1
|
Ji J, Gong C, Lu G, Zhang J, Liu B, Liu X, Lin J, Wang P, Thomas BB, Humayun MS, Zhou Q. Potential of ultrasound stimulation and sonogenetics in vision restoration: a narrative review. Neural Regen Res 2025; 20:3501-3516. [PMID: 39688549 PMCID: PMC11974640 DOI: 10.4103/nrr.nrr-d-24-00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Vision restoration presents a considerable challenge in the realm of regenerative medicine, while recent progress in ultrasound stimulation has displayed potential as a non-invasive therapeutic approach. This narrative review offers a comprehensive overview of current research on ultrasound-stimulated neuromodulation, emphasizing its potential as a treatment modality for various nerve injuries. By examining of the efficacy of different types of ultrasound stimulation in modulating peripheral and optic nerves, we can delve into their underlying molecular mechanisms. Furthermore, the review underscores the potential of sonogenetics in vision restoration, which involves leveraging pharmacological and genetic manipulations to inhibit or enhance the expression of related mechanosensitive channels, thereby modulating the strength of the ultrasound response. We also address how methods such as viral transcription can be utilized to render specific neurons or organs highly responsive to ultrasound, leading to significantly improved therapeutic outcomes.
Collapse
Affiliation(s)
- Jie Ji
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Chen Gong
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Baoqiang Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Xunan Liu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
| | - Junhao Lin
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | | | - Biju B. Thomas
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Mark S. Humayun
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA
- USC Roski Eye Institute, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
2
|
Du J, Liao M, Zhang D, Li X. Advanced Strategies for Ultrasound Control and Applications in Sonogenetics and Gas Vesicle-Based Technologies: A Review. Int J Nanomedicine 2025; 20:6533-6549. [PMID: 40433121 PMCID: PMC12106918 DOI: 10.2147/ijn.s507322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/17/2025] [Indexed: 05/29/2025] Open
Abstract
Control systems play an important role in the diagnosis and treatment of medicine. In contrast to light and magnetic fields, ultrasound has received much attention due to its non-invasive, cost-effective, convenient, and high spatiotemporal precision and deep-penetration characteristics. Some studies have developed special nanomaterials for therapy by controlling the production of reactive oxygen species through ultrasound irradiation. However, the complex functionalities and toxicity issues associated with these nanomaterials limit the development of ultrasound control systems. To overcome these challenges, ultrasound control systems based on synthetic biology have been developed, especially for sonogenetics and gas vesicles. The tunable thermal and mechanical effects of ultrasound act as the main triggering source, enabling engineered cells to perform sono-thermal or sono-mechanical genetic modifications in the targeted tissue. Based on an in-depth understanding of the relationship between ultrasound effects and the design, composition, and applications of engineered cellular technologies, in this review, we focus on recent activation strategies of ultrasound for sonogenetics and gas vesicles, including sono-thermal promoter switch, sono-thermal transient receptor potential channel, sono-mechanical activation and gas vesicles. In addition, applications of these advanced ultrasound control systems for cancer therapy, neural activity, visual recovery and functional imaging are presented. Finally, we discuss the current challenges faced and provide an outlook on the future developments in this evolving field.
Collapse
Affiliation(s)
- Jinpeng Du
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| | - Min Liao
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Daimo Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xiangnan Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People’s Republic of China
| |
Collapse
|
3
|
Li F, Jiang H, Lin J, Qiao C, Augustine GJ. Low Intensity Pulsed Ultrasound Activates Excitatory Synaptic Networks in Cultured Hippocampal Neurons. ULTRASOUND IN MEDICINE & BIOLOGY 2025:S0301-5629(25)00128-0. [PMID: 40393896 DOI: 10.1016/j.ultrasmedbio.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
OBJECTIVE Ultrasound can noninvasively penetrate deep into the brain for neuromodulation, demonstrating good potential for clinical application. However, the underlying mechanisms are unclear. So far most in vitro studies have focused on the activation of individual neurons by ultrasound with calcium imaging. As the focal region of ultrasound is typically millimeter or submillimeter size, it is important to investigate yet so far unclear how the mechanical effects of ultrasound would influence the synaptic circuit activity of neurons. METHODS Low-intensity pulse ultrasound was used to stimulate cultured hippocampal neurons. Postsynaptic currents were recorded in individual cells with the whole-cell patch-clamp technique. We also simultaneously imaged intracellular calcium, along with neuronal electrical signals, to resolve neuronal network dynamics during ultrasound stimulation. RESULTS Excitatory postsynaptic currents (EPSCs) were evoked by ultrasound in high-density neuronal cultures with increased frequency and amplitude, indicating enhanced glutamatergic synaptic transmission. The probability of evoking responses and the total charge of EPSCs increased with ultrasound intensity. Mechanistic analysis reveals that extracellular calcium influx, action potential firing and synaptic transmission are necessary for the responses to ultrasound in high-density culture. In contrast, EPSCs were not enhanced in low-density culture. Simultaneous calcium imaging of neuronal network activity indicates that recurrent excitatory network activity is recruited during ultrasound stimulation in high-density cultures, which lasts over tens to hundreds of seconds. CONCLUSION Our study provides insights into the mechanisms involved in the response of the brain to ultrasound and illuminates the potential to use ultrasound to regulate synaptic function in neurological disorders.
Collapse
Affiliation(s)
- Fenfang Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Hao Jiang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jiawei Lin
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Chaofeng Qiao
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - George J Augustine
- Program in Neuroscience & Mental Health, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore; Temasek Life Sciences Laboratory, Singapore
| |
Collapse
|
4
|
He Y, Wei Z, Xu J, Jin F, Li T, Qian L, Ma J, Zheng W, Javanmardi N, Wang T, Sun K, Feng ZQ. Genetics-Based Targeting Strategies for Precise Neuromodulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e13817. [PMID: 40387259 DOI: 10.1002/advs.202413817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/10/2025] [Indexed: 05/20/2025]
Abstract
Genetics-based neuromodulation schemes are capable of selectively manipulating the activity of defined cell populations with high temporal-spatial resolution, providing unprecedented opportunities for probing cellular biological mechanisms, resolving neuronal projection pathways, mapping neural profiles, and precisely treating neurological and psychiatric disorders. Multimodal implementation schemes, which involve the use of exogenous stimuli such as light, heat, mechanical force, chemicals, electricity, and magnetic stimulation in combination with specific genetically engineered effectors, greatly expand their application space and scenarios. In particular, advanced wireless stimulation schemes have enabled low-invasive targeted neuromodulation through local delivery of navigable micro- and nanosized stimulators. In this review, the fundamental principles and implementation protocols of genetics-based precision neuromodulation are first introduced.The implementation schemes are systematically summarized, including optical, thermal, force, chemical, electrical, and magnetic stimulation, with an emphasis on those wireless and low-invasive strategies. Representative studies are dissected and analyzed for their advantages and disadvantages. Finally, the significance of genetics-based precision neuromodulation is emphasized and the open challenges and future perspectives are concluded.
Collapse
Affiliation(s)
- Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Zhidong Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Jianda Xu
- Department of Orthopedics, Changzhou Hospital of Traditional Chinese Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213003, P. R. China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Weiying Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, P.R. China
| | - Kangjian Sun
- The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| |
Collapse
|
5
|
Ovechkina VS, Andrianova SK, Shimanskaia IO, Suvorova PS, Ryabinina AY, Blagonravov ML, Belousov VV, Mozhaev AA. Advances in Optogenetics and Thermogenetics for Control of Non-Neuronal Cells and Tissues in Biomedical Research. ACS Chem Biol 2025; 20:553-572. [PMID: 40056098 DOI: 10.1021/acschembio.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Optogenetics and chemogenetics are relatively new biomedical technologies that emerged 20 years ago and have been evolving rapidly since then. This has been made possible by the combined use of genetic engineering, optics, and electrophysiology. With the development of optogenetics and thermogenetics, the molecular tools for cellular control are continuously being optimized, studied, and modified, expanding both their applications and their biomedical uses. The most notable changes have occurred in the basic life sciences, especially in neurobiology and the activation of neurons to control behavior. Currently, these methods of activation have gone far beyond neurobiology and are being used in cardiovascular research, for potential cancer therapy, to control metabolism, etc. In this review, we provide brief information on the types of molecular tools for optogenetic and thermogenetic methods─microbial rhodopsins and proteins of the TRP superfamily─and also consider their applications in the field of activation of non-neuronal tissues and mammalian cells. We also consider the potential of these technologies and the prospects for the use of optogenetics and thermogenetics in biomedical research.
Collapse
Affiliation(s)
- Vera S Ovechkina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Sofya K Andrianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Iana O Shimanskaia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Polina S Suvorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Anna Y Ryabinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Mikhail L Blagonravov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- V.A. Frolov Department of General Pathology and Pathological Physiology, Institute of Medicine, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Vsevolod V Belousov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow, 117513, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 121205, Russia
| | - Andrey A Mozhaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, 117997, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
- National Research University Higher School of Economics, Moscow, 101000, Russia
| |
Collapse
|
6
|
Gong Y, Xu K, Ye D, Yang Y, Miller MJ, Feng Z, Hu S, Chen H. In vivo two-photon microscopy imaging of focused ultrasound-mediated glymphatic transport in the mouse brain. J Cereb Blood Flow Metab 2025:271678X251323369. [PMID: 39985197 PMCID: PMC11846094 DOI: 10.1177/0271678x251323369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/10/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
The glymphatic system regulates cerebrospinal fluid (CSF) transport and brain waste clearance. Focused ultrasound combined with microbubbles (FUSMB) has shown feasibility for manipulating glymphatic transport, yet its mechanisms remain poorly understood. In this work, we used in vivo two-photon microscopy to reveal how FUSMB manipulates the CSF tracer transport in the mouse brain. A FUS transducer was confocally aligned with the objective of a two-photon microscope. Fluorescently labeled albumin was infused into the CSF via cisterna magna. FUS sonication was applied following an intravenous injection of microbubbles. Dynamic imaging was performed through a cranial window to record local changes in vessel and tracer dynamics. The fluorescence intensity of the CSF tracer within the treated region decreased rapidly upon FUSMB treatment. Concurrently, vessel deformation was observed, and the fastest diameter changes were observed during FUSMB treatment. A linear correlation was identified between the rate of vessel diameter change and the rate of tracer intensity change. Moreover, given the same rate of vessel diameter change, the tracer intensity changed faster around larger vessels than smaller vessels. These findings offer insight into the potential biophysical mechanism of FUSMB-mediated glymphatic transport.
Collapse
Affiliation(s)
- Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Kevin Xu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Mark J Miller
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ziang Feng
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Song Hu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
7
|
Zhi W, Li Y, Wang L, Hu X. Advancing Neuroscience and Therapy: Insights into Genetic and Non-Genetic Neuromodulation Approaches. Cells 2025; 14:122. [PMID: 39851550 PMCID: PMC11763439 DOI: 10.3390/cells14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Neuromodulation stands as a cutting-edge approach in the fields of neuroscience and therapeutic intervention typically involving the regulation of neural activity through physical and chemical stimuli. The purpose of this review is to provide an overview and evaluation of different neuromodulation techniques, anticipating a clearer understanding of the future developmental trajectories and the challenges faced within the domain of neuromodulation that can be achieved. This review categorizes neuromodulation techniques into genetic neuromodulation methods (including optogenetics, chemogenetics, sonogenetics, and magnetogenetics) and non-genetic neuromodulation methods (including deep brain stimulation, transcranial magnetic stimulation, transcranial direct current stimulation, transcranial ultrasound stimulation, photobiomodulation therapy, infrared neuromodulation, electromagnetic stimulation, sensory stimulation therapy, and multi-physical-factor stimulation techniques). By systematically evaluating the principles, mechanisms, advantages, limitations, and efficacy in modulating neuronal activity and the potential applications in interventions of neurological disorders of these neuromodulation techniques, a comprehensive picture is gradually emerging regarding the advantages and challenges of neuromodulation techniques, their developmental trajectory, and their potential clinical applications. This review highlights significant advancements in applying these techniques to treat neurological and psychiatric disorders. Genetic methods, such as sonogenetics and magnetogenetics, have demonstrated high specificity and temporal precision in targeting neuronal populations, while non-genetic methods, such as transcranial magnetic stimulation and photobiomodulation therapy, offer noninvasive and versatile clinical intervention options. The transformative potential of these neuromodulation techniques in neuroscience research and clinical practice is underscored, emphasizing the need for integration and innovation in technologies, the optimization of delivery methods, the improvement of mediums, and the evaluation of toxicity to fully harness their therapeutic potential.
Collapse
Affiliation(s)
- Weijia Zhi
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Ying Li
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China;
| |
Collapse
|
8
|
Phan TN, Fan CH, Wang HC, Liu HL, Lin YC, Yeh CK. Modulation of GABAergic neurons in acute epilepsy using sonogenetics. J Control Release 2025; 377:341-353. [PMID: 39557217 DOI: 10.1016/j.jconrel.2024.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
Epilepsy, a neurological disorder caused by hypersynchronous neural disturbances, has traditionally been treated with surgery, pharmacotherapy, and neuromodulation techniques such as deep brain stimulation and vagus nerve stimulation. However, these methods are often limited by invasiveness, off-target effects, and poor resolution. We present a noninvasive alternative utilizing sonogenetics to selectively stimulate γ-aminobutyric acid (GABA)ergic neurons in the amygdala through engineered auditory-sensing protein, mPrestin (N7T, N308S), in a pentylenetetrazole-induced rat model. Activation of GABAergic neurons induced by the sonication with 0.5-MHz transcranial ultrasound can modulate epileptiform activity by 50 %. Electrophysiological recordings confirmed effective neuromodulation and persistent seizure suppression up to 60 min post-treatment without tissue damage, inflammation, or apoptosis. This sonogenetic approach offers a promising, safe method for epilepsy management by targeting GABAergic neurons.
Collapse
Affiliation(s)
- Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701401, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701401, Taiwan
| | - Hsien-Chu Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
9
|
Zhu M, Fang Y, Sun Y, Li S, Yu J, Xiong B, Wen C, Zhou B, Huang B, Yin H, Xu H. Sonogenetics in the Treatment of Chronic Diseases: A New Method for Cell Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407373. [PMID: 39488795 PMCID: PMC11672274 DOI: 10.1002/advs.202407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Sonogenetics is an innovative technology that integrates ultrasound with genetic editing to precisely modulate cellular activities in a non-invasive manner. This method entails introducing and activating mechanosensitive channels on the cell membrane of specific cells using gene delivery vectors. When exposed to ultrasound, these channels can be manipulated to open or close, thereby impacting cellular functions. Sonogenetics is currently being used extensively in the treatment of various chronic diseases, including Parkinson's disease, vision restoration, and cancer therapy. This paper provides a comprehensive review of key components of sonogenetics and focuses on evaluating its prospects and potential challenges in the treatment of chronic disease.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yan Fang
- Department of Ultrasound, Huashan HospitalFudan UniversityShanghai200040P. R. China
| | - Yikang Sun
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shaoyue Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalUltrasound Research and Education InstituteClinical Research Center for Interventional MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jifeng Yu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Bing Xiong
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Congjian Wen
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Boyang Zhou
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Bin Huang
- Zhejiang HospitalHangzhou310013P. R. China
| | - Haohao Yin
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Huixiong Xu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| |
Collapse
|
10
|
Lai Y, Tao W, Wang L, Liu Z, Wu P, Yang G, Yuan L. Medical Ultrasound Application Beyond Diagnosis: Insights From Ultrasound Sensing and Biological Response. Biotechnol J 2024; 19:e202400561. [PMID: 39726053 DOI: 10.1002/biot.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/09/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
Ultrasound (US) can easily penetrate media with excellent spatial precision corresponding to its wavelength. Naturally, US plays a pivotal role in the echolocation abilities of certain mammals such as bats and dolphins. In addition, medical US generated by transducers interact with tissues via delivering ultrasonic energy in the modes of heat generation, exertion of acoustic radiation force (ARF), and acoustic cavitation. Based on the principle of echolocation, various assistive devices for visual impairment people have been developed. High-Intensity Focused Ultrasound (HIFU) are developed for targeted ablation and tissue destruction. Besides thermal ablation, histotripsy with US is designed to damage tissue purely via mechanical effect without thermal coagulation. Low-Intensity Focused Ultrasound (LIFU) has been proven to be an effective stimulation method for neuromodulation. Furthermore, US has been reported to transiently increase the permeability of biological membranes, enabling acoustic transfection and blood-brain barrier open. All of these advances in US are changing the clinic. This review mainly introduces the advances in these aspects, focusing on the physical and biological principles, challenges, and future direction.
Collapse
Affiliation(s)
- Yubo Lai
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenxin Tao
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lantian Wang
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhaoyou Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Pengying Wu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University Xi'an, Xi'an, Shaanxi, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
11
|
Maltsev DI, Solotenkov MA, Mukhametshina LF, Sokolov RA, Solius GM, Jappy D, Tsopina AS, Fedotov IV, Lanin AA, Fedotov AB, Krut' VG, Ermakova YG, Moshchenko AA, Rozov A, Zheltikov AM, Podgorny OV, Belousov VV. Human TRPV1 is an efficient thermogenetic actuator for chronic neuromodulation. Cell Mol Life Sci 2024; 81:437. [PMID: 39448456 PMCID: PMC11502623 DOI: 10.1007/s00018-024-05475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Thermogenetics is a promising neuromodulation technique based on the use of heat-sensitive ion channels. However, on the way to its clinical application, a number of questions have to be addressed. First, to avoid immune response in future human applications, human ion channels should be studied as thermogenetic actuators. Second, heating levels necessary to activate these channels in vivo in brain tissue should be studied and cytotoxicity of these temperatures addressed. Third, the possibility and safety of chronic neuromodulation has to be demonstrated. In this study, we present a comprehensive framework for thermogenetic neuromodulation in vivo using the thermosensitive human ion channel hTRPV1. By targeting hTRPV1 expression to excitatory neurons of the mouse brain and activating them within a non-harmful temperature range with a fiber-coupled infrared laser, we not only induced neuronal firing and stimulated locomotion in mice, but also demonstrated that thermogenetics can be employed for repeated neuromodulation without causing evident brain tissue injury. Our results lay the foundation for the use of thermogenetic neuromodulation in brain research and therapy of neuropathologies.
Collapse
Affiliation(s)
- Dmitry I Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | | - Liana F Mukhametshina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
- Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Rostislav A Sokolov
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022, Nizhny Novgorod, Russia
| | - Georgy M Solius
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
- Kazan Federal University, 420008, Kazan, Russia
| | | | - Ilya V Fedotov
- Lomonosov Moscow State University, 119991, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia
| | - Aleksandr A Lanin
- Lomonosov Moscow State University, 119991, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia
| | - Andrei B Fedotov
- Lomonosov Moscow State University, 119991, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia
| | - Viktoriya G Krut'
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | - Yulia G Ermakova
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Aleksandr A Moshchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia
| | - Andrei Rozov
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia.
| | | | - Oleg V Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia.
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, 117997, Moscow, Russia.
- Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
- Life Improvement by Future Technologies (LIFT) Center, 143025, Moscow, Russia.
| |
Collapse
|
12
|
Zhao L, Xu K, Talyzina I, Shi J, Li S, Yang Y, Zhang S, Zheng J, Sobolevsky AI, Chen H, Cui J. Human TRPV4 engineering yields an ultrasound-sensitive actuator for sonogenetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618766. [PMID: 39464052 PMCID: PMC11507911 DOI: 10.1101/2024.10.16.618766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Sonogenetics offers non-invasive and cell-type specific modulation of cells genetically engineered to express ultrasound-sensitive actuators. Finding an ion channel to serve as sonogenetic actuator it critical for advancing this promising technique. Here, we show that ultrasound can activate human TRP channel hTRPV4. By screening different hTRPV4 variants, we identify a mutation F617L that increases mechano-sensitivity of this channel to ultrasound, while reduces its sensitivity to hypo-osmolarity, elevated temperature, and agonist. This altered sensitivity profile correlates with structural differences in hTRPV4-F617L compared to wild-type channels revealed by our cryo-electron microscopy analysis. We also show that hTRPV4-F617L can serve as a sonogenetic actuator for neuromodulation in freely moving mice. Our findings demonstrate the use of structure-guided mutagenesis to engineer ion channels with tailored properties of ideal sonogenetic actuators.
Collapse
|
13
|
Lemaire T, Yuan Y, Gellman C, LeMessurier AM, Haiken Dray SR, Little JP, Froemke RC, Shoham S. Microscopic deconstruction of cortical circuit stimulation by transcranial ultrasound. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617091. [PMID: 39415988 PMCID: PMC11483041 DOI: 10.1101/2024.10.10.617091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Transcranial Ultrasound Stimulation (TUS) can noninvasively and reversibly perturb neuronal activity, but the mechanisms by which ultrasound engages brain circuits to induce functional effects remain unclear. To elucidate these interactions, we applied TUS to the cortex of awake mice and concurrently monitored local neural activity at the acoustic focus with two-photon calcium imaging. We show that TUS evokes highly focal responses in three canonical neuronal populations, with cell-type-specific dose dependencies. Through independent parametric variations, we demonstrate that evoked responses collectively scale with the time-average intensity of the stimulus. Finally, using computational unmixing we propose a physiologically realistic cortical circuit model that predicts TUS-evoked responses as a result of both direct effects and local network interactions. Our results provide a first direct evidence of TUS's focal effects on cortical activity and shed light on the complex circuit mechanisms underlying these effects, paving the way for TUS's deployment in clinical settings.
Collapse
|
14
|
Xu T, Zhang Y, Li D, Lai C, Wang S, Zhang S. Mechanosensitive Ion Channels Piezo1 and Piezo2 Mediate Motor Responses In Vivo During Transcranial Focused Ultrasound Stimulation of the Rodent Cerebral Motor Cortex. IEEE Trans Biomed Eng 2024; 71:2900-2910. [PMID: 38748529 DOI: 10.1109/tbme.2024.3401136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) neuromodulation offers a noninvasive, safe, deep brain stimulation with high precision, presenting potential in understanding neural circuits and treating brain disorders. This in vivo study investigated the mechanism of tFUS in activating the opening of the mechanosensitive ion channels Piezo1 and Piezo2 in the mouse motor cortex to induce motor responses. METHODS Piezo1 and Piezo2 were knocked down separately in the mouse motor cortex, followed by EMG and motor cortex immunofluorescence comparisons before and after knockdown under tFUS stimulation. RESULTS The results demonstrated that the stimulation-induced motor response success rates in Piezo knockdown mice were lower compared to the control group (Piezo1 knockdown: 57.63% ± 14.62%, Piezo2 knockdown: 73.71% ± 13.10%, Control mice: 85.69% ± 10.23%). Both Piezo1 and Piezo2 knockdowns showed prolonged motor response times (Piezo1 knockdown: 0.62 ± 0.19 s, Piezo2 knockdown: 0.60 ± 0.13 s, Control mice: 0.44 ± 0.12 s) compared to controls. Additionally, Piezo knockdown animals subjected to tFUS showed reduced immunofluorescent c-Fos expression in the target area when measured in terms of cells per unit area compared to the control group. CONCLUSION This in vivo study confirms the pivotal role of Piezo channels in tFUS-induced neuromodulation, highlighting their influence on motor response efficacy and timing. SIGNIFICANCE This study provides insights into the mechanistic underpinnings of noninvasive brain stimulation techniques and opens avenues for developing targeted therapies for neural disorders.
Collapse
|
15
|
O'Reilly MA. Exploiting the mechanical effects of ultrasound for noninvasive therapy. Science 2024; 385:eadp7206. [PMID: 39265013 DOI: 10.1126/science.adp7206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Focused ultrasound is a platform technology capable of eliciting a wide range of biological responses with high spatial precision deep within the body. Although focused ultrasound is already in clinical use for focal thermal ablation of tissue, there has been a recent growth in development and translation of ultrasound-mediated nonthermal therapies. These approaches exploit the physical forces of ultrasound to produce a range of biological responses dependent on exposure conditions. This review discusses recent advances in four application areas that have seen particular growth and have immense clinical potential: brain drug delivery, neuromodulation, focal tissue destruction, and endogenous immune system activation. Owing to the maturation of transcranial ultrasound technology, the brain is a major target organ; however, clinical indications outside the brain are also discussed.
Collapse
Affiliation(s)
- Meaghan A O'Reilly
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Tang J, Feng M, Wang D, Zhang L, Yang K. Recent advancement of sonogenetics: A promising noninvasive cellular manipulation by ultrasound. Genes Dis 2024; 11:101112. [PMID: 38947740 PMCID: PMC11214298 DOI: 10.1016/j.gendis.2023.101112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/02/2024] Open
Abstract
Recent advancements in biomedical research have underscored the importance of noninvasive cellular manipulation techniques. Sonogenetics, a method that uses genetic engineering to produce ultrasound-sensitive proteins in target cells, is gaining prominence along with optogenetics, electrogenetics, and magnetogenetics. Upon stimulation with ultrasound, these proteins trigger a cascade of cellular activities and functions. Unlike traditional ultrasound modalities, sonogenetics offers enhanced spatial selectivity, improving precision and safety in disease treatment. This technology broadens the scope of non-surgical interventions across a wide range of clinical research and therapeutic applications, including neuromodulation, oncologic treatments, stem cell therapy, and beyond. Although current literature predominantly emphasizes ultrasonic neuromodulation, this review offers a comprehensive exploration of sonogenetics. We discuss ultrasound properties, the specific ultrasound-sensitive proteins employed in sonogenetics, and the technique's potential in managing conditions such as neurological disorders, cancer, and ophthalmic diseases, and in stem cell therapies. Our objective is to stimulate fresh perspectives for further research in this promising field.
Collapse
Affiliation(s)
- Jin Tang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingxuan Feng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Dong Wang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ke Yang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China
| |
Collapse
|
17
|
Wu P, Liu Z, Tao W, Lai Y, Yang G, Yuan L. The principles and promising future of sonogenetics for precision medicine. Theranostics 2024; 14:4806-4821. [PMID: 39239514 PMCID: PMC11373633 DOI: 10.7150/thno.98476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Abstract
Sonogenetics is an emerging medical technology that uses acoustic waves to control cells through sonosensitive mediators (SSMs) that are genetically encoded, thus remotely and non-invasively modulating specific molecular events and/or biomolecular functions. Sonogenetics has opened new opportunities for targeted spatiotemporal manipulation in the field of gene and cell-based therapies due to its inherent advantages, such as its noninvasive nature, high level of safety, and deep tissue penetration. Sonogenetics holds impressive potential in a wide range of applications, from tumor immunotherapy and mitigation of Parkinsonian symptoms to the modulation of neural reward pathway, and restoration of vision. This review provides a detailed overview of the mechanisms and classifications of established sonogenetics systems and summarizes their applications in disease treatment and management. The review concludes by highlighting the challenges that hinder the further progress of sonogenetics, paving the way for future advances.
Collapse
Affiliation(s)
- Pengying Wu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Zhaoyou Liu
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Wenxin Tao
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Yubo Lai
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| | - Guodong Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Lijun Yuan
- Department of Ultrasound Medicine, Tangdu Hospital, Fourth Military Medical University, Shaanxi 710038, China
| |
Collapse
|
18
|
Hu Z, Yang Y, Yang L, Gong Y, Chukwu C, Ye D, Yue Y, Yuan J, Kravitz AV, Chen H. Airy-beam holographic sonogenetics for advancing neuromodulation precision and flexibility. Proc Natl Acad Sci U S A 2024; 121:e2402200121. [PMID: 38885384 PMCID: PMC11214095 DOI: 10.1073/pnas.2402200121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024] Open
Abstract
Advancing our understanding of brain function and developing treatments for neurological diseases hinge on the ability to modulate neuronal groups in specific brain areas without invasive techniques. Here, we introduce Airy-beam holographic sonogenetics (AhSonogenetics) as an implant-free, cell type-specific, spatially precise, and flexible neuromodulation approach in freely moving mice. AhSonogenetics utilizes wearable ultrasound devices manufactured using 3D-printed Airy-beam holographic metasurfaces. These devices are designed to manipulate neurons genetically engineered to express ultrasound-sensitive ion channels, enabling precise modulation of specific neuronal populations. By dynamically steering the focus of Airy beams through ultrasound frequency tuning, AhSonogenetics is capable of modulating neuronal populations within specific subregions of the striatum. One notable feature of AhSonogenetics is its ability to flexibly stimulate either the left or right striatum in a single mouse. This flexibility is achieved by simply switching the acoustic metasurface in the wearable ultrasound device, eliminating the need for multiple implants or interventions. AhSonogentocs also integrates seamlessly with in vivo calcium recording via fiber photometry, showcasing its compatibility with optical modalities without cross talk. Moreover, AhSonogenetics can generate double foci for bilateral stimulation and alleviate motor deficits in Parkinson's disease mice. This advancement is significant since many neurological disorders, including Parkinson's disease, involve dysfunction in multiple brain regions. By enabling precise and flexible cell type-specific neuromodulation without invasive procedures, AhSonogenetics provides a powerful tool for investigating intact neural circuits and offers promising interventions for neurological disorders.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Leqi Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Chinwendu Chukwu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
| | - Alexxai V. Kravitz
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO63110
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO63130
- Department of Neurosurgery, Washington University School of Medicine, Saint Louis, MO63110
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO63110
| |
Collapse
|
19
|
Cooper L, Malinao MG, Hong G. Force-Based Neuromodulation. Acc Chem Res 2024; 57:1384-1397. [PMID: 38657038 PMCID: PMC11401649 DOI: 10.1021/acs.accounts.4c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Technologies for neuromodulation have rapidly developed in the past decade with a particular emphasis on creating noninvasive tools with high spatial and temporal precision. The existence of such tools is critical in the advancement of our understanding of neural circuitry and its influence on behavior and neurological disease. Existing technologies have employed various modalities, such as light, electrical, and magnetic fields, to interface with neural activity. While each method offers unique advantages, many struggle with modulating activity with high spatiotemporal precision without the need for invasive tools. One modality of interest for neuromodulation has been the use of mechanical force. Mechanical force encapsulates a broad range of techniques, ranging from mechanical waves delivered via focused ultrasound (FUS) to torque applied to the cell membrane.Mechanical force can be delivered to the tissue in two forms. The first form is the delivery of a mechanical force through focused ultrasound. Energy delivery facilitated by FUS has been the foundation for many neuromodulation techniques, owing to its precision and penetration depth. FUS possesses the potential to penetrate deeply (∼centimeters) into tissue while maintaining relatively precise spatial resolution, although there exists a trade-off between the penetration depth and spatial resolution. FUS may work synergistically with ultrasound-responsive nanotransducers or devices to produce a secondary energy, such as light, heat, or an electric field, in the target region. This layered technology, first enabled by noninvasive FUS, overcomes the need for bulky invasive implants and also often improves the spatiotemporal precision of light, heat, electrical fields, or other techniques alone. Conversely, the second form of mechanical force modulation is the generation of mechanical force from other modalities, such as light or magnetic fields, for neuromodulation via mechanosensitive proteins. This approach localizes the mechanical force at the cellular level, enhancing the precision of the original energy delivery. Direct interaction of mechanical force with tissue presents translational potential in its ability to interface with endogenous mechanosensitive proteins without the need for transgenes.In this Account, we categorize force-mediated neuromodulation into two categories: 1) methods where mechanical force is the primary stimulus and 2) methods where mechanical force is generated as a secondary stimulus in response to other modalities. We summarize the general design principles and current progress of each respective approach. We identify the key advantages of the limitations of each technology, particularly noting features in spatiotemporal precision, the need for transgene delivery, and the potential outlook. Finally, we highlight recent technologies that leverage mechanical force for enhanced spatiotemporal precision and advanced applications.
Collapse
Affiliation(s)
- Lauren Cooper
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
| | - Marigold Gil Malinao
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Guosong Hong
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Ma X, Wang X, Zhu K, Ma R, Chu F, Liu X, Zhang S, Yin T, Zhou X, Liu Z. Study on the Role of Physical Fields in TMAS to Modulate Synaptic Plasticity in Mice. IEEE Trans Biomed Eng 2024; 71:1531-1541. [PMID: 38117631 DOI: 10.1109/tbme.2023.3342012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Transcranial magneto-acoustic stimulation (TMAS) is a composite technique combining static magnetic and coupled electric fields with transcranial ultrasound stimulation (TUS) and has shown advantages in neuromodulation. However, the role of these physical fields in neuromodulation is unclear. Synaptic plasticity is the cellular basis for learning and memory. In this paper, we varied the intensity of static magnetic, electric and ultrasonic fields respectively to investigate the modulation of synaptic plasticity by these physical fields. METHODS There are control, static magnetic field (0.1 T/0.2 T), TUS (0.15/0.3 MPa), and TMAS (0.15 MPa + 0.2 V/m, 0.3 MPa + 0.2 V/m, 0.3 MPa + 0.4 V/m) groups. Hippocampal areas were stimulated at 5 min daily for 7 days and in vivo electrophysiological experiments were performed. RESULTS TMAS induced greater LTP, LTD, and paired-pulse ratio (PPR) than TUS, reflecting that TMAS has a more significant modulation in both long- and short- term synaptic plasticity. In TMAS, a doubling of the electric field amplitude increases LTP, LTD and PPR to a greater extent than a doubling of the acoustic pressure. Increasing the static magnetic field intensity has no significant effect on the modulation of synaptic plasticity. CONCLUSION This paper argues that electric fields should be the main reason for the difference in modulation between TMAS and TUS and that changing the amplitude of the electric field affected the modulation of TMAS more than changing the acoustic pressure. SIGNIFICANCE This study elucidates the roles of the physical fields in TMAS and provides a parameterisation way to guide TMAS applications based on the dominant roles of the physical fields.
Collapse
|
21
|
Meng W, Lin Z, Lu Y, Long X, Meng L, Su C, Wang Z, Niu L. Spatiotemporal Distributions of Acoustic Propagation in Skull During Ultrasound Neuromodulation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:584-595. [PMID: 38557630 DOI: 10.1109/tuffc.2024.3383027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There is widespread interest and concern about the evidence and hypothesis that the auditory system is involved in ultrasound neuromodulation. We have addressed this problem by performing acoustic shear wave simulations in mouse skull and behavioral experiments in deaf mice. The simulation results showed that shear waves propagating along the skull did not reach sufficient acoustic pressure in the auditory cortex to modulate neurons. Behavioral experiments were subsequently performed to awaken anesthetized mice with ultrasound targeting the motor cortex or ventral tegmental area (VTA). The experimental results showed that ultrasound stimulation (US) of the target areas significantly increased arousal scores even in deaf mice, whereas the loss of ultrasound gel abolished the effect. Immunofluorescence staining also showed that ultrasound can modulate neurons in the target area, whereas neurons in the auditory cortex required the involvement of the normal auditory system for activation. In summary, the shear waves propagating along the skull cannot reach the auditory cortex and induce neuronal activation. Ultrasound neuromodulation-induced arousal behavior needs direct action on functionally relevant stimulation targets in the absence of auditory system participation.
Collapse
|
22
|
Krut' VG, Kalinichenko AL, Maltsev DI, Jappy D, Shevchenko EK, Podgorny OV, Belousov VV. Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo. Prog Neurobiol 2024; 235:102600. [PMID: 38548126 DOI: 10.1016/j.pneurobio.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Andrei L Kalinichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry I Maltsev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Oleg V Podgorny
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow 143025, Russia.
| |
Collapse
|
23
|
Mishima T, Komano K, Tabaru M, Kofuji T, Saito A, Ugawa Y, Terao Y. Repetitive pulsed-wave ultrasound stimulation suppresses neural activity by modulating ambient GABA levels via effects on astrocytes. Front Cell Neurosci 2024; 18:1361242. [PMID: 38601023 PMCID: PMC11004293 DOI: 10.3389/fncel.2024.1361242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Ultrasound is highly biopermeable and can non-invasively penetrate deep into the brain. Stimulation with patterned low-intensity ultrasound can induce sustained inhibition of neural activity in humans and animals, with potential implications for research and therapeutics. Although mechanosensitive channels are involved, the cellular and molecular mechanisms underlying neuromodulation by ultrasound remain unknown. To investigate the mechanism of action of ultrasound stimulation, we studied the effects of two types of patterned ultrasound on synaptic transmission and neural network activity using whole-cell recordings in primary cultured hippocampal cells. Single-shot pulsed-wave (PW) or continuous-wave (CW) ultrasound had no effect on neural activity. By contrast, although repetitive CW stimulation also had no effect, repetitive PW stimulation persistently reduced spontaneous recurrent burst firing. This inhibitory effect was dependent on extrasynaptic-but not synaptic-GABAA receptors, and the effect was abolished under astrocyte-free conditions. Pharmacological activation of astrocytic TRPA1 channels mimicked the effects of ultrasound by increasing the tonic GABAA current induced by ambient GABA. Pharmacological blockade of TRPA1 channels abolished the inhibitory effect of ultrasound. These findings suggest that the repetitive PW low-intensity ultrasound used in our study does not have a direct effect on neural function but instead exerts its sustained neuromodulatory effect through modulation of ambient GABA levels via channels with characteristics of TRPA1, which is expressed in astrocytes.
Collapse
Affiliation(s)
- Tatsuya Mishima
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Kenta Komano
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Marie Tabaru
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takefumi Kofuji
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
- Radioisotope Laboratory, Kyorin University School of Medicine, Mitaka, Japan
| | - Ayako Saito
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuo Terao
- Department of Medical Physiology, Kyorin University School of Medicine, Mitaka, Japan
| |
Collapse
|
24
|
Hahmann J, Ishaqat A, Lammers T, Herrmann A. Sonogenetics for Monitoring and Modulating Biomolecular Function by Ultrasound. Angew Chem Int Ed Engl 2024; 63:e202317112. [PMID: 38197549 DOI: 10.1002/anie.202317112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Ultrasound technology, synergistically harnessed with genetic engineering and chemistry concepts, has started to open the gateway to the remarkable realm of sonogenetics-a pioneering paradigm for remotely orchestrating cellular functions at the molecular level. This fusion not only enables precisely targeted imaging and therapeutic interventions, but also advances our comprehension of mechanobiology to unparalleled depths. Sonogenetic tools harness mechanical force within small tissue volumes while preserving the integrity of the surrounding physiological environment, reaching depths of up to tens of centimeters with high spatiotemporal precision. These capabilities circumvent the inherent physical limitations of alternative in vivo control methods such as optogenetics and magnetogenetics. In this review, we first discuss mechanosensitive ion channels, the most commonly utilized sonogenetic mediators, in both mammalian and non-mammalian systems. Subsequently, we provide a comprehensive overview of state-of-the-art sonogenetic approaches that leverage thermal or mechanical features of ultrasonic waves. Additionally, we explore strategies centered around the design of mechanochemically reactive macromolecular systems. Furthermore, we delve into the realm of ultrasound imaging of biomolecular function, encompassing the utilization of gas vesicles and acoustic reporter genes. Finally, we shed light on limitations and challenges of sonogenetics and present a perspective on the future of this promising technology.
Collapse
Affiliation(s)
- Johannes Hahmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| | - Aman Ishaqat
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging (ExMI), Center for Biohybrid Medical Systems (CBMS), RWTH Aachen University Clinic, Forckenbeckstr. 55, 52074, Aachen, Germany
| | - Andreas Herrmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
- Max Planck School Matter to Life, Jahnstr. 29, 69120, Heidelberg, Germany
| |
Collapse
|
25
|
Hou X, Jing J, Jiang Y, Huang X, Xian Q, Lei T, Zhu J, Wong KF, Zhao X, Su M, Li D, Liu L, Qiu Z, Sun L. Nanobubble-actuated ultrasound neuromodulation for selectively shaping behavior in mice. Nat Commun 2024; 15:2253. [PMID: 38480733 PMCID: PMC10937988 DOI: 10.1038/s41467-024-46461-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Ultrasound is an acoustic wave which can noninvasively penetrate the skull to deep brain regions, enabling neuromodulation. However, conventional ultrasound's spatial resolution is diffraction-limited and low-precision. Here, we report acoustic nanobubble-mediated ultrasound stimulation capable of localizing ultrasound's effects to only the desired brain region in male mice. By varying the delivery site of nanobubbles, ultrasound could activate specific regions of the mouse motor cortex, evoking EMG signaling and limb movement, and could also, separately, activate one of two nearby deep brain regions to elicit distinct behaviors (freezing or rotation). Sonicated neurons displayed reversible, low-latency calcium responses and increased c-Fos expression in the sub-millimeter-scale region with nanobubbles present. Ultrasound stimulation of the relevant region also modified depression-like behavior in a mouse model. We also provide evidence of a role for mechanosensitive ion channels. Altogether, our treatment scheme allows spatially-targetable, repeatable and temporally-precise activation of deep brain circuits for neuromodulation without needing genetic modification.
Collapse
Affiliation(s)
- Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Jianing Jing
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Yizhou Jiang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Xiaohui Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Quanxiang Xian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Ting Lei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Jiejun Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Kin Fung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Xinyi Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Min Su
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Danni Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Langzhou Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China
| | - Zhihai Qiu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, Guangdong, China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, 999077, Hong Kong SAR, PR China.
| |
Collapse
|
26
|
Fu B, Shan D, Pu C, Guo L, Xu H, Peng C. A Systematic Investigation of Thermal Effects of High-Intensity Focused Ultrasound Therapy for Ultrasound Neuromodulation. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2024; 73:1-12. [DOI: 10.1109/tim.2024.3366278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Affiliation(s)
- Ben Fu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Dandan Shan
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Cong Pu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| | - Lehang Guo
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, China
| | - Chang Peng
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| |
Collapse
|
27
|
Tian Z, Olmstead M, Jing Y, Han A. Transcranial Phase Correction Using Pulse-Echo Ultrasound and Deep Learning: A 2-D Numerical Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:117-126. [PMID: 38060357 PMCID: PMC10858766 DOI: 10.1109/tuffc.2023.3340597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Phase aberration caused by human skulls severely degrades the quality of transcranial ultrasound images, posing a major challenge in the practical application of transcranial ultrasound techniques in adults. Aberration can be corrected if the skull profile (i.e., thickness distribution) and speed of sound (SOS) are known. However, accurately estimating the skull profile and SOS using ultrasound with a physics-based approach is challenging due to the complexity of the interaction between ultrasound and the skull. A deep learning approach is proposed herein to estimate the skull profile and SOS using ultrasound radiofrequency (RF) signals backscattered from the skull. A numerical study was performed to test the approach's feasibility. Realistic numerical skull models were constructed from computed tomography (CT) scans of five ex vivo human skulls in this numerical study. Acoustic simulations were performed on 3595 skull segments to generate array-based ultrasound backscattered signals. A deep learning model was developed and trained to estimate skull thickness and SOS from RF channel data. The trained model was shown to be highly accurate. The mean absolute error (MAE) was 0.15 mm (2% error) for thickness estimation and 13 m/s (0.5% error) for SOS estimation. The Pearson correlation coefficient between the estimated and ground-truth values was 0.99 for thickness and 0.95 for SOS. Aberration correction performed using deep-learning-estimated skull thickness and SOS values yielded significantly improved beam focusing (e.g., narrower beams) and transcranial imaging quality (e.g., improved spatial resolution and reduced artifacts) compared with no aberration correction. The results demonstrate the feasibility of the proposed approach for transcranial phase aberration correction.
Collapse
|
28
|
Davoudi N, Estrada H, Özbek A, Shoham S, Razansky D. Model-based correction of rapid thermal confounds in fluorescence neuroimaging of targeted perturbation. NEUROPHOTONICS 2024; 11:014413. [PMID: 38371339 PMCID: PMC10871046 DOI: 10.1117/1.nph.11.1.014413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Significance An array of techniques for targeted neuromodulation is emerging, with high potential in brain research and therapy. Calcium imaging or other forms of functional fluorescence imaging are central solutions for monitoring cortical neural responses to targeted neuromodulation, but often are confounded by thermal effects that are inter-mixed with neural responses. Aim Here, we develop and demonstrate a method for effectively suppressing fluorescent thermal transients from calcium responses. Approach We use high precision phased-array 3 MHz focused ultrasound delivery integrated with fiberscope-based widefield fluorescence to monitor cortex-wide calcium changes. Our approach for detecting the neural activation first takes advantage of the high inter-hemispheric correlation of resting state Ca 2 + dynamics and then removes the ultrasound-induced thermal effect by subtracting its simulated spatio-temporal signature from the processed profile. Results The focused 350 μ m -sized ultrasound stimulus triggered rapid localized activation events dominated by transient thermal responses produced by ultrasound. By employing bioheat equation to model the ultrasound heat deposition, we can recover putative neural responses to ultrasound. Conclusions The developed method for canceling transient thermal fluorescence quenching could also find applications with optical stimulation techniques to monitor thermal effects and disentangle them from neural responses. This approach may help deepen our understanding of the mechanisms and macroscopic effects of ultrasound neuromodulation, further paving the way for tailoring the stimulation regimes toward specific applications.
Collapse
Affiliation(s)
- Neda Davoudi
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| | - Hector Estrada
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Ali Özbek
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Shy Shoham
- NYU Langone Health, Neuroscience Institutes, Department of Ophthalmology and Tech4Health New York, United States
| | - Daniel Razansky
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| |
Collapse
|
29
|
Wang HC, Phan TN, Kao CL, Yeh CK, Lin YC. Genetically encoded mediators for sonogenetics and their applications in neuromodulation. Front Cell Neurosci 2023; 17:1326279. [PMID: 38188668 PMCID: PMC10766825 DOI: 10.3389/fncel.2023.1326279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Sonogenetics is an emerging approach that harnesses ultrasound for the manipulation of genetically modified cells. The great penetrability of ultrasound waves enables the non-invasive application of external stimuli to deep tissues, particularly advantageous for brain stimulation. Genetically encoded ultrasound mediators, a set of proteins that respond to ultrasound-induced bio-effects, play a critical role in determining the effectiveness and applications of sonogenetics. In this context, we will provide an overview of these ultrasound-responsive mediators, delve into the molecular mechanisms governing their response to ultrasound stimulation, and summarize their applications in neuromodulation.
Collapse
Affiliation(s)
- Hsien-Chu Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Ling Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
30
|
Guo H, Salahshoor H, Wu D, Yoo S, Sato T, Tsao DY, Shapiro MG. Effects of focused ultrasound in a "clean" mouse model of ultrasonic neuromodulation. iScience 2023; 26:108372. [PMID: 38047084 PMCID: PMC10690554 DOI: 10.1016/j.isci.2023.108372] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.
Collapse
Affiliation(s)
- Hongsun Guo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hossein Salahshoor
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Di Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomokazu Sato
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Doris Y. Tsao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| |
Collapse
|
31
|
Di Ianni T, Morrison KP, Yu B, Murphy KR, de Lecea L, Airan RD. High-throughput ultrasound neuromodulation in awake and freely behaving rats. Brain Stimul 2023; 16:1743-1752. [PMID: 38052373 PMCID: PMC10795522 DOI: 10.1016/j.brs.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Transcranial ultrasound neuromodulation is a promising potential therapeutic tool for the noninvasive treatment of neuropsychiatric disorders. However, the expansive parameter space and difficulties in controlling for peripheral auditory effects make it challenging to identify ultrasound sequences and brain targets that may provide therapeutic efficacy. Careful preclinical investigations in clinically relevant behavioral models are critically needed to identify suitable brain targets and acoustic parameters. However, there is a lack of ultrasound devices allowing for multi-target experimental investigations in awake and unrestrained rodents. We developed a miniaturized 64-element ultrasound array that enables neurointerventional investigations with within-trial active control targets in freely behaving rats. We first characterized the acoustic field with measurements in free water and with transcranial propagation. We then confirmed in vivo that the array can target multiple brain regions via electronic steering, and verified that wearing the device does not cause significant impairments to animal motility. Finally, we demonstrated the performance of our system in a high-throughput neuromodulation experiment, where we found that ultrasound stimulation of the rat central medial thalamus, but not an active control target, promotes arousal and increases locomotor activity.
Collapse
Affiliation(s)
- Tommaso Di Ianni
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, 94158, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, 94158, CA, USA.
| | | | - Brenda Yu
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA
| | - Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA
| | - Raag D Airan
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA; Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, USA.
| |
Collapse
|
32
|
Yong W, He D, Chen T, Rui Z, Wen Y, Wong KF, Sun L, Qi X, Guo J. Activation of N-Methyl-D-aspartate receptor contributed to the ultrasonic modulation of neurons in vitro. Biochem Biophys Res Commun 2023; 676:42-47. [PMID: 37481942 DOI: 10.1016/j.bbrc.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Ultrasound stimulation is increasingly used to investigate brain function and treat brain diseases due to its high level of safety and precise spatiotemporal resolution. Therefore, it is crucial to understand the underlying mechanisms involved in ultrasound brain stimulation. In this study, we investigate the role of NMDA receptors in mediating the effects of ultrasound on primary hippocampal neurons in mice. Our results show that ultrasound alone can activate heterologous NMDA receptor subunits, including NR1A, NR2A, and NR2B, in 293T cells, as well as endogenous NMDA receptors in primary neurons. This activation leads to an influx of calcium and an increase in nuclear c-Fos expression in primary neurons that have not been pre-treated with an NMDA receptor inhibitor. In conclusion, our findings demonstrate that NMDA receptors contribute to neuronal activation by ultrasound stimulation in vitro, providing insight into the molecular mechanisms of ultrasound neuromodulation and a new mediator for the sonogenetics technique.
Collapse
Affiliation(s)
- Wu Yong
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China; Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Dongming He
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Taiheng Chen
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Zeng Rui
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Yinchuan Wen
- Department of Anesthesiology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Kin Fung Wong
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Sun
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiaofei Qi
- Department of Anesthesiology, Shenzhen Maternity & Child Healthcare Hospital, The First School of Clinical Medicine, Southern Medical University, China.
| | - Jinghui Guo
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China; School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
33
|
Wang L, Chang G, Yang M, Xu Z, Wang J, Xu H, He M, Dai L, Zhao Y, Ji Z, Zhang L. The Noninvasive Sonothermogenetics Used for Neuromodulation in M1 Region of Mice Brain by Overexpression of TRPV1. Neuroscience 2023; 527:22-36. [PMID: 37482284 DOI: 10.1016/j.neuroscience.2023.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Sonogenetics is preferred for neuroregulation and the treatment of brain diseases due to its noninvasive properties. Ultrasonic stimulation produces thermal and mechanical effects, among others. Since transient receptor potential vanilloid 1 (TRPV1) could be activated at 42 °C, it is overexpressed in the M1 region of the mouse motor cortex to sense the change of temperature upon being stimulated by focused ultrasound. Whether the heat generated by ultrasonic stimulation could activate TRPV1 in the M1 region and induce changes in electromyography (EMG) signals collected from the mice's triceps was carefully verified. The position of the focused ultrasound and the temperature of the tissue at the location of the focused position were simulated using COMSOL software and verified via experiments. For Neuro-2a cells with TRPV1 overexpression, 42 °C could activate the TRPV1 and induce calcium influx. For mice with TRPV1 overexpression in the M1 region, tissue temperature of >42 °C in the M1 region induces an increased number of cfos, suggesting that neurons with overexpressed TRPV1 in the M1 region can be activated using focused ultrasound. Furthermore, when the temperature is >42 °C, the peak-to-peak value of the EMG signal for mice with TRPV1 overexpression in the M1 region was higher than that for mice without TRPV1 overexpression. The immunohistochemical results showed that ultrasound was not harmful to the stimulation site. The noninvasive ultrasound stimulation combined with thermosensitive protein TRPV1 overexpressed in neurocytes as sonothermogenetics technology has great potential to be used for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Lulu Wang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Guanglei Chang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Miaomiao Yang
- School of Basic Medical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou 450001, China
| | - Zhaobin Xu
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Jianye Wang
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Hongliang Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou 450052, Henan Province, China
| | - Meixia He
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Liping Dai
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Yang Zhao
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China
| | - Zhenyu Ji
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China.
| | - Liguo Zhang
- BGI College, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450007, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, No. 40 Daxue Road, Zhengzhou 450052, China.
| |
Collapse
|
34
|
Zheng H, Niu L, Qiu W, Liang D, Long X, Li G, Liu Z, Meng L. The Emergence of Functional Ultrasound for Noninvasive Brain-Computer Interface. RESEARCH (WASHINGTON, D.C.) 2023; 6:0200. [PMID: 37588619 PMCID: PMC10427153 DOI: 10.34133/research.0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/04/2023] [Indexed: 08/18/2023]
Abstract
A noninvasive brain-computer interface is a central task in the comprehensive analysis and understanding of the brain and is an important challenge in international brain-science research. Current implanted brain-computer interfaces are cranial and invasive, which considerably limits their applications. The development of new noninvasive reading and writing technologies will advance substantial innovations and breakthroughs in the field of brain-computer interfaces. Here, we review the theory and development of the ultrasound brain functional imaging and its applications. Furthermore, we introduce latest advancements in ultrasound brain modulation and its applications in rodents, primates, and human; its mechanism and closed-loop ultrasound neuromodulation based on electroencephalograph are also presented. Finally, high-frequency acoustic noninvasive brain-computer interface is prospected based on ultrasound super-resolution imaging and acoustic tweezers.
Collapse
Affiliation(s)
- Hairong Zheng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lili Niu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Weibao Qiu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaojing Long
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Guanglin Li
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Zhiyuan Liu
- Shenzhen Institute of Advanced Integration Technology, Chinese Academy of Sciences and The Chinese University of Hong Kong, Shenzhen, 518055, China
| | - Long Meng
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
35
|
Han DS, Lee CH, Shieh YD, Chang KV, Lin SH, Chu YC, Wang JL, Chen CC. Involvement of ASIC3 and Substance P in Therapeutic Ultrasound-Mediated Analgesia in Mouse Models of Fibromyalgia. THE JOURNAL OF PAIN 2023; 24:1493-1505. [PMID: 37054767 DOI: 10.1016/j.jpain.2023.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Therapeutic ultrasound (tUS) is widely used in chronic muscle pain control. However, its analgesic molecular mechanism is still not known. Our objective is to reveal the mechanism of the tUS-induced analgesia in mouse models of fibromyalgia. We applied tUS in mice that have developed chronic hyperalgesia induced by intramuscular acidification and determined the tUS frequency at 3 MHz, dosage at 1 W/cm2 (measured output as 6.3 mW/cm2) and 100% duty cycle for 3 minutes having the best analgesic effect. Pharmacological and genetic approaches were used to probe the molecular determinants involved in tUS-mediated analgesia. A second mouse model of fibromyalgia induced by intermittent cold stress was further used to validate the mechanism underlying the tUS-mediated analgesia. The tUS-mediated analgesia was abolished by a pretreatment of NK1 receptor antagonist-RP-67580 or knockout of substance P (Tac1-/-). Besides, the tUS-mediated analgesia was abolished by ASIC3-selective antagonist APETx2 but not TRPV1-selective antagonist capsazepine, suggesting a role for ASIC3. Moreover, the tUS-mediated analgesia was attenuated by ASIC3-selective nonsteroid anti-inflammation drugs (NSAIDs)-aspirin and diclofenac but not by ASIC1a-selective ibuprofen. We next validated the antinociceptive role of substance P signaling in the model induced by intermittent cold stress, in which tUS-mediated analgesia was abolished in mice lacking substance P, NK1R, Asic1a, Asic2b, or Asic3 gene. tUS treatment could activate ASIC3-containing channels in muscle afferents to release substance P intramuscularly and exert an analgesic effect in mouse models of fibromyalgia. NSAIDs should be cautiously used or avoided in the tUS treatment. PERSPECTIVE: Therapeutic ultrasound showed analgesic effects against chronic mechanical hyperalgesia in the mouse model of fibromyalgia through the signaling pathways involving substance P and ASIC3-containing ion channels in muscle afferents. NSAIDs should be cautiously used during tUS treatment.
Collapse
Affiliation(s)
- Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Beihu Branch, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan; Health Science and Wellness Center, National Taiwan University, Taipei, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yih-Dar Shieh
- Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Beihu Branch, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan Mouse Clinic, Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
36
|
Cadoni S, Demené C, Alcala I, Provansal M, Nguyen D, Nelidova D, Labernède G, Lubetzki J, Goulet R, Burban E, Dégardin J, Simonutti M, Gauvain G, Arcizet F, Marre O, Dalkara D, Roska B, Sahel JA, Tanter M, Picaud S. Ectopic expression of a mechanosensitive channel confers spatiotemporal resolution to ultrasound stimulations of neurons for visual restoration. NATURE NANOTECHNOLOGY 2023; 18:667-676. [PMID: 37012508 DOI: 10.1038/s41565-023-01359-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Remote and precisely controlled activation of the brain is a fundamental challenge in the development of brain-machine interfaces for neurological treatments. Low-frequency ultrasound stimulation can be used to modulate neuronal activity deep in the brain, especially after expressing ultrasound-sensitive proteins. But so far, no study has described an ultrasound-mediated activation strategy whose spatiotemporal resolution and acoustic intensity are compatible with the mandatory needs of brain-machine interfaces, particularly for visual restoration. Here we combined the expression of large-conductance mechanosensitive ion channels with uncustomary high-frequency ultrasonic stimulation to activate retinal or cortical neurons over millisecond durations at a spatiotemporal resolution and acoustic energy deposit compatible with vision restoration. The in vivo sonogenetic activation of the visual cortex generated a behaviour associated with light perception. Our findings demonstrate that sonogenetics can deliver millisecond pattern presentations via an approach less invasive than current brain-machine interfaces for visual restoration.
Collapse
Affiliation(s)
- Sara Cadoni
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Charlie Demené
- Physics for Medicine Paris, INSERM, CNRS, École Supérieure de Physique et de Chimie Industrielles (ESPCI Paris), Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - Ignacio Alcala
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Diep Nguyen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Dasha Nelidova
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | | | - Jules Lubetzki
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Ruben Goulet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Emma Burban
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Julie Dégardin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Manuel Simonutti
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Gregory Gauvain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Fabrice Arcizet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Olivier Marre
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - José Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Ophthalmology and Vitreo-Retinal Diseases, Fondation Ophtalmologique Rothschild, Paris, France
- Centre Hospitalier National d'Ophtalmologie des XV-XX, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, INSERM, CNRS, École Supérieure de Physique et de Chimie Industrielles (ESPCI Paris), Paris Sciences et Lettres (PSL) Research University, Paris, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.
| |
Collapse
|
37
|
Guo H, Salahshoor H, Wu D, Yoo S, Sato T, Tsao DY, Shapiro MG. Effects of focused ultrasound in a "clean" mouse model of ultrasonic neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541780. [PMID: 37293117 PMCID: PMC10245917 DOI: 10.1101/2023.05.22.541780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.
Collapse
|
38
|
Yang Y, Yuan J, Field RL, Ye D, Hu Z, Xu K, Xu L, Gong Y, Yue Y, Kravitz AV, Bruchas MR, Cui J, Brestoff JR, Chen H. Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound. Nat Metab 2023; 5:789-803. [PMID: 37231250 PMCID: PMC10229429 DOI: 10.1038/s42255-023-00804-z,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/11/2023] [Indexed: 08/22/2023]
Abstract
Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.
Collapse
Affiliation(s)
- Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Rachael L Field
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Kevin Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael R Bruchas
- Departments of Anesthesiology and Pain Medicine, Pharmacology, and Bioengineering, Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Neurotechnology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
39
|
Hsiao MY, Liao D, Xiang G, Zhong P. Intercellular Calcium Waves and Permeability Change Induced by Vertically Deployed Surface Acoustic Waves in a Human Cerebral Microvascular Endothelial Cell Line (hCMEC/D3) Monolayer. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1153-1163. [PMID: 36764884 PMCID: PMC10050144 DOI: 10.1016/j.ultrasmedbio.2022.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 05/11/2023]
Abstract
OBJECTIVE The ultrasound-mediated blood-brain barrier (BBB) opening with microbubbles has been widely employed, while recent studies also indicate the possibility that ultrasound alone can open the BBB through a direct mechanical effect. However, the exact mechanisms through which ultrasound interacts with the BBB and whether it can directly trigger intracellular signaling and a permeability change in the BBB endothelium remain unclear. METHODS Vertically deployed surface acoustic waves (VD-SAWs) were applied on a human cerebral microvascular endothelial cell line (hCMEC/D3) monolayer using a 33-MHz interdigital transducer that exerts shear stress-predominant stimulation. The intracellular calcium response was measured by fluorescence imaging, and the permeability of the hCMEC/D3 monolayer was assessed by transendothelial electrical resistance (TEER). DISCUSSION At a certain intensity threshold, VD-SAWs induced an intracellular calcium surge that propagated to adjacent cells as intercellular calcium waves. VD-SAWs induced a TEER decrease in a pulse repetition frequency-dependent manner, thereby suggesting possible involvement of the mechanosensitive ion channels. CONCLUSION The unique VD-SAW system enables more physiological mechanical stimulation of the endothelium monolayer. Moreover, it can be easily combined with other measurement devices, providing a useful platform for further mechanistic studies on ultrasound-mediated BBB opening.
Collapse
Affiliation(s)
- Ming-Yen Hsiao
- Department of Physical Medicine and Rehabilitation, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan.
| | - Defei Liao
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Gaoming Xiang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Pei Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| |
Collapse
|
40
|
Yang Y, Yuan J, Field RL, Ye D, Hu Z, Xu K, Xu L, Gong Y, Yue Y, Kravitz AV, Bruchas MR, Cui J, Brestoff JR, Chen H. Induction of a torpor-like hypothermic and hypometabolic state in rodents by ultrasound. Nat Metab 2023; 5:789-803. [PMID: 37231250 PMCID: PMC10229429 DOI: 10.1038/s42255-023-00804-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Torpor is an energy-conserving state in which animals dramatically decrease their metabolic rate and body temperature to survive harsh environmental conditions. Here, we report the noninvasive, precise and safe induction of a torpor-like hypothermic and hypometabolic state in rodents by remote transcranial ultrasound stimulation at the hypothalamus preoptic area (POA). We achieve a long-lasting (>24 h) torpor-like state in mice via closed-loop feedback control of ultrasound stimulation with automated detection of body temperature. Ultrasound-induced hypothermia and hypometabolism (UIH) is triggered by activation of POA neurons, involves the dorsomedial hypothalamus as a downstream brain region and subsequent inhibition of thermogenic brown adipose tissue. Single-nucleus RNA-sequencing of POA neurons reveals TRPM2 as an ultrasound-sensitive ion channel, the knockdown of which suppresses UIH. We also demonstrate that UIH is feasible in a non-torpid animal, the rat. Our findings establish UIH as a promising technology for the noninvasive and safe induction of a torpor-like state.
Collapse
Affiliation(s)
- Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jinyun Yuan
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Rachael L Field
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Dezhuang Ye
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Kevin Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Alexxai V Kravitz
- Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Michael R Bruchas
- Departments of Anesthesiology and Pain Medicine, Pharmacology, and Bioengineering, Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, USA
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA
| | - Jonathan R Brestoff
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, USA.
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA.
- Division of Neurotechnology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
41
|
Rodrigues AF, Rebelo C, Reis T, Simões S, Bernardino L, Peça J, Ferreira L. Engineering optical tools for remotely controlled brain stimulation and regeneration. Biomater Sci 2023; 11:3034-3050. [PMID: 36947145 DOI: 10.1039/d2bm02059a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Neurological disorders are one of the world's leading medical and societal challenges due to the lack of efficacy of the first line treatment. Although pharmacological and non-pharmacological interventions have been employed with the aim of regulating neuronal activity and survival, they have failed to avoid symptom relapse and disease progression in the vast majority of patients. In the last 5 years, advanced drug delivery systems delivering bioactive molecules and neuromodulation strategies have been developed to promote tissue regeneration and remodel neuronal circuitry. However, both approaches still have limited spatial and temporal precision over the desired target regions. While external stimuli such as electromagnetic fields and ultrasound have been employed in the clinic for non-invasive neuromodulation, they do not have the capability of offering single-cell spatial resolution as light stimulation. Herein, we review the latest progress in this area of study and discuss the prospects of using light-responsive nanomaterials to achieve on-demand delivery of drugs and neuromodulation, with the aim of achieving brain stimulation and regeneration.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
| | - Catarina Rebelo
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Tiago Reis
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Susana Simões
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Liliana Bernardino
- Health Sciences Research Centre, Faculty of Health Sciences, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - João Peça
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| | - Lino Ferreira
- Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, 3000-354 Coimbra, Portugal
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
42
|
Aurup C, Pouliopoulos AN, Kwon N, Murillo MF, Konofagou EE. Evaluation of Non-invasive Optogenetic Stimulation with Transcranial Functional Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:908-917. [PMID: 36460567 PMCID: PMC10319350 DOI: 10.1016/j.ultrasmedbio.2022.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Optogenetics employs engineered viruses to genetically modify cells to express specific light-sensitive ion channels. The standard method for gene delivery in the brain involves invasive craniotomies that expose the brain and direct injections of viruses that invariably damage neural tissue along the syringe tract. A recently proposed alternative in which non-invasive optogenetics is performed with focused ultrasound (FUS)-mediated blood-brain barrier (BBB) openings has been found to non-invasively facilitate gene delivery for optogenetics in mice. Although gene delivery can be performed non-invasively, validating successful viral transduction and expression of encoded ion channels in target tissue typically involves similar invasive techniques, such as craniotomies in longitudinal studies and/or postmortem histology. Functional ultrasound imaging (fUSi) is an emerging neuroimaging technique that can be used to transcranially detect changes in cerebral blood volume following introduction of a stimulus. In this study, we implemented a fully non-invasive combined FUS-fUSi technique for performing optogenetics in mice. FUS successfully delivered viruses encoding the red-shifted channelrhodopsin variant ChrimsonR in all treated subjects. fUSi successfully identified stimulus-evoked cerebral blood volume changes preferentially in brain regions expressing the light-sensitive ion channels. Improvements in cell-specific targeting of viral vectors and transcranial ultrasound imaging will make the combined technique a useful tool for neuroscience research in small animals.
Collapse
Affiliation(s)
- Christian Aurup
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Maria F Murillo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University, New York, New York, USA; Department of Radiology, Columbia University, New York, New York, USA.
| |
Collapse
|
43
|
Xu K, Yang Y, Hu Z, Yue Y, Gong Y, Cui J, Culver JP, Bruchas MR, Chen H. TRPV1-mediated sonogenetic neuromodulation of motor cortex in freely moving mice. J Neural Eng 2023; 20:016055. [PMID: 36780694 PMCID: PMC9969813 DOI: 10.1088/1741-2552/acbba0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/03/2023] [Accepted: 02/13/2023] [Indexed: 02/15/2023]
Abstract
Background.Noninvasive and cell-type-specific neuromodulation tools are critically needed for probing intact brain function. Sonogenetics for noninvasive activation of neurons engineered to express thermosensitive transient receptor potential vanilloid 1 (TRPV1) by transcranial focused ultrasound (FUS) was recently developed to address this need. However, using TRPV1-mediated sonogenetics to evoke behavior by targeting the cortex is challenged by its proximity to the skull due to high skull absorption of ultrasound and increased risks of thermal-induced tissue damage.Objective.This study evaluated the feasibility and safety of TRPV1-mediated sonogenetics in targeting the motor cortex to modulate the locomotor behavior of freely moving mice.Approach.Adeno-associated viral vectors was delivered to the mouse motor cortex via intracranial injection to express TRPV1 in excitatory neurons. A wearable FUS device was installed on the mouse head after a month to control neuronal activity by activating virally expressed TRPV1 through FUS sonication at different acoustic pressures. Immunohistochemistry staining ofex vivobrain slices was performed to verify neuron activation and evaluate safety.Results.TRPV1-mediated sonogenetic stimulation at 0.7 MPa successfully evoked rotational behavior in the direction contralateral to the stimulation site, activated cortical neurons as indicated by the upregulation of c-Fos, and did not induce significant changes in inflammatory or apoptotic markers (GFAP, Iba1, and Caspase-3). Sonogenetic stimulation of TRPV1 mice at a higher acoustic pressure, 1.1 MPa, induced significant changes in motor behavior and upregulation of c-Fos compared with FUS sonication of naïve mice at 1.1 MPa. However, signs of damage at the meninges were observed at 1.1 MPa.Significance.TRPV1-mediated sonogenetics can achieve effective and safe neuromodulation at the cortex with carefully selected FUS parameters. These findings expand the application of this technique to include superficial brain targets.
Collapse
Affiliation(s)
- Kevin Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, United States of America
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, United States of America
| | - Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, United States of America
| | - Yimei Yue
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, United States of America
| | - Yan Gong
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, United States of America
| | - Jianmin Cui
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, United States of America
| | - Joseph P Culver
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, United States of America
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, United States of America
- Department of Physics, Washington University in St. Louis, Saint Louis, MO 63110, United States of America
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, Center of Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, United States of America
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, United States of America
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO 63108, United States of America
| |
Collapse
|
44
|
Gorick CM, Breza VR, Nowak KM, Cheng VWT, Fisher DG, Debski AC, Hoch MR, Demir ZEF, Tran NM, Schwartz MR, Sheybani ND, Price RJ. Applications of focused ultrasound-mediated blood-brain barrier opening. Adv Drug Deliv Rev 2022; 191:114583. [PMID: 36272635 PMCID: PMC9712235 DOI: 10.1016/j.addr.2022.114583] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/01/2022] [Accepted: 10/14/2022] [Indexed: 01/25/2023]
Abstract
The blood brain barrier (BBB) plays a critically important role in the regulation of central nervous system (CNS) homeostasis, but also represents a major limitation to treatments of brain pathologies. In recent years, focused ultrasound (FUS) in conjunction with gas-filled microbubble contrast agents has emerged as a powerful tool for transiently and non-invasively disrupting the BBB in a targeted and image-guided manner, allowing for localized delivery of drugs, genes, or other therapeutic agents. Beyond the delivery of known therapeutics, FUS-mediated BBB opening also demonstrates the potential for use in neuromodulation and the stimulation of a range of cell- and tissue-level physiological responses that may prove beneficial in disease contexts. Clinical trials investigating the safety and efficacy of FUS-mediated BBB opening are well underway, and offer promising non-surgical approaches to treatment of devastating pathologies. This article reviews a range of pre-clinical and clinical studies demonstrating the tremendous potential of FUS to fundamentally change the paradigm of treatment for CNS diseases.
Collapse
Affiliation(s)
- Catherine M Gorick
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Victoria R Breza
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Katherine M Nowak
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Vinton W T Cheng
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Delaney G Fisher
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Anna C Debski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Matthew R Hoch
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Zehra E F Demir
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Nghi M Tran
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Mark R Schwartz
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Natasha D Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
45
|
Lu G, Qian X, Gong C, Ji J, Thomas BB, Humayun MS, Zhou Q. Ultrasound Retinal Stimulation: A Mini-Review of Recent Developments. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3224-3231. [PMID: 36343006 PMCID: PMC10424795 DOI: 10.1109/tuffc.2022.3220568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasound neuromodulation is an emerging technology. A significant amount of effort has been devoted to investigating the feasibility of noninvasive ultrasound retinal stimulation. Recent studies have shown that ultrasound can activate neurons in healthy and degenerated retinas. Specifically, high-frequency ultrasound can evoke localized neuron responses and generate patterns in visual circuits. In this review, we recapitulate pilot studies on ultrasound retinal stimulation, compare it with other neuromodulation technologies, and discuss its advantages and limitations. An overview of the opportunities and challenges to develop a noninvasive retinal prosthesis using high-frequency ultrasound is also provided.
Collapse
|
46
|
Chu YC, Lim J, Chien A, Chen CC, Wang JL. Activation of Mechanosensitive Ion Channels by Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1981-1994. [PMID: 35945063 DOI: 10.1016/j.ultrasmedbio.2022.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Mechanosensitive channels (MSCs) play an important role in how cells transduce mechanical stimuli into electrical or chemical signals, which provides an interventional possibility through the manipulation of ion channel activation using different mechanical stimulation conditions. With good spatial resolution and depth of penetration, ultrasound is often proposed as the tool of choice for such therapeutic applications. Despite the identification of many ion channels as mechanosensitive in recent years, only a limited number of MSCs have been reported to be activated by ultrasound with substantial evidence. Furthermore, although many therapeutic implications using ultrasound have been explored, few offered insights into the molecular basis and the biological effects induced by ultrasound in relieving pain and accelerate tissue healing. In this review, we examined the literature, in particular studies that provided evidence of cellular responses to ultrasound, with and without the target ion channels. The ultrasound activation conditions were then summarized for these ion channels, and these conditions were related to their mode of activation based on the current biological concepts. The overall goal is to bridge the results relating to the activation of MSCs that is specific for ultrasound with the current knowledge in molecular structure and the available physiological evidence that may have facilitated such phenomena. We discussed how collating the information revealed by available scientific investigations helps in the design of a more effective stimulus device for the proposed translational purposes. Traditionally, studies on the effects of ultrasound have focused largely on its mechanical and physical interaction with the targeted tissue through thermal-based therapies as well as non-thermal mechanisms including ultrasonic cavitation; gas body activation; the direct action of the compressional, tensile and shear stresses; radiation force; and acoustic streaming. However, the current review explores and attempts to establish whether the application of low-intensity ultrasound may be associated with the activation of specific MSCs, which in turn triggers relevant cell signaling as its molecular mechanism in achieving the desired therapeutic effects. Non-invasive brain stimulation has recently become an area of intense research interest for rehabilitation, and the implication of low-intensity ultrasound is particularly critical given the need to minimize heat generation to preserve tissue integrity for such applications.
Collapse
Affiliation(s)
- Ya-Cherng Chu
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Jormay Lim
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Andy Chien
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jaw-Lin Wang
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
47
|
Ye D, Yuan J, Yang Y, Yue Y, Hu Z, Fadera S, Chen H. Incisionless targeted adeno-associated viral vector delivery to the brain by focused ultrasound-mediated intranasal administration. EBioMedicine 2022; 84:104277. [PMID: 36152518 PMCID: PMC9508404 DOI: 10.1016/j.ebiom.2022.104277] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Adeno-associated viral (AAV) vectors are currently the leading platform for gene therapy with the potential to treat a variety of central nervous system (CNS) diseases. There are numerous methods for delivering AAVs to the CNS, such as direct intracranial injection (DI), intranasal delivery (IN), and intravenous injection with focused ultrasound-induced blood–brain barrier disruption (FUS-BBBD). However, non-invasive and efficient delivery of AAVs to the brain with minimal systemic toxicity remain the major challenge. This study aims to investigate the potential of focused ultrasound-mediated intranasal delivery (FUSIN) in AAV delivery to brain. Methods Mice were intranasally administered with AAV5 encoding enhanced green fluorescence protein (AAV5-EGFP) followed by FUS sonication in the presence of systemically injected microbubbles. Mouse brains and other major organs were harvested for immunohistological staining, PCR quantification, and in situ hybridization. The AAV delivery outcomes were compared with those of DI, FUS-BBBD, and IN delivery. Findings FUSIN achieved safe and efficient delivery of AAV5-EGFP to spatially targeted brain locations, including a superficial brain site (cortex) and a deep brain region (brainstem). FUSIN achieved comparable delivery outcomes as the established DI, and displayed 414.9-fold and 2073.7-fold higher delivery efficiency than FUS-BBBD and IN. FUSIN was associated with minimal biodistribution in peripheral organs, which was comparable to that of DI. Interpretation Our results suggest that FUSIN is a promising technique for non-invasive, efficient, safe, and spatially targeted AAV delivery to the brain. Funding National Institutes of Health (NIH) grants R01EB027223, R01EB030102, R01MH116981, and UG3MH126861.
Collapse
|
48
|
Su Z, Yan J, Ji H, Liu M, Zhang X, Li X, Yuan Y. Time-frequency cross-coupling between cortical low-frequency neuronal calcium oscillations and blood oxygen metabolism evoked by ultrasound stimulation. Cereb Cortex 2022; 33:4665-4676. [PMID: 36137570 DOI: 10.1093/cercor/bhac370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
Low-intensity transcranial ultrasound stimulation (TUS) can modulate the coupling of high-frequency (160-200 Hz) neural oscillations and cerebral blood oxygen metabolism (BOM); however, the correlation of low-frequency (0-2 Hz) neural oscillations with BOM in temporal and frequency domains under TUS remains unclear. To address this, we monitored the TUS-evoked neuronal calcium oscillations and BOM simultaneously in the mouse visual cortex by using multimodal optical imaging with a high spatiotemporal resolution. We demonstrated that TUS can significantly increase the intensity of the neuronal calcium oscillations and BOM; the peak value, peak time, and duration of calcium oscillations are functionally related to stimulation duration; TUS does not significantly increase the neurovascular coupling strength between calcium oscillations and BOM in the temporal domain; the time differences of the energy peaks between TUS-induced calcium oscillations and BOM depend on their spectral ranges; the frequency differences of the energy peaks between TUS-induced calcium oscillations and BOM depend on their time ranges; and TUS can significantly change the phase of calcium oscillations and BOM from uniform distribution to a more concentrated region. In conclusion, ultrasound stimulation can evoke the time-frequency cross-coupling between the cortical low-frequency neuronal calcium oscillations and BOM in mouse.
Collapse
Affiliation(s)
- Zhaocheng Su
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| | - Jiaqing Yan
- College of Electrical and Control Engineering, North China University of Technology, Beijing 100041, China
| | - Hui Ji
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Mengyang Liu
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna 1090, Austria
| | - Xiangjian Zhang
- Department of Neurology, Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xiaoli Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yi Yuan
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.,Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
49
|
Liu T, Choi MH, Zhu J, Zhu T, Yang J, Li N, Chen Z, Xian Q, Hou X, He D, Guo J, Fei C, Sun L, Qiu Z. Sonogenetics: Recent advances and future directions. Brain Stimul 2022; 15:1308-1317. [PMID: 36130679 DOI: 10.1016/j.brs.2022.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 08/15/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Sonogenetics refers to the use of genetically encoded, ultrasound-responsive mediators for noninvasive and selective control of neural activity. It is a promising tool for studying neural circuits. However, due to its infancy, basic studies and developments are still underway, including gauging key in vivo performance metrics such as spatiotemporal resolution, selectivity, specificity, and safety. In this paper, we summarize recent findings on sonogenetics to highlight technical hurdles that have been cleared, challenges that remain, and future directions for optimization.
Collapse
Affiliation(s)
- Tianyi Liu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China
| | - Mi Hyun Choi
- Department of Bioengineering, Stanford University, CA, USA
| | - Jiejun Zhu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China
| | - Tingting Zhu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China
| | - Jin Yang
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China
| | - Na Li
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China; School of Microelectronics, Xidian University, Xi'an, China
| | - Zihao Chen
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China; School of Microelectronics, Xidian University, Xi'an, China
| | - Quanxiang Xian
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Xuandi Hou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Dongmin He
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China
| | - Jinghui Guo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China; Department of Physiology, Faculty of Medicine, Jinan University, Guangzhou, China
| | - Chunlong Fei
- School of Microelectronics, Xidian University, Xi'an, China
| | - Lei Sun
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.
| | - Zhihai Qiu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, Guangdong, 519031, China.
| |
Collapse
|
50
|
Hu Z, Yang Y, Xu L, Hao Y, Chen H. Binary acoustic metasurfaces for dynamic focusing of transcranial ultrasound. Front Neurosci 2022; 16:984953. [PMID: 36117633 PMCID: PMC9475195 DOI: 10.3389/fnins.2022.984953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Transcranial focused ultrasound (tFUS) is a promising technique for non-invasive and spatially targeted neuromodulation and treatment of brain diseases. Acoustic lenses were designed to correct the skull-induced beam aberration, but these designs could only generate static focused ultrasound beams inside the brain. Here, we designed and 3D printed binary acoustic metasurfaces (BAMs) for skull aberration correction and dynamic ultrasound beam focusing. BAMs were designed by binarizing the phase distribution at the surface of the metasurfaces. The phase distribution was calculated based on time reversal to correct the skull-induced phase aberration. The binarization enabled the ultrasound beam to be dynamically steered along wave propagation direction by adjusting the operation frequency of the incident ultrasound wave. The designed BAMs were manufactured by 3D printing with two coding bits, a polylactic acid unit for bit "1" and a water unit for bit "0." BAMs for single- and multi-point focusing through the human skull were designed, 3D printed, and validated numerically and experimentally. The proposed BAMs with subwavelength scale in thickness are simple to design, easy to fabric, and capable of correcting skull aberration and achieving dynamic beam steering.
Collapse
Affiliation(s)
- Zhongtao Hu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yaoheng Yang
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Lu Xu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
| | - Yao Hao
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| | - Hong Chen
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO, United States
- Department of Radiation Oncology, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|