1
|
Ying N, Wang Y, Qin B, Wu Y, Wang Z, Chen H, Song X, Su Z, Fang W. Lateral flow nucleic acid assay for Ecytonucleospora hepatopenaei based on recombinase polymerase amplification and strand displacement reaction. DISEASES OF AQUATIC ORGANISMS 2025; 162:17-26. [PMID: 40243272 DOI: 10.3354/dao03847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The incidence of Ecytonucleospora hepatopenaei (EHP) infections in farmed shrimp has increased markedly in recent years, resulting in significant economic losses for the global shrimp farming industry. The lack of an efficacious drug for EHP infection has led to the development of a strategy based on the timely screening and elimination of EHP-carrying shrimp seeds as a means of preventing financial loss. This strategy requires portable, accurate and rapid detection methods for EHP, especially when applied to sites such as farms. However, the current lack of user-friendly devices capable of real-time detection under field conditions represents a significant challenge in the implementation of this strategy. In this study, an isothermal amplification nucleic acid biosensor for EHP detection was developed. The biosensor targeted the spore wall protein gene of EHP and amplified the target gene by recombinase polymerase amplification (RPA) combined with strand displacement reaction (SDR). The amplified products were applied on gold nanoparticle-based lateral flow nucleic acid strips (LFNAS) for visual signal conversion. The limit of detection of the SDR-RPA-LFNAS assay was 7 copies reaction-1, and the entire process could be completed in 30 min without cross-reaction. In contrast to existing conventional RPA-related detection methods, the introduction of SDR, which is used to eliminate the background signal produced by long primers, avoids the use of endonucleases and reduces costs. Moreover, the biosensor is straightforward to operate and does not require the use of expensive machinery, rendering it more suitable for the in situ detection of EHP in shrimp farms or aquaculture facilities.
Collapse
Affiliation(s)
- Na Ying
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
- Lianyungang Innovation Centre, East China Sea Fisheries Research Institute, Lianyungang 222111, PR China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Bo Qin
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
- Lianyungang Innovation Centre, East China Sea Fisheries Research Institute, Lianyungang 222111, PR China
| | - Yanqing Wu
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
- Lianyungang Innovation Centre, East China Sea Fisheries Research Institute, Lianyungang 222111, PR China
| | - Zitong Wang
- Lianyungang Innovation Centre, East China Sea Fisheries Research Institute, Lianyungang 222111, PR China
| | - Huijuan Chen
- Key Laboratory of Marine Biotechnology of Jiangsu Province, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xuefeng Song
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Zhixing Su
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
| | - Wenhong Fang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai 200090, PR China
| |
Collapse
|
2
|
Kanitchinda S, Sritunyalucksana K, Chaijarasphong T. Multiplex CRISPR-Cas Assay for Rapid, Isothermal and Visual Detection of White Spot Syndrome Virus (WSSV) and Enterocytozoon hepatopenaei (EHP) in Penaeid Shrimp. JOURNAL OF FISH DISEASES 2025; 48:e14059. [PMID: 39628369 PMCID: PMC11837468 DOI: 10.1111/jfd.14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/29/2024] [Accepted: 11/21/2024] [Indexed: 02/20/2025]
Abstract
White spot syndrome virus (WSSV) and Enterocytozoon hepatopenaei (EHP) represent the most economically destructive pathogens in the current shrimp industry. WSSV causes white spot disease (WSD) responsible for rapid shrimp mortality, while EHP stunts growth and therefore reduces overall productivity. Despite the importance of timely disease detection, current diagnostic methods for WSSV and EHP are typically singleplex, and those offering multiplex detection face issues such as complexity, low field compatibility and/or low sensitivity. Here, we introduce an orthogonal, multiplex CRISPR-Cas assay for concomitant detection of WSSV and EHP. This method combines recombinase polymerase amplification (RPA) for target DNA enrichment with Cas12a and Cas13a enzymes for fluorescent detection. This assay produces distinct fluorescent colours for different diagnostic outcomes, allowing naked eye visualisation without ambiguity. Further validation reveals that the assay detects as few as 20 and 200 copies of target DNA from EHP and WSSV, respectively, while producing no false positives with DNA from other shrimp pathogens. Moreover, the assay excellently agrees with established PCR methods in evaluation of clinical samples. Requiring only 37°C and less than an hour to complete, multiplex CRISPR-Cas assay presents a promising tool for onsite diagnostics, offering high accuracy while saving time and resources.
Collapse
Affiliation(s)
| | - Kallaya Sritunyalucksana
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | - Thawatchai Chaijarasphong
- Department of Biotechnology, Faculty of ScienceMahidol UniversityBangkokThailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
3
|
Liang Y, Xie SC, Lv YH, He YH, Zheng XN, Cong W, Elsheikha HM, Zhu XQ. A novel single-tube LAMP-CRISPR/Cas12b method for rapid and visual detection of zoonotic Toxoplasma gondii in the environment. Infect Dis Poverty 2024; 13:94. [PMID: 39654027 PMCID: PMC11629535 DOI: 10.1186/s40249-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Toxoplasma gondii oocysts, excreted in cat feces, pose a significant health risk to humans through contaminated soil and water. Rapid and accurate detection of T. gondii in environmental samples is essential for public health protection. METHODS We developed a novel, single-tube detection method that integrates loop-mediated isothermal amplification (LAMP), the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12b system, and lateral flow immunoassay strips for rapid, visual identification of T. gondii. This method targets the T. gondii B1 gene, initially amplifies it with LAMP, directed by a single-guide RNA (sgRNA). It then recognizes the amplified target gene and activates trans-cleavage, cutting nearby single-stranded DNA (ssDNA) reporters. Fluorescence detection was performed using a 6-Carboxyfluorescein (FAM)-12N-Black Hole Quencher-1 (BHQ1) reporter, while Fluorescein Isothiocyanate (FITC)-12N-Biotin enabled visual detection on lateral flow strips. The method was tested for its ability to detect various T. gondii genotypes and related parasites, assessing its specificity and broad-spectrum applicability. It was further applied to real-world environmental samples to evaluate its practicality. RESULTS The LAMP-CRISPR/Cas12b method exhibited high specificity and broad-spectrum detection capability, successfully identifying nine T. gondii genotypes and distinguishing them from 11 other parasitic species. Sensitivity testing at both molecular (plasmid) and practical (oocyst) levels showed detection limits of 10 copies/μL and 0.1 oocyst, respectively. When applied to 112 environmental samples (soil, water, and cat feces), the method demonstrated 100% sensitivity, accurately reflecting known infection rates. CONCLUSIONS This LAMP-CRISPR/Cas12b single-tube method offers a robust, innovative approach for monitoring zoonotic T. gondii in environmental samples, with significant implications for public health surveillance.
Collapse
Affiliation(s)
- Yao Liang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Shi-Chen Xie
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Yi-Han Lv
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Yuan-Hui He
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Xiao-Nan Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Wei Cong
- Marine College, Shandong University, Weihai, 264209, Shandong, People's Republic of China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|
4
|
Wang Y, Yu F, Zhang K, Shi K, Chen Y, Li J, Li X, Zhang L. End-point RPA-CRISPR/Cas12a-based detection of Enterocytozoon bieneusi nucleic acid: rapid, sensitive and specific. BMC Vet Res 2024; 20:540. [PMID: 39614269 DOI: 10.1186/s12917-024-04391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Enterocytozoon bieneusi is a common species of microsporidia that infects humans and animals. Current methods for detecting E. bieneusi infections have trade-offs in sensitivity, specificity, simplicity, cost and speed and are thus unacceptable for clinical application. We tested the effectiveness of a previously reported CRISPR/Cas12a-based method (ReCTC) when used for the nucleic acid detection of E. bieneusi. The limit of detection (LOD) and the specificity of the expanded ReCTC were evaluated using prepared target DNA, and the accuracy of the ReCTC-based detection of E. bieneusi in clinical samples was validated. The ReCTC method was successfully used for the nucleic acid detection of E. bieneusi. The sensitivity test indicated an LOD of 3.7 copies/µl for the ReCTC-based fluorescence and lateral flow strip methods. In specificity test involving other common enteric pathogens, a fluorescent signal and/or test line appeared only when the sample was positive for E. bieneusi. These results demonstrated that the ReCTC method can successfully detect E. bieneusi in clinical samples. The ReCTC method was successfully used to detect E. bieneusi nucleic acid with high sensitivity and specificity. It had excellent performance in clinical DNA samples and was superior to nested polymerase chain reaction. Furthermore, the ReCTC method demonstrated its capability for use in on-site detection.
Collapse
Affiliation(s)
- Yilin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
| | - Fuchang Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
- College of Animal Science, Tarim University, Alar, Xinjiang, P. R. China
| | - Kaihui Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
| | - Ke Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
- School of Medicine, Xinxiang University, Jinsui Road 191, Xinxiang, 453003, China
| | - Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
| | - Junqiang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
| | - Xiaoying Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, P. R. China.
- International Joint Research Center for Animal Immunology of China, Zhengzhou, Henan, P. R. China.
| |
Collapse
|
5
|
Li Y, Zhao L, Ma L, Bai Y, Feng F. CRISPR/Cas and Argonaute-powered lateral flow assay for pathogens detection. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39434421 DOI: 10.1080/10408398.2024.2416473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Pathogens contamination is a pressing global public issue that has garnered significant attention worldwide, especially in light of recent outbreaks of foodborne illnesses. Programmable nucleases like CRISPR/Cas and Argonaute hold promise as tools for nucleic acid testing owning to programmability and the precise target sequence specificity, which has been utilized for the development pathogens detection. At present, fluorescence, as the main signal output method, provides a simple response mode for sensing analysis. However, the dependence of fluorescence output on large instruments and correct analysis of output data limited its use in remote areas. Lateral flow strips (LFS), emerging as a novel flexible substrate, offer a plethora of advantages, encompassing easy-to-use, rapidity, visualization, low-cost, portability, etc. The integration of CRISPR/Cas and Argonaute with LFS, lateral flow assay (LFA), rendered a new and on-site mode for pathogens detection. In the review, we introduced two programmable nucleases CRISPR/Cas and Argonaute, followed by the structure, principle and advantages of LFA. Then diversified engineering detection pattens for viruses, bacteria, parasites, and fungi based on CRISPR/Cas and Argonaute were introduced and summarized. Finally, the challenge and perspectives involved in on-site diagnostic assays were discussed.
Collapse
Affiliation(s)
- Yaru Li
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
| | - Lu Zhao
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yunfeng Bai
- School of Agriculture and Life Science, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| | - Feng Feng
- School of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, P. R. China
| |
Collapse
|
6
|
Wen S, She L, Dang S, Liao A, Li X, Zhang S, Song Y, Li X, Zhai J. Development of a RPA-CRISPR/Cas12a based rapid visual detection assay for Porcine Parvovirus 7. Front Vet Sci 2024; 11:1440769. [PMID: 39315085 PMCID: PMC11417039 DOI: 10.3389/fvets.2024.1440769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Porcine Parvovirus (PPV) is a significant pathogen in the pig industry, with eight genotypes, including PPV7, identified since its emergence in 2016. Co-infections with viruses such as Porcine Circovirus 2 (PCV2) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) pose serious risks to swine health. Thus, there is an urgent need for rapid, sensitive, and specific detection methods suitable for use in field settings or laboratories with limited resources. Methods We developed a CRISPR/Cas12a-based assay combined with recombinase polymerase amplification (RPA) for the rapid detection of PPV7. Specific RPA primers and five CRISPR RNAs (crRNAs) were designed to target a highly conserved region within the NS1 gene of PPV7. Optimization of crRNA and single-stranded DNA (ssDNA) concentrations was performed to enhance the assay's performance. Results CrRNA optimization identified crRNA-05 as the optimal candidate for Cas12a-based detection of PPV7, as all synthesized crRNAs demonstrated similar performance. The optimal crRNA concentration was determined to be 200 nM, yielding consistent results across tested concentrations. For ssDNA optimization, the strongest fluorescence signal was achieved with 500 nM of the FAM-BHQ ssDNA receptor. The assay showed a minimal detection limit of 100copies/μl for PPV7, confirmed through fluorescence and lateral flow detection methods. Specificity testing indicated that only PPV7 DNA samples returned positive results, confirming the assay's accuracy. In tests of 50 lung tissue samples from diseased pigs, the RPA-Cas12a assay identified 29 positive samples (58%), surpassing the 22 positive samples (44%) detected by conventional PCR. This highlights the RPA-Cas12a method's enhanced detection capability and its potential utility in clinical surveillance and management of PPV7 in swine populations. Discussion The RPA-Cas12a assay effectively detects PPV7 in clinical samples, enhancing disease surveillance and control in pigs. Its adaptability to resource-limited settings significantly improves PPV7 management and prevention strategies, thereby supporting the overall health and development of the pig industry.
Collapse
Affiliation(s)
- Shubo Wen
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Brucellosis Prevention and Treatment Technology Research Center, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Lemuge She
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Brucellosis Prevention and Treatment Technology Research Center, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Sheng Dang
- Brucellosis Prevention and Treatment Technology Research Center, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Ao Liao
- Guangzhou Yitun Pig Industry Co. Ltd., Guangzhou, China
| | - Xiaorui Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
| | - Shuai Zhang
- Brucellosis Prevention and Treatment Technology Research Center, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yang Song
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Brucellosis Prevention and Treatment Technology Research Center, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Xiangyang Li
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Brucellosis Prevention and Treatment Technology Research Center, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Jingbo Zhai
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Brucellosis Prevention and Treatment Technology Research Center, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
7
|
Zhou X, Wang S, Ma Y, Jiang Y, Li Y, Shi J, Deng G, Tian G, Kong H, Wang X. On-Site and Visual Detection of the H5 Subtype Avian Influenza Virus Based on RT-RPA and CRISPR/Cas12a. Viruses 2024; 16:753. [PMID: 38793634 PMCID: PMC11125590 DOI: 10.3390/v16050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Avian influenza viruses (AIVs) of the H5 subtype rank among the most serious pathogens, leading to significant economic losses in the global poultry industry and posing risks to human health. Therefore, rapid and accurate virus detection is crucial for the prevention and control of H5 AIVs. In this study, we established a novel detection method for H5 viruses by utilizing the precision of CRISPR/Cas12a and the efficiency of RT-RPA technologies. This assay facilitates the direct visualization of detection results through blue light and lateral flow strips, accurately identifying H5 viruses with high specificity and without cross-reactivity against other AIV subtypes, NDV, IBV, and IBDV. With detection thresholds of 1.9 copies/μL (blue light) and 1.9 × 103 copies/μL (lateral flow strips), our method not only competes with but also slightly surpasses RT-qPCR, demonstrating an 80.70% positive detection rate across 81 clinical samples. The RT-RPA/CRISPR-based detection method is characterized by high sensitivity, specificity, and independence from specialized equipment. The immediate field applicability of the RT-RPA/CRISPR approach underscores its importance as an effective tool for the early detection and management of outbreaks caused by the H5 subtype of AIVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (S.W.); (Y.M.); (Y.J.); (Y.L.); (J.S.); (G.D.); (G.T.)
| | - Xiurong Wang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (X.Z.); (S.W.); (Y.M.); (Y.J.); (Y.L.); (J.S.); (G.D.); (G.T.)
| |
Collapse
|
8
|
Li X, Dang Z, Tang W, Zhang H, Shao J, Jiang R, Zhang X, Huang F. Detection of Parasites in the Field: The Ever-Innovating CRISPR/Cas12a. BIOSENSORS 2024; 14:145. [PMID: 38534252 DOI: 10.3390/bios14030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The rapid and accurate identification of parasites is crucial for prompt therapeutic intervention in parasitosis and effective epidemiological surveillance. For accurate and effective clinical diagnosis, it is imperative to develop a nucleic-acid-based diagnostic tool that combines the sensitivity and specificity of nucleic acid amplification tests (NAATs) with the speed, cost-effectiveness, and convenience of isothermal amplification methods. A new nucleic acid detection method, utilizing the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) nuclease, holds promise in point-of-care testing (POCT). CRISPR/Cas12a is presently employed for the detection of Plasmodium falciparum, Toxoplasma gondii, Schistosoma haematobium, and other parasites in blood, urine, or feces. Compared to traditional assays, the CRISPR assay has demonstrated notable advantages, including comparable sensitivity and specificity, simple observation of reaction results, easy and stable transportation conditions, and low equipment dependence. However, a common issue arises as both amplification and cis-cleavage compete in one-pot assays, leading to an extended reaction time. The use of suboptimal crRNA, light-activated crRNA, and spatial separation can potentially weaken or entirely eliminate the competition between amplification and cis-cleavage. This could lead to enhanced sensitivity and reduced reaction times in one-pot assays. Nevertheless, higher costs and complex pre-test genome extraction have hindered the popularization of CRISPR/Cas12a in POCT.
Collapse
Affiliation(s)
- Xin Li
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Zhisheng Dang
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Key Laboratory of Parasite and Vector Biology, National Health Commission of the People's Republic of China (NHC), World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai 200025, China
| | - Wenqiang Tang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa 850002, China
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850002, China
| | - Haoji Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jianwei Shao
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Rui Jiang
- College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Fuqiang Huang
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
9
|
Liu QL, Wang Y, Chen J, Pan GQ, Yue YF, Zhou ZY, Fang WH. Establishment of a TaqMan probe-based qPCR assay for detecting microsporidia Enterospora epinepheli in grouper. JOURNAL OF FISH DISEASES 2024; 47:e13893. [PMID: 38062566 DOI: 10.1111/jfd.13893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 02/09/2024]
Abstract
Enterospora epinepheli is an intranuclear microsporidian parasite causing serious emaciative disease in hatchery-bred juvenile groupers (Epinephelus spp.). Rapid and sensitive detection is urgently needed as its chronic infection tends to cause emaciation as well as white faeces syndrome and results in fry mortality. This study established a TaqMan probe-based real-time quantitative PCR assays targeting the small subunit rRNA (SSU) gene of E. epinepheli. The relationship between the standard curve of cycle threshold (Ct) and the logarithmic starting quantity (SQ) was determined as Ct = -3.177 lg (SQ) + 38.397. The correlation coefficient (R2 ) was 0.999, and the amplification efficiency was 106.4%. The detection limit of the TaqMan probe-based qPCR assay was 1.0 × 101 copies/μL and that is 100 times sensitive than the traditional PCR method. There is no cross-reaction with other aquatic microsporidia such as Ecytonucleospora hepatopenaei, Nucleospora hippocampi, Potaspora sp., Ameson portunus. The intra-assay and inter-assay showed great repeatability and reproducibility. In addition, the test of clinical samples showed that this assay effectively detected E. epinepheli in the grouper's intestine tissue. The established TaqMan qPCR assays will be a valuable diagnostic tool for the epidemiological investigation as well as prevention and control of E. epinepheli.
Collapse
Affiliation(s)
- Quan-Lin Liu
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Yuan Wang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Jie Chen
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guo-Qing Pan
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Yan-Feng Yue
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| | - Ze-Yang Zhou
- State Key Laboratory of Resource Insects, Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Wen-Hong Fang
- East China Sea Fisheries Research Institute, China Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
10
|
Yuanlae S, Prasartset T, Reamtong O, Munkongwongsiri N, Panphloi M, Preechakul T, Suebsing R, Thitamadee S, Prachumwat A, Itsathitphaisarn O, Taengchaiyaphum S, Kasamechotchung C. Shrimp injection with dsRNA targeting the microsporidian EHP polar tube protein reduces internal and external parasite amplification. Sci Rep 2024; 14:4830. [PMID: 38413745 PMCID: PMC10899260 DOI: 10.1038/s41598-024-55400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
The microsporidian Enterocytozoon hepatopenaei (EHP) is a major threat to shrimp health worldwide. Severe EHP infections in shrimp cause growth retardation and increase susceptibility to opportunistic infections. EHP produces spores with a chitin wall that enables them to survive prolonged environmental exposure. Previous studies showed that polar tube extrusion is a prerequisite for EHP infection, such that inhibiting extrusion should prevent infection. Using a proteomic approach, polar tube protein 2 of EHP (EhPTP2) was found abundantly in protein extracts obtained from extruded spores. Using an immunofluorescent antibody against EhPTP2 for immunohistochemistry, extruded spores were found in the shrimp hepatopancreas (HP) and intestine, but not in the stomach. We hypothesized that presence of EhPTP2 might be required for successful EHP spore extrusion. To test this hypothesis, we injected EhPTP2-specific double-stranded RNA (dsRNA) and found that it significantly diminished EHP copy numbers in infected shrimp. This indicated reduced amplification of EHP-infected cells in the HP by spores released from previously infected cells. In addition, injection of the dsRNA into EHP-infected shrimp prior to their use in cohabitation with naïve shrimp significantly (p < 0.05) reduced the rate of EHP transmission to naïve shrimp. The results revealed that EhPTP2 plays a crucial role in the life cycle of EHP and that dsRNA targeting EHP mRNA can effectively reach the parasite developing in host cells. This approach is a model for future investigations to identify critical genes for EHP survival and spread as potential targets for preventative and therapeutic measures in shrimp.
Collapse
Affiliation(s)
- Satika Yuanlae
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Tharinthon Prasartset
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Natthinee Munkongwongsiri
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Muthita Panphloi
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Thanchanok Preechakul
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani, 12120, Thailand
| | - Rungkarn Suebsing
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Siripong Thitamadee
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Analytical Sciences and National Doping Test Institute, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Anuphap Prachumwat
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
- Center for Excellence in Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, 10400, Thailand
| | - Suparat Taengchaiyaphum
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok, 10400, Thailand.
| | - Chanadda Kasamechotchung
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Rajamangala University of Technology Tawan-ok, Chonburi, 20110, Thailand.
| |
Collapse
|
11
|
Phuphisut O, Poodeepiyasawat A, Yoonuan T, Watthanakulpanich D, Thawornkuno C, Reamtong O, Sato M, Adisakwattana P. Ov-RPA-CRISPR/Cas12a assay for the detection of Opisthorchis viverrini infection in field-collected human feces. Parasit Vectors 2024; 17:80. [PMID: 38383404 PMCID: PMC10882828 DOI: 10.1186/s13071-024-06134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Opisthorchis viverrini infection is traditionally diagnosed using the Kato-Katz method and formalin ethyl-acetate concentration technique. However, the limited sensitivity and specificity of these techniques have prompted the exploration of various molecular approaches, such as conventional polymerase chain reaction (PCR) and real-time PCR, to detect O. viverrini infection. Recently, a novel technique known as recombinase polymerase amplification (RPA)-clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (RPA-CRISPR/Cas) assay was developed as a point-of-care tool for the detection of various pathogens, including viruses and bacteria such as severe acute respiratory syndrome coronavirus 2 and Mycobacterium tuberculosis. This technology has demonstrated high sensitivity and specificity. Therefore, we developed and used the RPA-CRISPR/Cas assay to detect O. viverrini infection in field-collected human feces. METHODS To detect O. viverrini infection in fecal samples, we developed a CRISPR/Cas12a (RNA-guided endonuclease) system combined with RPA (Ov-RPA-CRISPR/Cas12a). Several fecal samples, both helminth-positive and helminth-negative, were used for the development and optimization of amplification conditions, CRISPR/Cas detection conditions, detection limits, and specificity of the RPA-CRISPR/Cas12a assay for detecting O. viverrini infection. The detection results were determined using a real-time PCR system based on fluorescence values. Additionally, as the reporter was labeled with fluorescein, the detection results were visually inspected using an ultraviolet (UV) transilluminator. A receiver operating characteristic curve (ROC) was used to determine the optimal cutoff value for fluorescence detection. The diagnostic performance, including sensitivity and specificity, of the Ov-RPA-CRISPR/Cas12a assay was evaluated on the basis of comparison with standard methods. RESULTS The Ov-RPA-CRISPR/Cas12a assay exhibited high specificity for detecting O. viverrini DNA. On the basis of the detection limit, the assay could detect O. viverrini DNA at concentrations as low as 10-1 ng using the real-time PCR system. However, in this method, visual inspection under UV light required a minimum concentration of 1 ng. To validate the Ov-RPA-CRISPR/Cas12a assay, 121 field-collected fecal samples were analyzed. Microscopic examination revealed that 29 samples were positive for O. viverrini-like eggs. Of these, 18 were confirmed as true positives on the basis of the Ov-RPA-CRISPR/Cas12a assay and microscopic examination, whereas 11 samples were determined as positive solely via microscopic examination, indicating the possibility of other minute intestinal fluke infections. CONCLUSIONS The Ov-RPA-CRISPR/Cas12a assay developed in this study can successfully detect O. viverrini infection in field-collected feces. Due to the high specificity of the assay reported in this study, it can be used as an alternative approach to confirm O. viverrini infection, marking an initial step in the development of point-of-care diagnosis.
Collapse
Affiliation(s)
- Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Akkarin Poodeepiyasawat
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Tippayarat Yoonuan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Dorn Watthanakulpanich
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Charin Thawornkuno
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Megumi Sato
- Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Zhang H, Zhao H, Cao L, Yu B, Wei J, Pan G, Bao J, Zhou Z. Harnessing multiplex crRNA enables an amplification-free/CRISPR-Cas12a-based diagnostic methodology for Nosema bombycis. Microbiol Spectr 2024; 12:e0301423. [PMID: 38014967 PMCID: PMC10783057 DOI: 10.1128/spectrum.03014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The multiplex-crRNA CRISPR/Cas12a detection method saves hands-on time, reduces the risk of aerosol pollution, and can be directly applied to detecting silkworms infected with Nosema bombycis. This study provides a new approach for the inspection and quarantine of silkworm pébrine disease in sericulture and provides a new method for the detection of other pathogens.
Collapse
Affiliation(s)
- Huarui Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Huijuan Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Lu Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Bin Yu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Junhong Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Jialing Bao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- College of Life Science, Chongqing Normal University, Chongqing, China
| |
Collapse
|
13
|
Singh K, Bhushan B, Kumar S, Singh S, Macadangdang RR, Pandey E, Varma AK, Kumar S. Precision Genome Editing Techniques in Gene Therapy: Current State and Future Prospects. Curr Gene Ther 2024; 24:377-394. [PMID: 38258771 DOI: 10.2174/0115665232279528240115075352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Precision genome editing is a rapidly evolving field in gene therapy, allowing for the precise modification of genetic material. The CRISPR and Cas systems, particularly the CRISPRCas9 system, have revolutionized genetic research and therapeutic development by enabling precise changes like single-nucleotide substitutions, insertions, and deletions. This technology has the potential to correct disease-causing mutations at their source, allowing for the treatment of various genetic diseases. Programmable nucleases like CRISPR-Cas9, transcription activator-like effector nucleases (TALENs), and zinc finger nucleases (ZFNs) can be used to restore normal gene function, paving the way for novel therapeutic interventions. However, challenges, such as off-target effects, unintended modifications, and ethical concerns surrounding germline editing, require careful consideration and mitigation strategies. Researchers are exploring innovative solutions, such as enhanced nucleases, refined delivery methods, and improved bioinformatics tools for predicting and minimizing off-target effects. The prospects of precision genome editing in gene therapy are promising, with continued research and innovation expected to refine existing techniques and uncover new therapeutic applications.
Collapse
Affiliation(s)
- Kuldeep Singh
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Bharat Bhushan
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Sunil Kumar
- Department of Pharmacology, P.K. University, Thanra, Karera, Shivpuri, Madhya Pradesh, India
| | - Supriya Singh
- Department of Pharmaceutics, Babu Banarasi Das Northern India Institute of Technology, Faizabaad road, Lucknow, Uttar Pradesh, India
| | | | - Ekta Pandey
- Department of Chemistry, Bundelkhand Institute of Engineering and Technology, Jhansi, Uttar Pradesh, India
| | - Ajit Kumar Varma
- Department of Pharmaceutics, Rama University, Kanpur, Uttar Pradesh, India
| | - Shivendra Kumar
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
14
|
Peng R, Chen X, Xu F, Hailstone R, Men Y, Du K. Pneumatic nano-sieve for CRISPR-based detection of drug-resistant bacteria. NANOSCALE HORIZONS 2023; 8:1677-1685. [PMID: 37877474 PMCID: PMC11162761 DOI: 10.1039/d3nh00365e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The increasing prevalence of antibiotic-resistant bacterial infections, particularly methicillin-resistant Staphylococcus aureus (MRSA), presents a significant public health concern. Timely detection of MRSA is crucial to enable prompt medical intervention, limit its spread, and reduce antimicrobial resistance. Here, we introduce a miniaturized nano-sieve device featuring a pneumatically-regulated chamber for highly efficient MRSA purification from human plasma samples. By using packed magnetic beads as a filter and leveraging the deformability of the nano-sieve channel, we achieved an on-chip concentration factor of ∼15-fold for MRSA. We integrated this device with recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas detection system, resulting in an on-chip limit of detection (LOD) of approximately 100 CFU mL-1. This developed approach provides a rapid, precise, and centrifuge-free solution suitable for point-of-care diagnostics, with the potential to significantly improve patient outcomes in resource-limited medical conditions.
Collapse
Affiliation(s)
- Ruonan Peng
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA.
| | - Xinye Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA.
- Department of Microsystems Engineering, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA
| | - Fengjun Xu
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA.
| | - Richard Hailstone
- Center for Imaging Science, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA.
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA.
| |
Collapse
|
15
|
Zhou X, Wang S, Ma Y, Li Y, Deng G, Shi J, Wang X. Rapid detection of avian influenza virus based on CRISPR-Cas12a. Virol J 2023; 20:261. [PMID: 37957729 PMCID: PMC10644463 DOI: 10.1186/s12985-023-02232-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Avian influenza (AI) is a disease caused by the avian influenza virus (AIV). These viruses spread naturally among wild aquatic birds worldwide and infect domestic poultry, other birds, and other animal species. Currently, real-time reverse transcription polymerase chain reaction (rRT-PCR) is mainly used to detect the presence of pathogens and has good sensitivity and specificity. However, the diagnosis requires sophisticated instruments under laboratory conditions, which significantly limits point-of-care testing (POCT). Rapid, reliable, non-lab-equipment-reliant, sensitive, and specific diagnostic tests are urgently needed for rapid clinical detection and diagnosis. Our study aimed to develop a reverse transcription recombinase polymerase amplification (RT-RPA)/CRISPR method which improves on these limitations. METHODS The Cas12a protein was purified by affinity chromatography with Ni-agarose resin and observed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Specific CRISPR RNA (crRNA) and primers targeting the M and NP genes of the AIV were designed and screened. By combining RT-RPA with the Cas12a/crRNA trans-cleavage system, a detection system that uses fluorescence readouts under blue light or lateral flow strips was established. Sensitivity assays were performed using a tenfold dilution series of plasmids and RNA of the M and NP genes as templates. The specificity of this method was determined using H1-H16 subtype AIVs and other avian pathogens, such as newcastle disease virus (NDV), infectious bursal disease virus (IBDV), and infectious bronchitis virus (IBV). RESULTS The results showed that the method was able to detect AIV and that the detection limit can reach 6.7 copies/μL and 12 copies/μL for the M and NP gene, respectively. In addition, this assay showed no cross-reactivity with other avian-derived RNA viruses such as NDV, IBDV, and IBV. Moreover, the detection system presented 97.5% consistency and agreement with rRT-PCR and virus isolation for detecting samples from poultry. This portable and accurate method has great potential for AIV detection in the field. CONCLUSION An RT-RPA/CRISPR method was developed for rapid, sensitive detection of AIV. The new system presents a good potential as an accurate, user-friendly, and inexpensive platform for point-of-care testing applications.
Collapse
Affiliation(s)
- Xu Zhou
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Siwen Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Ma
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanbing Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianzhong Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiurong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
16
|
Mao X, Xu M, Luo S, Yang Y, Zhong J, Zhou J, Fan H, Li X, Chen Z. Advancements in the synergy of isothermal amplification and CRISPR-cas technologies for pathogen detection. Front Bioeng Biotechnol 2023; 11:1273988. [PMID: 37885449 PMCID: PMC10598474 DOI: 10.3389/fbioe.2023.1273988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
In the realm of pathogen detection, isothermal amplification technology has emerged as a swift, precise, and sensitive alternative to conventional PCR. This paper explores the fundamental principles of recombinase polymerase amplification (RPA) and recombinase-aid amplification (RAA) and reviews the current status of integrating the CRISPR-Cas system with RPA/RAA techniques. Furthermore, this paper explores the confluence of isothermal amplification and CRISPR-Cas technology, providing a comprehensive review and enhancements of existing combined methodologies such as SHERLOCK and DETECTR. We investigate the practical applications of RPA/RAA in conjunction with CRISPR-Cas for pathogen detection, highlighting how this integrated approach significantly advances both research and clinical implementation in the field. This paper aims to provide readers with a concise understanding of the fusion of RPA/RAA and CRISPR-Cas technology, offering insights into their clinical utility, ongoing enhancements, and the promising prospects of this integrated approach in pathogen detection.
Collapse
Affiliation(s)
- Xiaolei Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Minghui Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Shuyin Luo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yi Yang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiaye Zhong
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiawei Zhou
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Huayan Fan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xiaoping Li
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Zhi Chen
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| |
Collapse
|
17
|
Chen Y, Lv Q, Liao H, Xie Z, Hong L, Qi L, Pan G, Long M, Zhou Z. The microsporidian polar tube: origin, structure, composition, function, and application. Parasit Vectors 2023; 16:305. [PMID: 37649053 PMCID: PMC10468886 DOI: 10.1186/s13071-023-05908-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023] Open
Abstract
Microsporidia are a class of obligate intracellular parasitic unicellular eukaryotes that infect a variety of hosts, even including humans. Although different species of microsporidia differ in host range and specificity, they all share a similar infection organelle, the polar tube, which is also defined as the polar filament in mature spores. In response to the appropriate environmental stimulation, the spore germinates with the polar filament everted, forming a hollow polar tube, and then the infectious cargo is transported into host cells via the polar tube. Hence, the polar tube plays a key role in microsporidian infection. Here, we review the origin, structure, composition, function, and application of the microsporidian polar tube, focusing on the origin of the polar filament, the structural differences between the polar filament and polar tube, and the characteristics of polar tube proteins. Comparing the three-dimensional structure of PTP6 homologous proteins provides new insight for the screening of additional novel polar tube proteins with low sequence similarity in microsporidia. In addition, the interaction of the polar tube with the spore wall and the host are summarized to better understand the infection mechanism of microsporidia. Due to the specificity of polar tube proteins, they are also used as the target in the diagnosis and prevention of microsporidiosis. With the present findings, we propose a future study on the polar tube of microsporidia.
Collapse
Affiliation(s)
- Yuqing Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Qing Lv
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Hongjie Liao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Zhengkai Xie
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Liuyi Hong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Lei Qi
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan, 250012, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
| | - Mengxian Long
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China.
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China.
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing, 400047, China
| |
Collapse
|
18
|
Curtin K, Wang J, Fike BJ, Binkley B, Li P. A 3D printed microfluidic device for scalable multiplexed CRISPR-cas12a biosensing. Biomed Microdevices 2023; 25:34. [PMID: 37642743 DOI: 10.1007/s10544-023-00675-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2023] [Indexed: 08/31/2023]
Abstract
Accurate, rapid, and multiplexed nucleic acid detection is critical for environmental and biomedical monitoring. In recent years, CRISPR-Cas12a has shown great potential in improving the performance of DNA biosensing. However, the nonspecific trans-cleavage activity of Cas12a complicates the multiplexing capability of Cas12a biosensing. We report a 3D-printed composable microfluidic plate (cPlate) device that utilizes miniaturized wells and microfluidic loading for a multiplexed CRISPR-Cas12a assay. The device easily combines loop-mediated isothermal amplification (LAMP) and CRISPR-Cas12a readout in a simple and high-throughput workflow with low reagent consumption. To ensure the maximum performance of the device, the concentration of Cas12a and detection probe was optimized, which yielded a four-fold sensitivity improvement. Our device demonstrates sensitive detection to the fg mL- 1 level for four waterborne pathogens including shigella, campylobacter, cholera, and legionella within 1 h, making it suitable for low-resource settings.
Collapse
Affiliation(s)
- Kathrine Curtin
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Bethany J Fike
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Brandi Binkley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
19
|
Peng R, Chen X, Xu F, Hailstone R, Men Y, Du K. Pneumatic Nano-Sieve for CRISPR-based Detection of Drug-resistant Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553737. [PMID: 37645720 PMCID: PMC10462146 DOI: 10.1101/2023.08.17.553737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The increasing prevalence of antibiotic-resistant bacterial infections, particularly methicillin-resistant Staphylococcus aureus (MRSA), presents a significant public health concern. Timely detection of MRSA is crucial to enable prompt medical intervention, limit its spread, and reduce antimicrobial resistance. Here, we introduce a miniaturized nano-sieve device featuring a pneumatically-regulated chamber for highly efficient MRSA purification from human plasma samples. By using packed magnetic beads as a filter and leveraging the deformability of the nano-sieve channel, we achieve an on-chip concentration factor of 15 for MRSA. We integrated this device with recombinase polymerase amplification (RPA) and clustered regularly interspaced short palindromic repeats (CRISPR)-Cas detection system, resulting in an on-chip limit of detection (LOD) of approximately 100 CFU/mL. This developed approach provides a rapid, precise, and centrifuge-free solution suitable for point-of-care diagnostics, with the potential to significantly improve patient outcomes in resource-limited medical conditions.
Collapse
Affiliation(s)
- Ruonan Peng
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Xinye Chen
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
- Department of Microsystems Engineering, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA
| | - Fengjun Xu
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Richard Hailstone
- Center for Imaging Science, Rochester Institute of Technology, 1 Lomb Memorial Dr, Rochester, NY 14623, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| |
Collapse
|
20
|
Wang Y, Yang T, Liu G, Xie L, Guo J, Xiong W. Application of CRISPR/Cas12a in the rapid detection of pathogens. Clin Chim Acta 2023; 548:117520. [PMID: 37595863 DOI: 10.1016/j.cca.2023.117520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
The combination of clustered regularly interspaced short palindromic repeats (CRISPR) and its associated Cas protein is an effective gene-editing instrument. Among them, the CRISPR-Cas12a system forms a DNA-cleavage-capable complex with crRNA and exerts its trans-cleavage activity by recognising the PAM site on the target pathogen's gene. After amplifying the pathogenic gene, display materials such as fluorescent probes are added to the detection system, along with the advantages of rapid detection and high sensitivity of the CRISPR system, so that pathogenic bacteria can be diagnosed with greater speed and precision. This article reviews the mechanism of CRISPR-Cas12a in rapid detection, as well as its progress in the rapid detection of pathogenic bacteria in conjunction with various molecular biology techniques, in order to provide a foundation for the future development of a more effective detection platform.
Collapse
Affiliation(s)
- Yiheng Wang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Tianmu Yang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Guifang Liu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Longfei Xie
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Wenguang Xiong
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China; National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China; National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Li J, Wang Y, Hu J, Bao Z, Wang M. An isothermal enzymatic recombinase amplification (ERA) assay for rapid and accurate detection of Enterocytozoon hepatopenaei infection in shrimp. J Invertebr Pathol 2023; 197:107895. [PMID: 36754116 DOI: 10.1016/j.jip.2023.107895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) is a kind of microsporidian parasite belonging to fungi, and poses a serious threat to prawn farmers. Due to the lack of effective treatments for EHP, the establishment of a rapid and sensitive detection method would be beneficial to the control and prevention of this prawn parasitic disease. In this study, an isothermal enzymatic recombinase amplification (EHP-ERA) assay that could diagnose EHP within 20 min at 42 °C was developed and evaluated. The determined final concentrations of primers and probe in the reaction system were 400 nM and 120 nM, respectively. EHP-ERA was carried out within 13 min (24.31 ± 0.37 Ct) with a detection limit of 10 copies/μL. The results of specificity test showed that EHP-ERA had no cross-reactivity with white spot syndrome virus (WSSV), Vibrio parahaemolyticus strain causing acute hepatopancreatic necrosis disease (VpAHPND), and infectious hypodermal and hematopoietic necrosis virus (IHHNV) and specific pathogen free (SPF) shrimp. Using 32 clinical samples, the practical diagnostic results of EHP-ERA was consistent with nested PCR and real-time PCR (qPCR) under the premise of less time-consuming and simpler operation. In summary, we established a simple, rapid, and effective ERA assay for the detection of EHP, which had great potential to be widely used in both lab and practical usage.
Collapse
Affiliation(s)
- Jiaobing Li
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institution (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China.
| |
Collapse
|
22
|
Yang L, Guo B, Wang Y, Zhao C, Zhang X, Wang Y, Tang Y, Shen H, Wang P, Gao S. Pyrococcus furiosus Argonaute Combined with Recombinase Polymerase Amplification for Rapid and Sensitive Detection of Enterocytozoon hepatopenaei. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:944-951. [PMID: 36548210 DOI: 10.1021/acs.jafc.2c06582] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) is one of the most serious pathogens in shrimp farming. This study combines recombinase polymerase amplification (RPA) with the Argonaute from Pyrococcus furiosus (PfAgo) and establishes a sensitive and reliable method for on-site detection of EHP. With careful screening of gDNA and optimization of the reaction, the method shows a good specificity and reaches a sensitivity of single copy per reaction, which is higher than the sensitivity of the currently available molecular assays. The whole procedure can be finished within 1.5 h including the sample processing time and only requires minimum laboratory support, which is user-friendly for on-site environments. This is the first application of PfAgo for the diagnosis of infectious diseases in seafood supply chains. It provides a reliable method for on-site detection of EHP in shrimp farms and establishes a groundwork for multiplex detection of important pathogens in seafood farming using PfAgo.
Collapse
Affiliation(s)
- Lihong Yang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Bo Guo
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yu Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chenjie Zhao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xue Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yue Wang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yixin Tang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Hui Shen
- Jiangsu Institute of Oceanology and Marine Fisheries, Nantong 226007, China
| | - Pei Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
23
|
Naranitus P, Aiamsa-At P, Sukonta T, Hannanta-Anan P, Chaijarasphong T. Smartphone-compatible, CRISPR-based platforms for sensitive detection of acute hepatopancreatic necrosis disease in shrimp. JOURNAL OF FISH DISEASES 2022; 45:1805-1816. [PMID: 35946585 DOI: 10.1111/jfd.13702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Acute Hepatopancreatic Necrosis Disease (AHPND), caused by bacterial isolates expressing PirAB binary toxins, represents the severest and most economically destructive disease affecting penaeid shrimp. Its rapid disease progression and associated massive mortalities call for vigilant monitoring and early diagnosis, but molecular detection methods that simultaneously satisfy the requirements of sensitivity, specificity, and portability are still scarce. In this work, the CRISPR-Cas12a technology was harnessed for the development of two fluorescent assays compatible with naked-eye visualization. The first assay, AP4-Cas12a, was based on the OIE-recommended AP4 two-tubed nested PCR method and was designed to bypass the time-consuming and potentially hazardous agarose gel electrophoresis step. Using AP4-Cas12a, the detection limit of 10 copies per reaction could be achieved within less than 30 minutes post-PCR. The second assay, RPA-Cas12a, utilized recombinase polymerase amplification (RPA) to rapidly and isothermally amplify the target DNA, followed by amplicon detection by Cas12a, resulting in a protocol that can be completed in less than an hour at a constant temperature of 37°C. The detection limit of RPA-Cas12a is 100 copies of plasmid DNA or 100 fg of bacterial genomic DNA per reaction. Importantly, we validated that both assays are compatible with a previously reported smartphone-based device for facile visualization of fluorescence, thereby providing an affordable option that requires less consumables than lateral flow detection. Using this portable device for readouts, the AP4-Cas12a and RPA-Cas12a methods showed excellent concordance with the AP4-agarose gel electrophoresis approach in the evaluation of clinical samples. Therefore, the developed Cas12a assays have the potential to streamline both in-laboratory and onsite diagnosis of AHPND.
Collapse
Affiliation(s)
- Punyaporn Naranitus
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Praphutson Aiamsa-At
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thanwarat Sukonta
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pimkhuan Hannanta-Anan
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Thawatchai Chaijarasphong
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
24
|
Munkongwongsiri N, Prachumwat A, Eamsaard W, Lertsiri K, Flegel TW, Stentiford GD, Sritunyalucksana K. Propionigenium and Vibrio species identified as possible component causes of shrimp white feces syndrome (WFS) associated with the microsporidian Enterocytozoon hepatopenaei. J Invertebr Pathol 2022; 192:107784. [PMID: 35659607 DOI: 10.1016/j.jip.2022.107784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 12/30/2022]
Abstract
White feces syndrome (WFS) in cultivated shrimp is characterized by white shrimp midguts (intestines) and white fecal strings that float as mats on pond surfaces. The etiology of WFS is complex, but one type called EHP-WFS is associated with the microsporidian Enterocytozoon hepatopenaei (EHP). The hepatopancreas (HP), midgut and fecal strings of EHP-WFS shrimp exhibit massive quantities of EHP spores together with mixed, unidentified bacteria. In EHP-WFS ponds, some EHP-infected shrimp show white midguts (WG) and produce white feces while other EHP-infected shrimp in the same pond show grossly normal midguts (NG) and produce no white feces. We hypothesized that comparison of the microbial flora between WG and NG shrimp would reveal probable combinations of microbes significantly associated with EHP-WFS. To test this, we selected a Penaeus vannamei cultivation pond exhibiting severe WFS and used microscopic and microbial profiling analyses to compare WG and NG samples. Histologically, EHP was confirmed in the HP and midgut of both WG and NG shrimp, but EHP burdens were higher and EHP tissue damage was more severe in WG shrimp. Further, intestinal microbiomes in WG shrimp were less diverse and had higher abundance of bacteria from the genera Vibrio and Propionigenium. Propionigenium burden in the HP of WG shrimp (9364 copies/100ng DNA) was significantly higher (P = 1.1 x 10-5) than in NG shrimp (12 copies/100ng DNA). These findings supported our hypothesis by revealing two candidate bacterial genera that should be tested in combination with EHP as potential component causes of EHP-WFS in P. vannamei.
Collapse
Affiliation(s)
- Natthinee Munkongwongsiri
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd., Bangkok, Thailand 10400
| | - Anuphap Prachumwat
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd., Bangkok, Thailand 10400; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, Thailand 10400.
| | - Wiraya Eamsaard
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd., Bangkok, Thailand 10400; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, Thailand 10400
| | - Kanokwan Lertsiri
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd., Bangkok, Thailand 10400
| | - Timothy W Flegel
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, Thailand 10400; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Klong Luang, Pathumthani, 12120, Thailand
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, United Kingdom; Centre for Sustainable Aquaculture Futures, University of Exeter, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi office, Rama VI Rd., Bangkok, Thailand 10400; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok, Thailand 10400
| |
Collapse
|
25
|
Zhang H, Gong HY, Cao WW, Que MY, Ye L, Shi L. Duplex droplet digital PCR method for the detection of Enterocytozoon hepatopenaei and Vibrio parahaemolyticus acute hepatopancreatic necrosis disease. JOURNAL OF FISH DISEASES 2022; 45:761-769. [PMID: 35322884 DOI: 10.1111/jfd.13600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) and Vibrio parahaemolyticus acute hepatopancreatic necrosis disease (VPAHPND) are two of the diseases that have frequently infected farmed shrimp in recent years, causing great economic losses to the shrimp industry worldwide. In this study, we established a sensitive and accurate duplex droplet digital PCR (ddPCR) method that can simultaneously detect and quantify the two pathogens simultaneously. The results showed that the ddPCR methods could detect EHP and VPAHPND specifically. The sensitivity levels of ddPCR for EHP and VPAHPND were 2.3 copies/μl and 4.6 copies/μl, respectively, which were 10-fold higher than the sensitivity of the qPCR assay and showed good reproducibility. Twenty-six suspected diseased shrimp samples were used for practical determination. For EHP, the detection rates of ddPCR and qPCR were 53.84% and 42.31%, respectively; for VPAHPND, the detection rates of ddPCR and qPCR were both 23.08%. The results indicated that the ddPCR method shows superiority for detection in samples with low viral loads, which will facilitate monitoring of the source and transmission of EHP and VPAHPND and will help control shrimp epidemic disease.
Collapse
Affiliation(s)
- Huang Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Han-Yue Gong
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Wei-Wei Cao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Mu-Yi Que
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
26
|
Bhardwaj P, Kant R, Behera SP, Dwivedi GR, Singh R. Next-Generation Diagnostic with CRISPR/Cas: Beyond Nucleic Acid Detection. Int J Mol Sci 2022; 23:6052. [PMID: 35682737 PMCID: PMC9180940 DOI: 10.3390/ijms23116052] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 02/07/2023] Open
Abstract
The early management, diagnosis, and treatment of emerging and re-emerging infections and the rising burden of non-communicable diseases (NCDs) are necessary. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system has recently acquired popularity as a diagnostic tool due to its ability to target specific genes. It uses Cas enzymes and a guide RNA (gRNA) to cleave target DNA or RNA. The discovery of collateral cleavage in CRISPR-Cas effectors such as Cas12a and Cas13a was intensively repurposed for the development of instrument-free, sensitive, precise and rapid point-of-care diagnostics. CRISPR/Cas demonstrated proficiency in detecting non-nucleic acid targets including protein, analyte, and hormones other than nucleic acid. CRISPR/Cas effectors can provide multiple detections simultaneously. The present review highlights the technical challenges of integrating CRISPR/Cas technology into the onsite assessment of clinical and other specimens, along with current improvements in CRISPR bio-sensing for nucleic acid and non-nucleic acid targets. It also highlights the current applications of CRISPR/Cas technologies.
Collapse
Affiliation(s)
| | | | | | - Gaurav Raj Dwivedi
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India; (P.B.); (R.K.); (S.P.B.)
| | - Rajeev Singh
- ICMR-Regional Medical Research Centre, BRD Medical College Campus, Gorakhpur 273013, India; (P.B.); (R.K.); (S.P.B.)
| |
Collapse
|
27
|
Cao G, Dong J, Chen X, Lu P, Xiong Y, Peng L, Li J, Huo D, Hou C. Simultaneous detection of CaMV35S and T-nos utilizing CRISPR/Cas12a and Cas13a with multiplex-PCR (MPT-Cas12a/13a). Chem Commun (Camb) 2022; 58:6328-6331. [PMID: 35527517 DOI: 10.1039/d2cc01300b] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we established a strategy (MPT-Cas12a/13a) that combined CRISPR/Cas12a and Cas13a for simultaneously detecting CaMV35S and T-nos based on multiplex PCR (M-PCR) and transcription. It realized a simultaneous detection mode with different signals in the same space. The MPT-Cas12a/13a had excellent sensitivity with the limit of detection as low as 11 copies of T-nos and 13 copies of CaMV35S and it had outstanding specificity and anti-interference ability in actual sample analysis. Therefore, it is a potential candidate in the detection of GM crops.
Collapse
Affiliation(s)
- Gaihua Cao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Jiangbo Dong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Xiaolong Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Peng Lu
- Chongqing University Three Gorges Hospital, Chongqing, 404000, P. R. China
| | - Yifan Xiong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| | - Lan Peng
- Chongqing Medical and Pharmaceutical College Basic Department, Chongqing, 401331, P. R. China
| | - Jiawei Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,Chongqing University Three Gorges Hospital, Chongqing, 404000, P. R. China
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China. .,Chongqing Key laboratory of Bio-perception & intelligent information Processing, School of microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, P. R. China.
| |
Collapse
|
28
|
Moser RJ, Franz L, Firestone SM, Sellars MJ. Enterocytozoon hepatopenaei real-time and Shrimp MultiPathTM PCR assay validation for South-East Asian and Latin American strains of Penaeid shrimp. DISEASES OF AQUATIC ORGANISMS 2022; 149:11-23. [PMID: 35510817 DOI: 10.3354/dao03655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) infections are a global challenge for the Penaeid shrimp industry with a sharp rise in prevalence over the last 10 yr. EHP is known to cause sub-optimal growth, large size variation and reduced survival of shrimp. Molecular methods development has mainly focussed on 18S rRNA or spore wall protein 1 (SWP1). Due to the specificity and sensitivity issues with previously designed assays for both targets, new molecular assays are needed by the global shrimp industry and regulators to help manage the risks posed by EHP. This paper describes new real-time PCR (qPCR) methods developed for the novel EHP gene targets polar tube protein 2 (PTP2) and spore wall protein 26 (SWP26), whilst also presenting performance metrics of the new Shrimp MultiPathTM technology EHP assay. qPCR assays PTP2G and SWP26G show high amplification efficiency, a limit of detection (LOD) of between 1 and 4 copies, low assay variation and high diagnostic sensitivity (DSe) and specificity (DSp) compared to imperfect reference assays. Similar performance is seen with Shrimp MultiPathTM EHP showing an LOD of 8 copies, low assay variation and high DSe and DSp. These novel molecular targets for EHP and Shrimp MultiPathTM EHP strengthen global efforts to monitor and mitigate risks of EHP infections and outbreaks. Moreover, this study presents novel data on distribution of EHP in shrimp populations from South-East Asia and Latin America, and how sequence variations need to be considered when monitoring EHP in different geographies.
Collapse
Affiliation(s)
- R J Moser
- Genics Pty Ltd., Level 5, Gehrman Building, 60 Research Road, St Lucia, QLD 4067, Australia
| | | | | | | |
Collapse
|
29
|
Zhao J, Li Y, Xue Q, Zhu Z, Zou M, Fang F. A novel rapid visual detection assay for Toxoplasma gondii combining recombinase-aided amplification and lateral flow dipstick coupled with CRISPR-Cas13a fluorescence (RAA-Cas13a-LFD). Parasite 2022; 29:21. [PMID: 35420541 PMCID: PMC9009239 DOI: 10.1051/parasite/2022021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
Toxoplasmosis, a parasitic disease resulting from Toxoplasma gondii infection, remains prevalent worldwide, and causes great harm to immunodepressed patients, pregnant women and newborns. Although various molecular approaches to detect T. gondii infection are available, they are either costly or technically complex. This study aimed at developing a rapid visual detection assay using recombinase-aided amplification (RAA) and lateral flow dipstick (LFD) coupled with CRISPR-Cas13a fluorescence (RAA-Cas13a-LFD) to detect T. gondii. The RAA-Cas13a-LFD assay was performed in an incubator block at 37 °C within 2 h, and the amplification results were visualized and determined through LFD by the naked eye. The detection limit was 1 × 10-6 ng/μL by our developed RAA-Cas13a-LFD protocol, 100-fold higher than that by qPCR assay (1 × 10-8 ng/μL). No cross-reaction occurred either with the DNA of human blood or Ascaris lumbricoides, Digramma interrupta, Entamoeba coli, Fasciola gigantica, Plasmodium vivax, Schistosoma japonicum, Taenia solium, and Trichinella spiralis, and the positive rate by RAA-Cas13a-LFD assay was identical to that by qPCR assay (1.50% vs. 1.50%) in detecting T. gondii infection in the unknown blood samples obtained from clinical settings. Our findings demonstrate that this RAA-Cas13a-LFD assay is not only rapid, sensitive, and specific and allows direct visualization by the naked eye, but also eliminates sophisticated and costly equipment. More importantly, this technique can be applied to on-site surveillance of T. gondii.
Collapse
Affiliation(s)
- Jinhong Zhao
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241002, Anhui, China - Provincial Key Laboratory of Active Biological Macro-Molecules, Wuhu 241002, Anhui, China
| | - Yuanyuan Li
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Qiqi Xue
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Zhiwei Zhu
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Minghui Zou
- Department of Medical Parasitology, Wannan Medical College, Wuhu 241002, Anhui, China
| | - Fang Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu 241001, Anhui, China
| |
Collapse
|
30
|
Chen J, Huang Y, Xiao B, Deng H, Gong K, Li K, Li L, Hao W. Development of a RPA-CRISPR-Cas12a Assay for Rapid, Simple, and Sensitive Detection of Mycoplasma hominis. Front Microbiol 2022; 13:842415. [PMID: 35464976 PMCID: PMC9024404 DOI: 10.3389/fmicb.2022.842415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Abstract
Mycoplasma hominis, which is difficult to culture and identify by ordinary methods, is one of the smallest pathogens in the human genitourinary tract causing urogenital infections. A CRISPR-Cas12a-based detection system might provide a novel application for M. hominis nucleic acid detection in molecular diagnostics. A plasmid containing the glyceraldehyde-3-phosphate dehydrogenase gene of M. hominis (ATCC_27545) as the positive control was constructed by homologous recombination. The active Cas12a protein was purified by affinity chromatography. The primers for recombinase polymerase amplification (RPA), the CRISPR RNA (crRNA), and the ratio of Cas12a to crRNA were further optimized. Finally, the sensitivity, specificity, and clinical effectiveness of the Cas12a detection system were confirmed. We successfully constructed and optimized a novel nucleic acid detection system for M. hominis based on RPA-CRISPR-Cas12a, and the whole process takes only 1 h. The limit of detection for the gap gene of M. hominis was 3 copies/μl and no cross-reactivity with other urogenital pathogens appeared. In the evaluation of 111 clinical samples, the sensitivity and specificity were both 1.000 and the area under the curve of the receiver operating characteristic was 1.000 (p < 0.001), indicating that the RPA-Cas12a-fluorescent assay was fully comparable to the traditional culture method. Finally, the RPA-Cas12a detection system can also be combined with lateral flow strips (LFS) to achieve visual detection. We successfully developed a low-cost and rapid detection method of M. hominis based on RPA-Cas12a technology. This method realized by fluorescence value readout and visual detection by LFS could be applied in population screening and resource-limited conditions.
Collapse
Affiliation(s)
- Jialing Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China,Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Yinger Huang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China,Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Bin Xiao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China,Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Hao Deng
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China,Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China,Stem Cell Clinical Transformation and Application Center, Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, China
| | - Kunxiang Gong
- Department of Gynecology and Obstetrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Kun Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China,Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Linhai Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China,Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China,*Correspondence: Linhai Li,
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China,Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China,Wenbo Hao,
| |
Collapse
|
31
|
Nouri R, Dong M, Politza AJ, Guan W. Figure of Merit for CRISPR-Based Nucleic Acid-Sensing Systems: Improvement Strategies and Performance Comparison. ACS Sens 2022; 7:900-911. [PMID: 35238530 PMCID: PMC9191621 DOI: 10.1021/acssensors.2c00024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based nucleic acid-sensing systems have grown rapidly in the past few years. Nevertheless, an objective approach to benchmark the performances of different CRISPR sensing systems is lacking due to the heterogeneous experimental setup. Here, we developed a quantitative CRISPR sensing figure of merit (FOM) to compare different CRISPR methods and explore performance improvement strategies. The CRISPR sensing FOM is defined as the product of the limit of detection (LOD) and the associated CRISPR reaction time (T). A smaller FOM means that the method can detect smaller target quantities faster. We found that there is a tradeoff between the LOD of the assay and the required reaction time. With the proposed CRISPR sensing FOM, we evaluated five strategies to improve the CRISPR-based sensing: preamplification, enzymes of higher catalytic efficiency, multiple crRNAs, digitalization, and sensitive readout systems. We benchmarked the FOM performances of 57 existing studies and found that the effectiveness of these strategies on improving the FOM is consistent with the model prediction. In particular, we found that digitalization is the most promising amplification-free method for achieving comparable FOM performances (∼1 fM·min) as those using preamplification. The findings here would have broad implications for further optimization of the CRISPR-based sensing.
Collapse
Affiliation(s)
- Reza Nouri
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ming Dong
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Anthony J. Politza
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Lin HY, Yen SC, Tsai SK, Shen F, Lin JHY, Lin HJ. Combining Direct PCR Technology and Capillary Electrophoresis for an Easy-to-Operate and Highly Sensitive Infectious Disease Detection System for Shrimp. Life (Basel) 2022; 12:life12020276. [PMID: 35207563 PMCID: PMC8879573 DOI: 10.3390/life12020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 11/30/2022] Open
Abstract
Infectious diseases are considered the greatest threat to the modern high-density shrimp aquaculture industry. Specificity, rapidity, and sensitivity of molecular diagnostic methods for the detection of asymptomatic infected shrimp allows preventive measures to be taken before disease outbreaks. Routine molecular detection of pathogens in infected shrimp can be made easier with the use of a direct polymerase chain reaction (PCR). In this study, four direct PCR reagent brands were tested, and results showed that the detection signal of direct PCR in hepatopancreatic tissue was more severely affected. In addition, portable capillary electrophoresis was applied to improve sensitivity and specificity, resulting in a pathogen detection limit of 25 copies/PCR-reaction. Juvenile shrimp from five different aquaculture ponds were tested for white spot syndrome virus infection, and the results were consistent with the Organization for Animal Health’s certified standard method. Furthermore, this methodology could be used to examine single post larvae shrimp. The overall detection time was reduced by more than 58.2%. Therefore, the combination of direct PCR and capillary electrophoresis for on-site examination is valuable and has potential as a suitable tool for diagnostic, epidemiological, and pathological studies of shrimp aquaculture.
Collapse
Affiliation(s)
- Hung-Yun Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Shao-Chieh Yen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- BiOptic Inc., New Taipei City 23141, Taiwan;
| | | | - Fan Shen
- Giant Bio Technology Inc., New Taipei City 22101, Taiwan;
| | - John Han-You Lin
- School of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Correspondence: (J.H.-Y.L.); (H.-J.L.)
| | - Han-Jia Lin
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan;
- Correspondence: (J.H.-Y.L.); (H.-J.L.)
| |
Collapse
|
33
|
You H, Gordon CA, MacGregor SR, Cai P, McManus DP. Potential of the CRISPR-Cas system for improved parasite diagnosis: CRISPR-Cas mediated diagnosis in parasitic infections: CRISPR-Cas mediated diagnosis in parasitic infections. Bioessays 2022; 44:e2100286. [PMID: 35142378 DOI: 10.1002/bies.202100286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas technology accelerates development of fast, accurate, and portable diagnostic tools, typified by recent applications in COVID-19 diagnosis. Parasitic helminths cause devastating diseases afflicting 1.5 billion people globally, representing a significant public health and economic burden, especially in developing countries. Currently available diagnostic tests for worm infection are neither sufficiently sensitive nor field-friendly for use in low-endemic or resource-poor settings, leading to underestimation of true prevalence rates. Mass drug administration programs are unsustainable long-term, and diagnostic tools - required to be rapid, specific, sensitive, cost-effective, and user-friendly without specialized equipment and expertise - are urgently needed for rapid mapping of helminthic diseases and monitoring control programs. We describe the key features of the CRISPR-Cas12/13 system and emphasise its potential for the development of effective tools for the diagnosis of parasitic and other neglected tropical diseases (NTDs), a key recommendation of the NTDs 2021-2030 roadmap released by the World Health Organization.
Collapse
Affiliation(s)
- Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Catherine A Gordon
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Skye R MacGregor
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Pengfei Cai
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
| |
Collapse
|
34
|
Proteomic Analysis of Spore Surface Proteins and Characteristics of a Novel Spore Wall Protein and Biomarker, EhSWP3, from the Shrimp Microsporidium Enterocytozoon hepatopenaei (EHP). Microorganisms 2022; 10:microorganisms10020367. [PMID: 35208822 PMCID: PMC8874471 DOI: 10.3390/microorganisms10020367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/10/2022] Open
Abstract
Enterocytozoon hepatopenaei, a spore-forming and obligate intracellular microsporidium, mainly infects shrimp and results in growth retardation and body length variation, causing huge economic losses to the Asian shrimp aquaculture industry. However, the lack of a full understanding of the surface proteins of spores associated with host infection has hindered the development of technologies for the detection of EHP. In this study, the surface proteins of EHP spores were extracted using the improved SDS method, and 130 proteins were identified via LC-MS/MS analysis. Bioinformatic analysis revealed that these proteins were enriched in biological processes (67), cellular components (62), and molecular functions (71) based on GO terms. KEGG pathway analysis showed that 20 pathways, including the proteasome (eight proteins) and the fatty acid metabolism (15 proteins), were enriched. Among 15 high-abundance surface proteins (HASPs), EhSWP3 was identified as a novel spore wall protein (SWP), and was localized on the endospore of the EHP spores with an indirect immunofluorescence and immunoelectron microscopy assay. Polyclonal antibodies against EhSWP3 showed strong species specificity and high sensitivity to the hepatopancreas of EHP-infected shrimp. As a specific high-abundance protein, EhSWP3 is therefore a promising target for the development of immunoassay tools for EHP detection, and may play a crucial role in the invasion of EHP into the host.
Collapse
|
35
|
Li C, Lin N, Feng Z, Lin M, Guan B, Chen K, Liang W, Wang Q, Li M, You Y, Chen Q. CRISPR/Cas12a Based Rapid Molecular Detection of Acute Hepatopancreatic Necrosis Disease in Shrimp. Front Vet Sci 2022; 8:819681. [PMID: 35146019 PMCID: PMC8821903 DOI: 10.3389/fvets.2021.819681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/29/2021] [Indexed: 12/26/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), formerly called early mortality syndrome (EMS), causes high mortality in cultured penaeid shrimp, particularly Penaeus vannamei and Penaeus monodon. AHPND is mainly caused by Vibrio species carrying the pVA1 plasmid encoding the virulence genes Photorhabdus insect-related (pir) pirVPA and pirVPB. We developed a new molecular assay that combines recombinase polymerase amplification (RPA) and CRISPR/Cas12a technology (RPA-CRISPR/Cas12a) to detect pirVPA and pirVPB, with a fluorescent signal result. The fluorescence RPA-CRISPR/Cas12a assay had a detection limit of 20 copies/μL for pirVPA and pirVPB. To improve usability and visualize RPA-CRISPR/Cas12a assay results, a lateral flow strip readout was added. With the lateral flow strip, the RPA-CRISPR/Cas12a assay had a lower limit of detection of 200 copies/μL (0.3 fmol/L). The lateral flow assay can be completed in 2 h and showed no cross-reactivity with pathogens causing other shrimp diseases. In a field test of 60 shrimp samples, the RPA-CRISPR/Cas12a lateral flow assay showed 92.5% positive predictive agreement and 100% negative predictive agreement. As the new RPA-CRISPR/Cas12a assay is rapid, specific, and does not require complicated experimental equipment, it may have important field applications for detecting AHPND in farmed shrimp.
Collapse
Affiliation(s)
- Chenglong Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Nan Lin
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Minhua Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Biyun Guan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Kunsen Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Wangwang Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qiaohuang Wang
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
| | - Miaomiao Li
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
| | - Yu You
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
- *Correspondence: Yu You
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
- Qi Chen
| |
Collapse
|
36
|
Han B, Takvorian PM, Weiss LM. The Function and Structure of the Microsporidia Polar Tube. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 114:179-213. [PMID: 35544004 PMCID: PMC10037675 DOI: 10.1007/978-3-030-93306-7_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microsporidia are obligate intracellular pathogens that were initially identified about 160 years ago. Current phylogenetic analysis suggests that they are grouped with Cryptomycota as a basal branch or sister group to the fungi. Microsporidia are found worldwide and can infect a wide range of animals from invertebrates to vertebrates, including humans. They are responsible for a variety of diseases once thought to be restricted to immunocompromised patients but also occur in immunocompetent individuals. The small oval spore containing a coiled polar filament, which is part of the extrusion and invasion apparatus that transfers the infective sporoplasm to a new host, is a defining characteristic of all microsporidia. When the spore becomes activated, the polar filament uncoils and undergoes a rapid transition into a hollow tube that will transport the sporoplasm into a new cell. The polar tube has the ability to increase its diameter from approximately 100 nm to over 600 nm to accommodate the passage of an intact sporoplasm and penetrate the plasmalemma of the new host cell. During this process, various polar tube proteins appear to be involved in polar tube attachment to host cell and can interact with host proteins. These various interactions act to promote host cell infection.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathogenic Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
| | - Peter M Takvorian
- Department of Pathology, Albert Einstein College of Medicine, New York, USA
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, New York, USA.
- Department of Medicine, Albert Einstein College of Medicine, New York, USA.
| |
Collapse
|
37
|
Sukonta T, Senapin S, Meemetta W, Chaijarasphong T. CRISPR-based platform for rapid, sensitive and field-deployable detection of scale drop disease virus in Asian sea bass (Lates calcarifer). JOURNAL OF FISH DISEASES 2022; 45:107-120. [PMID: 34613623 DOI: 10.1111/jfd.13541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Scale drop disease virus (SDDV) is a major pathogen of Asian sea bass that has emerged in many countries across the Asia Pacific since 1992 and carries the potential to cause drastic economic losses to the aquaculture sector. The lack of an approved vaccine for SDDV necessitates timely prevention as the first line of defence against the disease, but current diagnostic platforms still face challenges that render them incompatible with field applications, particularly in resource-limited settings. Here, we developed a novel detection platform for SDDV based on a CRISPR-Cas12a-based nucleic acid detection technology combined with recombinase polymerase amplification (RPA-Cas12a). Using the viral adenosine triphosphatase (SDDV-ATPase) gene as a target, we achieved the detection limit of 40 copies per reaction and high specificity for SDDV. The coupling with fluorescence and lateral flow readouts enables naked-eye visualization and straightforward data interpretation requiring minimal scientific background. Compared with semi-nested PCR in field sample evaluation, our RPA-Cas12a assay is more sensitive and capable of detecting SDDV in asymptomatic fish. Importantly, the entire workflow can be carried out at a constant temperature of 37°C within an hour from start to finish, thus removing the need for an expensive thermal cycling apparatus and long turnaround times associated with PCR-based methods. Therefore, owing to its high accuracy, rapidity and user-friendliness, the developed RPA-Cas12a platform shows the potential for diagnosis of SDDV at point of need and could be a valuable tool to help protect fish farming communities from large-scale epidemics.
Collapse
Affiliation(s)
- Thanwarat Sukonta
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saengchan Senapin
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Watcharachai Meemetta
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Thawatchai Chaijarasphong
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
38
|
Kordyś M, Sen R, Warkocki Z. Applications of the versatile CRISPR-Cas13 RNA targeting system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1694. [PMID: 34553495 DOI: 10.1002/wrna.1694] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022]
Abstract
CRISPR-Cas are adaptable natural prokaryotic defense systems that act against invading viruses and plasmids. Among the six currently known major CRISPR-Cas types, the type VI CRISPR-Cas13 is the only one known to exclusively bind and cleave foreign RNA. Within the last couple of years, this system has been adapted to serve numerous, and sometimes not obvious, applications, including some that might be developed as effective molecular therapies. Indeed, Cas13 has been adapted to kill antibiotic-resistant bacteria. In a cell-free environment, Cas13 has been used in the development of highly specific, sensitive, multiplexing-capable, and field-adaptable detection tools. Importantly, Cas13 can be reprogrammed and applied to eukaryotes to either combat pathogenic RNA viruses or in the regulation of gene expression, facilitating the knockdown of mRNA, circular RNA, and noncoding RNA. Furthermore, Cas13 has been harnessed for in vivo RNA modifications including programmable regulation of alternative splicing, A-to-I and C to U editing, and m6A modifications. Finally, approaches allowing for the detection and characterization of RNA-interacting proteins have also been demonstrated. Here, we provide a comprehensive overview of the applications utilizing CRISPR-Cas13 that illustrate its versatility. We also discuss the most important limitations of the CRISPR-Cas13-based technologies, and controversies regarding them. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Martyna Kordyś
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | |
Collapse
|
39
|
CRISPR/Cas12a-Based Ultrasensitive and Rapid Detection of JAK2 V617F Somatic Mutation in Myeloproliferative Neoplasms. BIOSENSORS-BASEL 2021; 11:bios11080247. [PMID: 34436049 PMCID: PMC8394843 DOI: 10.3390/bios11080247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022]
Abstract
The JAK2 V617F mutation is a major diagnostic, therapeutic, and monitoring molecular target of Philadelphia-negative myeloproliferative neoplasms (MPNs). To date, numerous methods of detecting the JAK2 V617F mutation have been reported, but there is no gold-standard diagnostic method for clinical applications. Here, we developed and validated an efficient Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 12a (Cas12a)-based assay to detect the JAK2 V617F mutation. Our results showed that the sensitivity of the JAK2 V617F/Cas12a fluorescence detection system was as high as 0.01%, and the JAK2 V617F/Cas12a lateral flow strip assay could unambiguously detect as low as 0.5% of the JAK2 V617F mutation, which was much higher than the sensitivity required for clinical application. The minimum detectable concentration of genomic DNA achieved was 0.01 ng/μL (~5 aM, ~3 copies/μL). In addition, the whole process only took about 1.5 h, and the cost of an individual test was much lower than that of the current assays. Thus, our methods can be applied to detect the JAK2 V617F mutation, and they are highly sensitive, rapid, cost-effective, and convenient.
Collapse
|
40
|
Sathish Kumar T, Radhika K, Joseph Sahaya Rajan J, Makesh M, Alavandi SV, Vijayan KK. Closed-tube field-deployable loop-mediated isothermal amplification (LAMP) assay based on spore wall protein (SWP) for the visual detection of Enterocytozoon hepatopenaei (EHP). J Invertebr Pathol 2021; 183:107624. [PMID: 34077765 DOI: 10.1016/j.jip.2021.107624] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Hepatopancreatic microsporidiosis (HPM) is an infectious shrimp disease caused by the microsporidian Enterocytozoon hepatopenaei (EHP). In recent years, the widespread occurrence of EHP poses a significant challenge to the shrimp aquaculture industry. Early, rapid and accurate diagnosis of EHP infection is very much essential for the control of HPM crop-related losses. Loop-mediated isothermal amplification (LAMP) is a robust, sensitive, cost-effective disease diagnostic technique. Here, we demonstrate an improved, simple, closed-tube, colorimetric EHP LAMP diagnostic assay. LAMP assay was illustrated with the specific EHP spore wall protein (SWP) gene primers. Naked eye visual detection of LAMP amplicons was achieved using Hydroxy naphthol blue (HNB) or Phenol red dye without opening the tubes. This LAMP assay is efficient in detecting the EHP pathogen in all clinical samples include shrimp hepatopancreas, FTA card samples, feces, pond water, and soil. Also, the elution of EHP DNA from FTA cards was demonstrated within 17 min using a simple dry bath. In clinical evaluation, the visual LAMP assay established 100% diagnostic sensitivity and 100% diagnostic specificity. The visual LAMP assay is rapid, can detect the EHP pathogen within 40 min using a simple dry bath, and does not require any expensive instruments and technical proficiency. In conclusion, this visual LAMP protocol is a user-friendly, specific assay that can be conceivably operated at the farm-site/ resource-limited settings by the farmer himself with simple equipment.
Collapse
Affiliation(s)
- T Sathish Kumar
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India.
| | - K Radhika
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India
| | - J Joseph Sahaya Rajan
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India
| | - M Makesh
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India
| | - S V Alavandi
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India
| | - K K Vijayan
- ICAR-Central Institute of Brackishwater Aquaculture, #75 Santhome High Road, MRC Nagar, Chennai, India
| |
Collapse
|
41
|
Shi Y, Fu X, Yin Y, Peng F, Yin X, Ke G, Zhang X. CRISPR-Cas12a System for Biosensing and Gene Regulation. Chem Asian J 2021; 16:857-867. [PMID: 33638271 DOI: 10.1002/asia.202100043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/26/2021] [Indexed: 12/14/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a promising technology in the biological world. As one of the CRISPR-associated (Cas) proteins, Cas12a is an RNA-guided nuclease in the type V CRISPR-Cas system, which has been a robust tool for gene editing. In addition, due to the discovery of target-binding-induced indiscriminate single-stranded DNase activity of Cas12a, CRISPR-Cas12a also exhibits great promise in biosensing. This minireview not only gives a brief introduction to the mechanism of CRISPR-Cas12a but also highlights the recent developments and applications in biosensing and gene regulation. Finally, future prospects of the CRISPR-Cas12a system are also discussed. We expect this minireview will inspire innovative work on the CRISPR-Cas12a system by making full use of its features and advantages.
Collapse
Affiliation(s)
- Yuyan Shi
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiaoyi Fu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yao Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Fangqi Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xia Yin
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guoliang Ke
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
42
|
Li C, Brant E, Budak H, Zhang B. CRISPR/Cas: a Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J Zhejiang Univ Sci B 2021; 22:253-284. [PMID: 33835761 PMCID: PMC8042526 DOI: 10.1631/jzus.b2100009] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since it was first recognized in bacteria and archaea as a mechanism for innate viral immunity in the early 2010s, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) has rapidly been developed into a robust, multifunctional genome editing tool with many uses. Following the discovery of the initial CRISPR/Cas-based system, the technology has been advanced to facilitate a multitude of different functions. These include development as a base editor, prime editor, epigenetic editor, and CRISPR interference (CRISPRi) and CRISPR activator (CRISPRa) gene regulators. It can also be used for chromatin and RNA targeting and imaging. Its applications have proved revolutionary across numerous biological fields, especially in biomedical and agricultural improvement. As a diagnostic tool, CRISPR has been developed to aid the detection and screening of both human and plant diseases, and has even been applied during the current coronavirus disease 2019 (COVID-19) pandemic. CRISPR/Cas is also being trialed as a new form of gene therapy for treating various human diseases, including cancers, and has aided drug development. In terms of agricultural breeding, precise targeting of biological pathways via CRISPR/Cas has been key to regulating molecular biosynthesis and allowing modification of proteins, starch, oil, and other functional components for crop improvement. Adding to this, CRISPR/Cas has been shown capable of significantly enhancing both plant tolerance to environmental stresses and overall crop yield via the targeting of various agronomically important gene regulators. Looking to the future, increasing the efficiency and precision of CRISPR/Cas delivery systems and limiting off-target activity are two major challenges for wider application of the technology. This review provides an in-depth overview of current CRISPR development, including the advantages and disadvantages of the technology, recent applications, and future considerations.
Collapse
Affiliation(s)
- Chao Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Eleanor Brant
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT 59802, USA.
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
43
|
Mai HN, Aranguren Caro LF, Cruz-Flores R, Dhar AK. Development of a Recombinase Polymerase Amplification (RPA) assay for acute hepatopancreatic necrosis disease (AHPND) detection in Pacific white shrimp (Penaeus vannamei). Mol Cell Probes 2021; 57:101710. [PMID: 33722662 DOI: 10.1016/j.mcp.2021.101710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is currently the most important bacterial disease of shrimp that has caused enormous losses to the shrimp industry worldwide. The causative agent of AHPND are Vibrio spp. Carrying plasmids containing the pirA and pirB genes which encode binary toxins, PirAB. Currently, AHPND is mostly diagnosed by PCR-based platforms which require the use of sophisticated laboratory instrumentation and are not suitable for a point-of-care diagnostics. Therefore, the availability of an alternative method based on isothermal amplification would be suitable for AHPND detection outside a laboratory setting and extremely useful at a pond side location. Isothermal amplification is based on the nucleic acid amplification at a single temperature and does not require the use of a thermal cycler. In this study, we developed an isothermal Recombinase Polymerase Amplification (RPA) assay for AHPND detection targeting both pirA and pirB genes, simultaneously and evaluated the specificity and sensitivity of the assay. The assay could detect AHPND without any cross-reaction with other microbial pathogens and Specific Pathogen Free (SPF) shrimp. The limit of detection of the assay was 5 copies of pirAB genes. To evaluate the reliability of the assay in detecting AHPND, DNA from Penaeus vannamei shrimp displaying acute and chronic infection were analyzed by the RPA assay and the results were compared with SYBR Green real-time PCR assay. While there was a 100% conformity between the two assay while detecting acute phase infection, RPA appeared to be more sensitive in detecting chronic phase infection. The data suggest that RPA assay described here would be a reliable method in detecting AHPND outside a standard laboratory setting.
Collapse
Affiliation(s)
- Hung Nam Mai
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA
| | - Luis F Aranguren Caro
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA
| | - Roberto Cruz-Flores
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, 1117 E Lowell St, Tucson, AZ 85721, USA.
| |
Collapse
|
44
|
Ren M, Mei H, Zhou J, Zhou M, Han H, Zhao L. Early diagnosis of rabies virus infection by RPA-CRISPR techniques in a rat model. Arch Virol 2021; 166:1083-1092. [PMID: 33544254 PMCID: PMC7862975 DOI: 10.1007/s00705-021-04970-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022]
Abstract
Rabies, which is caused by rabies virus (RABV), poses an ever-present threat to public health in most countries of the world. Once clinical signs appear, the mortality of rabies approaches 100%. To date, no effective method for early rabies diagnosis has been developed. In this study, an RPA-CRISPR nucleic-acid-based assay was developed for early rabies diagnosis by detecting viral RNA shedding in the cerebrospinal fluid (CSF) of rats. This method can detect a single copy of RABV genomic RNA in 1 μL of liquid. RABV genomic RNA released from viral particles in the CSF could be detected via RPA-CRISPR as early as 3 days postinfection in a rat model. This study provides an RPA-CRISPR technique for early detection of RABV with potential application in the clinical diagnosis of human rabies.
Collapse
Affiliation(s)
- Meishen Ren
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Mei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaojiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ling Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Preventive Veterinary Medicine in Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
45
|
Srivastava S, Upadhyay DJ, Srivastava A. Next-Generation Molecular Diagnostics Development by CRISPR/Cas Tool: Rapid Detection and Surveillance of Viral Disease Outbreaks. Front Mol Biosci 2020; 7:582499. [PMID: 33425987 PMCID: PMC7785713 DOI: 10.3389/fmolb.2020.582499] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/04/2020] [Indexed: 12/26/2022] Open
Abstract
Virus disease spreads effortlessly mechanically or through minute insect vectors that are extremely challenging to avoid. Emergence and reemergence of new viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), H1N1 influenza virus, avian influenza virus, dengue virus, Citrus tristeza virus, and Tomato yellow leaf curl virus have paralyzed the economy of many countries. The cure for major viral diseases is not feasible; however, early detection and surveillance of the disease can obstruct their spread. Therefore, advances in the field of virus diagnosis and the development of new point-of-care testing kits become necessary globally. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) is an emerging technology for gene editing and diagnostics development. Several rapid nucleic acid diagnostic kits have been developed and validated using Cas9, Cas12, and Cas13 proteins. This review summarizes the CRISPR/Cas-based next-generation molecular diagnostic techniques and portability of devices for field-based utilization.
Collapse
Affiliation(s)
- Sonal Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, India
| | | | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
46
|
Aman R, Mahas A, Marsic T, Hassan N, Mahfouz MM. Efficient, Rapid, and Sensitive Detection of Plant RNA Viruses With One-Pot RT-RPA-CRISPR/Cas12a Assay. Front Microbiol 2020; 11:610872. [PMID: 33391239 PMCID: PMC7773598 DOI: 10.3389/fmicb.2020.610872] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/30/2020] [Indexed: 12/25/2022] Open
Abstract
Most viruses that infect plants use RNA to carry their genomic information; timely and robust detection methods are crucial for efficient control of these diverse pathogens. The RNA viruses, potexvirus (Potexvirus, family Alphaflexiviridae), potyvirus (Potyvirus, family Potyviridae), and tobamovirus (Tobamovirus, family Virgaviridae) are among the most economically damaging pathogenic plant viruses, as they are highly infectious and distributed worldwide. Their infection of crop plants, alone or together with other viruses, causes severe yield losses. Isothermal nucleic acid amplification methods, such as loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), and others have been harnessed for the detection of DNA- and RNA-based viruses. However, they have a high rate of non-specific amplification and other drawbacks. The collateral activities of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated nuclease Cas systems such as Cas12 and Cas14 (which act on ssDNA) and Cas13 (which acts on ssRNA) have recently been exploited to develop highly sensitive, specific, and rapid detection platforms. Here, we report the development of a simple, rapid, and efficient RT- RPA method, coupled with a CRISPR/Cas12a-based one-step detection assay, to detect plant RNA viruses. This diagnostic method can be performed at a single temperature in less than 30 min and integrated with an inexpensive commercially available fluorescence visualizer to facilitate rapid, in-field diagnosis of plant RNA viruses. Our developed assay provides an efficient and robust detection platform to accelerate plant pathogen detection and fast-track containment strategies.
Collapse
Affiliation(s)
- Rashid Aman
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ahmed Mahas
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Tin Marsic
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Norhan Hassan
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
47
|
Wang L, Lv Q, He Y, Gu R, Zhou B, Chen J, Fan X, Pan G, Long M, Zhou Z. Integrated qPCR and Staining Methods for Detection and Quantification of Enterocytozoon hepatopenaei in Shrimp Litopenaeus vannamei. Microorganisms 2020; 8:microorganisms8091366. [PMID: 32906623 PMCID: PMC7565997 DOI: 10.3390/microorganisms8091366] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Enterocytozoon hepatopenaei (EHP) is an obligate, intracellular, spore-forming parasite, which mainly infects the gastrointestinal tract of shrimp. It significantly hinders the growth of shrimp, which causes substantial economic losses in farming. In this study, we established and optimized a SYBR Green I fluorescent quantitative PCR (qPCR) assay based on the polar tube protein 2 (PTP2) gene for the quantitative analysis of EHP-infected shrimp. The result showed that the optimum annealing temperature was 60 °C for the corresponding relation between the amplification quantitative (Cq) and the logarithmic of the initial template quantity (x), conformed to Cq = −3.2751x + 31.269 with a correlation coefficient R2 = 0.993. The amplification efficiency was 102%. This qPCR method also showed high sensitivity, specificity, and repeatability. Moreover, a microscopy method was developed to observe and count EHP spores in hepatopancreas tissue of EHP-infected shrimp using Fluorescent Brightener 28 staining. By comparing the PTP2-qPCR and microscopy method, the microscopic examination was easier to operate whereas PTP2-qPCR was more sensitive for analysis. And we found that there was a correspondence between the results of these two methods. In summary, the PTP2-qPCR method integrated microscopy could serve for EHP detection during the whole period of shrimp farming and satisfy different requirements for detecting EHP in shrimp farming.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Qing Lv
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Yantong He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Ruocheng Gu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Bingqian Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Xiaodong Fan
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
- Correspondence:
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (L.W.); (Q.L.); (Y.H.); (R.G.); (B.Z.); (J.C.); (G.P.); (Z.Z.)
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China;
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
48
|
Chaijarasphong T, Munkongwongsiri N, Stentiford GD, Aldama-Cano DJ, Thansa K, Flegel TW, Sritunyalucksana K, Itsathitphaisarn O. The shrimp microsporidian Enterocytozoon hepatopenaei (EHP): Biology, pathology, diagnostics and control. J Invertebr Pathol 2020; 186:107458. [PMID: 32882232 DOI: 10.1016/j.jip.2020.107458] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/12/2020] [Accepted: 08/26/2020] [Indexed: 12/27/2022]
Abstract
Disease is a major limiting factor in the global production of cultivated shrimp. The microsporidian parasite Enterocytozoon hepatopenaei (EHP) was formally characterized in 2009 as a rare infection of the black tiger shrimp Penaeus monodon. It remained relatively unstudied until mid-2010, after which infection with EHP became increasingly common in the Pacific whiteleg shrimp Penaeus vannamei, by then the most common shrimp species farmed in Asia. EHP infects the hepatopancreas of its host, causing hepatopancreatic microsporidiosis (HPM), a condition that has been associated with slow growth of the host in aquaculture settings. Unlike other infectious disease agents that have caused economic losses in global shrimp aquaculture, EHP has proven more challenging because too little is still known about its environmental reservoirs and modes of transmission during the industrial shrimp production process. This review summarizes our current knowledge of the EHP life cycle and the molecular strategies that it employs as an obligate intracellular parasite. It also provides an analysis of available and new methodologies for diagnosis since most of the current literature on EHP focuses on that topic. We summarize current knowledge of EHP infection and transmission dynamics and currently recommended, practical control measures that are being applied to limit its negative impact on shrimp cultivation. We also point out the major gaps in knowledge that urgently need to be bridged in order to improve control measures.
Collapse
Affiliation(s)
- Thawatchai Chaijarasphong
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand
| | - Natthinee Munkongwongsiri
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand
| | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset DT4 8UB, UK; Centre for Sustainable Aquaculture Futures, University of Exeter, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Diva J Aldama-Cano
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand; Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand
| | - Kwanta Thansa
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand
| | - Timothy W Flegel
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park (TSP), Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kallaya Sritunyalucksana
- Aquatic Animal Health Research Team (AQHT), Integrative Aquaculture Biotechnology, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Yothi Office, Rama VI Rd., Bangkok 10400, Thailand
| | - Ornchuma Itsathitphaisarn
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Rd., Bangkok 10400, Thailand.
| |
Collapse
|