1
|
Mayegowda SB, Gadilingappa MN. Microbial Siderophores: A New Insight on Healthcare Applications. BME FRONTIERS 2025; 6:0112. [PMID: 40124737 PMCID: PMC11927942 DOI: 10.34133/bmef.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
Globally, increased illness and disorders have gained importance in improvising therapeutics to help extend the lifespan of an individual. In this scenario, understanding the mechanism of bacterial pathogenicity linked to the interaction between the host and the pathogen focusing on essential metal ions is necessary. Numerous studies indicate that the severity of a disease might be due to the reduced availability of iron, linked to abnormal production or lack of acquisition systems. However, several microbes produce siderophores as virulence factors, low-molecular-weight organic compounds for acquisition of iron by iron-chelating systems. In medical applications, siderophores are employed in novel strategies in order to design effective new drugs and vaccines, targeting and delivering antibiotics to target sites in multidrug-resistant pathogens. Meanwhile, some types of siderophores are used as drug delivery modalities and antimalarial, anticancer, and antibacterial agents, for example, by employing conjugation techniques such as Trojan horse delivery. Hence, the current review integrates several applications of siderophores with an overview covering taxonomy, organisms producing iron affinity carriers, and their acquisition mechanism. This understanding may delineate newer opportunities to adapt possible therapies and/or treatments against several multidrug-resistant pathogens, representing a crucial solution for public health problems worldwide.
Collapse
|
2
|
Ojo O, Njanje I, Abdissa D, Swart T, Higgitt RL, Dorrington RA. Newly isolated terpenoids (covering 2019-2024) from Aspergillus species and their potential for the discovery of novel antimicrobials. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:19. [PMID: 40097883 PMCID: PMC11914449 DOI: 10.1007/s13659-025-00501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025]
Abstract
The rapid emergence of drug-resistant microbial pathogens has posed challenges to global health in the twenty-first century. This development has significantly made most antibiotics ineffective in the treatment of infections they cause, resulting in increasing treatment costs and annual death rates. To address the challenge posed by these pathogens, we explore the potential of secondary metabolites from Aspergillus species as a source of new and effective therapeutic agents to treat drug-resistant infections. Terpenoids, a distinct group of natural products, are extensively distributed in plants and fungi, and have been attributed with significant antibacterial, anticancer, and antiviral activities. In this review, we present an overview of Aspergillus species, and review the novel terpenoids isolated from them from 2019 to April 2024, highlighting anti-infective activity against members of the ESKAPE pathogens. We further focus on the strategies through which the structural framework of these new terpenoids could be modified and/or optimized to feed a pipeline of new lead compounds targeting microbial pathogens. Overall, this review provides insight into the therapeutic applications of terpenoids sourced from Aspergillus species and the potential for the discovery of new compounds from these fungi to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Olusesan Ojo
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa.
- Department of Chemical Sciences, Lead City University, P.O. Box 30678, Ibadan, Oyo State, Nigeria.
| | - Idris Njanje
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Dele Abdissa
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
- Department of Chemistry, College of Natural Sciences, Jimma University, P.O Box 378, Jimma, Ethiopia
| | - Tarryn Swart
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Roxanne L Higgitt
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa
| | - Rosemary A Dorrington
- Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, Makhanda, South Africa.
| |
Collapse
|
3
|
Hong S, Lu H, Tian D, Chang Y, Lu Q, Gao F. Discovery of triazole derivatives for biofilm disruption, anti-inflammation and metal ion chelation. Front Chem 2025; 13:1545259. [PMID: 40078565 PMCID: PMC11897050 DOI: 10.3389/fchem.2025.1545259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
In the face of bacterial hazards to human health and resistance to multiple antibiotics, there is an urgent need to develop new antibiotics to meet the challenge. In this paper, the triazolyl heterocyclic (3-amino-1,2,4-triazole, D) was synthesised efficiently using thiourea as starting material. Finally, the end product E was obtained by aldehyde-amine condensation reaction and the structures of all compounds were determined by spectral analysis. In vitro antimicrobial activity showed that E10 had a MIC of 32 μg/mL against the tested Escherichia coli and 16 μg/mL against the tested Staphylococcus aureus strain. Meanwhile, E10 has a good anti-biofilm effect. Antibacterial mechanism studies have shown that E10 has a good membrane targeting ability, thus disrupting cell membranes, leading to leakage of intracellular proteins and DNA and accelerating bacterial death. In terms of anti-inflammation, E10 dose-dependently inhibits the levels of inflammatory factors NO and IL-6, which deserves further exploration in the treatment of asthma. The study of metal ion removal capacity showed that the synthesised triazole derivatives have high capacity to remove heavy metals Pb2+, Cd2+, Ca2+, Mg2+, Fe3+,Cr3+ and Al3+ in the range of 42%-60%.
Collapse
Affiliation(s)
| | - Hongzhi Lu
- Department of Pediatrics, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China
| | | | | | | | | |
Collapse
|
4
|
Sakalauskienė GV, Malcienė L, Stankevičius E, Radzevičienė A. Unseen Enemy: Mechanisms of Multidrug Antimicrobial Resistance in Gram-Negative ESKAPE Pathogens. Antibiotics (Basel) 2025; 14:63. [PMID: 39858349 PMCID: PMC11762671 DOI: 10.3390/antibiotics14010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Multidrug antimicrobial resistance (AMR) represents a formidable challenge in the therapy of infectious diseases, triggered by the particularly concerning gram-negative Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) pathogens. Designated as a "priority" in 2017, these bacteria continue to pose a significant threat in 2024, particularly during the worldwide SARS-CoV-2 pandemic, where coinfections with ESKAPE members contributed to worsened patient outcomes. The declining effectiveness of current treatments against these pathogens has led to an increased disease burden and an increase in mortality rates globally. This review explores the sophisticated mechanisms driving AMR in gram-negative ESKAPE bacteria, focusing on Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Enterobacter spp. Key bacterial mechanisms contributing to resistance include limitations in drug uptake, production of antibiotic-degrading enzymes, alterations in drug target sites, and enhanced drug efflux systems. Comprehending these pathways is vital for formulating innovative therapeutic strategies and tackling the ongoing threat posed by these resistant pathogens.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.M.); (E.S.); (A.R.)
| | | | | | | |
Collapse
|
5
|
Salikin NH, Keong LC, Azemin WA, Philip N, Yusuf N, Daud SA, Rashid SA. Combating multidrug-resistant (MDR) Staphylococcus aureus infection using terpene and its derivative. World J Microbiol Biotechnol 2024; 40:402. [PMID: 39627623 DOI: 10.1007/s11274-024-04190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus represents a major global health issue resulting in a wide range of debilitating infections and fatalities. The slow progression of new antibiotics, limited choices for treatment, and scarcity of new drug approvals create immense obstacles in new drug line development. S. aureus poses a significant public health risk, due to the emergence of methicillin-resistant (MRSA) and vancomycin-resistant strains (VRSA), necessitating novel antibiotics for effective control management. Current studies are delving into the terpenes' potential as an antimicrobial agent, indicating positive prospects as promising substitutes or complementary to conventional antibiotics. Concurrent reactions of terpenes with conventional antibiotics create synergistic effects that significantly enhance antibiotic efficacy. Accumulated evidence has shown that while efflux pump (e.g., NorA, TetK, and MepA) is revealed as an essential defense of S. aureus against antibiotics, terpene and its derivative act as its potent inhibitor, suggesting the promising potential of terpenes in combating those infectious pathogens. Furthermore, pronounced cell membrane disruptive activity and antibiofilm properties by terpenes have been exerted, signifying their significance as promising prevention against microbial pathogenesis and antimicrobial resistance. This review provides an overview of the potential of terpenes and their derivatives in combating S. aureus infections, highlighting their potential mechanisms of action (MOA), synergistic effects with conventional antibiotics, and challenges in clinical translation. The unique properties of terpenes offer an opportunity for their use in developing an exceptional defense strategy against antibiotic-resistant S. aureus.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Lee Chee Keong
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Wan-Atirah Azemin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Noraini Philip
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Nurhaida Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Aceh, Indonesia
| | - Siti Aisyah Daud
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia
| | - Syarifah Ab Rashid
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Pulau Pinang, Malaysia.
| |
Collapse
|
6
|
Hussein S, Ahmed SK, Mohammed SM, Qurbani K, Ali S, Saber AF, Khdir K, Shareef S, Rasool AH, Mousa S, Sidiq AS, Hamzah H. Recent developments in antibiotic resistance: an increasing threat to public health. ANNALS OF ANIMAL SCIENCE 2024. [DOI: 10.2478/aoas-2024-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Antibiotic resistance (ABR) is a major global health threat that puts decades of medical progress at risk. Bacteria develop resistance through various means, including modifying their targets, deactivating drugs, and utilizing efflux pump systems. The main driving forces behind ABR are excessive antibiotic use in healthcare and agriculture, environmental contamination, and gaps in the drug development process. The use of advanced detection technologies, such as next-generation sequencing (NGS), clustered regularly interspaced short palindromic repeats (CRISPR)-based diagnostics, and metagenomics, has greatly improved the identification of resistant pathogens. The consequences of ABR on public health are significant, increased mortality rates, the endangerment of modern medical procedures, and resulting in higher healthcare expenses. It has been expected that ABR could potentially drive up to 24 million individuals into extreme poverty by 2030. Mitigation strategies focus on antibiotic stewardship, regulatory measures, research incentives, and raising public awareness. Furthermore, future research directions involve exploring the potential of CRISPR-Cas9 (CRISPR-associated protein 9), nanotechnology, and big data analytics as new antibiotic solutions. This review explores antibiotic resistance, including mechanisms, recent trends, drivers, and technological advancements in detection. It also evaluates the implications for public health and presents strategies for mitigating resistance. The review emphasizes the significance of future directions and research needs, stressing the necessity for sustained and collaborative efforts to tackle this issue.
Collapse
Affiliation(s)
- Safin Hussein
- Department of Biology, College of Science , University of Raparin , Rania, Sulaymaniyah, Kurdistan Region, 46012 , Iraq
| | - Sirwan Khalid Ahmed
- College of Nursing , University of Raparin , Rania, Sulaymaniyah, Kurdistan Region, 46012 , Iraq
| | - Saman M. Mohammed
- Department of Biology, College of Education , University of Sulaimani , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Karzan Qurbani
- Department of Biology, College of Science , University of Raparin , Rania, Sulaymaniyah, Kurdistan Region, 46012 , Iraq
| | - Seenaa Ali
- Department of Medical Laboratory, College of Health and Medical Technology , Sulaimani Polytechnic University , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Abdulmalik Fareeq Saber
- Department of Psychiatric and Mental Health Nursing, College of Nursing , Hawler Medical University , Erbil, Kurdistan Region, 44001 , Iraq
| | - Karokh Khdir
- Department of Biology, College of Education , University of Sulaimani , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Salar Shareef
- Department of Medical Laboratory Science, College of Science , University of Raparin , Rania, Sulaymaniyah, Kurdistan Region, 46012 , Iraq
| | - Aram H. Rasool
- Department of Medical Laboratory Science, College of Health Sciences , University of Human Development , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Sumayah Mousa
- Department of Medical Laboratory Science, College of Science , Komar University of Science and Technology , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Avin S. Sidiq
- Department of Anesthesia, College of Health Sciences , Cihan University Sulaimaniya , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| | - Haider Hamzah
- Department of Biology, College of Science , University of Sulaimani , Sulaymaniyah, Kurdistan Region, 46001 , Iraq
| |
Collapse
|
7
|
Venkatesan LS, Sathishkumar P. Combination therapy of natural products for the treatment of ESKAPE pathogens. Nat Prod Res 2024:1-2. [PMID: 39506336 DOI: 10.1080/14786419.2024.2425050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Affiliation(s)
- Lekha Sree Venkatesan
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| | - Palanivel Sathishkumar
- Green Lab, Department of Prosthodontics, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
8
|
Sakalauskienė GV, Radzevičienė A. Antimicrobial Resistance: What Lies Beneath This Complex Phenomenon? Diagnostics (Basel) 2024; 14:2319. [PMID: 39451642 PMCID: PMC11506786 DOI: 10.3390/diagnostics14202319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Antimicrobial Resistance (AMR) has evolved from a mere concern into a significant global threat, with profound implications for public health, healthcare systems, and the global economy. Since the introduction of antibiotics between 1945 and 1963, their widespread and often indiscriminate use in human medicine, agriculture, and animal husbandry has led to the emergence and rapid spread of antibiotic-resistant genes. Bacteria have developed sophisticated mechanisms to evade the effects of antibiotics, including drug uptake limitation, drug degradation, target modification, efflux pumps, biofilm formation, and outer membrane vesicles production. As a result, AMR now poses a threat comparable to climate change and the COVID-19 pandemic, and projections suggest that death rates will be up to 10 million deaths annually by 2050, along with a staggering economic cost exceeding $100 trillion. Addressing AMR requires a multifaceted approach, including the development of new antibiotics, alternative therapies, and a significant shift in antibiotic usage and regulation. Enhancing global surveillance systems, increasing public awareness, and prioritizing investments in research, diagnostics, and vaccines are critical steps. By recognizing the gravity of the AMR threat and committing to collaborative action, its impact can be mitigated, and global health can be protected for future generations.
Collapse
Affiliation(s)
- Giedrė Valdonė Sakalauskienė
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | | |
Collapse
|
9
|
Krug L, Bjarnesen D, Lanza L, Lindemann L, Fessner ND, Müller M. Identification of Kibdelomycin and Related Biosynthetic Gene Clusters and Characterization of the C-Branching of Amycolose. Angew Chem Int Ed Engl 2024; 63:e202403535. [PMID: 38951114 DOI: 10.1002/anie.202403535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Many bacterial natural products contain C-branched sugars, including components from the outer cell wall or antibiotically active metabolites. The enzymatic C-branching of keto sugars leading to longer side chains (≥C2) is catalyzed by thiamine diphosphate (ThDP)-dependent enzymes. Chiral tertiary α-hydroxy ketones are formed in this process. The ThDP-dependent enzymes that catalyze C-branching reactions belong to one of three enzymatic superfamilies: decarboxylases, transketolases, and α-ketoacid dehydrogenases 2, but branching of keto sugars has only been demonstrated for decarboxylases. In this study, we showed that an α-ketoacid dehydrogenase is responsible for C-branching of the deoxyketo sugar amycolose in the biosynthesis of kibdelomycin in Kibdelosporangium sp. MA7385. In addition, we characterized an amino transferase in the same biosynthetic gene cluster (BGC) that accepts a sterically demanding tertiary α-hydroxy ketone in a downstream reaction. Subsequently, we identified approximately 400 similar BGCs in silico, suggesting that there is a large diversity of possible ThDP-dependent enzymes catalyzing the C-branching of keto sugars and subsequent modifications.
Collapse
Affiliation(s)
- Leonhard Krug
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Daniela Bjarnesen
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Lucrezia Lanza
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Lucia Lindemann
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Nico D Fessner
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Michael Müller
- Institut für Pharmazeutische Wissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| |
Collapse
|
10
|
Tenover FC, Tickler IA. Genomic Analysis of Enterobacter Species Isolated from Patients in United States Hospitals. Antibiotics (Basel) 2024; 13:865. [PMID: 39335038 PMCID: PMC11428811 DOI: 10.3390/antibiotics13090865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
We analyzed the whole genome sequences (WGS) and antibiograms of 35 Enterobacter isolates, including E. hormaechei and E. asburiae, and the recently described E. bugandensis, E. kobei, E. ludwigii, and E. roggenkampii species. Isolates were obtained from human blood and urinary tract infections in patients in the United States. Our goal was to understand the genetic diversity of antimicrobial resistance genes and virulence factors among the various species. Thirty-four of 35 isolates contained an AmpC class blaACT allele; however, the E. roggenkampii isolate contained blaMIR-5. Of the six Enterobacter isolates resistant to ertapenem, imipenem, and meropenem, four harbored a carbapenemase gene, including blaKPC or blaNDM. All four isolates were mCIM-positive. The remaining two isolates had alterations in ompC genes that may have contributed to the resistance phenotype. Interpretations of cefepime test results were variable when disk diffusion and automated broth microdilution results were compared due to the Clinical Laboratory and Standards Institute use of the "susceptible dose-dependent" classification. The diversity of the blaACT alleles paralleled species identifications, as did the presence of various virulence genes. The classification of recently described Enterobacter species is consistent with their resistance gene and virulence gene profiles.
Collapse
Affiliation(s)
- Fred C. Tenover
- College of Arts and Sciences, University of Dayton, Dayton, OH 45469, USA;
| | | |
Collapse
|
11
|
Singh A, Pratap SG, Raj A. Occurrence and dissemination of antibiotics and antibiotic resistance in aquatic environment and its ecological implications: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47505-47529. [PMID: 39028459 DOI: 10.1007/s11356-024-34355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The occurrence of antibiotics and antibiotic-resistant bacteria (ARBs), genes (ARGs), and mobile genetic elements (MGEs) in aquatic systems is growing global public health concern. These emerging micropollutants, stemming from improper wastewater treatment and disposal, highlight the complex and evolving nature of environmental pollution. Current literature reveals potential biases, such as a geographical focus on specific regions, leading to an insufficient understanding of the global distribution and dynamics of antibiotic resistance in aquatic systems. There is methodological inconsistency across studies, making it challenging to compare findings. Potential biases include sample collection inconsistencies, detection sensitivity variances, and data interpretation variability. Gaps in understanding include the need for comprehensive, standardized long-term monitoring programs, elucidating the environmental fate and transformation of antibiotics and resistance genes. This review summarizes current knowledge on the occurrence and dissemination of emerging micropollutants, their ecological impacts, and the global health implications of antimicrobial resistance. It highlights the need for interdisciplinary collaborations among researchers, policymakers, and stakeholders to address the challenges posed by antibiotic resistance in aquatic resistance in aquatic systems effectively. This review highlights widespread antibiotic and antibiotic resistance in aquatic environment, driven by human and agricultural activities. It underscores the ecological consequences, including disrupted microbial communities and altered ecosystem functions. The findings call for urgent measures to mitigate antibiotics pollution and manage antibiotic resistance spread in water bodies.
Collapse
Affiliation(s)
- Anjali Singh
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Shalini G Pratap
- School of Environmental Science, Babu Banarsi Das University, Lucknow, 227015, Uttar Pradesh, India
| | - Abhay Raj
- Environmental Microbiology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow, 226 001, Uttar Pradesh, India.
| |
Collapse
|
12
|
de Araújo-Neto JB, Oliveira-Tintino CDDM, de Araújo GA, Alves DS, Ribeiro FR, Brancaglion GA, Carvalho DT, Lima CMG, Mohammed Ali HSH, Rather IA, Wani MY, Emran TB, Coutinho HDM, Balbino VDQ, Tintino SR. 3-Substituted Coumarins Inhibit NorA and MepA Efflux Pumps of Staphylococcus aureus. Antibiotics (Basel) 2023; 12:1739. [PMID: 38136773 PMCID: PMC10741188 DOI: 10.3390/antibiotics12121739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Coumarins are compounds with scientifically proven antibacterial properties, and modifications to the chemical structure are known to improve their effects. This information is even more relevant with the unbridled advances of antibiotic resistance, where Staphylococcus aureus and its efflux pumps play a prominent role. The study's objective was to evaluate the potential of synthetic coumarins with different substitutions in the C-3 position as possible inhibitors of the NorA and MepA efflux pumps of S. aureus. For this evaluation, the following steps took place: (i) the determination of the minimum inhibitory concentration (MIC); (ii) the association of coumarins with fluoroquinolones and ethidium bromide (EtBr); (iii) the assessment of the effect on EtBr fluorescence emission; (iv) molecular docking; and (v) an analysis of the effect on membrane permeability. Coumarins reduced the MICs of fluoroquinolones and EtBr between 50% and 87.5%. Coumarin C1 increased EtBr fluorescence emission between 20 and 40% by reinforcing the evidence of efflux inhibition. The molecular docking results demonstrated that coumarins have an affinity with efflux pumps and establish mainly hydrogen bonds and hydrophobic interactions. Furthermore, C1 did not change the permeability of the membrane. Therefore, we conclude that these 3-substituted coumarins act as inhibitors of the NorA and MepA efflux pumps of S. aureus.
Collapse
Affiliation(s)
- José B. de Araújo-Neto
- Postgraduate Program in Biological Sciences, Biosciences Center, Federal University of Pernambuco, Recife 50740-570, PE, Brazil; (J.B.d.A.-N.); (V.d.Q.B.)
| | - Cícera D. de M. Oliveira-Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Gildênia A. de Araújo
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Daniel S. Alves
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Fernanda R. Ribeiro
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | - Guilherme A. Brancaglion
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | - Diogo T. Carvalho
- Pharmaceutical Chemistry Research Laboratory, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil; (F.R.R.); (G.A.B.); (D.T.C.)
| | | | - Hani S. H. Mohammed Ali
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.H.M.A.); (I.A.R.)
| | - Irfan A. Rather
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.S.H.M.A.); (I.A.R.)
| | - Mohmmad Y. Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Talha B. Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Henrique D. M. Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| | - Valdir de Q. Balbino
- Postgraduate Program in Biological Sciences, Biosciences Center, Federal University of Pernambuco, Recife 50740-570, PE, Brazil; (J.B.d.A.-N.); (V.d.Q.B.)
| | - Saulo R. Tintino
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (C.D.d.M.O.-T.); (G.A.d.A.); (D.S.A.); (S.R.T.)
| |
Collapse
|
13
|
Zhou H, Wang W, Cai L, Yang T. Potentiation and Mechanism of Berberine as an Antibiotic Adjuvant Against Multidrug-Resistant Bacteria. Infect Drug Resist 2023; 16:7313-7326. [PMID: 38023403 PMCID: PMC10676105 DOI: 10.2147/idr.s431256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
The growing global apprehension towards multi-drug resistant (MDR) bacteria necessitates the development of innovative strategies to combat these infections. Berberine (BER), an isoquinoline quaternary alkaloid derived from various medicinal plants, has surfaced as a promising antibiotic adjuvant due to its ability to enhance the effectiveness of conventional antibiotics against drug-resistant bacterial strains. Here, we overview the augmenting properties and mechanisms of BER as an adjunctive antibiotic against MDR bacteria. BER has been observed to exhibit synergistic effects when co-administered with a range of antibiotics, including β-lactams, quinolones, aminoglycosides, tetracyclines, macrolides, lincosamides and fusidic acid. The adjunctive properties of BER led to an increase in antimicrobial effectiveness for these antibiotics against the corresponding bacteria, a decrease in minimal inhibitory concentrations, and even the reversal from resistance to susceptibility sometimes. The potential mechanisms responsible for these effects included the inhibition of antibiotic efflux, the disruption of biofilm formation, the modulation of host immune responses, and the restoration of gut microbiota homeostasis. In brief, BER demonstrated significant potential as an antibiotic adjuvant against MDR bacteria and is a promising candidate for combination therapy. Further research is necessary to fully elucidate its mechanism of action and address the challenges associated with its clinical application.
Collapse
Affiliation(s)
- Hongjuan Zhou
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenli Wang
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Long Cai
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Tingting Yang
- Clinical Laboratory Experiment Center, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
14
|
Sin SQ, Mohan CD, Goh RMWJ, You M, Nayak SC, Chen L, Sethi G, Rangappa KS, Wang L. Hypoxia signaling in hepatocellular carcinoma: Challenges and therapeutic opportunities. Cancer Metastasis Rev 2023; 42:741-764. [PMID: 36547748 DOI: 10.1007/s10555-022-10071-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers with a relatively high cancer-related mortality. The uncontrolled proliferation of HCC consumes a significant amount of oxygen, causing the development of a hypoxic tumor microenvironment (TME). Hypoxia-inducible factors (HIFs), crucial regulators in the TME, activate several cancer hallmarks leading to the hepatocarcinogenesis of HCC and resistance to current therapeutics. As such, HIFs and their signaling pathways have been explored as potential therapeutic targets for the future management of HCC. This review discusses the current understanding of the structure and function of HIFs and their complex relationship with the various cancer hallmarks. To address tumor hypoxia, this review provides an insight into the various potential novel therapeutic agents for managing HCC, such as hypoxia-activated prodrugs, HIF inhibitors, nanomaterials, antisense oligonucleotides, and natural compounds, that target HIFs/hypoxic signaling pathways in HCC. Because of HCC's relatively high incidence and mortality rates in the past decades, greater efforts should be put in place to explore novel therapeutic approaches to improve the outcome for HCC patients.
Collapse
Affiliation(s)
- Shant Qinxiang Sin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | | | - Mingliang You
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Institute, Hangzhou, 31002, China
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou, 31002, China
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Lu Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Lingzhi Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Borehalli Mayegowda S, Roy A, N. G. M, Pandit S, Alghamdi S, Almehmadi M, Allahyani M, Awwad NS, Sharma R. Eco-friendly synthesized nanoparticles as antimicrobial agents: an updated review. Front Cell Infect Microbiol 2023; 13:1224778. [PMID: 37662011 PMCID: PMC10472938 DOI: 10.3389/fcimb.2023.1224778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 09/05/2023] Open
Abstract
Green synthesis of NPs has gained extensive acceptance as they are reliable, eco-friendly, sustainable, and stable. Chemically synthesized NPs cause lung inflammation, heart problems, liver dysfunction, immune suppression, organ accumulation, and altered metabolism, leading to organ-specific toxicity. NPs synthesized from plants and microbes are biologically safe and cost-effective. These microbes and plant sources can consume and accumulate inorganic metal ions from their adjacent niches, thus synthesizing extracellular and intracellular NPs. These inherent characteristics of biological cells to process and modify inorganic metal ions into NPs have helped explore an area of biochemical analysis. Biological entities or their extracts used in NPs include algae, bacteria, fungi, actinomycetes, viruses, yeasts, and plants, with varying capabilities through the bioreduction of metallic NPs. These biosynthesized NPs have a wide range of pharmaceutical applications, such as tissue engineering, detection of pathogens or proteins, antimicrobial agents, anticancer mediators, vehicles for drug delivery, formulations for functional foods, and identification of pathogens, which can contribute to translational research in medical applications. NPs have various applications in the food and drug packaging industry, agriculture, and environmental remediation.
Collapse
Affiliation(s)
| | - Arpita Roy
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India
| | - Manjula N. G.
- Department of Microbiology, School of Basic and Applied Sciences, Dayananda Sagar University, Bengaluru, India
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Science and Research, Sharda University, Greater Noida, India
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Nasser S. Awwad
- Department of Chemistry, King Khalid University, Abha, Saudi Arabia
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
16
|
Jadimurthy R, Jagadish S, Nayak SC, Kumar S, Mohan CD, Rangappa KS. Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance. Life (Basel) 2023; 13:948. [PMID: 37109477 PMCID: PMC10145550 DOI: 10.3390/life13040948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Plants have been used for therapeutic purposes against various human ailments for several centuries. Plant-derived natural compounds have been implemented in clinics against microbial diseases. Unfortunately, the emergence of antimicrobial resistance has significantly reduced the efficacy of existing standard antimicrobials. The World Health Organization (WHO) has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. Therefore, it is the need of the hour to discover new antimicrobial agents against drug-resistant pathogens. In the present article, we have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens. The WHO has categorized some drug-resistant bacteria and fungi as critical and high priority based on the need to develope new drugs, and we have considered the plant metabolites that target these bacteria and fungi. We have also emphasized the role of phytochemicals that target deadly viruses such as COVID-19, Ebola, and dengue. Additionally, we have also elaborated on the synergetic effect of plant-derived compounds with standard antimicrobials against clinically important microbes. Overall, this article provides an overview of the importance of considering phytogenous compounds in the development of antimicrobial compounds as therapeutic agents against drug-resistant microbes.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Swamy Jagadish
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India;
| | - Sumana Kumar
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | | |
Collapse
|
17
|
Rotti RB, Sunitha DV, Manjunath R, Roy A, Mayegowda SB, Gnanaprakash AP, Alghamdi S, Almehmadi M, Abdulaziz O, Allahyani M, Aljuaid A, Alsaiari AA, Ashgar SS, Babalghith AO, Abd El-Lateef AE, Khidir EB. Green synthesis of MgO nanoparticles and its antibacterial properties. Front Chem 2023; 11:1143614. [PMID: 37035117 PMCID: PMC10078987 DOI: 10.3389/fchem.2023.1143614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
Magnesium oxide nanostructured particles (NP) were prepared using a simple solution combustion technique using different leaf extracts such as Mangifera indica (Mango - Ma), Azadirachta indica (Neem-Ne), and Carica papaya (Papaya-Pa) as surfactants. The highly crystalline phase of MgO nanostructures was confirmed by PXRD and FTIR studies for 2 h 500°C calcined samples. To analyze the characteristics of obtained material-MaNP, NeNP, and PaNP for dosimetry applications, thermoluminescence (TL) studies were carried out for Co-60 gamma rays irradiated samples in the dose range 10-50 KGy; PaNP and NeNP exhibited well-defined glow curve when compared with MaNP samples. In addition, it was observed that the TL intensity decreases, with increase in gamma dose and the glow peak temperature is shifted towards the higher temperature with the increase in heating rate. The glow peak was segregated using glow curve deconvolution and thermal cleaning method. Kinetic parameters estimated using Chen's method, trap depth (E), and frequency factor (s) were found to be 0.699, 7.408, 0.4929, and 38.71, 11.008, and 10.71 for PaNP, NeNP, and MaNP respectively. The well-resolved glow curve, good linear behavior in the dose range of 10-50, KGy, and less fading were observed in PaNP as compared with MaNP and NeNP. Further, the antibacterial activity was checked against human pathogens such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. A visible zone of clearance was observed at 200 and 100 μg/mL by the PaNP and NeNP, indicating the death of colonies by the nanoparticles. Therefore, PaNP nanomaterial is a potential phosphor material for dosimetry and antibacterial application compared to NeNP and MaNP.
Collapse
Affiliation(s)
- Rajeshwari B. Rotti
- Department of Physics, School of Applied Sciences, REVA University, Bangalore, India
| | - D. V. Sunitha
- Department of Physics, School of Applied Sciences, REVA University, Bangalore, India
- *Correspondence: Arpita Roy, ; D. V. Sunitha,
| | - Ramya Manjunath
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
- *Correspondence: Arpita Roy, ; D. V. Sunitha,
| | | | | | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sami S. Ashgar
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad O. Babalghith
- Medical Genetics Department, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Amal Ezzat Abd El-Lateef
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Elshiekh B. Khidir
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
18
|
Thu HT, Anh LT, Phuc LH, Vinh LK, Tung NT, Phuong PH. Green preparation of carbon quantum dots and its silver nanoparticles composite against carbapenem-resistant Acinetobacter baumannii. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Woźniak A, Burzyńska N, Zybała I, Empel J, Grinholc M. Priming effect with photoinactivation against extensively drug-resistant Enterobacter cloacae and Klebsiella pneumoniae. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112554. [PMID: 36095975 DOI: 10.1016/j.jphotobiol.2022.112554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
In this study, we present antimicrobial blue light (aBL) and antimicrobial photoinactivation with green light in the presence of Rose Bengal (aPDI) to modulate the susceptibility of extensively drug-resistant (XDR) Enterobacter cloacae and Klebsiella pneumoniae clinical isolates to antimicrobials. This process can be considered a photodynamic priming tool that influences other therapeutic options, such as antibiotics. The current study evaluated the different environments to estimate the most effective priming conditions by testing a broad spectrum of antimicrobials (including antimicrobials with different targets and mechanisms of action). The susceptibility of the E. cloacae and K. pneumoniae clinical isolates to various antibiotics after aBL and green light (with rose bengal) as aPDI treatment was examined with multiple methods of synergy testing (e.g., diffusion methods, checkerboard assay, postantibiotic effect), and most effective photoinactivation conditions were implemented for each environment. When Enterobacteriaceae were exposed to aBL, the most efficient reduction in survival rate under TSB conditions was observed. Similar results were observed when rose bengal, as a photosensitizer, was present during the exposure to green light in PBS. aBL and aPDI led to an increased susceptibility of K. pneumoniae and E. cloacae isolates to chloramphenicol and colistin or fosfomycin and colistin antibiotics, respectively. However, among the 4 tested isolates, we observed synergies between different antimicrobial agents and photoinactivation conditions. Thus, it may suggest that the sensitization process may be considered a strain dependent priming tool.
Collapse
Affiliation(s)
- Agata Woźniak
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Natalia Burzyńska
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Izabela Zybała
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland
| | - Joanna Empel
- Department of Epidemiology and Clinical Microbiology, National Medicines Institute, Warsaw, Poland
| | - Mariusz Grinholc
- Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-307 Gdansk, Poland.
| |
Collapse
|
20
|
Editorial: Biological and biotechnological applications of natural bioactives. BIOTECHNOLOGY REPORTS 2022; 35:e00751. [PMID: 35864886 PMCID: PMC9294653 DOI: 10.1016/j.btre.2022.e00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Role of Antimicrobial Drug in the Development of Potential Therapeutics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2500613. [PMID: 35571735 PMCID: PMC9098294 DOI: 10.1155/2022/2500613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 12/17/2022]
Abstract
Population of the world run into several health-related emergencies among mankind and humans as it creates a challenge for the evolution of novel drug discoveries. One such can be the emergence of multidrug-resistant (MDR) strains in both hospital and community settings, which have been due to an inappropriate use and inadequate control of antibiotics that has led to the foremost human health concerns with a high impact on the global economy. So far, there has been application of two strategies for the development of anti-infective agents either by classical antibiotics that have been derived for their synthetic analogs with increased efficacy or screening natural compounds along with the synthetic compound libraries for the antimicrobial activities. However, need for newer treatment options for infectious diseases has led research to develop new generation of antimicrobial activity to further lessen the spread of antibiotic resistance. Currently, the principles aim to find novel mode of actions or products to target the specific sites and virulence factors in pathogens by a series of better understanding of physiology and molecular aspects of the microbial resistance, mechanism of infection process, and gene-pathogenicity relationship. The design various novel strategies tends to provide us a path for the development of various antimicrobial therapies that intends to have a broader and wider antimicrobial spectrum that helps to combat MDR strains worldwide. The development of antimicrobial peptides, metabolites derived from plants, microbes, phage-based antimicrobial agents, use of metal nanoparticles, and role of CRISPR have led to an exceptional strategies in designing and developing the next-generation antimicrobials. These novel strategies might help to combat the seriousness of the infection rates and control the health crisis system.
Collapse
|