1
|
Barksdale BR, Enten L, DeMarco A, Kline R, Doss MK, Nemeroff CB, Fonzo GA. Low-intensity transcranial focused ultrasound amygdala neuromodulation: a double-blind sham-controlled target engagement study and unblinded single-arm clinical trial. Mol Psychiatry 2025:10.1038/s41380-025-03033-w. [PMID: 40275098 DOI: 10.1038/s41380-025-03033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Mood, anxiety, and trauma-related disorders (MATRDs) are highly prevalent and comorbid. A sizable number of patients do not respond to first-line treatments. Non-invasive neuromodulation is a second-line treatment approach, but current methods rely on cortical targets to indirectly modulate subcortical structures, e.g., the amygdala, implicated in MATRDs. Low-intensity transcranial focused ultrasound (tFUS) is a non-invasive technique for direct subcortical neuromodulation, but its safety, feasibility, and promise as a potential treatment is largely unknown. In a target engagement study, magnetic resonance imaging (MRI)-guided tFUS to the left amygdala was administered during functional MRI (tFUS/fMRI) to test for acute modulation of blood oxygenation level dependent (BOLD) signal in a double-blind, within-subject, sham-controlled design in patients with MATRDs (N = 29) and healthy comparison subjects (N = 23). In an unblinded treatment trial, the same patients then underwent 3-week daily (15 sessions) MRI-guided repetitive tFUS (rtFUS) to the left amygdala to examine safety, feasibility, symptom change, and change in amygdala reactivity to emotional faces. Active vs. sham tFUS/fMRI reduced, on average, left amygdala BOLD signal and produced patient-related differences in hippocampal and insular responses. rtFUS was well-tolerated with no serious adverse events. There were significant reductions on the primary outcome (Mood and Anxiety Symptom Questionnaire General Distress subscale; p = 0.001, Cohen's d = 0.77), secondary outcomes (Cohen's d of 0.43-1.50), and amygdala activation to emotional stimuli. Findings provide initial evidence of tFUS capability to modulate amygdala function, rtFUS safety and feasibility in MATRDs, and motivate double-blind randomized controlled trials to examine efficacy.ClinicalTrials.gov registration: NCT05228964.
Collapse
Affiliation(s)
- Bryan R Barksdale
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Lauren Enten
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Annamarie DeMarco
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Rachel Kline
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Manoj K Doss
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin Dell Medical School, Austin, TX, USA.
| |
Collapse
|
2
|
Liu Y, Tian X, Chen L, Xiao C, Huang X, Wang J. Low-intensity transcranial ultrasound stimulation and its regulatory effect on pain. Neuroscience 2025:S0306-4522(25)00326-4. [PMID: 40274188 DOI: 10.1016/j.neuroscience.2025.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/15/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Transcranial ultrasound stimulation is an emerging non-invasive neuromodulation technology with the advantages of deep tissue penetration, high spatial resolution, and minimal side effects. Low intensity transcranial ultrasound stimulation (LITUS) has been shownto bea promising neuromodulation treatment for psychiatric and neurological disorders. Notably, significant progress has been made recently in both the application of LITUS in pain disorders and the elucidation of its analgesic mechanisms. This review provides an overview of LITUS and its state-of-the-art mechanisms, including cavitation, mechanical, and thermal effects. We summarize studies spanning from animal models to human trials, highlighting the analgesic effects of transcranial ultrasound stimulation on pain-related neural pathways. Furthermore, we explore potential analgesic mechanisms, such as the suppression of neural activity in the ascending pain pathway and other associated processes.Lastly, we discuss the potential of LITUS for future integrative treatments of chronic pain and psychomotor disorders, as well as its broader therapeutic applications.
Collapse
Affiliation(s)
- Yuxi Liu
- School of Basic Medicine, Capital Medical University, China
| | - Xinyuan Tian
- School of Oncology, Capital Medical University, China
| | - Long Chen
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, China
| | - Chenxu Xiao
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, China
| | - Xinyang Huang
- School of Oncology, Capital Medical University, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medicine, Capital Medical University, China.
| |
Collapse
|
3
|
Li R, Chen S, Xie X, Xia S, Wang W, Jiang T, Chen F, Tan M, Tao J. Advancing Network Meta-Analysis in Non-Invasive Brain Stimulation: Optimizing Post-Stroke Mood through Combined Therapies. J Neurosci Methods 2025:110460. [PMID: 40268170 DOI: 10.1016/j.jneumeth.2025.110460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/29/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Post-stroke depression and anxiety significantly impact recovery and quality of life. Non-invasive brain stimulation (NIBS) techniques, including transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS), have emerged as promising therapeutic options. However, the relative efficacy of single and combined NIBS therapies remains unclear. This network meta-analysis aims to identify the most effective combination therapies for optimizing post-stroke mood disorders. NEW METHOD A systematic search was conducted across PubMed, Embase, Cochrane Library, Web of Science, and key Chinese databases to identify randomized controlled trials (RCTs) published up to March 2023. Two independent reviewers screened the studies, extracted relevant data, and assessed the risk of bias using the Cochrane Handbook. A network meta-analysis was performed using Stata SE version 15.1 and R software version 4.2.3 to evaluate the comparative effectiveness of different NIBS interventions. RESULTS A total of 50 RCTs involving 3,852 participants and 18 different interventions (including 11 combination therapies) were analyzed. The findings revealed: COMPARISON WITH EXISTING METHODS: Unlike previous studies focusing on single-modality interventions, this network meta-analysis systematically evaluates the comparative effectiveness of various combined NIBS strategies. Results indicate that combination therapies significantly outperform single-modality treatments, with TMS-based protocols showing the greatest overall benefit in improving both mood disorders and functional independence. CONCLUSIONS The findings suggest that optimized combination NIBS therapies offer superior outcomes for post-stroke depression and anxiety. HFrTMS_LFrTMS_WM was the most effective for depression and independence in activities of daily living (ADLs), while tDCS_psychotherapy and TUS_WM were particularly effective for anxiety. These results highlight the clinical potential of integrated NIBS strategies for post-stroke mood optimization and call for further research to refine treatment protocols for enhanced patient outcomes.
Collapse
Affiliation(s)
- Rui Li
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China.
| | - Shuxiao Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China.
| | - Xi Xie
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China.
| | - Sijia Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China.
| | - Wenju Wang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China.
| | - Tao Jiang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China.
| | - Feng Chen
- Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China.
| | - Mengquan Tan
- Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China.
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China; Academy of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou Fujian 350122, China.
| |
Collapse
|
4
|
Rotstein NM, Cohen ZD, Welborn A, Zbozinek TD, Akre S, Jones KG, Null KE, Pontanares J, Sanchez KL, Flanagan DC, Halavi SE, Kittle E, McClay MG, Bui AAT, Narr KL, Welsh RC, Craske MG, Kuhn TP. Investigating low intensity focused ultrasound pulsation in anhedonic depression-A randomized controlled trial. Front Hum Neurosci 2025; 19:1478534. [PMID: 40196448 PMCID: PMC11973349 DOI: 10.3389/fnhum.2025.1478534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Anhedonic depression is a subtype of depression characterized by deficits in reward processing. This subtype of depression is associated with higher suicide risk and longer depressive episodes, underscoring the importance of effective treatments. Anhedonia has also been found to correlate with alterations in activity in several subcortical regions, including the caudate head and nucleus accumbens. Low intensity focused ultrasound pulsation (LIFUP) is an emerging technology that enables non-invasive stimulation of these subcortical regions, which were previously only accessible with surgically-implanted electrodes. Methods This double-blinded, sham-controlled study aims to investigate the effects of LIFUP to the left caudate head and right nucleus accumbens in participants with anhedonic depression. Participants in this protocol will undergo three sessions of LIFUP over the span of 5-9 days. To investigate LIFUP-related changes, this 7-week protocol collects continuous digital phenotyping data, an array of self-report measures of depression, anhedonia, and other psychopathology, and magnetic resonance imaging (MRI) before and after the LIFUP intervention. Primary self-report outcome measures include Ecological Momentary Assessment, the Positive Valence Systems Scale, and the Patient Health Questionnaire. Primary imaging measures include magnetic resonance spectroscopy and functional MRI during reward-based tasks and at rest. Digital phenotyping data is collected with an Apple Watch and participants' personal iPhones throughout the study, and includes information about sleep, heart rate, and physical activity. Discussion This study is the first to investigate the effects of LIFUP to the caudate head or nucleus accumbens in depressed subjects. Furthermore, the data collected for this protocol covers a wide array of potentially affected modalities. As a result, this protocol will help to elucidate potential impacts of LIFUP in individuals with anhedonic depression.
Collapse
Affiliation(s)
- Natalie M. Rotstein
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zachary D. Cohen
- Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Amelia Welborn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Tomislav D. Zbozinek
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samir Akre
- Medical & Imaging Informatics Group, University of California, Los Angeles, Los Angeles, CA, United States
| | - Keith G. Jones
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaylee E. Null
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jillian Pontanares
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katy L. Sanchez
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Demarko C. Flanagan
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sabrina E. Halavi
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Evan Kittle
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mason G. McClay
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alex A. T. Bui
- Medical & Imaging Informatics Group, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine L. Narr
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert C. Welsh
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michelle G. Craske
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Taylor P. Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
5
|
Yang D, Fu S, Zhao M, Shi Y. The promise of transcranial focused ultrasound in disorders of consciousness: a narrative review. Crit Care 2025; 29:109. [PMID: 40075493 PMCID: PMC11905659 DOI: 10.1186/s13054-025-05338-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Transcranial focused ultrasound (tFUS) has emerged as a promising non-invasive neuromodulation technique for disorders of consciousness (DOC). This work critically evaluates tFUS's potential, highlighting its unique ability to precisely modulate deep brain structures, particularly the thalamus, while maintaining non-invasiveness. The mechanisms of action span multiple levels, from membrane-level ion channel modulation to network-wide changes in neural connectivity. Preclinical and early clinical studies have demonstrated tFUS's potential to improve DOC outcomes. Preliminary clinical trials in both acute and chronic DOC patients have shown encouraging results, including diagnostic category shifts, improvements in behavioral responsiveness, and alterations in thalamo-cortical connectivity. However, significant challenges remain. These include optimizing stimulation parameters, addressing variability in patient responses, and ensuring long-term safety. The current evidence base is limited, necessitating larger, more rigorous investigations. Future research should focus on multicenter randomized controlled trials to comprehensively evaluate tFUS across different DOC etiologies and chronicity. Key priorities include identifying predictive biomarkers, exploring combination therapies, and addressing ethical considerations. While tFUS shows significant promise in DOC management, further investigation is crucial to refine its application and establish its definitive clinical role.
Collapse
Affiliation(s)
- Dongdong Yang
- Department of Neurology, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Shengqi Fu
- Department of Neurology, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Meng Zhao
- Department of Neurology, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450000, China
| | - Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
6
|
Radjenovic S, Bender L, Gaal M, Grigoryeva D, Mitterwallner M, Osou S, Zettl A, Plischek N, Lachmair P, Herzhauser K, Matt E, Beisteiner R. A retrospective analysis of ultrasound neuromodulation therapy using transcranial pulse stimulation in 58 dementia patients. Psychol Med 2025; 55:e70. [PMID: 40033713 DOI: 10.1017/s0033291725000406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
BACKGROUND Novel ultrasound neuromodulation techniques allow therapeutic brain stimulation with unmet precision and non-invasive targeting of deep brain areas. Transcranial pulse stimulation (TPS), a multifrequency sonication technique, is approved for the clinical treatment of Alzheimer's disease (AD). Here, we present the largest real-world retrospective analysis of ultrasound neuromodulation therapy in dementia (AD, vascular, mixed) and mild cognitive impairment (MCI). METHODS The consecutive sample involved 58 patients already receiving state-of-the-art treatment in an open-label, uncontrolled, retrospective study. TPS therapy typically comprises 10 sessions (range 8-12) with individualized MRI-based target areas defined according to brain pathology and individual pathophysiology. We compared the CERAD-Plus neuropsychological test battery results before and after treatment, with the CERAD Corrected Total Score ( CTS) as the primary outcome. Furthermore, we analyzed side effects reported by patients during the treatment period. RESULTS CERAD Corrected Total Score (CTS) significantly improved (p = .017, d = .32) after treatment (Baseline: M = 56.56, SD = 18.56; Post-treatment: M = 58.65, SD = 19.44). The group of top-responders (top quartile) improved even by 9.8 points. Fewer than one-third of all patients reported any sensation during treatment. Fatigue and transient headaches were the most common, with no severe adverse events. CONCLUSIONS The findings implicate TPS as a novel and safe add-on therapy for patients with dementia or MCI with the potential to further improve current state-of-the-art treatment results. Despite the individual benefits, further randomized, sham-controlled, longitudinal clinical trials are needed to differentiate the effects of verum and placebo.
Collapse
Affiliation(s)
- Sonja Radjenovic
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lena Bender
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martin Gaal
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Daria Grigoryeva
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Sarah Osou
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Anna Zettl
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nina Plischek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Patrick Lachmair
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Katrin Herzhauser
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Eva Matt
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Roland Beisteiner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Caffaratti H, Slater B, Shaheen N, Rhone A, Calmus R, Kritikos M, Kumar S, Dlouhy B, Oya H, Griffiths T, Boes AD, Trapp N, Kaiser M, Sallet J, Banks MI, Howard MA, Zanaty M, Petkov CI. Neuromodulation with Ultrasound: Hypotheses on the Directionality of Effects and Community Resource. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.06.14.24308829. [PMID: 38947047 PMCID: PMC11213082 DOI: 10.1101/2024.06.14.24308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Low-intensity Transcranial Ultrasound Stimulation is a promising non-invasive technique for brain stimulation and focal neuromodulation. Research with humans and animal models has raised the possibility that TUS can be biased towards enhancing or suppressing neural function. Here, we first collate a set of hypotheses on the directionality of TUS effects and conduct an initial meta-analysis on the available healthy human participant TUS studies reporting stimulation parameters and outcomes (n = 47 studies, 52 experiments). In these initial exploratory analyses, we find that parameters such as the intensity and continuity of stimulation (duty cycle) with univariate tests show only statistical trends towards likely enhancement or suppressed of function with TUS. Multivariate machine learning analyses are currently limited by the small sample size. Given that human TUS sample sizes will continue to increase, predictability on the directionality of TUS effects could improve if this database can continue to grow as TUS studies more systematically explore the TUS stimulation parameter space and report outcomes. Therefore, we establish an inTUS database and resource for the systematic reporting of TUS parameters and outcomes to assist in greater precision in TUS use for brain stimulation and neuromodulation. The paper concludes with a selective review of human clinical TUS studies illustrating how hypotheses on the directionality of TUS effects could be developed for empirical testing in the intended clinical application, not limited to the examples provided.
Collapse
Affiliation(s)
- Hugo Caffaratti
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ben Slater
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Nour Shaheen
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ariane Rhone
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Ryan Calmus
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Michael Kritikos
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Sukhbinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Brian Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Hiroyuki Oya
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Tim Griffiths
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Aaron D Boes
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Nicholas Trapp
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | - Marcus Kaiser
- NIHR Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
- Rui Jin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jérôme Sallet
- Stem Cell and Brain Research Institute, INSERM U1208, University of Lyon, Lyon, France
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin at Madison, WI, USA
| | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Mario Zanaty
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Christopher I Petkov
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
8
|
Shi Y, Wu W. Advancements and prospects of transcranial focused ultrasound in pain neuromodulation. Pain 2025:00006396-990000000-00827. [PMID: 39968911 DOI: 10.1097/j.pain.0000000000003556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
ABSTRACT Transcranial focused ultrasound (tFUS) is an emerging noninvasive neuromodulation technology that has shown great potential in pain modulation. This review systematically elucidates the multilevel biological mechanisms of tFUS neuromodulation, from network-wide effects to cellular and molecular processes, as well as broader systemic influences. Preliminary animal pain model studies have revealed tFUS's ability to improve pain behavioral indicators and modulate neural circuit activity under pathological conditions. A small number of clinical studies also suggest that tFUS may have certain benefits in improving symptom experience and emotional state in chronic pain patients. However, current research generally has limitations such as small sample sizes and short follow-up periods. More high-quality studies are needed to verify the long-term effects and safety of tFUS pain treatment. Overcoming these limitations and advancing large-scale clinical translational research will help fully exploit the application potential of tFUS in precision pain medicine and provide new treatment options for pain relief.
Collapse
Affiliation(s)
- Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | |
Collapse
|
9
|
Bawiec CR, Hollender PJ, Ornellas SB, Schachtner JN, Dahill‐Fuchel JF, Konecky SD, Allen JJB. A Wearable, Steerable, Transcranial Low-Intensity Focused Ultrasound System. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2025; 44:239-261. [PMID: 39449176 PMCID: PMC11719763 DOI: 10.1002/jum.16600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/20/2024] [Accepted: 09/14/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES Transcranial low-intensity focused ultrasound (LIFU) offers unique opportunities for precisely neuromodulating small and/or deep targets within the human brain, which may be useful for treating psychiatric and neurological disorders. This article presents a novel ultrasound system that delivers focused ultrasound through the forehead to anterior brain targets and evaluates its safety and usability in a volunteer study. METHODS The ultrasound system and workflow are described, including neuronavigation, LIFU planning, and ultrasound delivery components. Its capabilities are analyzed through simulations and experiments in water to establish its safe steering range. A cohort of 20 healthy volunteers received a LIFU protocol aimed at the anterior medial prefrontal cortex (amPFC), using imaging and questionnaires to screen for adverse effects. Additional development after the study also analyzes the effect of the skull and sinus cavities on delivered ultrasound energy. RESULTS Simulations and hydrophone readings agreed with <5% error, and the safe steering range was found to encompass a 1.8 cm × 2.5 cm × 2 cm volume centered at a depth 5 cm from the surface of the skin. There were no adverse effects evident on qualitative assessments, nor any signs of damage in susceptibility-weighted imaging scans. All participants tolerated the treatment well. The interface effectively enabled the users to complete the workflow with all participants. In particular, the amPFC of every participant was within the steering limits of the system. A post hoc analysis showed that "virtual fitting" could aid in steering the beams around subjects' sinuses. CONCLUSIONS The presented system safely delivered LIFU through the forehead while targeting the amPFC in all volunteers, and was well-tolerated. With the capabilities validated here and positive results of the study, this technology appears well-suited to explore LIFU's efficacy in clinical neuromodulation contexts.
Collapse
|
10
|
Krokhmal A, Simcock IC, Treeby BE, Martin E. A comparative study of experimental and simulated ultrasound beam propagation through cranial bones. Phys Med Biol 2025; 70:025007. [PMID: 39700626 PMCID: PMC11734220 DOI: 10.1088/1361-6560/ada19d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/21/2024]
Abstract
Objective.Transcranial ultrasound is used in a variety of treatments, including neuromodulation, opening the blood-brain barrier, and high intensity focused ultrasound therapies. To ensure safety and efficacy of these treatments, numerical simulations of the ultrasound field within the brain are used for treatment planning and evaluation. This study investigates the accuracy of numerical modelling of the propagation of focused ultrasound through cranial bones.Approach.Holograms of acoustic fields after propagation through four human skull specimens were measured for frequencies ranging from 270 kHz to 1 MHz, using both quasi-continuous and pulsed modes. The open-source k-Wave toolbox was employed for simulations, using an equivalent-source hologram and a uniform bowl source with parameters that best matched the measured free-field pressure distribution.Main results.The average absolute error in k-Wave simulations with sound speed and density derived from CT scans compared to measurements was 15% for the spatial-peak acoustic pressure amplitude, 2.7 mm for the position of the focus, and 35% for the focal volume. Optimised uniform bowl sources achieved calculation accuracy comparable to that of the hologram sources.Significance.This method is demonstrated as a suitable tool for prediction of focal position, size and overall distribution of transcranial ultrasound fields. The accuracy of the shape and position of the focal region demonstrate the suitability of the sound speed and density mapping used here. However, large errors in pressure amplitude and transmission loss in some individual cases show that alternative methods for mapping individual skull attenuation are needed and the possibility of considerable errors in pressure amplitude should be taken into account when planning focused ultrasound studies or interventions in the human brain, and appropriate safety margins should be used.
Collapse
Affiliation(s)
- Alisa Krokhmal
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ian C Simcock
- Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, United Kingdom
- UCL Great Ormond Street Institute of Child Health, 30 Guildford Street, London WC1N 3EH, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, 30 Guildford Street, London WC1N 3EH, United Kingdom
| | - Bradley E Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Eleanor Martin
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
11
|
Shi Y, Wu W. Advances in transcranial focused ultrasound neuromodulation for mental disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111244. [PMID: 39756638 DOI: 10.1016/j.pnpbp.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Mental disorders are a major public health concern, affecting millions worldwide. Current treatments have limitations, highlighting the need for novel, effective, and safe interventions. Transcranial focused ultrasound (tFUS), a non-invasive neuromodulation technology, has emerged as a promising tool for treating mental disorders due to its high controllability, precision, and safety. This review summarizes the research progress of tFUS in several major mental disorders, including depression, anxiety, schizophrenia, and substance use disorders (SUDs). Animal studies have demonstrated the efficacy of tFUS in improving psychiatric symptoms and modulating neural circuits through various mechanisms, such as enhancing neuronal activity, synaptic plasticity, and neurotransmitter release. Preliminary clinical trials have also shown the potential of tFUS in alleviating symptoms in patients with treatment-resistant mental disorders. Safety evaluation studies across in vitro, animal, and human levels have supported the overall safety of tFUS under commonly used parameters. tFUS has shown broad application prospects in treating mental disorders, supported by its efficacy in animal models and preliminary clinical trials. By modulating neuronal activity, synaptic plasticity, neurotransmitters, and brain networks, tFUS could improve psychiatric symptoms and regulate neural circuits. However, current research on tFUS in mental disorders is still in its early stages, and further studies are needed to elucidate its mechanisms of action, expand its applications, and conduct large-sample, long-term clinical trials to systematically evaluate its efficacy, protocol optimization, and safety. As an innovative neuromodulation technology, tFUS has the potential to complement conventional therapies and provide new hope for addressing the global challenge of mental disorders.
Collapse
Affiliation(s)
- Yu Shi
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
12
|
Cox SS, Connolly DJ, Peng X, Badran BW. A Comprehensive Review of Low-Intensity Focused Ultrasound Parameters and Applications in Neurologic and Psychiatric Disorders. Neuromodulation 2025; 28:1-15. [PMID: 39230530 PMCID: PMC11700779 DOI: 10.1016/j.neurom.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/25/2024] [Accepted: 07/19/2024] [Indexed: 09/05/2024]
Abstract
OBJECTIVES Low-intensity focused ultrasound (LIFU) is gaining increased interest as a potential therapeutic modality for a range of neuropsychiatric diseases. Current neuromodulation modalities often require a choice between high spatial fidelity or invasiveness. LIFU is unique in this regard because it provides high spatial acuity of both superficial and deep neural structures while remaining noninvasive. This new form of noninvasive brain stimulation may provide exciting potential treatment options for a variety of neuropsychiatric disorders involving aberrant neurocircuitry within deep brain structures, including pain and substance use disorders. Furthermore, LIFU is compatible with noninvasive neuroimaging techniques, such as functional magnetic resonance imaging and electroencephalography, making it a useful tool for more precise clinical neuroscience research to further understand the central nervous system. MATERIALS AND METHODS In this study, we provide a review of the most recent LIFU literature covering three key domains: 1) the history of focused ultrasound technology, comparing it with other forms of neuromodulation, 2) the parameters and most up-to-date proposed mechanisms of LIFU, and finally, 3) a consolidation of the current literature to date surrounding the clinical research that has used LIFU for the modification or amelioration of several neuropsychiatric conditions. RESULTS The impact of LIFU including poststroke motor changes, pain, mood disorders, disorders of consciousness, dementia, and substance abuse is discussed. CONCLUSIONS Although still in its infancy, LIFU is a promising tool that has the potential to change the way we approach and treat neuropsychiatric disorders. In this quickly evolving field, this review serves as a snapshot of the current understanding of LIFU in neuropsychiatric research.
Collapse
Affiliation(s)
- Stewart S Cox
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA.
| | - Dillon J Connolly
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| | - Xiaolong Peng
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Neuro-X Lab, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
13
|
Sharif F, Harmer CJ, Klein-Flügge MC, Tan H. Novel NIBS in psychiatry: Unveiling TUS and TI for research and treatment. Brain Neurosci Adv 2025; 9:23982128251322241. [PMID: 40092509 PMCID: PMC11909681 DOI: 10.1177/23982128251322241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
Mental disorders pose a significant global burden and constitute a major cause of disability worldwide. Despite strides in treatment, a substantial number of patients do not respond adequately, underscoring the urgency for innovative approaches. Traditional non-invasive brain stimulation techniques show promise, yet grapple with challenges regarding efficacy and specificity. Variations in mechanistic understanding and reliability among non-invasive brain stimulation methods are common, with limited spatial precision and physical constraints hindering the ability to target subcortical areas often implicated in the disease aetiology. Novel techniques such as transcranial ultrasonic stimulation and temporal interference stimulation have gained notable momentum in recent years, possibly addressing these shortcomings. Transcranial ultrasonic stimulation (TUS) offers exceptional spatial precision and deeper penetration compared with conventional electrical and magnetic stimulation techniques. Studies targeting a diverse array of brain regions have shown its potential to affect neuronal excitability, functional connectivity and symptoms of psychiatric disorders such as major depressive disorder. Nevertheless, challenges such as target planning and addressing acoustic interactions with the skull must be tackled for its widespread adoption in research and potentially clinical settings. Similar to transcranial ultrasonic stimulation, temporal interference (TI) stimulation offers the potential to target deeper subcortical areas compared with traditional non-invasive brain stimulation, albeit requiring a comparatively higher current for equivalent neural effects. Promising yet still sparse research highlights TI's potential to selectively modulate neuronal activity, showing potential for its utility in psychiatry. Overall, recent strides in non-invasive brain stimulation methods like transcranial ultrasonic stimulation and temporal interference stimulation not only open new research avenues but also hold potential as effective treatments in psychiatry. However, realising their full potential necessitates addressing practical challenges and optimising their application effectively.
Collapse
Affiliation(s)
- Faissal Sharif
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Miriam C. Klein-Flügge
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Waris A, Siraj M, Khan A, Lin J, Asim M, Alhumaydh FA. A Comprehensive Overview of the Current Status and Advancements in Various Treatment Strategies against Epilepsy. ACS Pharmacol Transl Sci 2024; 7:3729-3757. [PMID: 39698272 PMCID: PMC11650742 DOI: 10.1021/acsptsci.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
Epilepsy affects more than 70 million individuals of all ages worldwide and remains one of the most severe chronic noncommunicable neurological diseases globally. Several neurotransmitters, membrane protein channels, receptors, enzymes, and, more recently noted, various pathways, such as inflammatory and mTORC complexes, play significant roles in the initiation and propagation of seizures. Over the past two decades, significant developments have been made in the diagnosis and treatment of epilepsy. Various pharmacological drugs with diverse mechanisms of action and other treatment options have been developed to control seizures and treat epilepsy. These options include surgical treatment, nanomedicine, gene therapy, natural products, nervous stimulation, a ketogenic diet, gut microbiota, etc., which are in various developmental stages. Despite a plethora of drugs and other treatment options, one-third of affected individuals are resistant to current medications, while the majority of approved drugs have severe side effects, and significant changes can occur, such as pharmacoresistance, effects on cognition, long-term problems, drug interactions, risks of poor adherence, specific effects for certain medications, and psychological complications. Therefore, the development of new drugs and other treatment options that have no or minimal adverse effects is needed to combat this deadly disease. In this Review, we comprehensively summarize and explain all of the treatment options that have been approved or are in developmental stages for epilepsy as well as their status in clinical trials and advancements.
Collapse
Affiliation(s)
- Abdul Waris
- Department
of Biomedical Science, City University of
Hong Kong, 999077 Hong Kong SAR
| | - Muhammad Siraj
- Department
of Biotechnology, Jeonbuk National University−Iksan
Campus, Jeonju 54896, South Korea
| | - Ayyaz Khan
- Department
of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju 54907, South Korea
| | - Junyu Lin
- Department
of Neuroscience, City University of Hong
Kong, 999077 Hong Kong SAR
| | - Muhammad Asim
- Department
of Neuroscience, City University of Hong
Kong, 999077 Hong Kong SAR
| | - Fahad A. Alhumaydh
- Department
of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
15
|
Gorka SM, Jimmy J, Koning K, Phan KL, Rotstein N, Hoang-Dang B, Halavi S, Spivak N, Monti MM, Reggente N, Bookheimer SY, Kuhn TP. Alterations in large-scale resting-state network nodes following transcranial focused ultrasound of deep brain structures. Front Hum Neurosci 2024; 18:1486770. [PMID: 39698148 PMCID: PMC11652661 DOI: 10.3389/fnhum.2024.1486770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/06/2024] [Indexed: 12/20/2024] Open
Abstract
Background Low-intensity transcranial focused ultrasound (tFUS) is a brain stimulation approach that holds promise for the treatment of brain-based disorders. Studies in humans have shown that tFUS can successfully modulate perfusion in focal sonication targets, including the amygdala; however, limited research has explored how tFUS impacts large-scale neural networks. Objective The aim of the current study was to address this gap and examine changes in resting-state connectivity between large-scale network nodes using a randomized, double-blind, within-subjects crossover study design. Methods Healthy adults (n = 18) completed two tFUS sessions, 14 days apart. Each session included tFUS of either the right amygdala or the left entorhinal cortex (ErC). The inclusion of two active targets allowed for within-subjects comparisons as a function of the locus of sonication. Resting-state functional magnetic resonance imaging was collected before and after each tFUS session. Results tFUS altered resting-state functional connectivity (rsFC) within and between rs-network nodes. Pre-to-post sonication of the right amygdala modulated connectivity within nodes of the salience network (SAN) and between nodes of the SAN and the default mode network (DMN) and frontoparietal network (FRP). A decrease in SAN to FPN connectivity was specific to the amygdala target. Pre-to-post sonication of the left ErC modulated connectivity between the dorsal attention network (DAN) and FPN and DMN. An increase in DAN to DMN connectivity was specific to the ErC target. Conclusion These preliminary findings may suggest that tFUS induces neuroplastic changes beyond the immediate sonication target. Additional studies are needed to determine the long-term stability of these effects.
Collapse
Affiliation(s)
- Stephanie M. Gorka
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Jagan Jimmy
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Katherine Koning
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - K. Luan Phan
- Department of Psychiatry and Behavioral Health, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Natalie Rotstein
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Bianca Hoang-Dang
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Sabrina Halavi
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Norman Spivak
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Martin M. Monti
- Department of Psychology, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
| | - Susan Y. Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| | - Taylor P. Kuhn
- Department of Psychiatry and Biobehavioral Sciences, The University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Seo M, Shin M, Noh G, Yoo SS, Yoon K. Multi-modal networks for real-time monitoring of intracranial acoustic field during transcranial focused ultrasound therapy. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108458. [PMID: 39437458 DOI: 10.1016/j.cmpb.2024.108458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND OBJECTIVE Transcranial focused ultrasound (tFUS) is an emerging non-invasive therapeutic technology that offers new brain stimulation modality. Precise localization of the acoustic focus to the desired brain target throughout the procedure is needed to ensure the safety and effectiveness of the treatment, but acoustic distortion caused by the skull poses a challenge. Although computational methods can provide the estimated location and shape of the focus, the computation has not reached sufficient speed for real-time inference, which is demanded in real-world clinical situations. Leveraging the advantages of deep learning, we propose multi-modal networks capable of generating intracranial pressure map in real-time. METHODS The dataset consisted of free-field pressure maps, intracranial pressure maps, medical images, and transducer placements was obtained from 11 human subjects. The free-field and intracranial pressure maps were computed using the k-space method. We developed network models based on convolutional neural networks and the Swin Transformer, featuring a multi-modal encoder and a decoder. RESULTS Evaluations on foreseen data achieved high focal volume conformity of approximately 93% for both computed tomography (CT) and magnetic resonance (MR) data. For unforeseen data, the networks achieved the focal volume conformity of 88% for CT and 82% for MR. The inference time of the proposed networks was under 0.02 s, indicating the feasibility for real-time simulation. CONCLUSIONS The results indicate that our networks can effectively and precisely perform real-time simulation of the intracranial pressure map during tFUS applications. Our work will enhance the safety and accuracy of treatments, representing significant progress for low-intensity focused ultrasound (LIFU) therapies.
Collapse
Affiliation(s)
- Minjee Seo
- Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea
| | - Minwoo Shin
- Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea
| | - Gunwoo Noh
- Korea University, School of Mechanical Engineering, Seoul, 02841, Republic of Korea
| | - Seung-Schik Yoo
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Kyungho Yoon
- Yonsei University, School of Mathematics and Computing (Computational Science and Engineering), Seoul, 03722, Republic of Korea.
| |
Collapse
|
17
|
Keihani A, Sanguineti C, Chaichian O, Huston CA, Moore C, Cheng C, Janssen SA, Donati FL, Mayeli A, Moussawi K, Phillips ML, Ferrarelli F. Transcranial Focused Ultrasound Neuromodulation in Psychiatry: Main Characteristics, Current Evidence, and Future Directions. Brain Sci 2024; 14:1095. [PMID: 39595858 PMCID: PMC11592166 DOI: 10.3390/brainsci14111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) techniques are designed to precisely and selectively target specific brain regions, thus enabling focused modulation of neural activity. Among NIBS technologies, low-intensity transcranial focused ultrasound (tFUS) has emerged as a promising new modality. The application of tFUS can safely and non-invasively stimulate deep brain structures with millimetric precision, offering distinct advantages in terms of accessibility to non-cortical regions over other NIBS methods. However, to date, several tFUS aspects still need to be characterized; furthermore, there are only a handful of studies that have utilized tFUS in psychiatric populations. This narrative review provides an up-to-date overview of key aspects of this NIBS technique, including the main components of a tFUS system, the neuronavigational tools used to precisely target deep brain regions, the simulations utilized to optimize the stimulation parameters and delivery of tFUS, and the experimental protocols employed to evaluate the efficacy of tFUS in psychiatric disorders. The main findings from studies in psychiatric populations are presented and discussed, and future directions are highlighted.
Collapse
Affiliation(s)
- Ahmadreza Keihani
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
| | - Claudio Sanguineti
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Omeed Chaichian
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
| | - Chloe A. Huston
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
| | - Caitlin Moore
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
| | - Cynthia Cheng
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
| | - Sabine A. Janssen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
| | - Francesco L. Donati
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
| | - Ahmad Mayeli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
| | - Khaled Moussawi
- Department of Neurology, University of California, San Francisco, CA 94143, USA;
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
| | - Fabio Ferrarelli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA; (A.K.); (C.S.); (O.C.); (C.A.H.); (C.M.); (C.C.); (S.A.J.); (A.M.); (M.L.P.)
| |
Collapse
|
18
|
Corriveau-Lecavalier N, Adams JN, Fischer L, Molloy EN, Maass A. Cerebral hyperactivation across the Alzheimer's disease pathological cascade. Brain Commun 2024; 6:fcae376. [PMID: 39513091 PMCID: PMC11542485 DOI: 10.1093/braincomms/fcae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Neuronal dysfunction in specific brain regions or across distributed brain networks is a known feature of Alzheimer's disease. An often reported finding in the early stage of the disease is the presence of increased functional MRI (fMRI) blood oxygenation level-dependent signal under task conditions relative to cognitively normal controls, a phenomenon known as 'hyperactivation'. However, research in the past decades yielded complex, sometimes conflicting results. The magnitude and topology of fMRI hyperactivation patterns have been found to vary across the preclinical and clinical spectrum of Alzheimer's disease, including concomitant 'hypoactivation' in some cases. These incongruences are likely due to a range of factors, including the disease stage at which the cohort is examined, the brain areas or networks studied and the fMRI paradigm utilized to evoke these functional abnormalities. Additionally, a perennial question pertains to the nature of hyperactivation in the context of Alzheimer's disease. Some propose it reflects compensatory mechanisms to sustain cognitive performance, while others suggest it is linked to the pathological disruption of a highly regulated homeostatic cycle that contributes to, or even drives, disease progression. Providing a coherent narrative for these empirical and conceptual discrepancies is paramount to develop disease models, understand the synergy between hyperactivation and the Alzheimer's disease pathological cascade and tailor effective interventions. We first provide a comprehensive overview of functional brain changes spanning the course from normal ageing to the clinical spectrum of Alzheimer's disease. We then highlight evidence supporting a close relationship between fMRI hyperactivation and in vivo markers of Alzheimer's pathology. We primarily focus on task-based fMRI studies in humans, but also consider studies using different functional imaging techniques and animal models. We then discuss the potential mechanisms underlying hyperactivation in the context of Alzheimer's disease and provide a testable framework bridging hyperactivation, ageing, cognition and the Alzheimer's disease pathological cascade. We conclude with a discussion of future challenges and opportunities to advance our understanding of the fundamental disease mechanisms of Alzheimer's disease, and the promising development of therapeutic interventions incorporating or aimed at hyperactivation and large-scale functional systems.
Collapse
Affiliation(s)
- Nick Corriveau-Lecavalier
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55902, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota 55902 USA
| | - Jenna N Adams
- Department of Neurobiology and Behavior, University of California, Irvine 92697, CA, USA
| | - Larissa Fischer
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
| | - Eóin N Molloy
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Division of Nuclear Medicine, Department of Radiology & Nuclear Medicine, Faculty of Medicine, Otto von Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Anne Maass
- German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany
- Institute for Biology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
19
|
Murphy KR, Farrell JS, Bendig J, Mitra A, Luff C, Stelzer IA, Yamaguchi H, Angelakos CC, Choi M, Bian W, DiIanni T, Pujol EM, Matosevich N, Airan R, Gaudillière B, Konofagou EE, Butts-Pauly K, Soltesz I, de Lecea L. Optimized ultrasound neuromodulation for non-invasive control of behavior and physiology. Neuron 2024; 112:3252-3266.e5. [PMID: 39079529 PMCID: PMC11709124 DOI: 10.1016/j.neuron.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/09/2024] [Accepted: 07/02/2024] [Indexed: 08/09/2024]
Abstract
Focused ultrasound can non-invasively modulate neural activity, but whether effective stimulation parameters generalize across brain regions and cell types remains unknown. We used focused ultrasound coupled with fiber photometry to identify optimal neuromodulation parameters for four different arousal centers of the brain in an effort to yield overt changes in behavior. Applying coordinate descent, we found that optimal parameters for excitation or inhibition are highly distinct, the effects of which are generally conserved across brain regions and cell types. Optimized stimulations induced clear, target-specific behavioral effects, whereas non-optimized protocols of equivalent energy resulted in substantially less or no change in behavior. These outcomes were independent of auditory confounds and, contrary to expectation, accompanied by a cyclooxygenase-dependent and prolonged reduction in local blood flow and temperature with brain-region-specific scaling. These findings demonstrate that carefully tuned and targeted ultrasound can exhibit powerful effects on complex behavior and physiology.
Collapse
Affiliation(s)
- Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA, USA; F.M. Kirby Neurobiology Center, Harvard Medical School, Boston, MA, USA
| | - Jonas Bendig
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Anish Mitra
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Charlotte Luff
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Ina A Stelzer
- Department of Anesthesia, Stanford University, Stanford, CA, USA
| | - Hiroshi Yamaguchi
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Department of Neuroscience, Nagoya University, Nagoya, Japan
| | | | - Mihyun Choi
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Wenjie Bian
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Tommaso DiIanni
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Esther Martinez Pujol
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Noa Matosevich
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Raag Airan
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Brice Gaudillière
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Kim Butts-Pauly
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| |
Collapse
|
20
|
Hu G, Liu R, Li P, Guo G, Tu J, Zhang D, Ma Q. Spatiotemporal characteristics of magneto-acousto-electric fields generated by Bessel beams. PHYSICS LETTERS A 2024; 523:129756. [DOI: 10.1016/j.physleta.2024.129756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
21
|
Wang M, Xie Z, Wang T, Dong S, Ma Z, Zhang X, Li X, Yuan Y. Low-intensity transcranial ultrasound stimulation improves memory behavior in an ADHD rat model by modulating cortical functional network connectivity. Neuroimage 2024; 299:120841. [PMID: 39244077 DOI: 10.1016/j.neuroimage.2024.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/09/2024] Open
Abstract
Working memory in attention deficit hyperactivity disorder (ADHD) is closely related to cortical functional network connectivity (CFNC), such as abnormal connections between the frontal, temporal, occipital cortices and with other brain regions. Low-intensity transcranial ultrasound stimulation (TUS) has the advantages of non-invasiveness, high spatial resolution, and high penetration depth and can improve ADHD memory behavior. However, how it modulates CFNC in ADHD and the CFNC mechanism that improves working memory behavior in ADHD remain unclear. In this study, we observed working memory impairment in ADHD rats, establishing a corresponding relationship between changes in CFNCs and the behavioral state during the working memory task. Specifically, we noted abnormalities in the information transmission and processing capabilities of CFNC in ADHD rats while performing working memory tasks. These abnormalities manifested in the network integration ability of specific areas, as well as the information flow and functional differentiation of CFNC. Furthermore, our findings indicate that TUS effectively enhances the working memory ability of ADHD rats by modulating information transmission, processing, and integration capabilities, along with adjusting the information flow and functional differentiation of CFNC. Additionally, we explain the CFNC mechanism through which TUS improves working memory in ADHD. In summary, these findings suggest that CFNCs are important in working memory behaviors in ADHD.
Collapse
Affiliation(s)
- Mengran Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhenyu Xie
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Teng Wang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Shuxun Dong
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Zhenfang Ma
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang 050000, China
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xin Li
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China; Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
22
|
Jin J, Pei G, Ji Z, Liu X, Yan T, Li W, Suo D. Transcranial focused ultrasound precise neuromodulation: a review of focal size regulation, treatment efficiency and mechanisms. Front Neurosci 2024; 18:1463038. [PMID: 39301015 PMCID: PMC11410768 DOI: 10.3389/fnins.2024.1463038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Ultrasound is a mechanical wave that can non-invasively penetrate the skull to deep brain regions to activate neurons. Transcranial focused ultrasound neuromodulation is a promising approach, with the advantages of noninvasiveness, high-resolution, and deep penetration, which developed rapidly over the past years. However, conventional transcranial ultrasound's spatial resolution is low-precision which hinders its use in precision neuromodulation. Here we focus on methods that could increase the spatial resolution, gain modulation efficiency at the focal spot, and potential mechanisms of ultrasound neuromodulation. In this paper, we summarize strategies to enhance the precision of ultrasound stimulation, which could potentially improve the ultrasound neuromodulation technic.
Collapse
Affiliation(s)
- Jie Jin
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Guangying Pei
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Zhenxiang Ji
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Xinze Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Tianyi Yan
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Dingjie Suo
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
23
|
Hoang-Dang B, Halavi SE, Rotstein NM, Spivak NM, Dang NH, Cvijanovic L, Hiller SH, Vallejo-Martelo M, Rosenberg BM, Swenson A, Becerra S, Sun M, Revett ME, Kronemyer D, Berlow R, Craske MG, Suthana N, Monti MM, Zbozinek TD, Bookheimer SY, Kuhn TP. Transcranial Focused Ultrasound Targeting the Amygdala May Increase Psychophysiological and Subjective Negative Emotional Reactivity in Healthy Older Adults. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100342. [PMID: 39092138 PMCID: PMC11293512 DOI: 10.1016/j.bpsgos.2024.100342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 08/04/2024] Open
Abstract
Background The amygdala is highly implicated in an array of psychiatric disorders but is not accessible using currently available noninvasive neuromodulatory techniques. Low-intensity transcranial focused ultrasound (TFUS) is a neuromodulatory technique that has the capability of reaching subcortical regions noninvasively. Methods We studied healthy older adult participants (N = 21, ages 48-79 years) who received TFUS targeting the right amygdala and left entorhinal cortex (active control region) using a 2-visit within-participant crossover design. Before and after TFUS, behavioral measures were collected via the State-Trait Anxiety Inventory and an emotional reactivity and regulation task utilizing neutral and negatively valenced images from the International Affective Picture System. Heart rate and self-reported emotional valence and arousal were measured during the emotional reactivity and regulation task to investigate subjective and physiological responses to the task. Results Significant increases in both self-reported arousal in response to negative images and heart rate during emotional reactivity and regulation task intertrial intervals were observed when TFUS targeted the amygdala; these changes were not evident when the entorhinal cortex was targeted. No significant changes were found for state anxiety, self-reported valence to the negative images, cardiac response to the negative images, or emotion regulation. Conclusions The results of this study provide preliminary evidence that a single session of TFUS targeting the amygdala may alter psychophysiological and subjective emotional responses, indicating some potential for future neuropsychiatric applications. However, more work on TFUS parameters and targeting optimization is necessary to determine how to elicit changes in a more clinically advantageous way.
Collapse
Affiliation(s)
- Bianca Hoang-Dang
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Sabrina E. Halavi
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Natalie M. Rotstein
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Norman M. Spivak
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- UCLA David Geffen School of Medicine Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, California
| | - Nolan H. Dang
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Luka Cvijanovic
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
| | - Sonja H. Hiller
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Mauricio Vallejo-Martelo
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Benjamin M. Rosenberg
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Andrew Swenson
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, California
| | - Sergio Becerra
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Michael Sun
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire
| | - Malina E. Revett
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - David Kronemyer
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Rustin Berlow
- American Brain Stimulation Clinic, Del Mar, California
| | - Michelle G. Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Nanthia Suthana
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Martin M. Monti
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Tomislav D. Zbozinek
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Susan Y. Bookheimer
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Taylor P. Kuhn
- Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
24
|
Grippe T, Shamli-Oghli Y, Darmani G, Nankoo JF, Raies N, Sarica C, Arora T, Gunraj C, Ding MYR, Rinchon C, DiLuca DG, Pichardo S, Cardoso F, Lozano AM, Chen R. Plasticity-Induced Effects of Theta Burst Transcranial Ultrasound Stimulation in Parkinson's Disease. Mov Disord 2024; 39:1364-1374. [PMID: 38787806 DOI: 10.1002/mds.29836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound stimulation (TUS) is a noninvasive brain stimulation (NIBS) technique with high spatial specificity. Previous studies showed that TUS delivered in a theta burst pattern (tbTUS) increased motor cortex (MI) excitability up to 30 minutes due to long-term potentiation (LTP)-like plasticity. Studies using other forms of NIBS suggested that cortical plasticity may be impaired in patients with Parkinson's disease (PD). OBJECTIVE The aim was to investigate the neurophysiological effects of tbTUS in PD patients off and on dopaminergic medications compared to healthy controls. METHODS We studied 20 moderately affected PD patients in on and off dopaminergic medication states (7 with and 13 without dyskinesia) and 17 age-matched healthy controls in a case-controlled study. tbTUS was applied for 80 seconds to the MI. Motor-evoked potentials (MEP), short-interval intracortical inhibition (SICI), and short-interval intracortical facilitation (SICF) were recorded at baseline, and at 5 minutes (T5), T30, and T60 after tbTUS. Motor Unified Parkinson's Disease Rating Scale (mUPDRS) was measured at baseline and T60. RESULTS tbTUS significantly increased MEP amplitude at T30 compared to baseline in controls and in PD patients on but not in PD patients off medications. SICI was reduced in PD off medications compared to controls. tbTUS did not change in SICI or SICF. The bradykinesia subscore of mUPDRS was reduced at T60 compared to baseline in PD on but not in the off medication state. The presence of dyskinesia did not affect tbTUS-induced plasticity. CONCLUSIONS tbTUS-induced LTP plasticity is impaired in PD patients off medications and is restored by dopaminergic medications. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Talyta Grippe
- Department of Neurology, Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Canada
- Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
- University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
| | | | | | | | | | - Can Sarica
- University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Tarun Arora
- University Health Network, Toronto, Canada
- Division of Clinical Neuroscience, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Mandy Yi Rong Ding
- University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Cricia Rinchon
- University Health Network, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Daniel G DiLuca
- Department of Neurology, Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Canada
- University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Samuel Pichardo
- Cumming School of Medicine, Department of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Francisco Cardoso
- Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Andres M Lozano
- University Health Network, Toronto, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Robert Chen
- Department of Neurology, Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Canada
- University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Pellow C, Pichardo S, Pike GB. A systematic review of preclinical and clinical transcranial ultrasound neuromodulation and opportunities for functional connectomics. Brain Stimul 2024; 17:734-751. [PMID: 38880207 DOI: 10.1016/j.brs.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Low-intensity transcranial ultrasound has surged forward as a non-invasive and disruptive tool for neuromodulation with applications in basic neuroscience research and the treatment of neurological and psychiatric conditions. OBJECTIVE To provide a comprehensive overview and update of preclinical and clinical transcranial low intensity ultrasound for neuromodulation and emphasize the emerging role of functional brain mapping to guide, better understand, and predict responses. METHODS A systematic review was conducted by searching the Web of Science and Scopus databases for studies on transcranial ultrasound neuromodulation, both in humans and animals. RESULTS 187 relevant studies were identified and reviewed, including 116 preclinical and 71 clinical reports with subjects belonging to diverse cohorts. Milestones of ultrasound neuromodulation are described within an overview of the broader landscape. General neural readouts and outcome measures are discussed, potential confounds are noted, and the emerging use of functional magnetic resonance imaging is highlighted. CONCLUSION Ultrasound neuromodulation has emerged as a powerful tool to study and treat a range of conditions and its combination with various neural readouts has significantly advanced this platform. In particular, the use of functional magnetic resonance imaging has yielded exciting inferences into ultrasound neuromodulation and has the potential to advance our understanding of brain function, neuromodulatory mechanisms, and ultimately clinical outcomes. It is anticipated that these preclinical and clinical trials are the first of many; that transcranial low intensity focused ultrasound, particularly in combination with functional magnetic resonance imaging, has the potential to enhance treatment for a spectrum of neurological conditions.
Collapse
Affiliation(s)
- Carly Pellow
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada.
| | - Samuel Pichardo
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| | - G Bruce Pike
- Department of Radiology, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta, T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
26
|
Matt E, Radjenovic S, Mitterwallner M, Beisteiner R. Current state of clinical ultrasound neuromodulation. Front Neurosci 2024; 18:1420255. [PMID: 38962179 PMCID: PMC11219564 DOI: 10.3389/fnins.2024.1420255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Unmatched by other non-invasive brain stimulation techniques, transcranial ultrasound (TUS) offers highly focal stimulation not only on the cortical surface but also in deep brain structures. These unique attributes are invaluable in both basic and clinical research and might open new avenues for treating neurological and psychiatric diseases. Here, we provide a concise overview of the expanding volume of clinical investigations in recent years and upcoming research initiatives concerning focused ultrasound neuromodulation. Currently, clinical TUS research addresses a variety of neuropsychiatric conditions, such as pain, dementia, movement disorders, psychiatric conditions, epilepsy, disorders of consciousness, and developmental disorders. As demonstrated in sham-controlled randomized studies, TUS neuromodulation improved cognitive functions and mood, and alleviated symptoms in schizophrenia and autism. Further, preliminary uncontrolled evidence suggests relieved anxiety, enhanced motor functions in movement disorders, reduced epileptic seizure frequency, improved responsiveness in patients with minimally conscious state, as well as pain reduction after neuromodulatory TUS. While constrained by the relatively modest number of investigations, primarily consisting of uncontrolled feasibility trials with small sample sizes, TUS holds encouraging prospects for treating neuropsychiatric disorders. Larger sham-controlled randomized trials, alongside further basic research into the mechanisms of action and optimal sonication parameters, are inevitably needed to unfold the full potential of TUS neuromodulation.
Collapse
Affiliation(s)
| | | | | | - Roland Beisteiner
- Functional Brain Diagnostics and Therapy, Department of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
27
|
Lord B, Sanguinetti JL, Ruiz L, Miskovic V, Segre J, Young S, Fini ME, Allen JJB. Transcranial focused ultrasound to the posterior cingulate cortex modulates default mode network and subjective experience: an fMRI pilot study. Front Hum Neurosci 2024; 18:1392199. [PMID: 38895168 PMCID: PMC11184145 DOI: 10.3389/fnhum.2024.1392199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Background Transcranial focused ultrasound (TFUS) is an emerging neuromodulation tool for temporarily altering brain activity and probing network functioning. The effects of TFUS on the default mode network (DMN) are unknown. Objective The study examined the effects of transcranial focused ultrasound (TFUS) on the functional connectivity of the default mode network (DMN), specifically by targeting the posterior cingulate cortex (PCC). Additionally, we investigated the subjective effects of TFUS on mood, mindfulness, and self-related processing. Methods The study employed a randomized, single-blind design involving 30 healthy subjects. Participants were randomly assigned to either the active TFUS group or the sham TFUS group. Resting-state functional magnetic resonance imaging (rs-fMRI) scans were conducted before and after the TFUS application. To measure subjective effects, the Toronto Mindfulness Scale, the Visual Analog Mood Scale, and the Amsterdam Resting State Questionnaire were administered at baseline and 30 min after sonication. The Self Scale and an unstructured interview were also administered 30 min after sonication. Results The active TFUS group exhibited significant reductions in functional connectivity along the midline of the DMN, while the sham TFUS group showed no changes. The active TFUS group demonstrated increased state mindfulness, reduced Global Vigor, and temporary alterations in the sense of ego, sense of time, and recollection of memories. The sham TFUS group showed an increase in state mindfulness, too, with no other subjective effects. Conclusions TFUS targeted at the PCC can alter DMN connectivity and cause changes in subjective experience. These findings support the potential of TFUS to serve both as a research tool and as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Brian Lord
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
| | - Joseph L. Sanguinetti
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
- Sanmai Technologies, PBC, Sunnyvale, CA, United States
| | - Lisannette Ruiz
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
- Sanmai Technologies, PBC, Sunnyvale, CA, United States
| | | | - Joel Segre
- X, the Moonshot Factory, Mountain View, CA, United States
| | - Shinzen Young
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
| | - Maria E. Fini
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
| | - John J. B. Allen
- SEMA Lab, Psychology Department, Center for Consciousness Studies, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
28
|
Hsieh TH, Chu PC, Nguyen TXD, Kuo CW, Chang PK, Chen KHS, Liu HL. Neuromodulatory Responses Elicited by Intermittent versus Continuous Transcranial Focused Ultrasound Stimulation of the Motor Cortex in Rats. Int J Mol Sci 2024; 25:5687. [PMID: 38891875 PMCID: PMC11171676 DOI: 10.3390/ijms25115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Transcranial focused ultrasound stimulation (tFUS) has emerged as a promising neuromodulation technique that delivers acoustic energy with high spatial resolution for inducing long-term potentiation (LTP)- or depression (LTD)-like plasticity. The variability in the primary effects of tFUS-induced plasticity could be due to different stimulation patterns, such as intermittent versus continuous, and is an aspect that requires further detailed exploration. In this study, we developed a platform to evaluate the neuromodulatory effects of intermittent and continuous tFUS on motor cortical plasticity before and after tFUS application. Three groups of rats were exposed to either intermittent, continuous, or sham tFUS. We analyzed the neuromodulatory effects on motor cortical excitability by examining changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS). We also investigated the effects of different stimulation patterns on excitatory and inhibitory neural biomarkers, examining c-Fos and glutamic acid decarboxylase (GAD-65) expression using immunohistochemistry staining. Additionally, we evaluated the safety of tFUS by analyzing glial fibrillary acidic protein (GFAP) expression. The current results indicated that intermittent tFUS produced a facilitation effect on motor excitability, while continuous tFUS significantly inhibited motor excitability. Furthermore, neither tFUS approach caused injury to the stimulation sites in rats. Immunohistochemistry staining revealed increased c-Fos and decreased GAD-65 expression following intermittent tFUS. Conversely, continuous tFUS downregulated c-Fos and upregulated GAD-65 expression. In conclusion, our findings demonstrate that both intermittent and continuous tFUS effectively modulate cortical excitability. The neuromodulatory effects may result from the activation or deactivation of cortical neurons following tFUS intervention. These effects are considered safe and well-tolerated, highlighting the potential for using different patterns of tFUS in future clinical neuromodulatory applications.
Collapse
Affiliation(s)
- Tsung-Hsun Hsieh
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Po-Chun Chu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| | - Thi Xuan Dieu Nguyen
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
| | - Chi-Wei Kuo
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
| | - Pi-Kai Chang
- School of Physical Therapy, Graduate Institute of Rehabilitation Science, Chang Gung University, Taoyuan 33302, Taiwan; (T.X.D.N.); (C.-W.K.); (P.-K.C.)
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300195, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
29
|
Osada T, Konishi S. Noninvasive intervention by transcranial ultrasound stimulation: Modulation of neural circuits and its clinical perspectives. Psychiatry Clin Neurosci 2024; 78:273-281. [PMID: 38505983 PMCID: PMC11488602 DOI: 10.1111/pcn.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Low-intensity focused transcranial ultrasound stimulation (TUS) is an emerging noninvasive technique capable of stimulating both the cerebral cortex and deep brain structures with high spatial precision. This method is recognized for its potential to comprehensively perturb various brain regions, enabling the modulation of neural circuits, in a manner not achievable through conventional magnetic or electrical brain stimulation techniques. The underlying mechanisms of neuromodulation are based on a phenomenon where mechanical waves of ultrasound kinetically interact with neurons, specifically affecting neuronal membranes and mechanosensitive channels. This interaction induces alterations in the excitability of neurons within the stimulated region. In this review, we briefly present the fundamental principles of ultrasound physics and the physiological mechanisms of TUS neuromodulation. We explain the experimental apparatus and procedures for TUS in humans. Due to the focality, the integration of various methods, including magnetic resonance imaging and magnetic resonance-guided neuronavigation systems, is important to perform TUS experiments for precise targeting. We then review the current state of the literature on TUS neuromodulation, with a particular focus on human subjects, targeting both the cerebral cortex and deep subcortical structures. Finally, we outline future perspectives of TUS in clinical applications in psychiatric and neurological fields.
Collapse
Affiliation(s)
- Takahiro Osada
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
| | - Seiki Konishi
- Department of NeurophysiologyJuntendo University School of MedicineTokyoJapan
- Research Institute for Diseases of Old AgeJuntendo University School of MedicineTokyoJapan
- Sportology CenterJuntendo University School of MedicineTokyoJapan
- Advanced Research Institute for Health ScienceJuntendo University School of MedicineTokyoJapan
| |
Collapse
|
30
|
Stoddart PR, Begeng JM, Tong W, Ibbotson MR, Kameneva T. Nanoparticle-based optical interfaces for retinal neuromodulation: a review. Front Cell Neurosci 2024; 18:1360870. [PMID: 38572073 PMCID: PMC10987880 DOI: 10.3389/fncel.2024.1360870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Degeneration of photoreceptors in the retina is a leading cause of blindness, but commonly leaves the retinal ganglion cells (RGCs) and/or bipolar cells extant. Consequently, these cells are an attractive target for the invasive electrical implants colloquially known as "bionic eyes." However, after more than two decades of concerted effort, interfaces based on conventional electrical stimulation approaches have delivered limited efficacy, primarily due to the current spread in retinal tissue, which precludes high-acuity vision. The ideal prosthetic solution would be less invasive, provide single-cell resolution and an ability to differentiate between different cell types. Nanoparticle-mediated approaches can address some of these requirements, with particular attention being directed at light-sensitive nanoparticles that can be accessed via the intrinsic optics of the eye. Here we survey the available known nanoparticle-based optical transduction mechanisms that can be exploited for neuromodulation. We review the rapid progress in the field, together with outstanding challenges that must be addressed to translate these techniques to clinical practice. In particular, successful translation will likely require efficient delivery of nanoparticles to stable and precisely defined locations in the retinal tissues. Therefore, we also emphasize the current literature relating to the pharmacokinetics of nanoparticles in the eye. While considerable challenges remain to be overcome, progress to date shows great potential for nanoparticle-based interfaces to revolutionize the field of visual prostheses.
Collapse
Affiliation(s)
- Paul R. Stoddart
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - James M. Begeng
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wei Tong
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- School of Physics, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael R. Ibbotson
- Department of Biomedical Engineering, Faculty of Engineering & Information Technology, The University of Melbourne, Melbourne, VIC, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| |
Collapse
|
31
|
Chou T, Deckersbach T, Guerin B, Sretavan Wong K, Borron BM, Kanabar A, Hayden AN, Long MP, Daneshzand M, Pace-Schott EF, Dougherty DD. Transcranial focused ultrasound of the amygdala modulates fear network activation and connectivity. Brain Stimul 2024; 17:312-320. [PMID: 38447773 DOI: 10.1016/j.brs.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/28/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Current noninvasive brain stimulation methods are incapable of directly modulating subcortical brain regions critically involved in psychiatric disorders. Transcranial Focused Ultrasound (tFUS) is a newer form of noninvasive stimulation that could modulate the amygdala, a subcortical region implicated in fear. OBJECTIVE We investigated the effects of active and sham tFUS of the amygdala on fear circuit activation, skin conductance responses (SCR), and self-reported anxiety during a fear-inducing task. We also investigated amygdala tFUS' effects on amygdala-fear circuit resting-state functional connectivity. METHODS Thirty healthy individuals were randomized in this double-blinded study to active or sham tFUS of the left amygdala. We collected fMRI scans, SCR, and self-reported anxiety during a fear-inducing task (participants viewed red or green circles which indicated the risk of receiving an aversive stimulus), as well as resting-state scans, before and after tFUS. RESULTS Compared to sham tFUS, active tFUS was associated with decreased (pre to post tFUS) blood-oxygen-level-dependent fMRI activation in the amygdala (F(1,25) = 4.86, p = 0.04, η2 = 0.16) during the fear task, and lower hippocampal (F(1,27) = 4.41, p = 0.05, η2 = 0.14), and dorsal anterior cingulate cortex (F(1,27) = 6.26, p = 0.02; η2 = 0.19) activation during the post tFUS fear task. The decrease in amygdala activation was correlated with decreased subjective anxiety (r = 0.62, p = 0.03). There was no group effect in SCR changes from pre to post tFUS (F(1,23) = 0.85, p = 0.37). The active tFUS group also showed decreased amygdala-insula (F(1,28) = 4.98, p = 0.03) and amygdala-hippocampal (F(1,28) = 7.14, p = 0.01) rsFC, and increased amygdala-ventromedial prefrontal cortex (F(1,28) = 3.52, p = 0.05) resting-state functional connectivity. CONCLUSIONS tFUS can change functional connectivity and brain region activation associated with decreased anxiety. Future studies should investigate tFUS' therapeutic potential for individuals with clinical levels of anxiety.
Collapse
Affiliation(s)
- Tina Chou
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Thilo Deckersbach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Bastien Guerin
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Karianne Sretavan Wong
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Benjamin M Borron
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Anish Kanabar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ashley N Hayden
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Marina P Long
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Mohammad Daneshzand
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Edward F Pace-Schott
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
32
|
Lee J, Kim YE, Lim J, Jo Y, Lee HJ, Jo YS, Choi JS. Transcranial focused ultrasound stimulation in the infralimbic cortex facilitates extinction of conditioned fear in rats. Brain Stimul 2024; 17:405-412. [PMID: 38537689 DOI: 10.1016/j.brs.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 05/01/2024] Open
Abstract
Transcranial focused ultrasound (tFUS) neuromodulation emerges as a promising non-invasive approach for improving neurological conditions. Extinction of conditioned fear has served as a prime model for exposure-based therapies for anxiety disorders. We investigated whether tFUS stimulation to a critical brain area, the infralimbic subdivision of the prefrontal cortex (IL), could facilitate fear extinction using rats. In a series of experiments, tFUS was delivered to the IL of a freely-moving rat and compared to sham stimulation (tFUS vs. SHAM). Initially, Fos expression in the IL was measured shortly after the stimulation. The results show that Fos expression was significantly increased in the IL but not in the neighboring regions compared to SHAM. Subsequently, two groups of rats were subjected to fear conditioning, extinction, and retention while receiving stimulation during the extinction. Rats in the tFUS group froze significantly less than SHAM during both extinction and retention tests. Importantly, the reduced freezing in the tFUS group was not attributable to non-specific effect such as auditory noise, as both groups demonstrated a similar level of locomotive activity in an open field regardless of the stimulation condition. Finally, we replicated the procedure with a shortened conditioning-to-extinction interval (15 min) to induce immediate extinction deficit. The tFUS group showed a facilitated reduction in freezing during the extinction, which persisted in the subsequent retention session compared to SHAM. In summary, the current findings suggest that tFUS stimulation in the IL facilitates fear extinction, offering a potential therapeutic regimen for fear-related psychiatric disorders.
Collapse
Affiliation(s)
- Jaeyong Lee
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Ye Eun Kim
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - Jihong Lim
- School of Electrical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Yehhyun Jo
- School of Electrical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyunjoo Jenny Lee
- School of Electrical Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Yong Sang Jo
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea
| | - June-Seek Choi
- School of Psychology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
33
|
Bao S, Kim H, Shettigar NB, Li Y, Lei Y. Personalized depth-specific neuromodulation of the human primary motor cortex via ultrasound. J Physiol 2024; 602:933-948. [PMID: 38358314 DOI: 10.1113/jp285613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024] Open
Abstract
Non-invasive brain stimulation has the potential to boost neuronal plasticity in the primary motor cortex (M1), but it remains unclear whether the stimulation of both superficial and deep layers of the human motor cortex can effectively promote M1 plasticity. Here, we leveraged transcranial ultrasound stimulation (TUS) to precisely target M1 circuits at depths of approximately 5 mm and 16 mm from the cortical surface. Initially, we generated computed tomography images from each participant's individual anatomical magnetic resonance images (MRI), which allowed for the generation of accurate acoustic simulations. This process ensured that personalized TUS was administered exactly to the targeted depths within M1 for each participant. Using long-term depression and long-term potentiation (LTD/LTP) theta-burst stimulation paradigms, we examined whether TUS over distinct depths of M1 could induce LTD/LTP plasticity. Our findings indicated that continuous theta-burst TUS-induced LTD-like plasticity with both superficial and deep M1 stimulation, persisting for at least 30 min. In comparison, sham TUS did not significantly alter M1 excitability. Moreover, intermittent theta-burst TUS did not result in the induction of LTP- or LTD-like plasticity with either superficial or deep M1 stimulation. These findings suggest that the induction of M1 plasticity can be achieved with ultrasound stimulation targeting distinct depths of M1, which is contingent on the characteristics of TUS. KEY POINTS: The study integrated personalized transcranial ultrasound stimulation (TUS) with electrophysiology to determine whether TUS targeting superficial and deep layers of the human motor cortex (M1) could elicit long-term depression (LTD) or long-term potentiation (LTP) plastic changes. Utilizing acoustic simulations derived from individualized pseudo-computed tomography scans, we ensured the precision of TUS delivery to the intended M1 depths for each participant. Continuous theta-burst TUS targeting both the superficial and deep layers of M1 resulted in the emergence of LTD-like plasticity, lasting for at least 30 min. Administering intermittent theta-burst TUS to both the superficial and deep layers of M1 did not lead to the induction of LTP- or LTD-like plastic changes. We suggest that theta-burst TUS targeting distinct depths of M1 can induce plasticity, but this effect is dependent on specific TUS parameters.
Collapse
Affiliation(s)
- Shancheng Bao
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
| | - Hakjoo Kim
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
| | - Nandan B Shettigar
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA
| | - Yue Li
- Department of Neuroscience & Experimental Therapeutics, Texas A&M University, College Station, Texas, USA
| | - Yuming Lei
- Program of Motor Neuroscience, Department of Kinesiology & Sport Management, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
34
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
35
|
Cornelssen C, Finlinson E, Rolston JD, Wilcox KS. Ultrasonic therapies for seizures and drug-resistant epilepsy. Front Neurol 2023; 14:1301956. [PMID: 38162441 PMCID: PMC10756913 DOI: 10.3389/fneur.2023.1301956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Ultrasonic therapy is an increasingly promising approach for the treatment of seizures and drug-resistant epilepsy (DRE). Therapeutic focused ultrasound (FUS) uses thermal or nonthermal energy to either ablate neural tissue or modulate neural activity through high- or low-intensity FUS (HIFU, LIFU), respectively. Both HIFU and LIFU approaches have been investigated for reducing seizure activity in DRE, and additional FUS applications include disrupting the blood-brain barrier in the presence of microbubbles for targeted-drug delivery to the seizure foci. Here, we review the preclinical and clinical studies that have used FUS to treat seizures. Additionally, we review effective FUS parameters and consider limitations and future directions of FUS with respect to the treatment of DRE. While detailed studies to optimize FUS applications are ongoing, FUS has established itself as a potential noninvasive alternative for the treatment of DRE and other neurological disorders.
Collapse
Affiliation(s)
- Carena Cornelssen
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - Eli Finlinson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| | - John D. Rolston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Neurosurgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Karen S. Wilcox
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
36
|
Novembre G, Nguyen T, Bigand F, Tucci V, Papaleo F, Bianco R, Koul A. Sociality and Timing: Correlation or Causation? Comment on 'The evolution of social timing' by Verga L., Kotz S. & Ravignani A. Phys Life Rev 2023; 47:179-181. [PMID: 37924673 DOI: 10.1016/j.plrev.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Affiliation(s)
- Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome, Italy.
| | - Trinh Nguyen
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome, Italy
| | - Félix Bigand
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome, Italy
| | - Valter Tucci
- Genetics and Epigenetics of Behavior, Italian Institute of Technology (IIT), Genova, Italy
| | - Francesco Papaleo
- Genetics and Cognition, Italian Institute of Technology (IIT), Genova, Italy
| | - Roberta Bianco
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome, Italy
| | - Atesh Koul
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome, Italy
| |
Collapse
|
37
|
Kung Y, Wu CH, Lin MT, Liao WH, Chen WS, Hsiao MY. Blood-cerebrospinal fluid barrier opening by modified single pulse transcranial focused shockwave. Drug Deliv 2023; 30:97-107. [PMID: 36533878 PMCID: PMC9769131 DOI: 10.1080/10717544.2022.2157068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transcranial focused shockwave (FSW) is a novel noninvasive brain stimulation that can open blood-brain barriers (BBB) and blood-cerebrospinal fluid barriers (BCSFB) with a single low-energy (energy flux density 0.03 mJ/mm2) pulse and low-dose microbubbles (2 × 106/kg). Similar to focused ultrasound, FSW deliver highly precise stimulation of discrete brain regions with adjustable focal lengths that essentially covers the whole brain. By opening the BCSFB, it allows for rapid widespread drug delivery to the whole brain by cerebrospinal fluid (CSF) circulation. Although no definite adverse effect or permeant injury was noted in our previous study, microscopic hemorrhage was infrequently observed. Safety concerns remain the major obstacle to further application of FSW in brain. To enhance its applicability, a modified single pulse FSW technique was established that present 100% opening rate but much less risk of adverse effect than previous methods. By moving the targeting area 2.5 mm more superficially on the left lateral ventricle as compared with the previous methods, the microscopic hemorrhage rate was reduced to zero. We systemically examine the safety profiles of the modified FSW-BCSFB opening regarding abnormal behavior and brain injury or hemorrhage 72 hr after 0, 1, and 10 pulses of FSW-treatment. Animal behavior, physiological monitor, and brain MRI were examined and recorded. Brain section histology was examined for hemorrhage, apoptosis, inflammation, oxidative stress related immunohistochemistry and biomarkers. The single pulse FSW group demonstrated no mortality or gross/microscopic hemorrhage (N = 30), and no observable changes in all examined outcomes, while 10 pulses of FSW was found to be associated with microscopic and temporary RBC extravasation (N = 6/30), and abnormal immunohistochemistry biomarkers which showed a trend of recovery at 72 hrs. The results suggest that single pulse low-energy FSW-BCSFB opening is effective, safe and poses minimal risk of injury to brain tissue (Sprague Dawley, SD rats).
Collapse
Affiliation(s)
- Yi Kung
- Department of Biomechatronic Engineering, National Chiayi University, Chiayi City, Taiwan
| | - Chueh-Hung Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Meng-Ting Lin
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Wei-Hao Liao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan,Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ming-Yen Hsiao
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital & National Taiwan University College of Medicine, Taipei City, Taiwan,CONTACT Ming-Yen Hsiao
| |
Collapse
|
38
|
Schafer SF, Croke H, Kriete A, Ayaz H, Lewin PA, von Reyn CR, Schafer ME. A Miniature Ultrasound Source for Neural Modulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1544-1553. [PMID: 37812556 PMCID: PMC10751802 DOI: 10.1109/tuffc.2023.3322963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
This work describes a unique ultrasound (US) exposure system designed to create very localized ( [Formula: see text]) sound fields at operating frequencies that are currently being used for preclinical US neuromodulation. This system can expose small clusters of neuronal tissue, such as cell cultures or intact brain structures in target animal models, opening up opportunities to examine possible mechanisms of action. We modified a dental descaler and drove it at a resonance frequency of 96 kHz, well above its nominal operating point of 28 kHz. A ceramic microtip from an ultrasonic wire bonder was attached to the end of the applicator, creating a 100- [Formula: see text] point source. The device was calibrated with a polyvinylidene difluoride (PVDF) membrane hydrophone, in a novel, air-backed, configuration. The experimental results were confirmed by simulation using a monopole model. The results show a consistent decaying sound field from the tip, well-suited to neural stimulation. The system was tested on an existing neurological model, Drosophila melanogaster, which has not previously been used for US neuromodulation experiments. The results show brain-directed US stimulation induces or suppresses motor actions, demonstrated through synchronized tracking of fly limb movements. These results provide the basis for ongoing and future studies of US interaction with neuronal tissue, both at the level of single neurons and intact organisms.
Collapse
|
39
|
Yao Y, McFadden ME, Luo SM, Barber RW, Kang E, Bar-Zion A, Smith CAB, Jin Z, Legendre M, Ling B, Malounda D, Torres A, Hamza T, Edwards CER, Shapiro MG, Robb MJ. Remote control of mechanochemical reactions under physiological conditions using biocompatible focused ultrasound. Proc Natl Acad Sci U S A 2023; 120:e2309822120. [PMID: 37725651 PMCID: PMC10523651 DOI: 10.1073/pnas.2309822120] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023] Open
Abstract
External control of chemical reactions in biological settings with spatial and temporal precision is a grand challenge for noninvasive diagnostic and therapeutic applications. While light is a conventional stimulus for remote chemical activation, its penetration is severely attenuated in tissues, which limits biological applicability. On the other hand, ultrasound is a biocompatible remote energy source that is highly penetrant and offers a wide range of functional tunability. Coupling ultrasound to the activation of specific chemical reactions under physiological conditions, however, remains a challenge. Here, we describe a synergistic platform that couples the selective mechanochemical activation of mechanophore-functionalized polymers with biocompatible focused ultrasound (FUS) by leveraging pressure-sensitive gas vesicles (GVs) as acousto-mechanical transducers. The power of this approach is illustrated through the mechanically triggered release of covalently bound fluorogenic and therapeutic cargo molecules from polymers containing a masked 2-furylcarbinol mechanophore. Molecular release occurs selectively in the presence of GVs upon exposure to FUS under physiological conditions. These results showcase the viability of this system for enabling remote control of specific mechanochemical reactions with spatiotemporal precision in biologically relevant settings and demonstrate the translational potential of polymer mechanochemistry.
Collapse
Affiliation(s)
- Yuxing Yao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Molly E. McFadden
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Stella M. Luo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ross W. Barber
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Elin Kang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Cameron A. B. Smith
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Zhiyang Jin
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
| | - Mark Legendre
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Bill Ling
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Andrea Torres
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Tiba Hamza
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Chelsea E. R. Edwards
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA91125
- HHMI, Pasadena, CA91125
| | - Maxwell J. Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
40
|
Hosseini S, Puonti O, Treeby B, Hanson LG, Thielscher A. A head template for computational dose modelling for transcranial focused ultrasound stimulation. Neuroimage 2023; 277:120227. [PMID: 37321357 DOI: 10.1016/j.neuroimage.2023.120227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Transcranial focused Ultrasound Stimulation (TUS) at low intensities is emerging as a novel non-invasive brain stimulation method with higher spatial resolution than established transcranial stimulation methods and the ability to selectively stimulate also deep brain areas. Accurate control of the focus position and strength of the TUS acoustic waves is important to enable a beneficial use of the high spatial resolution and to ensure safety. As the human skull causes strong attenuation and distortion of the waves, simulations of the transmitted waves are needed to accurately determine the TUS dose distribution inside the cranial cavity. The simulations require information of the skull morphology and its acoustic properties. Ideally, they are informed by computed tomography (CT) images of the individual head. However, suited individual imaging data is often not readily available. For this reason, we here introduce and validate a head template that can be used to estimate the average effects of the skull on the TUS acoustic wave in the population. The template was created from CT images of the heads of 29 individuals of different ages (between 20-50 years), gender and ethnicity using an iterative non-linear co-registration procedure. For validation, we compared acoustic and thermal simulations based on the template to the average of the simulation results of all 29 individual datasets. Acoustic simulations were performed for a model of a focused transducer driven at 500 kHz, placed at 24 standardized positions by means of the EEG 10-10 system. Additional simulations at 250 kHz and 750 kHz at 16 of the positions were used for further confirmation. The amount of ultrasound-induced heating at 500 kHz was estimated for the same 16 transducer positions. Our results show that the template represents the median of the acoustic pressure and temperature maps from the individuals reasonably well in most cases. This underpins the usefulness of the template for the planning and optimization of TUS interventions in studies of healthy young adults. Our results further indicate that the amount of variability between the individual simulation results depends on the position. Specifically, the simulated ultrasound-induced heating inside the skull exhibited strong interindividual variability for three posterior positions close to the midline, caused by a high variability of the local skull shape and composition. This should be taken into account when interpreting simulation results based on the template.
Collapse
Affiliation(s)
- Seyedsina Hosseini
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Bradley Treeby
- Department of Medical Physics and Biomedical Engineering, University College London, GowerStreet, London, WC1E 6BT, United Kingdom
| | - Lars G Hanson
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark
| | - Axel Thielscher
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Denmark.
| |
Collapse
|
41
|
Kim S, Jo Y, Im GH, Lee C, Oh C, Kook G, Kim SG, Lee HJ. Miniaturized MR-compatible ultrasound system for real-time monitoring of acoustic effects in mice using high-resolution MRI. Neuroimage 2023; 276:120201. [PMID: 37269955 DOI: 10.1016/j.neuroimage.2023.120201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023] Open
Abstract
Visualization of focused ultrasound in high spatial and temporal resolution is crucial for accurately and precisely targeting brain regions noninvasively. Magnetic resonance imaging (MRI) is the most widely used noninvasive tool for whole-brain imaging. However, focused ultrasound studies employing high-resolution (> 9.4 T) MRI in small animals are limited by the small size of the radiofrequency (RF) volume coil and the noise sensitivity of the image to external systems such as bulky ultrasound transducers. This technical note reports a miniaturized ultrasound transducer system packaged directly above a mouse brain for monitoring ultrasound-induced effects using high-resolution 9.4 T MRI. Our miniaturized system integrates MR-compatible materials with electromagnetic (EM) noise reduction techniques to demonstrate echo-planar imaging (EPI) signal changes in the mouse brain at various ultrasound acoustic intensities. The proposed ultrasound-MRI system will enable extensive research in the expanding field of ultrasound therapeutics.
Collapse
Affiliation(s)
- Subeen Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Yehhyun Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea
| | - Chaerin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Geon Kook
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, South Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyunjoo J Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea; KAIST Institute for Nano Century (KINC), Daejeon 34141, South Korea.
| |
Collapse
|
42
|
Pichardo S. BabelBrain: An Open-Source Application for Prospective Modeling of Transcranial Focused Ultrasound for Neuromodulation Applications. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:587-599. [PMID: 37155375 DOI: 10.1109/tuffc.2023.3274046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BabelBrain is an open-source standalone graphic-user-interface application designed for studies of neuromodulation using transcranial-focused ultrasound (FUS). It calculates the transmitted acoustic field in the brain tissue, taking into account the distortion effects caused by the skull barrier. The simulation is prepared using scans from magnetic resonance imaging (MRI) and, if available, computed tomography (CT) and zero-echo time MRI scans. It also calculates the thermal effects based on a given ultrasound regime, such as the total duration of exposure, the duty cycle, and acoustic intensity. The tool is designed to work in tandem with neuronavigation and visualization software, such as 3-DSlicer. It uses image processing to prepare domains for ultrasound simulation and uses the BabelViscoFDTD library for transcranial modeling calculations. BabelBrain supports multiple GPU backends, including Metal, OpenCL, and CUDA, and works on all major operating systems including Linux, macOS, and Windows. This tool is particularly optimized for Apple ARM64 systems, which are common in brain imaging research. The article presents the modeling pipeline used in BabelBrain and a numerical study where different methods of acoustic properties mapping were tested to select the best method that can reproduce the transcranial pressure transmission efficiency reported in the literature.
Collapse
|
43
|
Colella M, Cid LG, Liberti M, Apollonio F, Yu X, Ay I, Bonmassar G. Numerical Simulation and Experimental Studies of a Ribbon Coil for Trans Spinal Magnetic Stimulation (TSMS) in Rats . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082681 DOI: 10.1109/embc40787.2023.10340213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
We propose a non-invasive Trans Spinal Magnetic Stimulation (TSMS) coil allowing for focal stimulation. The device is based on a new figure-8 ribbon design, ensuring low R0, and low heating. The two coils were designed and studied using the finite element method (FEM) coupled with NEURON and tested for efficacy on rats. The numerical simulations confirmed the generation of the observed action potentials when the coil was driven with 2.8kA.Clinical Relevance- Chronic neuropathic back and leg pain is one of the main indications for spinal cord stimulation in the United States. Chronic low back pain is one of the most common reasons patients seek medical care, and in 2013 resulted in 87.6 billion dollars in healthcare costs in the USA. Patients would most likely prefer a low-risk, non-invasive procedure, such as TSMS, to surgery with a significant rate of complications.
Collapse
|
44
|
Yang FY, Chan WH, Gao CY, Zheng YT, Ke CH. Transabdominal ultrasound alleviates LPS-induced neuroinflammation by modulation of TLR4/NF-κB signaling and tight junction protein expression. Life Sci 2023; 325:121769. [PMID: 37178865 DOI: 10.1016/j.lfs.2023.121769] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
AIM Inflammatory bowel disease (IBD) may be a risk factor in the development of brain inflammation. It has been demonstrated noninvasive neuromodulation through sub-organ ultrasound stimulation. The purpose of this study was to investigate whether abdominal low-intensity pulsed ultrasound (LIPUS) alleviates lipopolysaccharide (LPS)-induced cortical inflammation via inhibition of colonic inflammation. MATERIALS AND METHODS Colonic and cortical inflammation was induced in mice by LPS (0.75 mg/kg, i.p. injection) for 7 days, followed by application of LIPUS (0.5 and 1.0 W/cm2) to the abdominal area for 6 days. Biological samples were collected for Western blot analysis, gelatin zymography, colon length measurement, and histological evaluation. KEY FINDINGS LIPUS treatment significantly attenuated LPS-induced increases in IL-6, IL-1β, COX-2, and cleaved caspase-3 expression in the colon and cortex of mice. Moreover, LIPUS significantly increased the levels of tight junction proteins in the epithelial barrier in the mouse colon and cortex with LPS-induced inflammation. Compared to the group treated only with LPS, the LIPUS-treated groups showed decreased muscle thickness and increased crypt length and colon length. Furthermore, LIPUS treatment reduced inflammation by inhibiting the LPS-induced activation of TLR4/NF-κB inflammatory signaling in the brain. SIGNIFICANCE We found that LIPUS alleviated LPS-induced colonic and cortical inflammation through abdominal stimulation of mice. These results suggest that abdominal LIPUS stimulation may be a novel therapeutic strategy against neuroinflammation via enhancement of tight junction protein levels and inhibition of inflammatory responses in the colon.
Collapse
Affiliation(s)
- Feng-Yi Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wan-Hsuan Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cong-Yong Gao
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yin-Ting Zheng
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hua Ke
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
45
|
Kook G, Jo Y, Oh C, Liang X, Kim J, Lee SM, Kim S, Choi JW, Lee HJ. Multifocal skull-compensated transcranial focused ultrasound system for neuromodulation applications based on acoustic holography. MICROSYSTEMS & NANOENGINEERING 2023; 9:45. [PMID: 37056421 PMCID: PMC10085992 DOI: 10.1038/s41378-023-00513-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 02/14/2023] [Indexed: 06/05/2023]
Abstract
Transcranial focused ultrasound stimulation is a promising therapeutic modality for human brain disorders because of its noninvasiveness, long penetration depth, and versatile spatial control capability through beamforming and beam steering. However, the skull presents a major hurdle for successful applications of ultrasound stimulation. Specifically, skull-induced focal aberration limits the capability for accurate and versatile targeting of brain subregions. In addition, there lacks a fully functional preclinical neuromodulation system suitable to conduct behavioral studies. Here, we report a miniature ultrasound system for neuromodulation applications that is capable of highly accurate multiregion targeting based on acoustic holography. Our work includes the design and implementation of an acoustic lens for targeting brain regions with compensation for skull aberration through time-reversal recording and a phase conjugation mirror. Moreover, we utilize MEMS and 3D-printing technology to implement a 0.75-g lightweight neuromodulation system and present in vivo characterization of the packaged system in freely moving mice. This preclinical system is capable of accurately targeting the desired individual or multitude of brain regions, which will enable versatile and explorative behavior studies using ultrasound neuromodulation to facilitate widespread clinical adoption.
Collapse
Affiliation(s)
- Geon Kook
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Yehhyun Jo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Chaerin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Xiaojia Liang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Jaewon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Sang-Mok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Subeen Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Jung-Woo Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Hyunjoo Jenny Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 South Korea
- KAIST Institute for NanoCentury (KINC), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
46
|
Kuhn T, Spivak NM, Dang BH, Becerra S, Halavi SE, Rotstein N, Rosenberg BM, Hiller S, Swenson A, Cvijanovic L, Dang N, Sun M, Kronemyer D, Berlow R, Revett MR, Suthana N, Monti MM, Bookheimer S. Transcranial focused ultrasound selectively increases perfusion and modulates functional connectivity of deep brain regions in humans. Front Neural Circuits 2023; 17:1120410. [PMID: 37091318 PMCID: PMC10114286 DOI: 10.3389/fncir.2023.1120410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundLow intensity, transcranial focused ultrasound (tFUS) is a re-emerging brain stimulation technique with the unique capability of reaching deep brain structures non-invasively.Objective/HypothesisWe sought to demonstrate that tFUS can selectively and accurately target and modulate deep brain structures in humans important for emotional functioning as well as learning and memory. We hypothesized that tFUS would result in significant longitudinal changes in perfusion in the targeted brain region as well as selective modulation of BOLD activity and BOLD-based functional connectivity of the target region.MethodsIn this study, we collected MRI before, simultaneously during, and after tFUS of two deep brain structures on different days in sixteen healthy adults each serving as their own control. Using longitudinal arterial spin labeling (ASL) MRI and simultaneous blood oxygen level dependent (BOLD) functional MRI, we found changes in cerebral perfusion, regional brain activity and functional connectivity specific to the targeted regions of the amygdala and entorhinal cortex (ErC).ResultstFUS selectively increased perfusion in the targeted brain region and not in the contralateral homolog or either bilateral control region. Additionally, tFUS directly affected BOLD activity in a target specific fashion without engaging auditory cortex in any analysis. Finally, tFUS resulted in selective modulation of the targeted functional network connectivity.ConclusionWe demonstrate that tFUS can selectively modulate perfusion, neural activity and connectivity in deep brain structures and connected networks. Lack of auditory cortex findings suggests that the mechanism of tFUS action is not due to auditory or acoustic startle response but rather a direct neuromodulatory process. Our findings suggest that tFUS has the potential for future application as a novel therapy in a wide range of neurological and psychiatric disorders associated with subcortical pathology.
Collapse
Affiliation(s)
- Taylor Kuhn
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Taylor Kuhn,
| | - Norman M. Spivak
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-Caltech Medical Scientist Training Program, Los Angeles, CA, United States
| | - Bianca H. Dang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sergio Becerra
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sabrina E. Halavi
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Natalie Rotstein
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Benjamin M. Rosenberg
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sonja Hiller
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Andrew Swenson
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Luka Cvijanovic
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nolan Dang
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael Sun
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| | - David Kronemyer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rustin Berlow
- American Brain Stimulation Clinic, Del Mar, CA, United States
| | - Malina R. Revett
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nanthia Suthana
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Martin M. Monti
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Susan Bookheimer
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
47
|
Noureddine R, Surget A, Iazourene T, Audebrand M, Eliwa H, Brizard B, Nassereddine M, Mofid Y, Charara J, Bouakaz A. Guidelines for successful motor cortex ultrasonic neurostimulation in mice. ULTRASONICS 2023; 128:106888. [PMID: 36402114 DOI: 10.1016/j.ultras.2022.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 10/04/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ultrasound neurostimulation (USNS) is a non-invasive neuromodulation technique that might hold promise for treating neuropsychiatric disorders with regards to its noninvasiveness, penetration depth, and high resolution. OBJECTIVE We sought in this experimental study to provide detailed and optimized protocol and methodology for a successful ultrasonic neurostimulation of the Primary Motor Cortex (M1) in mice addressed to young researchers/students beginning their research in the field of ultrasonic neurostimulation and encountering practical challenges. METHODS A 500 kHz single-element transducer was used for stimulating the primary motor cortex at different acoustic pressures in C57BL/6 mice at various anesthesia levels. To further illustrate the effect of anesthesia, real time visual observations of motor responses validated with video recordings as well as electromyography were employed for evaluating the success and reliability of the stimulations. RESULTS Detailed experimental procedure for a successful stimulations including targeting and anesthesia is presented. Our study demonstrates that we can achieve high stimulation success rates (91 % to 100 %) at acoustic pressures ranging from 330 kPa to 550 kPa at anesthesia washout period. CONCLUSIONS This study shows a reliable and detailed methodology for successful USNS in mice addressed to beginners in ultrasonic brain stimulation topic. We showed an effective USNS protocol. We offered a simple and consistent non-invasive technique for locating and targeting brain zones. Moreover, we illustrated the acoustic pressure and stimulation success relationship and focused on the effect of anesthesia level for successful stimulation.
Collapse
Affiliation(s)
- Rasha Noureddine
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Lebanese University, Doctoral School of Science & Technology, Hadath, Lebanon
| | | | - Tarik Iazourene
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Marie Audebrand
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Hoda Eliwa
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Department of Cell Biology, Medical Research Institute, Alexandria University, Egypt
| | - Bruno Brizard
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Mohamad Nassereddine
- Lebanese University, Faculty of Sciences I - Department of Physics - Electronics, Hadath, Lebanon
| | - Yassine Mofid
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - Jamal Charara
- Lebanese University, Faculty of Sciences I - Department of Physics - Electronics, Hadath, Lebanon
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
48
|
Becker CR, Milad MR. Contemporary Approaches Toward Neuromodulation of Fear Extinction and Its Underlying Neural Circuits. Curr Top Behav Neurosci 2023; 64:353-387. [PMID: 37658219 DOI: 10.1007/7854_2023_442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Neuroscience and neuroimaging research have now identified brain nodes that are involved in the acquisition, storage, and expression of conditioned fear and its extinction. These brain regions include the ventromedial prefrontal cortex (vmPFC), dorsal anterior cingulate cortex (dACC), amygdala, insular cortex, and hippocampus. Psychiatric neuroimaging research shows that functional dysregulation of these brain regions might contribute to the etiology and symptomatology of various psychopathologies, including anxiety disorders and post traumatic stress disorder (PTSD) (Barad et al. Biol Psychiatry 60:322-328, 2006; Greco and Liberzon Neuropsychopharmacology 41:320-334, 2015; Milad et al. Biol Psychiatry 62:1191-1194, 2007a, Biol Psychiatry 62:446-454, b; Maren and Quirk Nat Rev Neurosci 5:844-852, 2004; Milad and Quirk Annu Rev Psychol 63:129, 2012; Phelps et al. Neuron 43:897-905, 2004; Shin and Liberzon Neuropsychopharmacology 35:169-191, 2009). Combined, these findings indicate that targeting the activation of these nodes and modulating their functional interactions might offer an opportunity to further our understanding of how fear and threat responses are formed and regulated in the human brain, which could lead to enhancing the efficacy of current treatments or creating novel treatments for PTSD and other psychiatric disorders (Marin et al. Depress Anxiety 31:269-278, 2014; Milad et al. Behav Res Ther 62:17-23, 2014). Device-based neuromodulation techniques provide a promising means for directly changing or regulating activity in the fear extinction network by targeting functionally connected brain regions via stimulation patterns (Raij et al. Biol Psychiatry 84:129-137, 2018; Marković et al. Front Hum Neurosci 15:138, 2021). In the past ten years, notable advancements in the precision, safety, comfort, accessibility, and control of administration have been made to the established device-based neuromodulation techniques to improve their efficacy. In this chapter we discuss ten years of progress surrounding device-based neuromodulation techniques-Electroconvulsive Therapy (ECT), Transcranial Magnetic Stimulation (TMS), Magnetic Seizure Therapy (MST), Transcranial Focused Ultrasound (TUS), Deep Brain Stimulation (DBS), Vagus Nerve Stimulation (VNS), and Transcranial Electrical Stimulation (tES)-as research and clinical tools for enhancing fear extinction and treating PTSD symptoms. Additionally, we consider the emerging research, current limitations, and possible future directions for these techniques.
Collapse
Affiliation(s)
- Claudia R Becker
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Mohammed R Milad
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
49
|
Scarpelli A, Stefano M, Cordella F, Zollo L. Evaluation of the effects of focused ultrasound stimulation on the central nervous system through a multiscale simulation approach. Front Bioeng Biotechnol 2022; 10:1034194. [DOI: 10.3389/fbioe.2022.1034194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
The lack of sensory feedback represents one of the main drawbacks of commercial upper limb prosthesis. Transcranial Focused Ultrasound Stimulation (tFUS) seems to be a valid non-invasive technique for restoring sensory feedback allowing to deliver acoustic energy to cortical sensory areas with high spatial resolution and depth penetration. This paper aims at studying in simulation the use of tFUS on cortical sensory areas to evaluate its effects in terms of latency ad firing rate of the cells response, for understanding if these parameters influence the safety and the efficacy of the stimulation. In this paper, in order to study the propagation of the ultrasound wave from the transducer to the cortical cells, a multiscale approach was implemented by building a macroscopic model, which estimates the pressure profile in a simplified 2D human head geometry, and coupling it with the SONIC microscale model, that describes the electrical behaviour of a cortical neuron. The influence of the stimulation parameters and of the skull thickness on the latency and the firing rate are evaluated and the obtained behaviour is linked to the sensory response obtained on human subjects. Results have shown that slight changes in the transducer position should not affect the efficacy of the stimulation; however, high skull thickness leads to lower cells activation. These results will be useful for evaluating safety and effectiveness of tFUS for sensory feedback in closed-loop prosthetic systems.
Collapse
|
50
|
Jo Y, Lee S, Jung T, Park G, Lee C, Im GH, Lee S, Park JS, Oh C, Kook G, Kim H, Kim S, Lee BC, Suh GS, Kim S, Kim J, Lee HJ. General-Purpose Ultrasound Neuromodulation System for Chronic, Closed-Loop Preclinical Studies in Freely Behaving Rodents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202345. [PMID: 36259285 PMCID: PMC9731702 DOI: 10.1002/advs.202202345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/20/2022] [Indexed: 05/11/2023]
Abstract
Transcranial focused ultrasound stimulation (tFUS) is an effective noninvasive treatment modality for brain disorders with high clinical potential. However, the therapeutic effects of ultrasound neuromodulation are not widely explored due to limitations in preclinical systems. The current preclinical studies are head-fixed, anesthesia-dependent, and acute, limiting clinical translatability. Here, this work reports a general-purpose ultrasound neuromodulation system for chronic, closed-loop preclinical studies in freely behaving rodents. This work uses microelectromechanical systems (MEMS) technology to design and fabricate a small and lightweight transducer capable of artifact-free stimulation and simultaneous neural recording. Using the general-purpose system, it can be observed that state-dependent ultrasound neuromodulation of the prefrontal cortex increases rapid eye movement (REM) sleep and protects spatial working memory to REM sleep deprivation. The system will allow explorative studies in brain disease therapeutics and neuromodulation using ultrasound stimulation for widespread clinical adoption.
Collapse
Affiliation(s)
- Yehhyun Jo
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Sang‐Mok Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Taesub Jung
- Korea Brain Research Institute (KBRI)Daegu41068Republic of Korea
| | - Gijae Park
- Department of Electrical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Chanhee Lee
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwon16419Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwon16419Republic of Korea
| | - Seongju Lee
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Jin Soo Park
- Department of Electrical EngineeringKorea UniversitySeoul02841Republic of Korea
- Creative Research Center for Brain ScienceKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Chaerin Oh
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Geon Kook
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Hyunggug Kim
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seongyeon Kim
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Byung Chul Lee
- Creative Research Center for Brain ScienceKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Greg S.B. Suh
- Department of Biological SciencesKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seong‐Gi Kim
- Center for Neuroscience Imaging ResearchInstitute for Basic ScienceSuwon16419Republic of Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jeongyeon Kim
- Korea Brain Research Institute (KBRI)Daegu41068Republic of Korea
| | - Hyunjoo J. Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)Daejeon34141Republic of Korea
| |
Collapse
|