi.2021.619543] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
Deep brain stimulation (DBS) is a neurosurgical technique that regulates neuron activity by using internal pulse generators to electrodes in specific target areas of the brain. As a blind treatment, DBS is widely used in the field of mental and neurological diseases, although its mechanism of action is still unclear. In the past 10 years, DBS has shown a certain positive effect in animal models and patients with Alzheimer's disease (AD), but there are also different results that may be related to the stimulation parameters of DBS. Based on this, determining the optimal stimulation parameters for DBS in AD and understanding its mechanism of action are essential to promote the clinical application of DBS in AD. This review aims to explore the therapeutic effect of DBS in AD, and to analyze its stimulation parameters and potential mechanism of action. The keywords "Deep brain stimulation" and "Alzheimer's Disease" were used for systematic searches in the literature databases of Web of Science and PubMed (from 1900 to September 29, 2020). All human clinical studies and animal studies were reported in English, including individual case studies and long-term follow-up studies, were included. These studies described the therapeutic effects of DBS in AD. The results included 16 human clinical studies and 14 animal studies, of which 28 studies clearly demonstrated the positive effect of DBS in AD. We analyzed the current stimulation parameters of DBS in AD from stimulation target, stimulation frequency, stimulation start time, stimulation duration, unilateral/bilateral treatment and current intensity, etc., and we also discussed its potential mechanism of action from multiple aspects, including regulating related neural networks, promoting nerve oscillation, reducing β-amyloid and tau levels, reducing neuroinflammation, regulating the cholinergic system, inducing the synthesis of nerve growth factor.
Collapse
Affiliation(s)
- Yinpei Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Yuwei Sun
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China
| | - Xuelong Tian
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Xing Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Weina Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaoying Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| | - Bin Shu
- Department of Rehabilitation Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wensheng Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, Chongqing University, Chongqing, China.,Chongqing Medical Electronics Engineering Technology Research Center, Chongqing University, Chongqing, China
| |
Collapse
|
35
|
Sui Y, Tian Y, Ko WKD, Wang Z, Jia F, Horn A, De Ridder D, Choi KS, Bari AA, Wang S, Hamani C, Baker KB, Machado AG, Aziz TZ, Fonoff ET, Kühn AA, Bergman H, Sanger T, Liu H, Haber SN, Li L. Deep Brain Stimulation Initiative: Toward Innovative Technology, New Disease Indications, and Approaches to Current and Future Clinical Challenges in Neuromodulation Therapy. Front Neurol 2021; 11:597451. [PMID: 33584498 PMCID: PMC7876228 DOI: 10.3389/fneur.2020.597451] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Deep brain stimulation (DBS) is one of the most important clinical therapies for neurological disorders. DBS also has great potential to become a great tool for clinical neuroscience research. Recently, the National Engineering Laboratory for Neuromodulation at Tsinghua University held an international Deep Brain Stimulation Initiative workshop to discuss the cutting-edge technological achievements and clinical applications of DBS. We specifically addressed new clinical approaches and challenges in DBS for movement disorders (Parkinson's disease and dystonia), clinical application toward neurorehabilitation for stroke, and the progress and challenges toward DBS for neuropsychiatric disorders. This review highlighted key developments in (1) neuroimaging, with advancements in 3-Tesla magnetic resonance imaging DBS compatibility for exploration of brain network mechanisms; (2) novel DBS recording capabilities for uncovering disease pathophysiology; and (3) overcoming global healthcare burdens with online-based DBS programming technology for connecting patient communities. The successful event marks a milestone for global collaborative opportunities in clinical development of neuromodulation to treat major neurological disorders.
Collapse
Affiliation(s)
- Yanan Sui
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Ye Tian
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Wai Kin Daniel Ko
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Zhiyan Wang
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Fumin Jia
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| | - Andreas Horn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ki Sueng Choi
- Department of Psychiatry and Behavioural Science, Emory University, Atlanta, GA, United States.,Department of Radiology, Mount Sinai School of Medicine, New York, NY, United States.,Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, United States
| | - Ausaf A Bari
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shouyan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Clement Hamani
- Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Kenneth B Baker
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Andre G Machado
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Neurological Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Erich Talamoni Fonoff
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil.,Hospital Sírio-Libanês and Hospital Albert Einstein, São Paulo, Brazil
| | - Andrea A Kühn
- Charité, Department of Neurology, Movement Disorders and Neuromodulation Unit, University Medicine Berlin, Berlin, Germany
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research (ELSC), The Hebrew University and Department of Neurosurgery, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Terence Sanger
- University of Southern California, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Hesheng Liu
- Department of Neuroscience, College of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine & Dentistry, Rochester, NY, United States.,McLean Hospital and Harvard Medical School, Belmont, MA, United States
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, Tsinghua University, Beijing, China
| |
Collapse
|
36
|
Mankin EA, Aghajan ZM, Schuette P, Tran ME, Tchemodanov N, Titiz A, Kalender G, Eliashiv D, Stern J, Weiss SA, Kirsch D, Knowlton B, Fried I, Suthana N. Stimulation of the right entorhinal white matter enhances visual memory encoding in humans. Brain Stimul 2021; 14:131-140. [PMID: 33279717 PMCID: PMC7855810 DOI: 10.1016/j.brs.2020.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/15/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND While deep brain stimulation has been successful in treating movement disorders, such as in Parkinson's disease, its potential application in alleviating memory disorders is inconclusive. OBJECTIVE/HYPOTHESIS We investigated the role of the location of the stimulating electrode on memory improvement and hypothesized that entorhinal white versus gray matter stimulation would have differential effects on memory. METHODS Intracranial electrical stimulation was applied to the entorhinal area of twenty-two participants with already implanted electrodes as they completed visual memory tasks. RESULTS We found that stimulation of right entorhinal white matter during learning had a beneficial effect on subsequent memory, while stimulation of adjacent gray matter or left-sided stimulation was ineffective. This finding was consistent across three different visually guided memory tasks. CONCLUSIONS Our results highlight the importance of precise stimulation site on modulation of human hippocampal-dependent memory and suggest that stimulation of afferent input into the right hippocampus may be an especially promising target for enhancement of visual memory.
Collapse
Affiliation(s)
- Emily A Mankin
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Zahra M Aghajan
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Peter Schuette
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Michelle E Tran
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Natalia Tchemodanov
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Ali Titiz
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Güldamla Kalender
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA
| | - Dawn Eliashiv
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - John Stern
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Shennan A Weiss
- Department of Neurology, University of California, Los Angeles, 710 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Dylan Kirsch
- Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90095, USA
| | - Barbara Knowlton
- Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA
| | - Itzhak Fried
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90095, USA; Functional Neurosurgery Unit, Tel-Aviv Medical Center and Sackler School of Medicine, Tel-Aviv University, P.O.B 39040 Ramat Aviv, Tel-Aviv, 69978, Israel
| | - Nanthia Suthana
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, 300 Stein Plaza, Los Angeles, CA, 90095, USA; Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior at UCLA, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Psychology, University of California, Los Angeles, 502 Portola Plaza, Los Angeles, CA, 90095, USA; Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA.
| |
Collapse
|
37
|
Subramaniam S, Blake DT, Constantinidis C. Cholinergic Deep Brain Stimulation for Memory and Cognitive Disorders. J Alzheimers Dis 2021; 83:491-503. [PMID: 34334401 PMCID: PMC8543284 DOI: 10.3233/jad-210425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/20/2022]
Abstract
Memory and cognitive impairment as sequelae of neurodegeneration in Alzheimer's disease and age-related dementia are major health issues with increasing social and economic burden. Deep brain stimulation (DBS) has emerged as a potential treatment to slow or halt progression of the disease state. The selection of stimulation target is critical, and structures that have been targeted for memory and cognitive enhancement include the Papez circuit, structures projecting to the frontal lobe such as the ventral internal capsule, and the cholinergic forebrain. Recent human clinical and animal model results imply that DBS of the nucleus basalis of Meynert can induce a therapeutic modulation of neuronal activity. Benefits include enhanced activity across the cortical mantle, and potential for amelioration of neuropathological mechanisms associated with Alzheimer's disease. The choice of stimulation parameters is also critical. High-frequency, continuous stimulation is used for movement disorders as a way of inhibiting their output; however, no overexcitation has been hypothesized in Alzheimer's disease and lower stimulation frequency or intermittent patterns of stimulation (periods of stimulation interleaved with periods of no stimulation) are likely to be more effective for stimulation of the cholinergic forebrain. Efficacy and long-term tolerance in human patients remain open questions, though the cumulative experience gained by DBS for movement disorders provides assurance for the safety of the procedure.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David T. Blake
- Brain and Behavior Discovery Institute, Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Christos Constantinidis
- Department of Neurobiology & Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
38
|
Lam J, Lee J, Liu CY, Lozano AM, Lee DJ. Deep Brain Stimulation for Alzheimer's Disease: Tackling Circuit Dysfunction. Neuromodulation 2020; 24:171-186. [PMID: 33377280 DOI: 10.1111/ner.13305] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/07/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Treatments for Alzheimer's disease are urgently needed given its enormous human and economic costs and disappointing results of clinical trials targeting the primary amyloid and tau pathology. On the other hand, deep brain stimulation (DBS) has demonstrated success in other neurological and psychiatric disorders leading to great interest in DBS as a treatment for Alzheimer's disease. MATERIALS AND METHODS We review the literature on 1) circuit dysfunction in Alzheimer's disease and 2) DBS for Alzheimer's disease. Human and animal studies are reviewed individually. RESULTS There is accumulating evidence of neural circuit dysfunction at the structural, functional, electrophysiological, and neurotransmitter level. Recent evidence from humans and animals indicate that DBS has the potential to restore circuit dysfunction in Alzheimer's disease, similarly to other movement and psychiatric disorders, and may even slow or reverse the underlying disease pathophysiology. CONCLUSIONS DBS is an intriguing potential treatment for Alzheimer's disease, targeting circuit dysfunction as a novel therapeutic target. However, further exploration of the basic disease pathology and underlying mechanisms of DBS is necessary to better understand how circuit dysfunction can be restored. Additionally, robust clinical data in the form of ongoing phase III clinical trials are needed to validate the efficacy of DBS as a viable treatment.
Collapse
Affiliation(s)
- Jordan Lam
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Justin Lee
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Charles Y Liu
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| | - Andres M Lozano
- Division of Neurological Surgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, M5T 2S8, Canada
| | - Darrin J Lee
- USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA.,Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA, 90033, USA
| |
Collapse
|
39
|
Postmortem Dissections of the Papez Circuit and Nonmotor Targets for Functional Neurosurgery. World Neurosurg 2020; 144:e866-e875. [DOI: 10.1016/j.wneu.2020.09.088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
|
40
|
Mankin EA, Fried I. Modulation of Human Memory by Deep Brain Stimulation of the Entorhinal-Hippocampal Circuitry. Neuron 2020; 106:218-235. [PMID: 32325058 DOI: 10.1016/j.neuron.2020.02.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 01/02/2023]
Abstract
Neurological disorders affecting human memory present a major scientific, medical, and societal challenge. Direct or indirect deep brain stimulation (DBS) of the entorhinal-hippocampal system, the brain's major memory hub, has been studied in people with epilepsy or Alzheimer's disease, intending to enhance memory performance or slow memory decline. Variability in the spatiotemporal parameters of stimulation employed to date notwithstanding, it is likely that future DBS for memory will employ closed-loop, nuanced approaches that are synergistic with native physiological processes. The potential for editing human memory-decoding, enhancing, incepting, or deleting specific memories-suggests exciting therapeutic possibilities but also raises considerable ethical concerns.
Collapse
Affiliation(s)
- Emily A Mankin
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Itzhak Fried
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA; Tel Aviv Medical Center and Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
41
|
Liu Q, Jiao Y, Yang W, Gao B, Hsu DK, Nolta J, Russell M, Lyeth B, Zanto TP, Zhao M. Intracranial alternating current stimulation facilitates neurogenesis in a mouse model of Alzheimer's disease. Alzheimers Res Ther 2020; 12:89. [PMID: 32703308 PMCID: PMC7376967 DOI: 10.1186/s13195-020-00656-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/15/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Neurogenesis is significantly impaired in the brains of both human patients and experimental animal models of Alzheimer's disease (AD). Although deep brain stimulation promotes neurogenesis, it is an invasive technique that may damage neural circuitry along the path of the electrode. To circumvent this problem, we assessed whether intracranial electrical stimulation to the brain affects neurogenesis in a mouse model of Alzheimer's disease (5xFAD). METHODS AND RESULTS We used Ki67, Nestin, and doublecortin (DCX) as markers and determined that neurogenesis in both the subventricular zone (SVZ) and hippocampus were significantly reduced in the brains of 4-month-old 5xFAD mice. Guided by a finite element method (FEM) computer simulation to approximately estimate current and electric field in the mouse brain, electrodes were positioned on the skull that were likely to deliver stimulation to the SVZ and hippocampus. After a 4-week program of 40-Hz intracranial alternating current stimulation (iACS), neurogenesis indicated by expression of Ki67, Nestin, and DCX in both the SVZ and hippocampus were significantly increased compared to 5xFAD mice who received sham stimulation. The magnitude of neurogenesis was close to the wild-type (WT) age-matched unmanipulated controls. CONCLUSION Our results suggest that iACS is a promising, less invasive technique capable of effectively stimulating the SVZ and hippocampus regions in the mouse brain. Importantly, iACS can significantly boost neurogenesis in the brain and offers a potential treatment for AD.
Collapse
Affiliation(s)
- Qian Liu
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
- Center for Neuroscience, Department of Neurological Surgery, School of Medicine, University of California at Davis, Sacramento, CA, 95817, USA
| | - Yihang Jiao
- Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA, 95616, USA
| | - Weijian Yang
- Department of Electrical and Computer Engineering, University of California at Davis, Davis, CA, 95616, USA
| | - Beiyao Gao
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
- Present location: Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200041, P. R. China
| | - Daniel K Hsu
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Jan Nolta
- Stem Cell Program and Gene Therapy Center, Institute for Regenerative Cures, Department of Internal Medicine, University of California at Davis, Sacramento, 95817, CA, USA
| | - Michael Russell
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA
| | - Bruce Lyeth
- Center for Neuroscience, Department of Neurological Surgery, School of Medicine, University of California at Davis, Sacramento, CA, 95817, USA
| | - Theodore P Zanto
- Neuroscape, Department of Neurology, University of California San Francisco - Mission Bay, Sandler Neuroscience Center MC 0444, San Francisco, CA, 94158, USA.
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California at Davis, School of Medicine, Sacramento, CA, 95817, USA.
- Center for Neuroscience, Department of Neurological Surgery, School of Medicine, University of California at Davis, Sacramento, CA, 95817, USA.
- Department of Ophthalmology and Vision Science, University of California at Davis, Sacramento, CA, 95616, USA.
| |
Collapse
|
42
|
Fomenko A, Lee DJ, McKinnon C, Lee EJ, de Snoo ML, Gondard E, Neudorfer C, Hamani C, Lozano AM, Kalia LV, Kalia SK. Deep Brain Stimulation of the Medial Septal Nucleus Induces Expression of a Virally Delivered Reporter Gene in Dentate Gyrus. Front Neurosci 2020; 14:463. [PMID: 32477058 PMCID: PMC7235415 DOI: 10.3389/fnins.2020.00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/15/2020] [Indexed: 01/15/2023] Open
Abstract
Background Mechanisms of deep brain stimulation (DBS) remain controversial, and spatiotemporal control of brain-wide circuits remains elusive. Adeno-associated viral (AAV) vectors have emerged as vehicles for spatiotemporal expression of exogenous transgenes in several tissues, including specific nuclei in the brain. Coupling DBS with viral vectors to modulate exogenous transgene expression remains unexplored. Objective This study examines whether DBS of the medial septal nucleus (MSN) can regulate gene expression of AAV-transduced neurons in a brain region anatomically remote from the stimulation target: the hippocampal dentate gyrus. Methods Rats underwent unilateral hippocampal injection of an AAV vector with c-Fos promoter-driven expression of TdTomato (TdT), followed by MSN electrode implantation. Rodents received no stimulation, 7.7 Hz (theta), or 130 Hz (gamma) DBS for 1 h one week after surgery. In a repeat stimulation experiment, rodents received either no stimulation, or two 1 h MSN DBS over 2 weeks. Results No significant differences in hippocampal TdT expression between controls and acute MSN DBS were found. With repeat DBS we found c-Fos protein expression was induced and we could detect increased TdT with either gamma or theta stimulation. Conclusion We demonstrate that viral vector-mediated gene expression can be regulated spatially and temporally using DBS. Control of gene expression by DBS warrants further investigation into stimulation-responsive promoters for clinical applications.
Collapse
Affiliation(s)
- Anton Fomenko
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Darrin J Lee
- Department of Neurological Surgery and USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Chris McKinnon
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Eun Jung Lee
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Mitchell L de Snoo
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Elise Gondard
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Clemens Neudorfer
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Lorraine V Kalia
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Suneil K Kalia
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Neurological Surgery and USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
43
|
Zhang Z, Jing Y, Ma Y, Duan D, Li B, Hölscher C, Li C, Wei J, Gao A, Shang L, Tao F, Xing Y. Driving GABAergic neurons optogenetically improves learning, reduces amyloid load and enhances autophagy in a mouse model of Alzheimer's disease. Biochem Biophys Res Commun 2020; 525:928-935. [PMID: 32173530 DOI: 10.1016/j.bbrc.2020.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
The changes of local field potentials (LFP, mainly gamma rhythm and theta rhythm) in the brain are closely related to learning and memory formation. Reduced gamma rhythm (20-50 Hz) and theta rhythm (4-10 Hz) has been observed in the progression of Alzheimer's disease (AD), but it is not clear whether it is related to cognition in AD. Here, we investigated behaviorally driven gamma rhythm and theta rhythm in APP/PS1 mice, and optogenetically stimulated GABAergic neurons in the brain to better understand the relationship between the changes of LFP, cognition, and cellular pathologies. Optogenetically driving GABAergic neurons rescued memory formation in a water maze task and normalized theta and gamma rhythm in the EEG. Furthermore, the optogenetic stimulation alleviated neuroinflammation and levels of amyloid-β (Aβ)1-42 fragments, and induced autophagy. GABA blockers also reversed the normalization of theta and gamma rhythms in the brain by optogenetic stimulation. The results demonstrate that stimulation of GABAergic interneurons not only rescues LFP rhythms and memory formation, but furthermore activates autophagy and reduces neuroinflammation, which have beneficial additional effects such as clearing amyloid. This is a proof of concept for a novel therapeutic approach to AD treatment.
Collapse
Affiliation(s)
- Zijuan Zhang
- Department of Physiology, Basic Medical School of Zhengzhou University, Zhengzhou, 450052, China; Experimental Teaching Center, Basic Medical School of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying Jing
- Department of Physiology, Basic Medical School of Zhengzhou University, Zhengzhou, 450052, China
| | - Yajing Ma
- Department of Physiology, Basic Medical School of Zhengzhou University, Zhengzhou, 450052, China
| | - Dongxiao Duan
- Department of Physiology, Basic Medical School of Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Li
- Department of Physiology, Basic Medical School of Zhengzhou University, Zhengzhou, 450052, China
| | - Christian Hölscher
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Cheng Li
- Department of Physiology, Basic Medical School of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingwen Wei
- Department of Physiology, Basic Medical School of Zhengzhou University, Zhengzhou, 450052, China
| | - Aishe Gao
- Experimental Teaching Center, Basic Medical School of Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lizhi Shang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Feng Tao
- Department of Physiology, Basic Medical School of Zhengzhou University, Zhengzhou, 450052, China; Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75246, USA; Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Ying Xing
- Department of Physiology, Basic Medical School of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
44
|
Poon CH, Chan YS, Fung ML, Lim LW. Memory and neuromodulation: A perspective of DNA methylation. Neurosci Biobehav Rev 2019; 111:57-68. [PMID: 31846654 DOI: 10.1016/j.neubiorev.2019.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/05/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023]
Abstract
Neuromodulation techniques have shown promising efficacy on memory function and understanding the epigenetic mechanisms contributing to these processes would shed light on the molecular outcomes essential for cognition. In this review, we highlight some epigenetic mechanisms underlying neuromodulation and regulatory effects of neuronal activity-induced DNA methylation on genes that are highly involved in memory formation. Next, we examine the evidence to support DNA methyltransferase 3a, methyl-CpG binding protein 2, and DNA demethylase as possible memory modulation targets. Finally, we report the recent developments in the field of neuromodulation and explore the potential of these techniques for future neuroepigenetic research.
Collapse
Affiliation(s)
- Chi Him Poon
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
45
|
Garrudo FFF, Udangawa RN, Hoffman PR, Sordini L, Chapman CA, Mikael PE, Ferreira FA, Silva JC, Rodrigues CAV, Cabral JMS, Morgado JMF, Ferreira FC, Linhardt RJ. POLYBENZIMIDAZOLE NANOFIBERS FOR NEURAL STEM CELL CULTURE. MATERIALS TODAY. CHEMISTRY 2019; 14:100185. [PMID: 32864530 PMCID: PMC7448546 DOI: 10.1016/j.mtchem.2019.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Neurodegenerative diseases compromise the quality of life of increasing numbers of the world's aging population. While diagnosis is possible no effective treatments are available. Strong efforts are needed to develop new therapeutic approaches, namely in the areas of tissue engineering and deep brain stimulation (DBS). Conductive polymers are the ideal material for these applications due to the positive effect of conducting electricity on neural cell's differentiation profile. This novel study assessed the biocompatibility of polybenzimidazole (PBI), as electrospun fibers and after being doped with different acids. Firstly, doped films of PBI were used to characterize the materials' contact angle and electroconductivity. After this, fibers were electrospun and characterized by SEM, FTIR and TGA. Neural Stem Cell's (NSC) proliferation was assessed and their growth rate and morphology on different samples was determined. Differentiation of NSCs on PBI - CSA fibers was also investigated and gene expression (SOX2, NES, GFAP, Tuj1) was assessed through Immunochemistry and qPCR. All the samples tested were able to support neural stem cell (NSC) proliferation without significant changes on the cell's typical morphology. Successfully differentiation of NSCs towards neural cells on PBI - CSA fibers was also achieved. This promising PBI fibrous scaffold material is envisioned to be used in neural cell engineering applications, including scaffolds, in vitro models for drug screening and electrodes.
Collapse
Affiliation(s)
- Fábio F. F. Garrudo
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590, United States
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Ranodhi N. Udangawa
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590, United States
| | - Pauline R. Hoffman
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590, United States
| | - Laura Sordini
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, P-1049-001 Lisboa, Portugal
| | - Caitlyn A. Chapman
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590, United States
| | - Paiyz E. Mikael
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590, United States
| | - Flávio A. Ferreira
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - João C. Silva
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590, United States
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Carlos A. V. Rodrigues
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Jorge M. F. Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, P-1049-001 Lisboa, Portugal
| | - Frederico C. Ferreira
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa , Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, P-1049-001 Lisboa, Portugal
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590, United States
- Corresponding Author:
| |
Collapse
|
46
|
Jakobs M, Lee DJ, Lozano AM. Modifying the progression of Alzheimer's and Parkinson's disease with deep brain stimulation. Neuropharmacology 2019; 171:107860. [PMID: 31765650 DOI: 10.1016/j.neuropharm.2019.107860] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022]
Abstract
At times of an aging population and increasing prevalence of neurodegenerative disorders, effective medical treatments remain limited. Therefore, there is an urgent need for new therapies to treat Alzheimer's disease (AD). Deep brain stimulation (DBS) is thought to address the neuronal network dysfunction of this disorder and may offer new therapeutic options. Preliminary evidence suggests that DBS of the fornix may have effects on cognitive decline, brain glucose metabolism, hippocampal volume and cortical grey matter volume in certain patients with mild AD. Rodent studies have shown that increase of cholinergic neurotransmitters, hippocampal neurogenesis, synaptic plasticity and reduction of amyloid plaques are associated with DBS. Currently a large phase III study of fornix DBS is assessing efficacy in patients with mild AD aged 65 years and older. The Nucleus basalis of Meynert has also been explored in a phase I study in of mild to moderate AD and was tolerated well regardless of the lack of benefit. Being an established therapy for Parkinson's Disease (PD), DBS may exert some disease-modifying traits rather than being a purely symptomatic treatment. There is evidence of dopaminergic neuroprotection in animal models and some suggestion that DBS may influence the natural progression of the disorder. Neuromodulation may possibly have beneficial effects on course of different neurodegenerative disorders compared to medical therapy alone. For dementias, functional neurosurgery may provide an adjunctive option in patient care. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, Division of Stereotactic Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Darrin J Lee
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
47
|
Patel SR, Lieber CM. Precision electronic medicine in the brain. Nat Biotechnol 2019; 37:1007-1012. [PMID: 31477925 PMCID: PMC6741780 DOI: 10.1038/s41587-019-0234-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Periodically throughout history developments from adjacent fields of science and technology reach a tipping point where together they produce unparalleled advances, such as the Allen Brain Atlas and the Human Genome Project. Today, research focused at the interface between the nervous system and electronics is not only leading to advances in fundamental neuroscience, but also unlocking the potential of implants capable of cellular-level therapeutic targeting. Ultimately, these personalized electronic therapies will provide new treatment modalities for neurodegenerative and neuropsychiatric illness; powerful control of prosthetics for restorative function in degenerative diseases, trauma and amputation; and even augmentation of human cognition. Overall, we believe that emerging advances in tissue-like electronics will enable minimally invasive devices capable of establishing a stable long-term cellular neural interface and providing long-term treatment for chronic neurological conditions.
Collapse
Affiliation(s)
- Shaun R Patel
- McCance Center for Brain Health, Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Center for Brain Science, and John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
48
|
Cutsuridis V. Memory Prosthesis: Is It Time for a Deep Neuromimetic Computing Approach? Front Neurosci 2019; 13:667. [PMID: 31333399 PMCID: PMC6624412 DOI: 10.3389/fnins.2019.00667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
Memory loss, one of the most dreaded afflictions of the human condition, presents considerable burden on the world's health care system and it is recognized as a major challenge in the elderly. There are only a few neuromodulation treatments for memory dysfunctions. Open loop deep brain stimulation is such a treatment for memory improvement, but with limited success and conflicting results. In recent years closed-loop neuroprosthesis systems able to simultaneously record signals during behavioral tasks and generate with the use of internal neural factors the precise timing of stimulation patterns are presented as attractive alternatives and show promise in memory enhancement and restoration. A few such strides have already been made in both animals and humans, but with limited insights into their mechanisms of action. Here, I discuss why a deep neuromimetic computing approach linking multiple levels of description, mimicking the dynamics of brain circuits, interfaced with recording and stimulating electrodes could enhance the performance of current memory prosthesis systems, shed light into the neurobiology of learning and memory and accelerate the progress of memory prosthesis research. I propose what the necessary components (nodes, structure, connectivity, learning rules, and physiological responses) of such a deep neuromimetic model should be and what type of data are required to train/test its performance, so it can be used as a true substitute of damaged brain areas capable of restoring/enhancing their missing memory formation capabilities. Considerations to neural circuit targeting, tissue interfacing, electrode placement/implantation, and multi-network interactions in complex cognition are also provided.
Collapse
|
49
|
Gondard E, Soto-Montenegro ML, Cassol A, Lozano AM, Hamani C. Transcranial direct current stimulation does not improve memory deficits or alter pathological hallmarks in a rodent model of Alzheimer's disease. J Psychiatr Res 2019; 114:93-98. [PMID: 31054455 DOI: 10.1016/j.jpsychires.2019.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a progressive and debilitating degenerative disorder for which there are currently no effective therapeutic options. Non-invasive neuromodulation, including transcranial direct current stimulation (tDCS), has been investigated for the treatment of cognitive symptoms in AD. Results from clinical and preclinical studies, however, have been somewhat controversial. We investigate whether tDCS delivered to triple transgenic (3xTg) AD mice improves memory deficits and mitigates the development of AD-type neuropathology. 3xTg AD mice and controls were implanted with paddle electrodes over the skull. The cathode was anterior to bregma and the anode anterior to lamda. tDCS was delivered for 20 min/day, 5 days/week over three weeks at 50 μA. Though this amplitude was lower than the one used in the preclinical literature, it generated a high current density compared to the clinical scenario. Memory testing was conducted during treatment weeks 2 and 3. Post-mortem pathological AD markers were studied. Our results show that performance of 3xTg mice in the novel object recognition and Morris water maze tests was significantly impaired compared to that of controls. In addition, AD transgenics had an increased expression of tau, phosphorylated-tau and amyloid precursor protein in the hippocampus. tDCS did not improve behavioural deficits or mitigated the development of AD neuropathology in 3xTg animals. In summary, we found that tDCS at the settings selected in our study was largely ineffective in improving memory performance or altering the expression of AD pathological hallmarks in a validated mouse model.
Collapse
Affiliation(s)
- Elise Gondard
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, Canada
| | | | - Amanda Cassol
- Medical School, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Andres M Lozano
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Clement Hamani
- Krembil Research Institute, Toronto Western Hospital, Toronto, ON, Canada; Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, Canada; Neuroimaging Research Section, Centre for Addictions and Mental Health, Toronto, ON, Canada; Harquail Centre for Neuromodulation, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
| |
Collapse
|
50
|
Jakobs M, Fomenko A, Lozano AM, Kiening KL. Cellular, molecular, and clinical mechanisms of action of deep brain stimulation-a systematic review on established indications and outlook on future developments. EMBO Mol Med 2019; 11:e9575. [PMID: 30862663 PMCID: PMC6460356 DOI: 10.15252/emmm.201809575] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/23/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) has been successfully used to treat movement disorders, such as Parkinson's disease, for more than 25 years and heralded the advent of electrical neuromodulation to treat diseases with dysregulated neuronal circuits. DBS is now superseding ablative techniques, such as stereotactic radiofrequency lesions. While serendipity has played a role in developing DBS as a therapy, research during the past two decades has shown that electrical neuromodulation is far more than a functional lesion that can be switched on and off. This understanding broadens the field to enable new types of stimulation, clinical indications, and research. This review highlights the complex effects of DBS from the single cell to the neuronal network. Specifically, we examine the electrical, cellular, molecular, and neurochemical mechanisms of DBS as applied to Parkinson's disease and other emerging applications.
Collapse
Affiliation(s)
- Martin Jakobs
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Anton Fomenko
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Karl L Kiening
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|