1
|
Abu-Serie MM, Gutiérrez-García AK, Enman M, Vaish U, Fatima H, Dudeja V. Ferroptosis- and stemness inhibition-mediated therapeutic potency of ferrous oxide nanoparticles-diethyldithiocarbamate using a co-spheroid 3D model of pancreatic cancer. J Gastroenterol 2025; 60:641-657. [PMID: 39888413 DOI: 10.1007/s00535-025-02213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/10/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a high mortality rate and exhibits a limited response to apoptosis-dependent chemotherapeutic drugs (e.g., gemcitabine, Gem). This is mainly attributed to the antioxidant defense system (glutathione and aldehyde dehydrogenase (ALDH) 1A1), which sustains stemness features of cancer stem cells (CSCs) and activated pancreatic stellate cells (PSCs)-generated excess stromal proteins. This dense stroma retards drug delivery. METHODS This study established co-spheroid model consisting of mouse PDAC cell line (KPC) and PSCs (1:5) to accurately investigate the anti-PDAC activity of nanocomplex of ferrous oxide nanoparticles-diethyldithiocarbamate (FeO NPs-DE), compared to Gem, using in vitro and in vivo 3D models. RESULTS In vitro and in vivo co-spheroid models demonstrated higher therapeutic efficacy of FeO NPs-DE than Gem. FeO NPs-DE induced selective accumulation of iron-dependent ferroptosis (non-apoptosis)-generated a lethal lipid peroxidation that was potentiated by DE-mediated glutathione and ALDH1A1 suppression. This led to collapse of stemness, as evidenced by down-regulating CSC genes and p-AKT protein expression. Subsequently, gene and/or protein levels of PSC activators (transforming growth factor (TGF)-β, plasminogen activator inhibitor-1, ZEB1, and phosphorylated extracellular signal-regulated kinase) and stromal proteins (collagen 1A2, smooth muscle actin, fibronectin, and matrix metalloproteinase-9) were suppressed. Moreover, DE of nanocomplex enhanced caspase 3-dependent apoptosis with diminishing the main oncogene, BCL-2. CONCLUSIONS FeO NPs-DE had a stronger eradicating effect than Gem on primary and metastatic peritoneal PDAC tumors. This nanocomplex-mediated ferroptosis and stemness inhibition provides an effective therapeutic approach for PDAC.
Collapse
Affiliation(s)
- Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, Alexandria, 21934, Egypt.
| | - Ana K Gutiérrez-García
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| | - Macie Enman
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| | - Utpreksha Vaish
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| | - Huma Fatima
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35249, USA
| | - Vikas Dudeja
- Division of Surgical Oncology, Department of Surgery, University of Alabama at Birmingham (UAB), Birmingham, Alabama, 35294, USA
| |
Collapse
|
2
|
Constantinescu A, Pavel C, Plotogea OM, Andronic O, Puscasu A, Gherghiceanu F, Stan-Ilie MC, Șandru V. Endoscopic Ultrasound-guided Tissue Acquisition of Pancreatic Malignancy: A Retrospective Study at a Tertiary Center. ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2025:rjim-2025-0008. [PMID: 40262059 DOI: 10.2478/rjim-2025-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Endoscopic ultrasound (EUS) is gaining ground in today's diagnostic routine due to its ability to provide dynamic, accurate representations, but mostly because it facilitates tissue sampling amenable to histopathologic studies. Our main objective was to assess the accuracy of sampling pancreatic malignancies through EUS-fine-needle aspiration (FNA) compared to EUS-fine-needle biopsy (FNB) at a tertiary referral center, where rapid on-site evaluation (ROSE) for EUS-FNA is not available. MATERIAL AND METHODS A retrospective, 5-year analysis of all EUS-guided tissue acquisitions of pancreatic masses suggestive of neoplasia was performed. Out of the 484 patients who initially underwent non-invasive imaging studies, 401 subjects were ultimately confirmed as malignant using EUS-FNA/FNB or surgery. RESULTS Overall, the accuracy of EUS-guided sampling was 91%. There were 36 patients (9%) with false-negative results after EUS, who were further addressed to surgery and confirmed with pancreatic malignancy. Cytological and histological examinations found that FNB was significantly higher than FNA regarding the diagnostic yield (91.3% vs. 84.1%; p-value<0.05). Moreover, FNB required fewer needle punctures than FNA to achieve a definitive diagnosis (1.63 vs. 1.99; p-value<0.05). CONCLUSIONS Diagnostic management of pancreatic malignancies is unequivocally improved by FNB needles, rendering an improved tissue acquisition at a lower number of passes.
Collapse
Affiliation(s)
- Alexandru Constantinescu
- Department of Gastroenterology, University Emergency Hospital Bucharest, 050098, Bucharest, Romania
- "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Christoper Pavel
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Oana-Mihaela Plotogea
- "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Octavian Andronic
- "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Innovation and e-Health Center, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andreea Puscasu
- "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Madalina Cristina Stan-Ilie
- "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Vasile Șandru
- "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| |
Collapse
|
3
|
He YG, Zhu YN, Xiao ZY, Wang Z, Wang CQ, Jing-Li, Huang XB, Zheng L. Impact of anti-PD1 immunotherapy and circulating tumor cells on progression-free survival in surgical pancreatic adenocarcinoma: a retrospective cohort study. Expert Rev Clin Immunol 2025; 21:359-368. [PMID: 39745065 DOI: 10.1080/1744666x.2024.2448989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION The clinical benefits of combining immunotherapy with chemotherapy and surgical resection in pancreatic adenocarcinoma remain unclear. The expression and clinical significance of HIF1A in circulating tumor cells (CTCs) in pancreatic adenocarcinoma remains limited. METHODS This retrospective cohort study compared survival outcomes in pancreatic adenocarcinoma patients treated with two regimens: surgery+chemotherapy (nab-paclitaxel plus gemcitabine)+anti-PD1 (Tislelizumab) (S+AG+anti-PD1) (n = 37), and surgery+chemotherapy (S+AG) (n = 5). The study also evaluated CTCs and HIF1A-positive CTCs as potential prognostic biomarkers. RESULTS The S+AG+anti-PD1 group (n = 37) showed significantly better progression-free survival (PFS) compared to S+AG (n = 15) in multivariate analysis (HR: 0.426, 95% CI: 0.185-0.983, p = 0.045). Overall survival (OS) differences were not statistically significant between groups. Lower CTC counts (≤1) were associated with longer PFS in surgical patients. This association was confirmed in multivariate analysis, after adjustment for AJCC stages (HR: 0.318, 95% CI: 0.104-0.974, p = 0.045). HIF1A-positive CTCs showed similar trends and prognostic significance to total CTC counts. Advanced AJCC stages remained the strongest independent predictor of worse PFS and OS. CONCLUSION Combining surgery, chemotherapy, and immunotherapy may improve PFS in resectable pancreatic adenocarcinoma. While CTCs and HIF1A-positive CTCs may have prognostic value, AJCC staging remains the most reliable indicator.
Collapse
Affiliation(s)
| | | | | | - Zheng Wang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Chao-Qun Wang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jing-Li
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiao-Bing Huang
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Lu Zheng
- Department of Hepatobiliary, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
4
|
Liu Y, Li K. Predictive role of the prognostic nutritional index for long-term prognosis among patients undergoing pancreatoduodenectomy: a meta-analysis. BMC Surg 2025; 25:51. [PMID: 39881321 PMCID: PMC11776240 DOI: 10.1186/s12893-024-02757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/31/2024] [Indexed: 01/31/2025] Open
Abstract
PURPOSE To identify the predictive role of the preoperative prognostic nutritional index (PNI) for long-term survival in patients undergoing pancreatoduodenectomy. METHODS The PubMed, EMBASE, Web of Science, Cochrane Library and CNKI databases were searched up to October 28, 2024. The primary outcomes included overall survival (OS) and disease-free survival (DFS). Hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated, and subgroup analyses by country, type of cancer and source of HR were performed. RESULTS Fifteen studies with 2106 patients were included. The pooled results demonstrated that a lower preoperative PNI was related to poorer OS (HR = 1.60, 95% CI: 1.38-1.86, P < 0.001) and DFS (HR = 1.44, 95% CI: 1.00-2.07, P = 0.051). Subgroup analysis stratified by country (China vs. non-China), type of cancer (pancreatic cancer vs. nonpancreatic cancer vs. mixed) and source of HR (univariate vs. multivariate analysis) revealed similar results. CONCLUSION On the basis of the available evidence, the preoperative PNI might serve as a novel prognostic indicator in patients undergoing pancreatoduodenectomy, with a lower PNI predicting worse survival. However, more high-quality studies are needed to further verify the above findings.
Collapse
Affiliation(s)
- Ying Liu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
5
|
Hossen MS, Islam MSU, Yasin M, Ibrahim M, Das A. A Review on the Role of Human Solute Carriers Transporters in Cancer. Health Sci Rep 2025; 8:e70343. [PMID: 39807482 PMCID: PMC11725534 DOI: 10.1002/hsr2.70343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/16/2025] Open
Abstract
Background and Aim The high rate of tumor growth results in an increased need for amino acids. As solute carriers (SLC) transporters are capable of transporting different amino acids, cancer may develop as a result of these transporters' over-expression due to their complex formation with other biological molecules. Therefore, this review investigated the role of SLC transporters in the progression of cancer. Methods We retrieved data from Google Scholar, Web of Science, PubMed, Cochrane Library, and EMBASE regarding the influence of human SLCs on the development of cancer. Articles published in English before August 2024 were included in the study. Results The overexpression of SLCs is strongly related to tumor cell proliferation and angiogenesis in a number of cancer types including thyroid, pancreatic, lung, hepatocellular, and colon cancers. They are crucial for the stimulation of several biological signaling pathways, particularly mTOR kinase activity, which starts a signaling cascade, protein synthesis, cell growth, and proliferation, and inhibits apoptosis of cancerous cells. Furthermore, they contribute to the activation of PI3K/AKT signaling, which has an impact on the growth, invasion, and death of cancer cells. Thus, SLC transporters become a potential therapeutic target that plays a crucial role in drug resistance, tumor microenvironment regulation, and modulation of immune response. Conclusion The review recognized the crucial role of SLC transporters in different types of cancer progression. Therefore, to confirm our findings, a case-control study is required to investigate the role of amino acid transporters in cancer development.
Collapse
Affiliation(s)
- Md. Shafiul Hossen
- Department of PharmacyState University of BangladeshDhakaBangladesh
- Department of PharmacyNoakhali Science and Technology UniversitySonapurBangladesh
| | | | - Mohammad Yasin
- Department of PharmacySouthern University BangladeshChittagongBangladesh
| | - Mohammed Ibrahim
- Department of PharmacyState University of BangladeshDhakaBangladesh
| | - Abhijit Das
- Department of PharmacyNoakhali Science and Technology UniversitySonapurBangladesh
| |
Collapse
|
6
|
Tripathi AD, Labh Y, Katiyar S, Singh AK, Chaturvedi VK, Mishra A. Folate-Mediated Targeting and Controlled Release: PLGA-Encapsulated Mesoporous Silica Nanoparticles Delivering Capecitabine to Pancreatic Tumor. ACS APPLIED BIO MATERIALS 2024; 7:7838-7851. [PMID: 38530292 DOI: 10.1021/acsabm.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The discovery of specifically tailored therapeutic delivery systems has sparked the interest of pharmaceutical researchers considering improved therapeutic effectiveness and fewer adverse effects. The current study concentrates on the design and characterization of PLGA (polylactic-co-glycolic acid) capped mesoporous silica nanoparticles (MSN)-based systems for drug delivery for pH-sensitive controlled drug release in order to achieve a targeted drug release inside the acidic tumor microenvironment. The physicochemical properties of the nanoformulations were analyzed using TEM, zeta potential, AFM, TGA, FTIR, and BET analyses in addition to DLS size. The final formed PLGA-FoA-MSN-CAP and pure MSN had sizes within the therapeutic ranges of 164.5 ± 1.8 and 110.7 ± 2.2, respectively. Morphological characterization (TEM and AFM) and elemental analysis (FTIR and XPS) confirmed the proper capping and tagging of PLGA and folic acid (FoA). The PLGA-coated FoA-MSN exhibited a pH-dependent controlled release of the CAP (capecitabine) drug, showing efficient release at pH 6.8. Furthermore, the in vitro MTT test on PANC1 and MIAPaCa-2 resulted in an IC50 value of 146.37 μg/ml and 105.90 μg/ml, respectively. Mitochondrial-mediated apoptosis was confirmed from the caspase-3 and annexin V/PI flow cytometry assay, which displayed a cell cycle arrest at the G1 phase. Overall, the results predicted that the designed nanoformulation is a potential therapeutic agent in treating pancreatic cancer.
Collapse
Affiliation(s)
- Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Yamini Labh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Anurag Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| | - Vivek K Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences (BHU), Varanasi-221005, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi-221005, India
| |
Collapse
|
7
|
Jiang X, Yuan Z, Ding T, Yu K, Dong J. SMS2 siRNA inhibits pancreatic tumor growth by tumor microenvironment modulation. Int Immunopharmacol 2024; 142:113111. [PMID: 39255679 DOI: 10.1016/j.intimp.2024.113111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024]
Abstract
The massive infiltration of suppressor immune cells within the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is a major cause of treatment resistance. Reducing this infiltration may represent a potentially effective therapeutic strategy. Sphingomyelin synthase 2 (SMS2) is a crucial enzyme for sphingomyelin synthesis, contributing significantly to the integrity and function of the plasma membrane. In this study, we developed a self-assembling SMS2 siRNA gene expression plasmid for in vivo delivery. The SMS2 siRNA specifically inhibits SMS2 expression while preserving the expression and activity of SMS1. Administration of the self-assembling SMS2 siRNA suppresses tumor growth in a murine model of Panc02 pancreatic carcinoma, modulates the polarization of tumor-associated macrophages (TAMs), and reduces the infiltration of tumor-associated neutrophils (TANs) by regulating the NF-κB/CXCL5 pathway. Consequently, utilizing SMS2 siRNA to improve the local immunosuppressive microenvironment holds promise for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, China
| | - Ziqing Yuan
- Experiment & Teaching Center, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tingbo Ding
- Experiment & Teaching Center, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ker Yu
- Department of Pharmacology, School of Pharmacy, Fudan University, China.
| | - Jibin Dong
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, China.
| |
Collapse
|
8
|
Liu L, Yang M, Chen Z. Surface functionalized nanomaterial systems for targeted therapy of endocrine related tumors: a review of recent advancements. Drug Deliv 2024; 31:2390022. [PMID: 39138394 PMCID: PMC11328606 DOI: 10.1080/10717544.2024.2390022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024] Open
Abstract
The application of multidisciplinary techniques in the management of endocrine-related cancers is crucial for harnessing the advantages of multiple disciplines and their coordinated efforts in eliminating tumors. Due to the malignant characteristics of cancer cells, they possess the capacity to develop resistance to traditional treatments such as chemotherapy and radiotherapy. Nevertheless, despite diligent endeavors to enhance the prediction of outcomes, the overall survival rate for individuals afflicted with endocrine-related malignancy remains quite miserable. Hence, it is imperative to investigate innovative therapy strategies. The latest advancements in therapeutic tactics have offered novel approaches for the therapy of various endocrine tumors. This paper examines the advancements in nano-drug delivery techniques and the utilization of nanomaterials for precise cancer cures through targeted therapy. This review provides a thorough analysis of the potential of combined drug delivery strategies in the treatment of thyroid cancer, adrenal gland tumors, and pancreatic cancer. The objective of this study is to gain a deeper understanding of current therapeutic approaches, stimulate the development of new drug DDS, and improve the effectiveness of treatment for patients with these diseases. The intracellular uptake of pharmaceuticals into cancer cells can be significantly improved through the implantation of synthetic or natural substances into nanoparticles, resulting in a substantial reduction in the development of endocrine malignancies.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Miao Yang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziyang Chen
- Department of Gastroenterology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
9
|
Fillipo R, Leblanc TW, Plyler KE, Arizmendi C, Henke DM, Coles T. How do patients interpret and respond to a novel patient-reported eastern cooperative oncology group performance status (ECOG)? Qual Life Res 2024; 33:2375-2385. [PMID: 38888674 DOI: 10.1007/s11136-024-03715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE Performance status is an important concept in oncology, but is typically clinician-reported. Efforts are underway to include patient-reported measures in cancer care, which may improve patient symptoms, quality of life and overall survival. The purpose of this study was to gain a preliminary understanding of how patients determined their physical performance status based on a novel patient-reported version of the Eastern Cooperative Oncology Group Performance Status (ECOG) scale. METHODS We conducted qualitative interviews, including concept elicitation and cognitive interviewing as part of the Patient Reports of Physical Functioning Study (PROPS) to investigate how participants selected their answers to a novel patient-reported ECOG. Participants were administered the patient-reported ECOG and asked to describe devices and modifications used to keep up with daily activities. RESULTS Participants generally understood the ECOG as intended. Participants with recent changes in status had some difficulty selecting an answer. Most participants used modifications and assistive devices in their daily lives but did not incorporate these into their rational for the ECOG. CONCLUSION The potential benefits of a patient-reported ECOG are numerous and this study demonstrates that participants were able to understand and answer the patient-reported ECOG as intended. We recommend future evaluation for the most-appropriate recall period, whether to include modifications in the ECOG instructions, and if increasing the number of response options to the patient-reported ECOG may improve confidence when providing an answer.
Collapse
Affiliation(s)
- Rebecca Fillipo
- Center for Health Measurement, Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, United States.
| | - Thomas W Leblanc
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States
| | - Katelyn E Plyler
- Center for Health Measurement, Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, United States
| | | | - Debra M Henke
- Center for Health Measurement, Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, United States
| | - Theresa Coles
- Center for Health Measurement, Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, United States
| |
Collapse
|
10
|
Chen H, Wei J, Zhu Z, Hou Y. Multifaceted roles of PD-1 in tumorigenesis: From immune checkpoint to tumor cell-intrinsic function. Mol Carcinog 2024; 63:1436-1448. [PMID: 38751009 DOI: 10.1002/mc.23740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 05/04/2024] [Indexed: 07/10/2024]
Abstract
Programmed cell death 1 (PD-1), a key immune checkpoint receptor, has been extensively studied for its role in regulating immune responses in cancer. However, recent research has unveiled a complex and dual role for PD-1 in tumorigenesis. While PD-1 is traditionally associated with immune cells, this article explores its expression in various cancer cells and its impact on cancer progression. PD-1's functions extend beyond immune regulation, as it has been found to both promote and suppress tumor growth, depending on the cancer type. These findings have significant implications for the future of cancer treatment and our understanding of the immune response in the context of cancer. This article calls for further research into the multifaceted roles of PD-1 to optimize its therapeutic potential and improve patient outcomes in the fight against cancer.
Collapse
Affiliation(s)
- Huiqing Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jiayu Wei
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Zhen Zhu
- Zhenjiang Stomatological Hospital, Zhenjiang, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Liu W, Zhang B, Liu T, Jiang J, Liu Y. Artificial Intelligence in Pancreatic Image Analysis: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:4749. [PMID: 39066145 PMCID: PMC11280964 DOI: 10.3390/s24144749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis. Its early diagnosis and accurate treatment mainly rely on medical imaging, so accurate medical image analysis is especially vital for pancreatic cancer patients. However, medical image analysis of pancreatic cancer is facing challenges due to ambiguous symptoms, high misdiagnosis rates, and significant financial costs. Artificial intelligence (AI) offers a promising solution by relieving medical personnel's workload, improving clinical decision-making, and reducing patient costs. This study focuses on AI applications such as segmentation, classification, object detection, and prognosis prediction across five types of medical imaging: CT, MRI, EUS, PET, and pathological images, as well as integrating these imaging modalities to boost diagnostic accuracy and treatment efficiency. In addition, this study discusses current hot topics and future directions aimed at overcoming the challenges in AI-enabled automated pancreatic cancer diagnosis algorithms.
Collapse
Affiliation(s)
- Weixuan Liu
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Bairui Zhang
- Sydney Smart Technology College, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; (W.L.); (B.Z.)
| | - Tao Liu
- School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China;
| | - Juntao Jiang
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yong Liu
- College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Mirzamohamadi S, HajiAbbasi MN, Roshandel G, Alimadadi M, Mirheidari SB, Ghorbani S, Pourshams A, Zahedi M. Incidence and risk factors of pancreatic cancer during 15 years follow-up in the Golestan Cohort Study in Iran. PLoS One 2024; 19:e0300736. [PMID: 38848337 PMCID: PMC11161101 DOI: 10.1371/journal.pone.0300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/04/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Cancer is one of the main causes of death in the worldwide. Pancreatic Cancer (PC) is prevalent in developed and increasing in developing countries. PC is important because of its low survival rate, high fatality, and increasing incidence. Therefore, identifying risk factors to prevent its development is necessary. This study aimed to determine incidence of PC and its risk factors in the Golestan Cohort Study (GCS) in Iran. METHOD This study is a prospective population-based cohort study in the frame of GCS with 15 years of follow-up for PC. GCS was launched in the Golestan province of Iran with 50045 participants who were 40 to 75 years old. variables included: age, gender, education status, smoking, alcohol consumption, opium usage, type of blood group, dyslipidemia, body mass index (BMI), waist circumference (WC), family history (FH) of PC, ethnicity, and history of diabetes mellitus (DM). RESULT Among 50045 participants of GCS during 15 years of follow up, 100 people were diagnosed PC. PC incidence was 0.2%. Age-standardized incidence rate (ASR) of PC in the study population was 11.12 per 100,000 person-years. People with age ≥60 years were 46, in 50-59 years old group were 36, and 18 of them were <50 years (p<0.001). The smoking rate in PC group was 27% (p<0.01). Univariate model of cox regression analysis showed age 50-59, ≥60 years compared to <50 years [HR:3.006, 95%CI (1.707-5.294), p<0.001], [HR: 6.727, 95% CI (3.899-11.608), p<0.001], male gender [HR:1.541, 95%CI (1.041-2.281), p = 0.031], opium use [HR:1.436, 95% CI (0.887-2.324), p = 0.141], and smoking [HR:1.884, 95%CI (1.211-2.929), p = 0.005] were predictors for PC. In the multivariate model after adjusting, age 50-59 [HR:2.99, 95% CI (1.698-5.265), p<0.001], and ≥60 years [HR: 6.564, 95% CI (3.797-11.346), p<0.001] was the only predictor for PC. CONCLUSION This study revealed an incidence of PC 0.2% in GCS in Iran. Main risk factor for PC was older age.
Collapse
Affiliation(s)
| | | | - Gholamreza Roshandel
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Alimadadi
- Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Somayeh Ghorbani
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Akram Pourshams
- Digestive Oncology Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahedi
- Department of Internal medicine, Endocrinology and Metabolic disorders, Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
13
|
Zaman M, Li JH, Dhir M. Malpractice Claims Following Major Liver and Pancreatic Surgeries: What Can we Learn? J Surg Res 2024; 298:291-299. [PMID: 38640614 DOI: 10.1016/j.jss.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/08/2024] [Accepted: 03/21/2024] [Indexed: 04/21/2024]
Abstract
INTRODUCTION General surgery is a highly litigious specialty. Lawsuits can be a source of emotional distress and burnout for surgeons. Major hepatic and pancreatic surgeries are technically challenging general surgical oncology procedures associated with an increased risk of complications and mortality. It is unclear whether these operations are associated with an increased risk of lawsuits. The objective of the present study was to summarize the medical malpractice claims surrounding pancreatic and hepatic surgeries from publicly available court records. METHODS The Westlaw legal database was searched and analyzed for relevant malpractice claims from the last two decades. RESULTS Of 165 search results, 30 (18.2%) cases were eligible for inclusion. Appellant cases comprised 53.3% of them. Half involved a patient death. Including co-defendants, a majority (n = 21, 70%) named surgeons as defendants, whereas several claims (n = 13, 43%) also named non-surgeons. The most common cause of alleged malpractice was a delay in diagnosis (n = 12, 40%). In eight of these, surgery could not be performed. The second most common were claims alleging the follow-up surgery was due to negligence (n = 6). Collectively, 20 claims were found in favor of the defendant. Seven verdicts (23.3%) returned in favor of the plaintiff, two of which resulted in monetary awards (totaling $1,608,325 and $424,933.85). Three cases went to trial or delayed motion for summary judgment. There were no settlements. CONCLUSIONS A defendant verdict was reached in two-thirds of malpractice cases involving major hepatic or pancreatic surgery. A delay in diagnosis was the most cited claim in hepatopancreaticobiliary lawsuits, and defendants may often practice in nonsurgical specialties. While rulings favoring plaintiffs are less frequent, the payouts may be substantial.
Collapse
Affiliation(s)
- Muizz Zaman
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York; Department of Surgery, SUNY Upstate Medical University, Syracuse, New York.
| | - Jian Harvard Li
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Mashaal Dhir
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York.
| |
Collapse
|
14
|
Wassenaar NPM, van Schelt AS, Schrauben EM, Kop MPM, Nio CY, Wilmink JW, Besselink MGH, van Laarhoven HWM, Stoker J, Nederveen AJ, Runge JH. MR Elastography of the Pancreas: Bowel Preparation and Repeatability Assessment in Pancreatic Cancer Patients and Healthy Controls. J Magn Reson Imaging 2024; 59:1582-1592. [PMID: 37485870 DOI: 10.1002/jmri.28918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) stromal viscoelasticity can be measured using MR elastography (MRE). Bowel preparation regimens could affect MRE quality and knowledge on repeatability is crucial for clinical implementation. PURPOSE To assess effects of four bowel preparation regimens on MRE quality and to evaluate repeatability and differentiate patients from healthy controls. STUDY TYPE Prospective. POPULATION 15 controls (41 ± 16 years; 47% female), 16 PDAC patients (one excluded, 66 ± 12 years; 40% female) with 15 age-/sex-matched controls (65 ± 11 years; 40% female). Final sample size was 25 controls and 15 PDAC. FIELD STRENGTH/SEQUENCE 3-T, spin-echo echo-planar-imaging, turbo spin-echo, and fast field echo gradient-echo. ASSESSMENT Four different regimens were used: fasting; scopolaminebutyl; drinking 0.5 L water; combination of 0.5 L water and scopolaminebutyl. MRE signal-to-noise ratio (SNR) was compared between all regimens. MRE repeatability (test-retest) and differences in shear wave speed (SWS) and phase angle (ϕ) were assessed in PDAC and controls. Regions-of-interest were defined for tumor, nontumorous (n = 8) tissue in PDAC, and whole pancreas in controls. Two radiologists delineated tumors twice for evaluation of intraobserver and interobserver variability. STATISTICAL TESTS Repeated measures analysis of variance, coefficients of variation (CoVs), Bland-Altman analysis, (un)paired t-test, Mann-Whitney U-test, and Wilcoxon signed-rank test. P-value<0.05 was considered statistically significant. RESULTS Preparation regimens did not significantly influence MRE-SNR. Therefore, the least burdensome preparation (fasting only) was continued. CoVs for tumor SWS were: intrasession (12.8%) and intersession (21.7%), and intraobserver (7.9%) and interobserver (10.3%) comparisons. For controls, CoVs were intrasession (4.6%) and intersession (6.4%). Average SWS for tumor, nontumor, and healthy tissue were: 1.74 ± 0.58, 1.38 ± 0.27, and 1.18 ± 0.16 m/sec (ϕ: 1.02 ± 0.17, 0.91 ± 0.07, and 0.85 ± 0.08 rad), respectively. Significant differences were found between all groups, except for ϕ between healthy-nontumor (P = 0.094). DATA CONCLUSION The proposed bowel preparation regimens may not influence MRE quality. MRE may be able to differentiate between healthy tissue-tumor and tumor-nontumor. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nienke P M Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Anne-Sophie van Schelt
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marnix P M Kop
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C Yung Nio
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc G H Besselink
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Olaoba OT, Yang M, Adelusi TI, Maidens T, Kimchi ET, Staveley-O’Carroll KF, Li G. Targeted Therapy for Highly Desmoplastic and Immunosuppressive Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:1470. [PMID: 38672552 PMCID: PMC11048089 DOI: 10.3390/cancers16081470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with a very poor prognosis. Despite advancements in treatment strategies, PDAC remains recalcitrant to therapies because patients are often diagnosed at an advanced stage. The advanced stage of PDAC is characterized by metastasis, which typically renders it unresectable by surgery or untreatable by chemotherapy. The tumor microenvironment (TME) of PDAC comprises highly proliferative myofibroblast-like cells and hosts the intense deposition of a extracellular matrix component that forms dense fibrous connective tissue, a process called the desmoplastic reaction. In desmoplastic TMEs, the incessant aberration of signaling pathways contributes to immunosuppression by suppressing antitumor immunity. This feature offers a protective barrier that impedes the targeted delivery of drugs. In addition, the efficacy of immunotherapy is compromised because of the immune cold TME of PDAC. Targeted therapy approaches towards stromal and immunosuppressive TMEs are challenging. In this review, we discuss cellular and non-cellular TME components that contain actionable targets for drug development. We also highlight findings from preclinical studies and provide updates about the efficacies of new investigational drugs in clinical trials.
Collapse
Affiliation(s)
- Olamide T. Olaoba
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
| | - Temitope I. Adelusi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| | - Tessa Maidens
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (O.T.O.); (M.Y.); (T.I.A.); (T.M.); (E.T.K.)
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
- Roy Blunt NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
16
|
Huo M, Rai SK, Nakatsu K, Deng Y, Jijiwa M. Subverting the Canon: Novel Cancer-Promoting Functions and Mechanisms for snoRNAs. Int J Mol Sci 2024; 25:2923. [PMID: 38474168 PMCID: PMC10932220 DOI: 10.3390/ijms25052923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Small nucleolar RNAs (snoRNAs) constitute a class of intron-derived non-coding RNAs ranging from 60 to 300 nucleotides. Canonically localized in the nucleolus, snoRNAs play a pivotal role in RNA modifications and pre-ribosomal RNA processing. Based on the types of modifications they involve, such as methylation and pseudouridylation, they are classified into two main families-box C/D and H/ACA snoRNAs. Recent investigations have revealed the unconventional synthesis and biogenesis strategies of snoRNAs, indicating their more profound roles in pathogenesis than previously envisioned. This review consolidates recent discoveries surrounding snoRNAs and provides insights into their mechanistic roles in cancer. It explores the intricate interactions of snoRNAs within signaling pathways and speculates on potential therapeutic solutions emerging from snoRNA research. In addition, it presents recent findings on the long non-coding small nucleolar RNA host gene (lncSNHG), a subset of long non-coding RNAs (lncRNAs), which are the transcripts of parental SNHGs that generate snoRNA. The nucleolus, the functional epicenter of snoRNAs, is also discussed. Through a deconstruction of the pathways driving snoRNA-induced oncogenesis, this review aims to serve as a roadmap to guide future research in the nuanced field of snoRNA-cancer interactions and inspire potential snoRNA-related cancer therapies.
Collapse
Affiliation(s)
- Matthew Huo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Sudhir Kumar Rai
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Ken Nakatsu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| | - Mayumi Jijiwa
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA; (S.K.R.); (K.N.)
| |
Collapse
|
17
|
Zhang Y, Xie J. Unveiling the role of ferroptosis-associated exosomal non-coding RNAs in cancer pathogenesis. Biomed Pharmacother 2024; 172:116235. [PMID: 38308967 DOI: 10.1016/j.biopha.2024.116235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
The pivotal regulatory role of non-coding RNAs (ncRNAs), especially exosomal ncRNAs, in ferroptosis significantly influences cancer cell fate. This review explores their involvement across various human cancers, focusing on microRNAs (miRNA), long non-coding RNAs (lncRNA), and circular RNAs (circRNA). These ncRNAs either stimulate or inhibit ferroptosis by targeting key components, impacting cancer susceptibility to this form of cell death. Specific studies in lung, gastric, liver, cervical, bladder, pancreatic, and osteosarcoma cancers underscore the crucial role of exosomal ncRNAs in modulating ferroptosis, influencing cancer progression, and therapeutic responses. Emphasizing the therapeutic potential of exosomal ncRNAs, we discuss their ability to deliver circRNA, miRNA, and lncRNA to target cells. Despite being in early stages with challenges in bioengineering for drug delivery, these studies hold promise for future clinical applications. Noteworthy findings include inhibiting exosome production to overcome ferroptosis resistance in lung adenocarcinoma and the potential of exosomal DACT3-AS1 to sensitize gastric cancer cells to ferroptosis. The review concludes by highlighting exosomal ncRNAs like miR-4443 and miR-660-5p as promising therapeutic targets, offering avenues for precise cancer interventions by modulating signaling pathways and sensitizing cells to ferroptosis. Overall, this review enhances our understanding of cancer pathogenesis and presents new horizons for targeted therapeutic interventions, revealing the intricate interplay between exosomal ncRNAs and ferroptosis.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| |
Collapse
|
18
|
Daher H, Punchayil SA, Ismail AAE, Fernandes RR, Jacob J, Algazzar MH, Mansour M. Advancements in Pancreatic Cancer Detection: Integrating Biomarkers, Imaging Technologies, and Machine Learning for Early Diagnosis. Cureus 2024; 16:e56583. [PMID: 38646386 PMCID: PMC11031195 DOI: 10.7759/cureus.56583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
Artificial intelligence (AI) has come to play a pivotal role in revolutionizing medical practices, particularly in the field of pancreatic cancer detection and management. As a leading cause of cancer-related deaths, pancreatic cancer warrants innovative approaches due to its typically advanced stage at diagnosis and dismal survival rates. Present detection methods, constrained by limitations in accuracy and efficiency, underscore the necessity for novel solutions. AI-driven methodologies present promising avenues for enhancing early detection and prognosis forecasting. Through the analysis of imaging data, biomarker profiles, and clinical information, AI algorithms excel in discerning subtle abnormalities indicative of pancreatic cancer with remarkable precision. Moreover, machine learning (ML) algorithms facilitate the amalgamation of diverse data sources to optimize patient care. However, despite its huge potential, the implementation of AI in pancreatic cancer detection faces various challenges. Issues such as the scarcity of comprehensive datasets, biases in algorithm development, and concerns regarding data privacy and security necessitate thorough scrutiny. While AI offers immense promise in transforming pancreatic cancer detection and management, ongoing research and collaborative efforts are indispensable in overcoming technical hurdles and ethical dilemmas. This review delves into the evolution of AI, its application in pancreatic cancer detection, and the challenges and ethical considerations inherent in its integration.
Collapse
Affiliation(s)
- Hisham Daher
- Internal Medicine, University of Debrecen, Debrecen, HUN
| | - Sneha A Punchayil
- Internal Medicine, University Hospital of North Tees, Stockton-on-Tees, GBR
| | | | | | - Joel Jacob
- General Medicine, Diana Princess of Wales Hospital, Grimsby, GBR
| | | | - Mohammad Mansour
- General Medicine, University of Debrecen, Debrecen, HUN
- General Medicine, Jordan University Hospital, Amman, JOR
| |
Collapse
|
19
|
Nguyen S, Carlson H, Yoder A, Bamlet WR, Oberg AL, Petersen GM, Carmella SG, Hecht SS, Jansen RJ. Polycyclic Aromatic Hydrocarbons and Pancreatic Cancer: An Analysis of the Blood Biomarker, r-1, t-2,3, c-4-Tetrahydroxy-1,2,3,4-tetrahydrophenanthrene and Selected Metabolism Gene SNPs. Nutrients 2024; 16:688. [PMID: 38474816 PMCID: PMC10935191 DOI: 10.3390/nu16050688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs), byproducts of incomplete combustion, and their effects on the development of cancer are still being evaluated. Recent studies have analyzed the relationship between PAHs and tobacco or dietary intake in the form of processed foods and smoked/well-done meats. This study aims to assess the association of a blood biomarker and metabolite of PAHs, r-1,t-2,3,c-4-tetrahydroxy-1,2,3,4-tetrahydrophenanthrene (PheT), dietary intake, selected metabolism SNPs, and pancreatic cancer. Demographics, food-frequency data, SNPs, treatment history, and levels of PheT in plasma were determined from 400 participants (202 cases and 198 controls) and evaluated based on pancreatic adenocarcinoma diagnosis. Demographic and dietary variables were selected based on previously published literature indicating association with pancreatic cancer. A multiple regression model combined the significant demographic and food items with SNPs. Final multivariate logistic regression significant factors (p-value < 0.05) associated with pancreatic cancer included: Type 2 Diabetes [OR = 6.26 (95% CI = 2.83, 14.46)], PheT [1.03 (1.02, 1.05)], very well-done red meat [0.90 (0.83, 0.96)], fruit/vegetable servings [1.35 (1.06, 1.73)], recessive (rs12203582) [4.11 (1.77, 9.91)], recessive (rs56679) [0.2 (0.06, 0.85)], overdominant (rs3784605) [3.14 (1.69, 6.01)], and overdominant (rs721430) [0.39 (0.19, 0.76)]. Of note, by design, the level of smoking did not differ between our cases and controls. This study does not provide strong evidence that PheT is a biomarker of pancreatic cancer susceptibility independent of dietary intake and select metabolism SNPs among a nonsmoking population.
Collapse
Affiliation(s)
- Sierra Nguyen
- Department of Public Health, North Dakota State University, Fargo, ND 58105, USA;
| | - Heather Carlson
- Fairbanks School of Public Health, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - Andrea Yoder
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA (S.S.H.)
| | - William R. Bamlet
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Ann L. Oberg
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Gloria M. Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven G. Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA (S.S.H.)
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA (S.S.H.)
| | - Rick J. Jansen
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA (S.S.H.)
| |
Collapse
|
20
|
Caputo C, Falco M, Grimaldi A, Lombardi A, Miceli CC, Cocule M, Montella M, Pompella L, Tirino G, Campione S, Tammaro C, Cossu A, Fenu Pintori G, Maioli M, Coradduzza D, Savarese G, Fico A, Ottaiano A, Conzo G, Tathode MS, Ciardiello F, Caraglia M, De Vita F, Misso G. Identification of Tissue miRNA Signatures for Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2024; 16:824. [PMID: 38398215 PMCID: PMC10887387 DOI: 10.3390/cancers16040824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), a neoplasm of the gastrointestinal tract, is the most common pancreatic malignancy (90%) and the fourth highest cause of cancer mortality worldwide. Surgery intervention is currently the only strategy able to offer an advantage in terms of overall survival, but prognosis remains poor even for operated patients. Therefore, the development of robust biomarkers for early diagnosis and prognostic stratification in clinical practice is urgently needed. In this work, we investigated deregulated microRNAs (miRNAs) in tissues from PDAC patients with high (G3) or low (G2) histological grade and with (N+) or without (N-) lymph node metastases. miRNA expression profiling was performed by a comprehensive PCR array and subsequent validation by RT-qPCR. The results showed a significant increase in miR-1-3p, miR-31-5p, and miR-205-5p expression in G3 compared to G2 patients (** p < 0.01; *** p < 0.001; *** p < 0.001). miR-518d-3p upregulation and miR-215-5p downregulation were observed in N+ compared to N- patients. A statistical analysis performed using OncomiR program showed the significant involvement (p < 0.05) of two miRNAs (miR-31 and miR-205) in the histological grade of PDAC patients. Also, an expression analysis in PDAC patients showed that miR-31 and miR-205 had the highest expression at grade 3 compared with normal and other tumor grades. Overall, survival plots confirmed that the overexpression of miR-31 and miR-205 was significantly correlated with decreased survival in TCGA PDAC clinical samples. A KEGG pathway analysis showed that all three miRNAs are involved in the regulation of multiple pathways, including the Hippo signaling, adherens junction and microRNAs in cancer, along with several target genes. Based on in silico analysis and experimental validation, our study suggests the potential role of miR-1-3p, miR-31-5p, and miR-205-5p as useful clinical biomarkers and putative therapeutic targets in PDAC, which should be further investigated to determine the specific molecular processes affected by their aberrant expression.
Collapse
Affiliation(s)
- Carlo Caputo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
| | - Michela Falco
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
- Laboratory of Precision and Molecular Oncology, Institute of Genetic Research, Biogem Scarl, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Anna Grimaldi
- U.P. Cytometric and Mutational Diagnostics, AOU Policlinico, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 83031 Naples, Italy;
| | - Angela Lombardi
- U.P. Cytometric and Mutational Diagnostics, AOU Policlinico, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 83031 Naples, Italy;
| | - Chiara Carmen Miceli
- Department of Precision Medicine, Division of Medical Oncology, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.M.); (M.C.); (L.P.); (G.T.); (F.D.V.)
| | - Mariateresa Cocule
- Department of Precision Medicine, Division of Medical Oncology, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.M.); (M.C.); (L.P.); (G.T.); (F.D.V.)
| | - Marco Montella
- Department of Mental and Physical Health and Preventive Medicine, UOC Pathological Anatomy, University of Campania “Luigi Vanvitelli”, Via Luciano Armanni 5, 83031 Naples, Italy;
| | - Luca Pompella
- Department of Precision Medicine, Division of Medical Oncology, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.M.); (M.C.); (L.P.); (G.T.); (F.D.V.)
| | - Giuseppe Tirino
- Department of Precision Medicine, Division of Medical Oncology, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.M.); (M.C.); (L.P.); (G.T.); (F.D.V.)
| | - Severo Campione
- Division of Anatomic Pathology, A.O.R.N. Antonio Cardarelli, 80131 Naples, Italy;
| | - Chiara Tammaro
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
| | - Antonio Cossu
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Grazia Fenu Pintori
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.F.P.); (M.M.); (D.C.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.F.P.); (M.M.); (D.C.)
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
| | - Donatella Coradduzza
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (G.F.P.); (M.M.); (D.C.)
| | - Giovanni Savarese
- AMES Center, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (G.S.); (A.F.)
| | - Antonio Fico
- AMES Center, Centro Polidiagnostico Strumentale SRL, Via Padre Carmine Fico 24, 80013 Casalnuovo Di Napoli, Italy; (G.S.); (A.F.)
| | - Alessandro Ottaiano
- Department of Abdominal Oncology, SSD-Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, National Cancer Institute, 80131 Naples, Italy;
| | - Giovanni Conzo
- Division of General, Oncological, Mini-Invasive and Obesity Surgery, University of Study of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Madhura S. Tathode
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
- Laboratory of Precision and Molecular Oncology, Institute of Genetic Research, Biogem Scarl, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Ferdinando De Vita
- Department of Precision Medicine, Division of Medical Oncology, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.M.); (M.C.); (L.P.); (G.T.); (F.D.V.)
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy; (C.C.); (M.F.); (C.T.); (M.S.T.); (F.C.); (M.C.)
| |
Collapse
|
21
|
Rampioni Vinciguerra GL, Capece M, Reggiani Bonetti L, Nigita G, Calore F, Rentsch S, Magistri P, Ballarin R, Di Benedetto F, Distefano R, Cirombella R, Vecchione A, Belletti B, Baldassarre G, Lovat F, Croce CM. Nutrient restriction-activated Fra-2 promotes tumor progression via IGF1R in miR-15a downmodulated pancreatic ductal adenocarcinoma. Signal Transduct Target Ther 2024; 9:31. [PMID: 38342897 PMCID: PMC10859382 DOI: 10.1038/s41392-024-01740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 02/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease, characterized by an intense desmoplastic reaction that compresses blood vessels and limits nutrient supplies. PDAC aggressiveness largely relies on its extraordinary capability to thrive and progress in a challenging tumor microenvironment. Dysregulation of the onco-suppressor miR-15a has been extensively documented in PDAC. Here, we identified the transcription factor Fos-related antigen-2 (Fra-2) as a miR-15a target mediating the adaptive mechanism of PDAC to nutrient deprivation. We report that the IGF1 signaling pathway was enhanced in nutrient deprived PDAC cells and that Fra-2 and IGF1R were significantly overexpressed in miR-15a downmodulated PDAC patients. Mechanistically, we discovered that miR-15a repressed IGF1R expression via Fra-2 targeting. In miR-15a-low context, IGF1R hyperactivated mTOR, modulated the autophagic flux and sustained PDAC growth in nutrient deprivation. In a genetic mouse model, Mir15aKO PDAC showed Fra-2 and Igf1r upregulation and mTOR activation in response to diet restriction. Consistently, nutrient restriction improved the efficacy of IGF1R inhibition in a Fra-2 dependent manner. Overall, our results point to a crucial role of Fra-2 in the cellular stress response due to nutrient restriction typical of pancreatic cancer and support IGF1R as a promising and vulnerable target in miR-15a downmodulated PDAC.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Marina Capece
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | - Luca Reggiani Bonetti
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, 41100, Italy
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | - Federica Calore
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | - Sydney Rentsch
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | - Paolo Magistri
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, 41100, Italy
| | - Roberto Ballarin
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, 41100, Italy
| | - Fabrizio Di Benedetto
- Hepato-pancreato-biliary Surgery and Liver Transplantation Unit, University of Modena and Reggio Emilia, Modena, 41100, Italy
| | - Rosario Distefano
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA
| | - Roberto Cirombella
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, University of Rome "Sapienza", Rome, 00189, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, 33081, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, 33081, Italy
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, 43210, OH, USA.
| |
Collapse
|
22
|
Yang B, Jiao Z, Feng N, Zhang Y, Wang S. Long non-coding RNA MIR600HG as a ceRNA inhibits the pancreatic cancer progression through regulating the miR-1197/PITPNM3 axis. Heliyon 2024; 10:e24546. [PMID: 38312687 PMCID: PMC10834820 DOI: 10.1016/j.heliyon.2024.e24546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/12/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Pancreatic cancer (PC) is considered to be a highly malignant cancer with poor prognosis. Long non-coding RNAs (lncRNAs) is the potential factor to predict cancer prognosis. The effect of MIR600HG in PC needs to be further studied. Our work mainly focused on the importance of MIR600HG for PC prognosis and its underlying molecular mechanism of regulating PC progression. Methods Data set was acquired from TCGA database to find differentially expressed genes and prognostic significance of MIR600HG in PC, and to construct the MIR600HG competitive endogenous RNA (ceRNA). Clinical specimens were collected to prove the analysis results. Vector over-expressed MIR600HG was transfected to study the roles of MIR600HG in proliferation, apoptosis, invasion and migration. The methods of CCK-8, flow cytometry, Transwell and scratch assays were all used in order to explore the apoptosis, migration and invasion. We evaluated the proliferation-related genes (PCNA, CyclinD1 and P27), as well as invasion and migration-related genes such as MMP-9, MMP-7 and ICAM-1. The transcriptional regulation between MIR600HG and miR-1197/PITPNM3 axis was determined with luciferase reporter assays. Results In present study, MIR600HG was dropped in both PC tissues and cells, and the down-regulated MIR600HG was closely related to the poor clinical outcomes in PC patients. MIR600HG could inhibit proliferation, migration and invasion in PC cells. We also investigated whether MIR600HG acting as a sponge of microRNA-1197 (miR-1197) and miR-1197 acting on PITPNM3. We found the positive association between MIR600HG and PITPNM3, as well as the negative association of miR-1197 and MIR600HG (or PITPNM3). Moreover, PITPNM3 mRNA and protein expression saw a simultaneous increase after the MIR600HG-overexpression (MIR600HG-OE), but this result partially diminished in MIR600HG-OE cells and miR-1197 mimics. Conclusions Our study explored the anticancer action of MIR600HG in PC by regulating miR-1197 to increase the expression of PITPNM3, which might help the diagnosis and therapy of PC.
Collapse
Affiliation(s)
- Baoming Yang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Zhikai Jiao
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Ningning Feng
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yueshan Zhang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shunxiang Wang
- Department of Hepatobiliary Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
23
|
Tripathi S, Tabari A, Mansur A, Dabbara H, Bridge CP, Daye D. From Machine Learning to Patient Outcomes: A Comprehensive Review of AI in Pancreatic Cancer. Diagnostics (Basel) 2024; 14:174. [PMID: 38248051 PMCID: PMC10814554 DOI: 10.3390/diagnostics14020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Pancreatic cancer is a highly aggressive and difficult-to-detect cancer with a poor prognosis. Late diagnosis is common due to a lack of early symptoms, specific markers, and the challenging location of the pancreas. Imaging technologies have improved diagnosis, but there is still room for improvement in standardizing guidelines. Biopsies and histopathological analysis are challenging due to tumor heterogeneity. Artificial Intelligence (AI) revolutionizes healthcare by improving diagnosis, treatment, and patient care. AI algorithms can analyze medical images with precision, aiding in early disease detection. AI also plays a role in personalized medicine by analyzing patient data to tailor treatment plans. It streamlines administrative tasks, such as medical coding and documentation, and provides patient assistance through AI chatbots. However, challenges include data privacy, security, and ethical considerations. This review article focuses on the potential of AI in transforming pancreatic cancer care, offering improved diagnostics, personalized treatments, and operational efficiency, leading to better patient outcomes.
Collapse
Affiliation(s)
- Satvik Tripathi
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Azadeh Tabari
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Arian Mansur
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Harika Dabbara
- Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Christopher P. Bridge
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (S.T.); (A.T.); (A.M.); (C.P.B.)
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Cabral-Romero C, Hernández-Delgadillo R, Nakagoshi-Cepeda SE, Sánchez-Najéra RI, Escamilla-García E, Solís-Soto JM, García-Cuellar CM, Sánchez-Pérez Y, Flores-Treviño SM, Pineda-Aguilar N, Cauich-Rodríguez JV, Meester I, Chellam S. Antimicrobial and antitumor activities of an alginate-based membrane loaded with bismuth nanoparticles and cetylpyridinium chloride. J Appl Biomater Funct Mater 2024; 22:22808000241236590. [PMID: 38444166 DOI: 10.1177/22808000241236590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE To evaluate the antitumor and antimicrobial properties of an alginate-based membrane (ABM) loaded with bismuth lipophilic nanoparticles (BisBAL NPs) and cetylpyridinium chloride (CPC) on clinically isolated bacteria and a pancreatic cancer cell line. MATERIAL AND METHODS The BisBAL NP-CPC ABM was characterized using optical and scanning electron microscopy (SEM). The antimicrobial potential was measured using the disk-diffusion assay, and antibiofilm activity was determined through the live/dead assay and fluorescence microscopy. The antitumor activity was analyzed on the pancreatic cell line (Panc 03.27) using the MTT assay and live/dead assay with fluorescence microscopy. RESULTS After a 24-h exposure (37°C, aerobic conditions), 5 µM BisBAL NP reduced the growth of K. pneumoniae by 77.9%, while 2.5 µM BisBAL NP inhibited the growth of Salmonella, E. faecalis and E. faecium by 82.9%, 82.6%, and 78%, respectively (p < 0.0001). The BisBAL NPs-CPC ABM (at a ratio of 10:1; 500 and 50 µM, respectively) inhibited the growth of all isolated bacteria, producing inhibition halos of 9.5, 11.2, 7, and 10.3 mm for K. pneumoniae, Salmonella, E. faecalis, and E. faecium, respectively, in contrast to the 6.5, 9.5, 8.5, and 9.8 mm obtained with 100 µM ceftriaxone (p < 0.0001). The BisBAL NPs-CPC ABM also reduced bacterial biofilms, with 81.4%, 74.5%, 97.1%, and 79.5% inhibition for K. pneumoniae, E. faecium, E. faecalis, and Salmonella, respectively. Furthermore, the BisBAL NPs-CPC ABM decreased Panc 03.27 cell growth by 76%, compared to 18% for drug-free ABM. GEM-ABM reduced tumoral growth by 73%. The live/dead assay confirmed that BisBAL NPs-CPC-ABM and GEM-ABM were cytotoxic for the turmoral Panc 03.27 cells. CONCLUSION An alginate-based membrane loaded with BisBAL NP and CPC exhibits dual antimicrobial and antitumoral efficacy. Therefore, it could be applied in cancer treatment and to diminish the occurrence of surgical site infections.
Collapse
Affiliation(s)
- Claudio Cabral-Romero
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Rene Hernández-Delgadillo
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Sergio Eduardo Nakagoshi-Cepeda
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Rosa Isela Sánchez-Najéra
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Erandi Escamilla-García
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | - Juan Manuel Solís-Soto
- Laboratorio de Biología Molecular, Facultad de Odontología, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | | | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Samantha Maribel Flores-Treviño
- Servicios de Infectologia, Hospital Universitario, Facultad de Medicina, Universidad Autónoma de Nuevo León, UANL, Monterrey, Nuevo León, México
| | | | | | - Irene Meester
- Universidad de Monterrey, Departamento de Ciencias Básicas, San Pedro Garza García, México
| | | |
Collapse
|
25
|
Roy RV, Means N, Rao G, Asfa S, Madka V, Dey A, Zhang Y, Choudhury M, Fung KM, Dhanasekaran DN, Friedman JE, Crawford HC, Rao CV, Bhattacharya R, Mukherjee P. Pancreatic Ubap2 deletion regulates glucose tolerance, inflammation, and protection from cerulein-induced pancreatitis. Cancer Lett 2023; 578:216455. [PMID: 37865160 PMCID: PMC10897936 DOI: 10.1016/j.canlet.2023.216455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Ubiquitin-binding associated protein 2 (UBAP2) is reported to promote macropinocytosis and pancreatic adenocarcinoma (PDAC) growth, however, its role in normal pancreatic function remains unknown. We addressed this knowledge gap by generating UBAP2 knockout (U2KO) mice under a pancreas-specific Cre recombinase (Pdx1-Cre). Pancreatic architecture remained intact in U2KO animals, but they demonstrated slight glucose intolerance compared to controls. Upon cerulein challenge to induce pancreatitis, U2KO animals had reduced levels of several pancreatitis-relevant cytokines, amylase and lipase in the serum, reduced tissue damage, and lessened neutrophil infiltration into the pancreatic tissue. Mechanistically, cerulein-challenged U2KO animals revealed reduced NF-κB activation compared to controls. In vitro promoter binding studies confirmed the reduction of NF-κB binding to its target molecules supporting UBAP2 as a new regulator of inflammation in pancreatitis and may be exploited as a therapeutic target in future to inhibit pancreatitis.
Collapse
Affiliation(s)
- Ram Vinod Roy
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Nicolas Means
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sima Asfa
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anindya Dey
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yushan Zhang
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monalisa Choudhury
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Danny N Dhanasekaran
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Jacob E Friedman
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Howard C Crawford
- Department of Surgery, Henry Ford Pancreatic Cancer Center, Henry Ford Health System, Detroit, MI, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
26
|
Lin S. DTX3L mediated ubiquitination of cGAS suppresses antitumor immunity in pancreatic cancer. Biochem Biophys Res Commun 2023; 681:106-110. [PMID: 37774567 DOI: 10.1016/j.bbrc.2023.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/20/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
The global incidence of pancreatic cancer is associated with a high mortality rate and one of the lowest survival rates among all types of cancer. The clinical management modalities for pancreatic cancer encompass surgical intervention, chemotherapy, radiation therapy, targeted therapy, immunotherapy, or a combination thereof. Nevertheless, the diagnosis of pancreatic cancer often occurs at an advanced stage, thereby restricting treatment options and diminishing the prospects of achieving a cure. The cGAS-STING pathway has emerged as a potential target for antitumor therapy due to its role in promoting immune responses against cancer cells. Activation of the cGAS-STING pathway in tumor cells can lead to the production of pro-inflammatory cytokines and type I interferons, which can enhance the recruitment and activation of immune cells to the tumor microenvironment. The cGAS protein was detected in only a half of tumor tissues in pancreatic cancer patients and the underlying mechanism is still elusive. In this study, we have identified the E3 ligase DTX3L as a key regulator of cGAS-STING signaling in pancreatic cancer cells by mediating the ubiquitination and degradation of cGAS. The expression levels of DTX3L were found to be upregulated in pancreatic tumor tissues and correlated with a poor prognosis for patients with pancreatic cancer. Silencing of DTX3L resulted in enhanced activation of the cGAS-STING signaling pathway and improved antitumor immunity for pancreatic cancer, suggesting that targeting the DTX3L-cGAS axis could hold promise for the treatment of this disease.
Collapse
Affiliation(s)
- Shan Lin
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| |
Collapse
|
27
|
Tajik F, Fattahi F, Rezagholizadeh F, Bouzari B, Babaheidarian P, Baghai Wadji M, Madjd Z. Nuclear overexpression of DNA damage-inducible transcript 4 (DDIT4) is associated with aggressive tumor behavior in patients with pancreatic tumors. Sci Rep 2023; 13:19403. [PMID: 37938616 PMCID: PMC10632485 DOI: 10.1038/s41598-023-46484-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023] Open
Abstract
DNA damage-inducible transcript 4 (DDIT4) is induced in various cellular stress conditions. Several studies showed that the dysregulation of DDIT4 is involved in different malignancies with paradoxical expressions and roles. Therefore, this study investigated the clinical significance, prognostic, and diagnostic value of DDIT4 in different types of pancreatic tumors (PT). The expression of DDIT4 and long non-coding RNA (TPTEP1) in mRNA level was examined in 27 fresh PT samples using Real-time quantitative PCR (RT-qPCR). Moreover, 200 formalin-fixed paraffin-embedded PT tissues, as well as 27 adjacent normal tissues, were collected to evaluate the clinical significance, prognostic, and diagnosis value of DDIT4 expression by immunohistochemistry (IHC) on tissue microarrays (TMA) slides. The results of RT-qPCR showed that the expression of DDIT4 in tumor samples was higher than in normal samples which was associated with high tumor grade (P = 0.015) and lymphovascular invasion (P = 0.048). Similar to this, IHC findings for nucleus, cytoplasm, and membrane localization showed higher expression of DDIT4 protein in PT samples rather than in nearby normal tissues. A statistically significant association was detected between a high level of nuclear expression of DDIT4 protein, and lymphovascular invasion (P = 0.025), as well as advanced TNM stage (P = 0.034) pancreatic ductal adenocarcinoma (PDAC) and in pancreatic neuroendocrine tumor (PNET), respectively. In contrast, a low level of membranous expression of DDIT4 protein showed a significant association with advanced histological grade (P = 0.011), margin involvement (P = 0.007), perineural invasion (P = 0.023), as well as lymphovascular invasion (P = 0.005) in PDAC. No significant association was found between survival outcomes and expression of DDIT4 in both types. It was found that DDIT4 has rational accuracy and high sensitivity as a diagnostic marker. Our results revealed a paradoxical role of DDIT4 expression protein based on the site of nuclear and membranous expression. The findings of this research indicated that there is a correlation between elevated nuclear expression of DDIT4 and the advancement and progression of disease in patients with PT. Conversely, high membranous expression of DDIT4 was associated with less aggressive tumor behavior in patients with PDAC. However, further studies into the prognostic value and biological function of DDIT4 are needed in future studies.
Collapse
Affiliation(s)
- Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Surgery, University of California, Irvine, CA, USA
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Clinical Research Development Unit of Ayatollah-Khansari Hospital, Arak University of Medical Sciences, Arak, Iran
| | - Fereshteh Rezagholizadeh
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Behnaz Bouzari
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Baghai Wadji
- Department of Surgery, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Amri F, Koulali H, Jabi R, Zazour A, Bouziane M, Ismaili Z, Kharrasse G. Pancreatic cancer: experience from an emerging country in North Africa. J Cancer Res Clin Oncol 2023; 149:14297-14302. [PMID: 37561209 DOI: 10.1007/s00432-023-05245-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
PURPOSE Pancreatic cancer is a major global health problem, it's a highly aggressive and often has a poor prognosis. The aim of this work is to carry out a retrospective epidemiological study on pancreatic cancer in a university hospital in a North African country. METHODS This is a monocentric, descriptive and analytical retrospective cohort study carried out in the Gastroenterology department of the Mohammed VI University Hospital of Oujda, Morocco, between January 2018 and December 2022. Analysis were performed using IBM SPSS Version 21.0 RESULTS: During this period, 197 cases of pancreatic cancers were collected, the median age was 64.6 years, the majority of patients (90.9%) were over 50 year's old. and there was no significant difference in gender distribution. Among the patients, several risk factors were prevalent, including chronic tobacco smoking (22.8%), alcohol consumption (12.7%), diabetes (38.1%), obesity (7.6%), and a family history of pancreatic cancer (3%). The most common symptoms at presentation were abdominal pain and obstructive jaundice. Imaging revealed that the majority of cases were located in the head of the pancreas (80.7%). Only 19.8% of the cancers were diagnosed at a resectable stage and adenocarcinoma was the predominant histological type (96.4%). Patients with advanced cancer stages showed higher levels of CA 19-9 and hypoalbuminemia. CONCLUSION Our study aligns with previous research, indicating an increased incidence of pancreatic cancer among elderly individuals, particularly those with several risk factors such as chronic tobacco smoking, alcohol consumption, diabetes. A small proportion of cancer cases are deemed resectable at the time of diagnosis.
Collapse
Affiliation(s)
- Fakhrddine Amri
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco.
- Digestive Diseases Research Laboratory (DSRL), Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco.
| | - Hajar Koulali
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Diseases Research Laboratory (DSRL), Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
| | - Rachid Jabi
- Department of General Surgery, Mohammed VI University Hospital, Oujda, Morocco
| | - Abdelkrim Zazour
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Diseases Research Laboratory (DSRL), Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
| | - Mohammed Bouziane
- Department of General Surgery, Mohammed VI University Hospital, Oujda, Morocco
| | - Zahi Ismaili
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Diseases Research Laboratory (DSRL), Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
| | - Ghizlane Kharrasse
- Department of Hepato-Gastroenterology, Mohammed VI University Hospital, Oujda, Morocco
- Digestive Diseases Research Laboratory (DSRL), Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco
| |
Collapse
|
29
|
Gonzalez R, Srinivas S, Waterman BL, Chawla M, Cloyd JM, Di Tosto G, Pawlik TM, Sarna A, Rush LJ, McAlearney AS, Ejaz A. Impact of early vs late palliative care referrals on healthcare utilization in patients with pancreatic cancer. J Cancer Res Clin Oncol 2023; 149:14997-15002. [PMID: 37610676 DOI: 10.1007/s00432-023-05113-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/04/2023] [Indexed: 08/24/2023]
Abstract
PURPOSE The purpose of this study was to examine the impact of early versus late palliative care referral (PCR) following pancreatic cancer diagnosis. METHODS Patients diagnosed with PDAC who received a PCR between 2014 and 2020 at a major academic institution were identified. PCR was classified as early (< 30 days) or late (≥ 30 days) based on time from definitive diagnosis. Data were obtained on number of emergency department (ED) visits, intensive care unit (ICU) admissions, and hospital admissions. RESULTS Among 1458 patients with PDAC, 419 (28.7%) received PCR, among which 67.3% (n = 282) received a late PCR. Of those who received PCR, the majority were White (85%) and male (54.8%), with a median age of 62 years at time of diagnosis. Patients who received an early PCR more commonly presented with stage 4 disease at diagnosis (early: n = 91, 69% vs. late: n = 132, 47%), whereas patients who received a late PCR more commonly presented with stage 1, 2, or 3 disease (early: n = 40, 30.5% vs. late: n = 150, 53.2%) (p < 0.001). Patients who received early PCR had fewer median ED visits (1 vs. 2, p < 0.001) and hospital admissions (1 vs. 2, p < 0.001) compared with patients who received late PCR. However, after performing recurrent-event Cox-proportional hazards models, the timing of PCR did not impact hospital admission (HR 0.88, 95% CI 0.68, 1.14; p = 0.3). CONCLUSION Timing of PCR for patients with PDAC was not associated with healthcare utilization. Further prospective trials are needed to study the patient-centered impact of early integration of palliative care services into multidisciplinary pancreatic cancer teams.
Collapse
Affiliation(s)
- Roberto Gonzalez
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Shruthi Srinivas
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, 320 W. 10th Ave., M-260 Starling-Loving Hall, Columbus, OH, USA
| | - Brittany L Waterman
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mehak Chawla
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jordan M Cloyd
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, 320 W. 10th Ave., M-260 Starling-Loving Hall, Columbus, OH, USA
| | - Gennaro Di Tosto
- The Center for the Advancement of Team Science, Analytics, and Systems Thinking in Health Services and Implementation Science Research (CATALYST), The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, 320 W. 10th Ave., M-260 Starling-Loving Hall, Columbus, OH, USA
| | - Angela Sarna
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Laura J Rush
- The Center for the Advancement of Team Science, Analytics, and Systems Thinking in Health Services and Implementation Science Research (CATALYST), The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ann Scheck McAlearney
- The Ohio State University College of Medicine, Columbus, OH, USA
- The Center for the Advancement of Team Science, Analytics, and Systems Thinking in Health Services and Implementation Science Research (CATALYST), The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Family and Community Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Aslam Ejaz
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, 320 W. 10th Ave., M-260 Starling-Loving Hall, Columbus, OH, USA.
| |
Collapse
|
30
|
Zhao Z, He X, Sun Y. Hypoglycemic agents and incidence of pancreatic cancer in diabetic patients: a meta-analysis. Front Pharmacol 2023; 14:1193610. [PMID: 37497113 PMCID: PMC10366383 DOI: 10.3389/fphar.2023.1193610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023] Open
Abstract
Background and aims: Hypoglycemic agents are the primary therapeutic approach for the treatment of diabetes and have been postulated to impact pancreatic cancer (PC) incidence in diabetic patients. We conducted a meta-analysis to further evaluate and establish the associations between four common types of hypoglycemic agents [metformin, sulfonylureas, thiazolidinediones (TZDs), and insulin] and PC incidence in individuals with diabetes mellitus (DM). Methods: A comprehensive literature search of PubMed, Web of Science, Embase, and the Cochrane Library identified studies that analyzed the relationship between hypoglycemic agents and PC published between January 2012 and September 2022. Randomized control trials (RCTs), cohorts, and case-control studies were included if there was clear and evaluated defined exposure to the involved hypoglycemic agents and reported PC outcomes in patients with DM. Furthermore, reported relative risks or odds ratios (ORs) or other provided data were required for the calculation of odds ratios. Summary odds ratio estimates with a 95% confidence interval (CI) were estimated using the random-effects model. Additionally, subgroup analysis was performed to figure out the source of heterogeneity. Sensitivity analysis and publication bias detection were also performed. Results: A total of 11 studies were identified that evaluated one or more of the hypoglycemic agents, including three case-control studies and eight cohort studies. Among these, nine focused on metformin, six on sulfonylureas, seven on TZDs, and seven on insulin. Meta-analysis of the 11 observational studies reported no significant association between metformin (OR = 1.04, 95% CI 0.73-1.46) or TZDs (OR = 1.13, 95% CI 0.73-1.75) and PC incidence, while the risk of PC increased by 79% and 185% with sulfonylureas (OR = 1.79, 95% CI 1.29-2.49) and insulin (OR = 2.85, 95% CI 1.75-4.64), respectively. Considerable heterogeneity was observed among the studies and could not be fully accounted for by study design, region, or adjustment for other hypoglycemic agents. Conclusion: Sulfonylureas and insulin may increase the incidence of pancreatic cancer in diabetic patients, with varying effects observed among different ethnicities (Asian and Western). Due to significant heterogeneity across studies, further interpretation of the relationship between hypoglycemic agents and pancreatic cancer incidence in diabetic patients requires well-adjusted data and better-organized clinical trials.
Collapse
Affiliation(s)
- Zimo Zhao
- First Clinical Medical College, China Medical University, Shenyang, China
| | - Xinyi He
- Clinical Department I, China Medical University, Shenyang, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
31
|
Wang Q, Šabanović B, Awada A, Reina C, Aicher A, Tang J, Heeschen C. Single-cell omics: a new perspective for early detection of pancreatic cancer? Eur J Cancer 2023; 190:112940. [PMID: 37413845 DOI: 10.1016/j.ejca.2023.112940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023]
Abstract
Pancreatic cancer is one of the most lethal cancers, mostly due to late diagnosis and limited treatment options. Early detection of pancreatic cancer in high-risk populations bears the potential to greatly improve outcomes, but current screening approaches remain of limited value despite recent technological advances. This review explores the possible advantages of liquid biopsies for this application, particularly focusing on circulating tumour cells (CTCs) and their subsequent single-cell omics analysis. Originating from both primary and metastatic tumour sites, CTCs provide important information for diagnosis, prognosis and tailoring of treatment strategies. Notably, CTCs have even been detected in the blood of subjects with pancreatic precursor lesions, suggesting their suitability as a non-invasive tool for the early detection of malignant transformation in the pancreas. As intact cells, CTCs offer comprehensive genomic, transcriptomic, epigenetic and proteomic information that can be explored using rapidly developing techniques for analysing individual cells at the molecular level. Studying CTCs during serial sampling and at single-cell resolution will help to dissect tumour heterogeneity for individual patients and among different patients, providing new insights into cancer evolution during disease progression and in response to treatment. Using CTCs for non-invasive tracking of cancer features, including stemness, metastatic potential and expression of immune targets, provides important and readily accessible molecular insights. Finally, the emerging technology of ex vivo culturing of CTCs could create new opportunities to study the functionality of individual cancers at any stage and develop personalised and more effective treatment approaches for this lethal disease.
Collapse
Affiliation(s)
- Qi Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Azhar Awada
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy; Molecular Biotechnology Center, University of Turin (UniTO), Turin, Italy
| | - Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; South Chongqing Road 227, Shanghai, China.
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy; South Chongqing Road 227, Shanghai, China.
| |
Collapse
|
32
|
Lo EK, Mears BM, Maurer HC, Idrizi A, Hansen KD, Thompson ED, Hruban RH, Olive KP, Feinberg AP. Comprehensive DNA Methylation Analysis Indicates That Pancreatic Intraepithelial Neoplasia Lesions Are Acinar-Derived and Epigenetically Primed for Carcinogenesis. Cancer Res 2023; 83:1905-1916. [PMID: 36989344 PMCID: PMC10239363 DOI: 10.1158/0008-5472.can-22-4052] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is believed to arise from the accumulation of a series of somatic mutations and is also frequently associated with pancreatic intraepithelial neoplasia (PanIN) lesions. However, there is still debate as to whether the cell type-of-origin of PanINs and PDACs in humans is acinar or ductal. As cell type identity is maintained epigenetically, DNA methylation changes during pancreatic neoplasia can provide a compelling perspective to examine this question. Here, we performed laser-capture microdissection on surgically resected specimens from 18 patients to isolate, with high purity, DNA for whole-genome bisulfite sequencing from four relevant cell types: acini, nonneoplastic ducts, PanIN lesions, and PDAC lesions. Differentially methylated regions (DMR) were identified using two complementary analytical approaches: bsseq, which identifies any DMRs but is particularly useful for large block-like DMRs, and informME, which profiles the potential energy landscape across the genome and is particularly useful for identifying differential methylation entropy. Both global methylation profiles and block DMRs clearly implicated an acinar origin for PanINs. At the gene level, PanIN lesions exhibited an intermediate acinar-ductal phenotype resembling acinar-to-ductal metaplasia. In 97.6% of PanIN-specific DMRs, PanIN lesions had an intermediate methylation level between normal and PDAC, which suggests from an information theory perspective that PanIN lesions are epigenetically primed to progress to PDAC. Thus, epigenomic analysis complements histopathology to define molecular progression toward PDAC. The shared epigenetic lineage between PanIN and PDAC lesions could provide an opportunity for prevention by targeting aberrantly methylated progression-related genes. SIGNIFICANCE Analysis of DNA methylation landscapes provides insights into the cell-of-origin of PanIN lesions, clarifies the role of PanIN lesions as metaplastic precursors to human PDAC, and suggests potential targets for chemoprevention.
Collapse
Affiliation(s)
- Emily K.W. Lo
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian M. Mears
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - H. Carlo Maurer
- Department of Internal Medicine II, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Adrian Idrizi
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kasper D. Hansen
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elizabeth D. Thompson
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Baltimore, MD, USA
| | - Ralph H. Hruban
- Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Baltimore, MD, USA
| | - Kenneth P. Olive
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Andrew P. Feinberg
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, MD, USA
| |
Collapse
|
33
|
Piper M, Hoen M, Darragh LB, Knitz MW, Nguyen D, Gadwa J, Durini G, Karakoc I, Grier A, Neupert B, Van Court B, Abdelazeem KNM, Yu J, Olimpo NA, Corbo S, Ross RB, Pham TT, Joshi M, Kedl RM, Saviola AJ, Amann M, Umaña P, Codarri Deak L, Klein C, D'Alessandro A, Karam SD. Simultaneous targeting of PD-1 and IL-2Rβγ with radiation therapy inhibits pancreatic cancer growth and metastasis. Cancer Cell 2023; 41:950-969.e6. [PMID: 37116489 PMCID: PMC10246400 DOI: 10.1016/j.ccell.2023.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/05/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
In pancreatic ductal adenocarcinoma (PDAC) patients, we show that response to radiation therapy (RT) is characterized by increased IL-2Rβ and IL-2Rγ along with decreased IL-2Rα expression. The bispecific PD1-IL2v is a PD-1-targeted IL-2 variant (IL-2v) immunocytokine with engineered IL-2 cis targeted to PD-1 and abolished IL-2Rα binding, which enhances tumor-antigen-specific T cell activation while reducing regulatory T cell (Treg) suppression. Using PD1-IL2v in orthotopic PDAC KPC-driven tumor models, we show marked improvement in local and metastatic survival, along with a profound increase in tumor-infiltrating CD8+ T cell subsets with a transcriptionally and metabolically active phenotype and preferential activation of antigen-specific CD8+ T cells. In combination with single-dose RT, PD1-IL2v treatment results in a robust, durable expansion of polyfunctional CD8+ T cells, T cell stemness, tumor-specific memory immune response, natural killer (NK) cell activation, and decreased Tregs. These data show that PD1-IL2v leads to profound local and distant response in PDAC.
Collapse
Affiliation(s)
- Miles Piper
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maureen Hoen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Greta Durini
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Idil Karakoc
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Abby Grier
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Khalid N M Abdelazeem
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Yu
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Richard Blake Ross
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tiffany T Pham
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Molishree Joshi
- Department of Pharmacology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ross M Kedl
- Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Maria Amann
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Laura Codarri Deak
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development (pRED), Schlieren, Switzerland
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Microbiology and Immunology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
34
|
Du D, He J, Ju C, Wang C, Li H, He F, Zhou M. When N7-methyladenosine modification meets cancer: Emerging frontiers and promising therapeutic opportunities. Cancer Lett 2023; 562:216165. [PMID: 37028699 DOI: 10.1016/j.canlet.2023.216165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023]
Abstract
N7-methylguanosine (m7G) methylation, one of the most common RNA modifications in eukaryotes, has recently gained considerable attention. The biological functions of m7G modification in RNAs, including tRNA, rRNA, mRNA, and miRNA, remain largely unknown in human diseases. Owing to rapid advances in high-throughput technologies, increasing evidence suggests that m7G modification plays a critical role in cancer initiation and progression. As m7G modification and hallmarks of cancer are inextricably linked together, targeting m7G regulators may provide new possibilities for future cancer diagnoses and potential intervention targets. This review summarizes various detection methods for m7G modification, recent advances in m7G modification and tumor biology regarding their interplay and regulatory mechanisms. We conclude with an outlook on the future of diagnosing and treating m7G-related diseases.
Collapse
|
35
|
Han D, Zhu S, Li X, Li Z, Huang H, Gao W, Liu Y, Zhu H, Yu X. The NF-κB/miR-488/ERBB2 axis modulates pancreatic cancer cell malignancy and tumor growth through cell cycle signaling. Cancer Biol Ther 2022; 23:294-309. [PMID: 35343383 PMCID: PMC8966990 DOI: 10.1080/15384047.2022.2054257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/27/2021] [Accepted: 01/17/2022] [Indexed: 01/17/2023] Open
Abstract
Pancreatic cancer is one of the malignancies having the poorest prognosis due to late diagnoses and lack of efficient treatment regimens. The identification of potential miRNA-targeted gene axes could act as targets for developing novel treatment strategies. Herein, it was assessed that miR-488 expression was markedly downregulated within pancreatic carcinoma. Higher expression of miR-488 was shown to be linked to better prognosis rates of pancreatic carcinoma as per online data. Within two pancreatic tumor cells, MIA PaCa-2 and PANC-1, miR-488 overexpression significantly suppressed malignant cytological behavior by inhibiting cell viability, enhancing cell apoptosis, and inducing cell cycle G2/M-phase arrest. Moreover, miR-488 overexpression also decreased the protein levels of cell cycle regulators, including cyclin A, cyclin B, CDK1, and CDK2. miR-488 directly targets ERBB2 (receptor tyrosine-protein kinase2) to suppress the expression of ERBB2 by targeting its 3'UTR. ERBB2 knockdown in MIA PaCa-2 and PANC-1 cell lines suppressed, but miR-488 inhibition enhanced the cancer cell biological malignant behavior; the effects of miR-488 inhibition on pancreatic cancer cells were significantly reversed by ERBB2 knockdown. NF-κB suppressed the expression of miR-488 transcriptionally via targeting its promoter region, consequentially repressing the tumor-suppressive effects of miR-488 upon pancreatic tumor cells. Thus, an NF-κB/miR-488/ERBB2 axis modulating pancreatic cancer cell malignancy and tumor growth through cell cycle signaling was conclusively demonstrated.
Collapse
Affiliation(s)
- Duo Han
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Shaihong Zhu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xia Li
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhiqiang Li
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hui Huang
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Wenzhe Gao
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yunfei Liu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Hongwei Zhu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiao Yu
- Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
36
|
Nduma BN, Ambe S, Ekhator C, Fonkem E. Geographical Distribution of Pancreatic Cancer in the State of Mississippi by Incidence and Mortality From 2003 to 2019. Cureus 2022; 14:e31605. [PMCID: PMC9671138 DOI: 10.7759/cureus.31605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
|
37
|
He S, Gu X, Yang J, Xu F, Hu J, Wang W, Huang Y, Lou B, Ding T, Zhou L, Ye D, Yu K, Dong J. Sphingomyelin synthase 2 is a positive regulator of the CSF1R-STAT3 pathway in pancreatic cancer-associated macrophage. Front Pharmacol 2022; 13:902016. [PMID: 36324684 PMCID: PMC9618885 DOI: 10.3389/fphar.2022.902016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/22/2022] [Indexed: 04/07/2025] Open
Abstract
Background: Tumor-associated macrophages (TAMs) are one of the most abundant immune cells in the pancreatic cancer stroma and are related to the poor prognosis of pancreatic ductal adenocarcinoma (PDAC) patients. Therefore, targeting tumor-associated macrophages is a possible strategy for the treatment of pancreatic cancer. Purpose: We would like to investigate the role of sphingomyelin synthase 2 (SMS2) and the effect of the synthase 2 selective inhibitor YE2 in TAMs and the pancreatic tumor microenvironment. In addition, we also would like to investigate the mechanism by which YE2 attenuates macrophage M2 polarization. Methods: YE2 was utilized to treat macrophages (in vitro) and mice (in vivo). Western blotting and real-time PCR were used to detect the protein levels and mRNA levels of macrophage M2 polarization markers and their downstream signaling pathways. Sphingomyelin synthase 2 gene knockout (KO) mice and their controls were used to establish a PANC-02 orthotopic pancreatic cancer model, and immune cell infiltration in the tumor tissue was analyzed by immunohistochemistry (IHC). Results: We found that sphingomyelin synthase 2 mRNA expression is positively correlated with tumor-associated macrophages, the immunosuppressive microenvironment, and poor prognosis in pancreatic ductal adenocarcinoma patients. Sphingomyelin synthase 2 deficiency was confirmed to have an inhibitory effect on the growth of orthotopic PANC-02 tumors in vivo. The deficiency not only reduced the infiltration of tumor-associated macrophages but also regulated other immune components in the tumor microenvironment. In tissue culture, YE2 inhibited M2 polarization in both bone marrow-derived macrophages (BMDMs) and THP-1 macrophages and eliminated the protumor effect of M2 macrophages. In the mouse model, YE2 treatment reduced the infiltration of TAMs and regulated other immune components in the tumor microenvironment, slowing the progression of PANC-02 tumors. In terms of mechanism, we found that the inhibition of sphingomyelin synthase 2 could downregulate the expression of IL4Rα and CSF1R, thereby attenuating M2 polarization. Conclusion: The sphingomyelin synthase 2 inhibitor YE2 or sphingomyelin synthase 2 deficiency can prevent macrophage M2 polarization in pancreatic cancer, and sphingomyelin synthase 2 could be a new potential target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Shuhua He
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiang Gu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jintong Yang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Fei Xu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiachun Hu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Yiheng Huang
- Department of Clinical Medicine, Shanghai Jiaotong University of Medicine, Shanghai, China
| | - Bin Lou
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Tingbo Ding
- Experiment & Teaching Center, School of Pharmacy, Fudan University, Shanghai, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Deyong Ye
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Ker Yu
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
| | - Jibin Dong
- Department of Pharmacology and Biochemistry, School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Immunotherapeutics, Fudan University, Shanghai, China
| |
Collapse
|
38
|
Targeting PI3K/AKT/mTOR Signaling Pathway in Pancreatic Cancer: From Molecular to Clinical Aspects. Int J Mol Sci 2022; 23:ijms231710132. [PMID: 36077529 PMCID: PMC9456549 DOI: 10.3390/ijms231710132] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023] Open
Abstract
Although pancreatic cancer (PC) was considered in the past an orphan cancer type due to its low incidence, it may become in the future one of the leading causes of cancer death. Pancreatic ductal adenocarcinoma (PDAC) is the most frequent type of PC, being a highly aggressive malignancy and having a 5-year survival rate of less than 10%. Non-modifiable (family history, age, genetic susceptibility) and modifiable (smoking, alcohol, acute and chronic pancreatitis, diabetes mellitus, intestinal microbiota) risk factors are involved in PC pathogenesis. Chronic inflammation induced by various factors plays crucial roles in PC development from initiation to metastasis. In multiple malignant conditions such as PC, cytokines, chemokines, and growth factors activate the class I phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) (PI3K/AKT/mTOR) signaling pathway, which plays key roles in cell growth, survival, proliferation, metabolism, and motility. Currently, mTOR, AKT, and PI3K inhibitors are used in clinical studies. Moreover, PI3K/mTOR dual inhibitors are being tested in vitro and in vivo with promising results for PC patients. The main aim of this review is to present PC incidence, risk factors, tumor microenvironment development, and PI3K/AKT/mTOR dysregulation and inhibitors used in clinical, in vivo, and in vitro studies.
Collapse
|
39
|
Early Single-Center Experience With Irreversible Electroporation for Stage 2, 3, and 4 Pancreatic Adenocarcinomas. Pancreas 2022; 51:976-984. [PMID: 36607943 DOI: 10.1097/mpa.0000000000002127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Irreversible electroporation (IRE) is an ablation technology that uses electrical energy delivered between electrodes. If the electrodes are placed atraumatically, there is little to no risk of collateral injury, making IRE appealing for the treatment of pancreatic tumors. METHODS We report on 20 patients with pancreatic adenocarcinoma (PAC) who underwent 21 IRE in our center. There were 6 IRE for stage 2 PAC, 11 for stage 3 PAC, 1 for stage 4 PAC, and 2 patients treated with IRE for recurrence after pancreaticoduodenectomy. One patient had local progression 18 months after IRE and received a second IRE treatment. Using propensity score matching (age, sex, stage, tumor size, and chemotherapy), cases were matched 2 to 1 with patients from the Surveillance, Epidemiology, and End Results database. RESULTS A total of 7 cases experienced 8 complications; 4 complications were mild, and 4 were severe. Significant survival benefit was seen for patients with stage 3 PAC (27.5 vs 14.6 months for the matched group, P = 0.003); for stage 2, median survival was 15 months, and the single stage 4 patient survived 9 months after IRE treatment. CONCLUSIONS Pancreatic cancers were safely and effectively treated with image-guided IRE in our medium-sized center.
Collapse
|
40
|
Gollapudi LA, Tyberg A. EUS-RFA of the pancreas: where are we and future directions. Transl Gastroenterol Hepatol 2022; 7:18. [PMID: 35548478 PMCID: PMC9081919 DOI: 10.21037/tgh-2020-11] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/18/2020] [Indexed: 07/30/2023] Open
Abstract
Surgical resection remains the gold standard for pancreatic cancer, high-risk pancreatic neuroendocrine tumors (PNETs) and pancreatic cystic neoplasms (PCNs). However, a majority of pancreatic cancers are unresectable at the time of diagnosis. In addition, surgical resection of pancreatic lesions can be associated with morbidity and mortality. A less-invasive alternative therapeutic intervention to avoid short term and long-term adverse events is desirable, as is a minimally-invasive palliative therapy for unresectable or recurrent pancreatic cancers. Endoscopic ultrasound guided radiofrequency ablation (EUS-RFA) allows for selective tissue ablation with minimal injury to the surrounding tissue. EUS-RFA of pancreatic tumors has shown high clinical and technical success with acceptable side effects in pancreatic lesions, lymph nodes, and the celiac plexus. This paper will review the pathophysiology, available technology, safety and efficacy, and future directions of EUS-RFA.
Collapse
Affiliation(s)
- Lakshmi Asritha Gollapudi
- Department of Medicine, Division of Gastroenterology, New York Medical College at Westchester Medical Center, Valhalla, NY, USA
| | - Amy Tyberg
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
41
|
Kalli M, Li R, Mills GB, Stylianopoulos T, Zervantonakis IK. Mechanical Stress Signaling in Pancreatic Cancer Cells Triggers p38 MAPK- and JNK-Dependent Cytoskeleton Remodeling and Promotes Cell Migration via Rac1/cdc42/Myosin II. Mol Cancer Res 2022; 20:485-497. [PMID: 34782370 PMCID: PMC8898300 DOI: 10.1158/1541-7786.mcr-21-0266] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Advanced or metastatic pancreatic cancer is highly resistant to existing therapies, and new treatments are urgently needed to improve patient outcomes. Current studies focus on alternative treatment approaches that target the abnormal microenvironment of pancreatic tumors and the resulting elevated mechanical stress in the tumor interior. Nevertheless, the underlying mechanisms by which mechanical stress regulates pancreatic cancer metastatic potential remain elusive. Herein, we used a proteomic assay to profile mechanical stress-induced signaling cascades that drive the motility of pancreatic cancer cells. Proteomic analysis, together with selective protein inhibition and siRNA treatments, revealed that mechanical stress enhances cell migration through activation of the p38 MAPK/HSP27 and JNK/c-Jun signaling axes, and activation of the actin cytoskeleton remodelers: Rac1, cdc42, and myosin II. In addition, mechanical stress upregulated transcription factors associated with epithelial-to-mesenchymal transition and stimulated the formation of stress fibers and filopodia. p38 MAPK and JNK inhibition resulted in lower cell proliferation and more effectively blocked cell migration under mechanical stress compared with control conditions. The enhanced tumor cell motility under mechanical stress was potently reduced by cdc42 and Rac1 silencing with no effects on proliferation. Our results highlight the importance of targeting aberrant signaling in cancer cells that have adapted to mechanical stress in the tumor microenvironment, as a novel approach to effectively limit pancreatic cancer cell migration. IMPLICATIONS Our findings highlight that mechanical stress activated the p38 MAPK and JNK signaling axis and stimulated pancreatic cancer cell migration via upregulation of the actin cytoskeleton remodelers cdc42 and Rac1.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ruxuan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gordon B. Mills
- Knight Cancer Institute, Oregon Health Sciences University, Oregon, Pennsylvania
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Means N, Elechalawar CK, Chen WR, Bhattacharya R, Mukherjee P. Revealing macropinocytosis using nanoparticles. Mol Aspects Med 2022; 83:100993. [PMID: 34281720 PMCID: PMC8761201 DOI: 10.1016/j.mam.2021.100993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
Endocytosis mechanisms are one of the methods that cells use to interact with their environments. Endocytosis mechanisms vary from the clathrin-mediated endocytosis to the receptor independent macropinocytosis. Macropinocytosis is a niche of endocytosis that is quickly becoming more relevant in various fields of research since its discovery in the 1930s. Macropinocytosis has several distinguishing factors from other receptor-mediated forms of endocytosis, including: types of extracellular material for uptake, signaling cascade, and niche uses between cell types. Nanoparticles (NPs) are an important tool for various applications, including drug delivery and disease treatment. However, surface engineering of NPs could be tailored to target them inside the cells exploiting different endocytosis pathways, such as endocytosis versus macropinocytosis. Such surface engineering of NPs mainly, size, charge, shape and the core material will allow identification of new adapter molecules regulating different endocytosis process and provide further insight into how cells tweak these pathways to meet their physiological need. In this review, we focus on the description of macropinocytosis, a lesser studied endocytosis mechanism than the conventional receptor mediated endocytosis. Additionally, we will discuss nanoparticle endocytosis (including macropinocytosis), and how the physio-chemical properties of the NP (size, charge, and surface coating) affect their intracellular uptake and exploiting them as tools to identify new adapter molecules regulating these processes.
Collapse
Affiliation(s)
- Nicolas Means
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Wei R Chen
- Stephenson School of Biomedical Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
43
|
Palacios-Acedo AL, Langiu M, Crescence L, Mège D, Dubois C, Panicot-Dubois L. Platelet and Cancer-Cell Interactions Modulate Cancer-Associated Thrombosis Risk in Different Cancer Types. Cancers (Basel) 2022; 14:730. [PMID: 35159000 PMCID: PMC8833365 DOI: 10.3390/cancers14030730] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
The first cause of death in cancer patients, after tumoral progression itself, is thrombo-embolic disease. This cancer-associated hypercoagulability state is known as Trousseau's syndrome, and the risk for developing thrombotic events differs according to cancer type and stage, as well as within patients. Massive platelet activation by tumor cells is the key mediator of thrombus formation in Trousseau's syndrome. In this literature review, we aimed to compare the interactions between cancer cells and platelets in three different cancer types, with low, medium and high thrombotic risk. We chose oral squamous cell carcinoma for the low-thrombotic-risk, colorectal adenocarcinoma for the medium-thrombotic-risk, and pancreatic carcinoma for the high-thrombotic-risk cancer type. We showcase that understanding these interactions is of the highest importance to find new biomarkers and therapeutic targets for cancer-associated thrombosis.
Collapse
Affiliation(s)
- Ana-Luisa Palacios-Acedo
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
| | - Mélanie Langiu
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
| | - Lydie Crescence
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
- Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Diane Mège
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
- Department of Digestive Surgery, La Timone University Hospital, 13005 Marseille, France
| | - Christophe Dubois
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
- Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| | - Laurence Panicot-Dubois
- Aix Marseille University, INSERM 1263 (Institut National de la Santé et de la Recherche), INRAE 1260 (Institut National de la Recherche Agronomique et de l’Environnement), C2VN (Center for CardioVascular and Nutrition Research), 13885 Marseille, France; (A.-L.P.-A.); (M.L.); (L.C.); (D.M.); (L.P.-D.)
- Marseille University, PIVMI (Plateforme d’Imagerie Vasculaire et de Microscopie Intravitale), C2VN (Center for CardioVascular and Nutrition Research), 13385 Marseille, France
| |
Collapse
|
44
|
Fang X, Cai Y, Xu Y, Zhang H. Exosome-mediated lncRNA SNHG11 regulates angiogenesis in pancreatic carcinoma through miR-324-3p/VEGFA axis. Cell Biol Int 2022; 46:106-117. [PMID: 34519129 DOI: 10.1002/cbin.11703] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/27/2021] [Accepted: 09/12/2021] [Indexed: 12/25/2022]
Abstract
Pancreatic carcinoma (PC) is one of the most common and deadly human malignancies worldwide. LncRNAs play significant roles in the occurrence and development of various cancers. LncRNA SNHG11 (SNHG11) has been found to display high expression in serum of PC patients, which implies that dysregulated SNHG11 may be related to the development of PC. However, there is still a knowledge gap concerning the specific function and molecular mechanism of SNHG11 in PC. After conducting experiments with constructed models in vitro or in vivo, we found that exosomal SNHG11 promoted cell proliferation, migration, and angiogenesis but impeded cell apoptosis in PC in vitro, and additionally, it facilitated tumor growth in vivo. Exosome-mediated SNHG11 regulated the expression of VEGFA through sponging miR-324-3p. Rescue assays validated that the inhibitory effect of SNHG11 depletion on cell proliferation, migration, and angiogenesis could be reversed by miR-324-3p downregulation or VEGFA upregulation, and the promoting effect of SNHG11 silence on cell apoptosis could be rescued by transfection of miR-324-3p inhibitor or pcDNA3.1-VEGFA. To conclude, exosomal-mediated SNHG11 could regulate PC progression via miR-324-3p/VEGFA axis. Our findings may provide a novel insight for understanding PC, which might contribute to the development of potential PC biomarker.
Collapse
Affiliation(s)
- Xingbao Fang
- Department of Hepatopancreatobiliary Surgery, The First People's Hospital of Qujing, Qujing, Yunnan, China
| | - Yan Cai
- Department of Pathophysiology, Qujing Medical College, Qujing, Yunnan, China
| | - Yongping Xu
- Department of Hepatopancreatobiliary Surgery, The First People's Hospital of Qujing, Qujing, Yunnan, China
| | - Hong Zhang
- Department of Hepatopancreatobiliary Surgery, The First People's Hospital of Qujing, Qujing, Yunnan, China
| |
Collapse
|
45
|
Demirtürk N, Bilensoy E. Nanocarriers targeting the diseases of the pancreas. Eur J Pharm Biopharm 2022; 170:10-23. [PMID: 34852262 DOI: 10.1016/j.ejpb.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
Diseases of the pancreas include acute and chronic pancreatitis, exocrine pancreatic insufficiency, diabetes and pancreatic cancer. These pathologies can be difficult to treat due to the innate properties of the pancreas, its structure and localization. The need for effective targeting of the pancreatic tissue by means of nanoparticles delivering therapeutics is a major focus area covered and discussed in this review. Most common diseases of the pancreas do not have specific and direct medical treatment option, and existing treatment options are generally aimed at relieving symptoms. Diabetes has different treatment options for different subtypes based on insulin having stability problems and requiring injections reducing patient compliance. Pancreatic cancer progresses silently and can only be diagnosed in advanced stages. Therefore, survival rate of patients is very low. Gemcitabine and FOLFIRINOX treatment regimens, the most commonly used clinical standard treatments, are generally insufficient due to the chemoresistance that develops in cancer cells and also various side effects. Therefore new treatment options for pancreatic cancer are also under focus. Overcoming drug resistance and pancreatic targeting can be achieved with active and passive targeting methods, and a more effective and safer treatment regimen can be provided at lower drug doses. This review covers the current literature and clinical trials concerning pancreatic drug delivery systems in the nanoscale focusing on the challenges and opportunities provided by these smart delivery systems.
Collapse
Affiliation(s)
- Nurbanu Demirtürk
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Erem Bilensoy
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey.
| |
Collapse
|
46
|
Hendricks-Wenger A, Nagai-Singer MA, Uh K, Vlaisavljevich E, Lee K, Allen IC. Employing Novel Porcine Models of Subcutaneous Pancreatic Cancer to Evaluate Oncological Therapies. Methods Mol Biol 2022; 2394:883-895. [PMID: 35094364 DOI: 10.1007/978-1-0716-1811-0_47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immunocompromised mice are commonly utilized to study pancreatic cancer and other malignancies. The ability to xenograft tumors in either subcutaneous or orthotopic locations provides a robust model to study diverse biological features of human malignancies. However, there is a dire need for large animal models that better recapitulate human anatomy in terms of size and physiology. These models will be critical for biomedical device development, surgical optimization, and drug discovery. Here, we describe the generation and application of immunocompromised pigs lacking RAG2 and IL2RG as a novel model for human xenograft studies. These SCID-like pigs closely resemble NOD scid gamma mice and are receptive to human tumor tissue, cell lines, and organoid xenografts. However, due to their immunocompromised nature, these immunocompromised animals require housing and maintenance under germfree conditions. In this protocol, we describe the use of these pigs in a subcutaneous tumor injection study with human PANC1 cells. The tumors demonstrate a steady, linear growth curve, reaching 1.0 cm within 30 days post injection. The model described here is focused on subcutaneous injections behind the ear. However, it is readily adaptable for other locations and additional human cell types.
Collapse
Affiliation(s)
- Alissa Hendricks-Wenger
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kyungjun Uh
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Eli Vlaisavljevich
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kiho Lee
- Department of Animal and Poultry Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
47
|
Li X, Wan Y, Lou J, Xu L, Shi A, Yang L, Fan Y, Yang J, Huang J, Wu Y, Niu T. Preoperative recurrence prediction in pancreatic ductal adenocarcinoma after radical resection using radiomics of diagnostic computed tomography. EClinicalMedicine 2022; 43:101215. [PMID: 34927034 PMCID: PMC8649647 DOI: 10.1016/j.eclinm.2021.101215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The high recurrence rate after radical resection of pancreatic ductal adenocarcinoma (PDAC) leads to its poor prognosis. We aimed to develop a model to preoperatively predict the risk of recurrence based on computed tomography (CT) radiomics and multiple clinical parameters. METHODS Datasets were retrospectively collected and analysed of 220 PDAC patients who underwent contrast-enhanced computed tomography (CE-CT) and received radical resection at 3 institutions in China between 2013 and 2017, with 153 from one institution as a training set, the remaining 67 as a validation set. For each patient, CT radiomics features were extracted from intratumoral and peritumoral regions to establish intratumoral, peritumoral and combined radiomics models using artificial neural network (ANN) algorithm. By incorporating clinical factors, radiomics-clinical nomograms were finally built by multivariable logistic regression analysis to predict 1- and 2-year recurrence risk. FINDINGS The developed radiomics model integrating intratumoral and peritumoral radiomics features was superior to the conventionally constructed model merely using intratumoral radiomics features. Further, radiomics-clinical nomograms outperformed other models in predicting 1-year recurrence with an area under the receiver operating characteristic curve (AUROC) of 0.916 (95%CI, 0.860-0.955) in the training set and 0.764 (95%CI, 0.644-0.859) in the validation set, and 2-year recurrence with an AUROC of 0.872 (95%CI: 0.809-0.921) in the training set and 0.773 (95%CI, 0.654-0.866) in the validation set. INTERPRETATION This study has developed and externally validated a radiomics-clinical nomogram integrating intra- and peritumoral CT radiomics signature as well as clinical factors to predict the recurrence risk of PDAC after radical resection, which will facilitate optimized and individualized treatment strategies. FUNDING This work was supported by the National Key R&D Program of China [grant number: 2018YFE0114800], the General Program of National Natural Science Foundation of China [grant number: 81772562, 2017; 81871351, 2018], the Fundamental Research Funds for the Central Universities [grant number: 2021FZZX005-08], and Zhejiang Provincial Key Projects of Technology Research [grant number: WKJ-ZJ-2033].
Collapse
Affiliation(s)
- Xiawei Li
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yidong Wan
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jianyao Lou
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aiguang Shi
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Litao Yang
- Department of Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Yiqun Fan
- Department of Surgery, Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Jing Yang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Huang
- Department of Surgery, Changxing People's Hospital, Huzhou, Zhejiang, China
| | - Yulian Wu
- Department of Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Cancer Institute, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tianye Niu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
48
|
5- epi-Sinuleptolide from Soft Corals of the Genus Sinularia Exerts Cytotoxic Effects on Pancreatic Cancer Cell Lines via the Inhibition of JAK2/STAT3, AKT, and ERK Activity. Molecules 2021; 26:molecules26226932. [PMID: 34834023 PMCID: PMC8623039 DOI: 10.3390/molecules26226932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the most lethal malignancies: more than half of patients are diagnosed with a metastatic disease, which is associated with a five-year survival rate of only 3%. 5-epi-Sinuleptolide, a norditerpene isolated from Sinularia sp., has been demonstrated to possess cytotoxic activity against cancer cells. However, the cytotoxicity against pancreatic cancer cells and the related mechanisms are unknown. The aim of this study was to evaluate the anti-pancreatic cancer potential of 5-epi-sinuleptolide and to elucidate the underlying mechanisms. The inhibitory effects of 5-epi-sinuleptolide treatment on the proliferation of pancreatic cancer cells were determined and the results showed that 5-epi-sinuleptolide treatment inhibited cell proliferation, induced apoptosis and G2/M cell cycle arrest, and suppressed the invasion of pancreatic cancer cells. The results of western blotting further revealed that 5-epi-sinuleptolide could inhibit JAK2/STAT3, AKT, and ERK phosphorylation, which may account for the diverse cytotoxic effects of 5-epi-sinuleptolide. Taken together, our present investigation unveils a new therapeutic and anti-metastatic potential of 5-epi-sinuleptolide for pancreatic cancer treatment.
Collapse
|
49
|
Ishido K, Kimura N, Wakiya T, Nagase H, Hara Y, Kanda T, Fujita H, Hakamada K. Development of a Biomarker-Based Scoring System Predicting Early Recurrence of Resectable Pancreatic Duct Adenocarcinoma. Ann Surg Oncol 2021; 29:1281-1293. [PMID: 34608555 PMCID: PMC8724152 DOI: 10.1245/s10434-021-10866-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/11/2021] [Indexed: 12/12/2022]
Abstract
Background Resectable pancreatic ductal adenocarcinoma (R-PDAC) often recurs early after radical resection, which is associated with poor prognosis. Predicting early recurrence preoperatively is useful for determining the optimal treatment. Patients and methods One hundred and seventy-eight patients diagnosed with R-PDAC on computed tomography (CT) imaging and undergoing radical resection at Hirosaki University Hospital from 2005 to 2019 were retrospectively analyzed. Patients with recurrence within 6 months after resection formed the early recurrence (ER) group, while other patients constituted the non-early recurrence (non-ER) group. Early recurrence prediction score (ERP score) was developed using preoperative parameters. Results ER was observed in 45 patients (25.3%). The ER group had significantly higher preoperative CA19-9 (p = 0.03), serum SPan-1 (p = 0.006), and CT tumor diameter (p = 0.01) compared with the non-ER group. The receiver operating characteristic (ROC) curve analysis identified cutoff values for CA19-9 (133 U/mL), SPan-1 (78.2 U/mL), and preoperative tumor diameter (23 mm). When the parameter exceeded the cutoff level, 1 point was given, and the total score of the three factors was defined as the ERP score. The group with an ERP score of 3 had postoperative recurrence-free survival (RFS) of 5.5 months (95% CI 3.02–7.98). Multivariate analysis for ER-related perioperative and surgical factors identified ERP score of 3 [odds ratio (OR) 4.63 (95% CI 1.82–11.78), p = 0.0013] and R1 resection [OR 3.20 (95% CI 1.01–10.17), p = 0.049] as independent predictors of ER. Conclusions For R-PDAC, ER could be predicted by the scoring system using preoperative serum CA19-9 and SPan-1 levels and CT tumor diameter, which may have great significance in identifying patients with poor prognoses and avoiding unnecessary surgery.
Collapse
Affiliation(s)
- Keinosuke Ishido
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Norihisa Kimura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taiichi Wakiya
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hayato Nagase
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yutaro Hara
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Taishu Kanda
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hiroaki Fujita
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
50
|
Mashayekhi V, Mocellin O, Fens MH, Krijger GC, Brosens LA, Oliveira S. Targeting of promising transmembrane proteins for diagnosis and treatment of pancreatic ductal adenocarcinoma. Theranostics 2021; 11:9022-9037. [PMID: 34522225 PMCID: PMC8419040 DOI: 10.7150/thno.60350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/12/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal types of cancer due to the relatively late diagnosis and the limited therapeutic options. Current treatment regimens mainly comprise the cytotoxic agents gemcitabine and FOLFIRINOX. These compounds have shown limited efficacy and severe side effects, highlighting the necessity for earlier detection and the development of more effective, and better-tolerated treatments. Although targeted therapies are promising for the treatment of several types of cancer, identification of suitable targets for early diagnosis and targeted therapy of PDAC is challenging. Interestingly, several transmembrane proteins are overexpressed in PDAC cells that show low expression in healthy pancreas and may therefore serve as potential targets for treatment and/or diagnostic purposes. In this review we describe the 11 most promising transmembrane proteins, carefully selected after a thorough literature search. Favorable features and potential applications of each target, as well as the results of the preclinical and clinical studies conducted in the past ten years, are discussed in detail.
Collapse
Affiliation(s)
- Vida Mashayekhi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Orsola Mocellin
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Marcel H.A.M. Fens
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Gerard C. Krijger
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Faculty of Medicine, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Lodewijk A.A. Brosens
- Department of Pathology, University Medical Center Utrecht, Faculty of Medicine, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, the Netherlands
| |
Collapse
|