1
|
Limban C, Nuță DC, Caproiu MT, Dumitrescu DE, Papacocea ȘI, Bordei AT, Dumitrașcu F. Synthesis Methods and Therapeutic Journey of Carprofen and Its Derivatives: A Review. Chem Biol Drug Des 2025; 105:e70122. [PMID: 40346933 PMCID: PMC12065058 DOI: 10.1111/cbdd.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/11/2025] [Accepted: 04/28/2025] [Indexed: 05/12/2025]
Abstract
Carprofen, a nonsteroidal anti-inflammatory drug (NSAID) derived from propanoic acid, is known for its analgesic and antipyretic properties. Although it has long been employed in veterinary medicine as an anti-inflammatory agent, its use in humans was discontinued shortly after its market launch due to costly raw materials, complex synthesis, and labor-intensive production processes-factors that made it less competitive compared with other NSAIDs. Despite this, the carprofen molecule remains a subject of significant scientific interest. Recent advancements in its synthesis have introduced simplified and more cost-effective methods, reigniting its potential for both novel applications and drug repurposing. Exciting new research is exploring carprofen's broader therapeutic possibilities, extending beyond its original anti-inflammatory role. Studies are investigating its efficacy in antimicrobial therapy-including antibiofilm, anticancer, antiviral, and anti-Alzheimer's applications-opening doors to a wealth of untapped possibilities. This review delves into these emerging areas, highlighting how carprofen's molecular structure and derivatives can be leveraged to expand its therapeutic reach. The literature review was conducted using four databases: Web of Science, ScienceDirect, Scopus, Embase, and Reaxys. The review focused on English-language original research and review articles, examining carprofen and its derivatives in terms of their synthesis methods as well as their use as small molecules in various therapeutic applications, both human and veterinary. With ongoing research pushing the boundaries of its potential, carprofen remains a promising candidate for innovation in drug development and treatment strategies.
Collapse
Affiliation(s)
- Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy“Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Diana Camelia Nuță
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy“Carol Davila” University of Medicine and PharmacyBucharestRomania
| | - Miron Teodor Caproiu
- “C.D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of Romanian AcademyBucharestRomania
| | - Denisa Elena Dumitrescu
- Department of Organic Chemistry, Faculty of Pharmacy“Ovidius” University of ConstantaConstantaRomania
| | | | | | - Florea Dumitrașcu
- “C.D. Nenitzescu” Institute of Organic and Supramolecular Chemistry of Romanian AcademyBucharestRomania
| |
Collapse
|
2
|
Leathers TA, Ramarapu R, Rogers CD. Spatiotemporal characterization of cyclooxygenase pathway enzymes during vertebrate embryonic development. Dev Biol 2025; 518:61-70. [PMID: 39581452 PMCID: PMC11890202 DOI: 10.1016/j.ydbio.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Vertebrate development is regulated by several complex well-characterized morphogen signaling pathways, transcription factors, and structural proteins, but less is known about the enzymatic pathways that regulate early development. We have identified that factors from the inflammation-mediating cyclooxygenase (COX) signaling pathway are expressed at early stages of development in avian embryos. Using Gallus gallus (chicken) as a research model, we characterized the spatiotemporal expression of a subset of genes and proteins in the COX pathway during early neural development stages. Specifically, here we show expression patterns of COX-1, COX-2, and microsomal prostaglandin E synthase-2 (mPGES-2) as well as the genes encoding these enzymes (PTGS1, PTGS2, and PTGES-2). Unique expression patterns of individual players within the COX pathway suggest that they may play non-canonical/non-traditional roles in the embryo compared to their roles in the adult. Future work should examine the function of the COX pathway in tissue specification and morphogenesis and determine if these expression patterns are conserved across species.
Collapse
Affiliation(s)
- Tess A Leathers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Raneesh Ramarapu
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, USA
| | - Crystal D Rogers
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
3
|
Visagie JL, Aruwajoye GS, van der Sluis R. Pharmacokinetics of aspirin: evaluating shortcomings in the literature. Expert Opin Drug Metab Toxicol 2024:1-14. [PMID: 39092921 DOI: 10.1080/17425255.2024.2386368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
INTRODUCTION Aspirin is known for its therapeutic benefits in preventing strokes and relieving pain. However, it is toxic to some individuals, and the biological mechanisms causing toxicity are unknown. Limited literature is available on the role of glycine conjugation as the principal pathway in aspirin detoxification. Previous studies have quantified this two-step enzyme reaction as a singular enzymatic process. Consequently, the individual contributions of these enzymes to the kinetics remain unclear. AREAS COVERED This review summarized the available information on the pharmacokinetics and detoxification of aspirin by the glycine conjugation pathway. Literature searches were conducted using Google Scholar and the academic journal databases accessible through the North-West University Library. Furthermore, the factors affecting interindividual variation in aspirin metabolism and what is known regarding aspirin toxicity were discussed. EXPERT OPINION The greatest drawback in understanding the pharmacokinetics of aspirin is the limited information available on the substrate preference of the xenobiotic ligase (ACSM) responsible for activating salicylate to salicyl-CoA. Furthermore, previous pharmacokinetic studies did not consider the contribution of other substrates from the diet or genetic variants, to the detoxification rate of glycine conjugation. Impaired glycine conjugation might contribute to adverse health effects seen in Reye's syndrome and cancer.
Collapse
Affiliation(s)
- Jacobus Lukas Visagie
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | | | - Rencia van der Sluis
- Focus Area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Alzahrani AR, Hosny N, Mohamed DI, Abo Nahas HH, Albogami A, Al-Hazani TMI, Ibrahim IAA, Falemban AH, Bamagous GA, Saied EM. Unveiling the multifaceted antiproliferative efficacy of Cichorium endivia root extract by dual modulation of apoptotic and inflammatory genes, inducing cell cycle arrest, and targeting COX-2. RSC Adv 2024; 14:19400-19427. [PMID: 38887636 PMCID: PMC11182420 DOI: 10.1039/d4ra02131b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Chicory (Cichorium endivia L. divaricatum) is a renowned medicinal plant traditionally used for various ailments, yet the pharmacological potential of its roots, particularly in terms of antitumor activity, remains elusive. In the present study, we explore, for the first time, the metabolomic profile of ethanolic extract from Cichorium endivia roots (CIR) and further unveil its antiproliferative potential. The untargeted phytochemical analysis UPLC/T-TOF-MS/MS identified 131 metabolites in the CIR extract, covering acids, amino acids, flavonoids, alkaloids, nucleotides, and carbohydrates. The antiproliferative activity of the CIR extract was tested in 14 cancer cell lines, revealing significant cytotoxicity (IC50: 2.85-29.15 μg mL-1) and a high selectivity index. Among the cells examined, the CIR extract recorded the most potent antiproliferative activity and selectivity toward HepG2 and Panc-1 cells, with an IC50 of 2.85 μg mL-1 and 3.86 μg mL-1, respectively, and SI > 10. Insights into the mode of action of the antiproliferative activity revealed that CIR extract induces cell arrest in the S phase while diminishing cell distribution in the G0/G1 and G2/M phases in HepG-2 and Panc-1 cells. Flow cytometric and RT-PCR analysis revealed that the CIR extract significantly triggers apoptosis and modulates the expression of pro-apoptotic and anti-apoptotic genes. Furthermore, the CIR extract exhibited a pronounced anti-inflammatory activity, as evidenced by down-regulating key cytokines in LPS-induced RAW 264.7 cells and selectively inhibiting the COX-2 enzyme. Finally, the CIR extract showed a robust total antioxidant capacity, together with potent free radicals and metal scavenging properties, highlighting its role in alleviating oxidative stress. Taken together, this study highlights the multifaceted therapeutic potential of CIR extract as a natural-based antitumor supplement.
Collapse
Affiliation(s)
- Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Nora Hosny
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University Ismailia 41522 Egypt
- Center of Excellence in Molecular and Cellular Medicine, Faculty of Medicine, Suez Canal University Ismailia Egypt
| | - Doaa I Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University Cairo 11566 Egypt
| | | | - Abdulaziz Albogami
- Biology Department, Faculty of Science, Al-Baha University Al Aqiq Saudi Arabia
| | - Tahani Mohamed Ibrahim Al-Hazani
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdulaziz University P. O. Box: 83 Al-Kharj 11940 Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Ghazi A Bamagous
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University Makkah Saudi Arabia
| | - Essa M Saied
- Chemistry Department, Faculty of Science, Suez Canal University 41522 Ismailia Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin 12489 Berlin Germany
| |
Collapse
|
5
|
Cucchiaro A, Scherfler A, Corinti D, Berden G, Oomens J, Wurst K, Gust R, Crestoni ME, Kircher B, Cziferszky M. Amino Acids as Chelating Ligands for Platinum: Enhanced Stability in an Aqueous Environment Promoted by Biocompatible Molecules. J Med Chem 2023; 66:15256-15268. [PMID: 37937969 PMCID: PMC10683014 DOI: 10.1021/acs.jmedchem.3c01340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Platinum-based chemotherapeutics are a cornerstone in the treatment of many malignancies. However, their dose-limiting side effects have rooted efforts to develop new drug candidates with higher selectivity for tumor tissues and less problematic side effects. Here, we developed a cytotoxic platinum(II) complex based on Zeise's salt, containing the nonsteroidal anti-inflammatory drug acetylsalicylic acid and alanine as ligands (4). The previously developed complex (5) displayed high reactivity against sulfur-containing biomolecules; therefore, we put the focus on the optimization of the structure regarding its stability. Different amino acids were used as biocompatible chelating ligands to achieve this aim. Differences in the coordination sphere caused pronounced changes in the stability of Zeise-type precursors 1-3. Coordination with l-Ala through N in the trans position to ethylene showed the most promising results and was employed to stabilize 5. As a result, complex 4 showed improved stability and cytotoxicity, outperforming both 5 and 1.
Collapse
Affiliation(s)
- Andrea Cucchiaro
- Institute
of Pharmacy, Pharmaceutical Chemistry, Center for Molecular Biosciences
Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Amelie Scherfler
- Institute
of Pharmacy, Pharmaceutical Chemistry, Center for Molecular Biosciences
Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Davide Corinti
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, I-00185 Roma, Italy
| | - Giel Berden
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Jos Oomens
- Institute
for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - Klaus Wurst
- Institute
of General, Inorganic and Theoretical Chemistry, CCB-Centrum for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Ronald Gust
- Institute
of Pharmacy, Pharmaceutical Chemistry, Center for Molecular Biosciences
Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Maria Elisa Crestoni
- Dipartimento
di Chimica e Tecnologie del Farmaco, Università
di Roma “La Sapienza”, P. le A. Moro 5, I-00185 Roma, Italy
| | - Brigitte Kircher
- Tyrolean
Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
- Immunobiology
and Stem Cell Laboratory, Department of Internal Medicine V (Hematology
and Oncology), Medical University of Innsbruck, Anichstraße 35, 6020 Innsbruck, Austria
| | - Monika Cziferszky
- Institute
of Pharmacy, Pharmaceutical Chemistry, Center for Molecular Biosciences
Innsbruck, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
6
|
Sumithaa C, Ganeshpandian M. Half-Sandwich Ruthenium Arene Complexes Bearing Clinically Approved Drugs as Ligands: The Importance of Metal-Drug Synergism in Metallodrug Design. Mol Pharm 2023; 20:1453-1479. [PMID: 36802711 DOI: 10.1021/acs.molpharmaceut.2c01027] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
A novel strategy in metallodrug discovery today is incorporating clinically approved drugs into metal complexes as coordinating ligands. Using this strategy, various drugs have been repurposed to prepare organometallic complexes to overcome the resistance of drugs and to design promising alternatives to currently available metal-based drugs. Notably, the combination of organoruthenium moiety and clinical drug in a single molecule has been shown, in some instances, to enhance pharmacological activity and reduce toxicity in comparison to the parent drug. Thus, for the past two decades, there has been increasing interest in exploiting metal-drug synergism to develop multifunctional organoruthenium drug candidates. Herein, we summarized the recent reports of rationally designed half-sandwich Ru(arene) complexes containing different FDA-approved drugs. This review also focuses on the mode of coordination of drugs, ligand-exchange kinetics, mechanism of action, and structure-activity relationship of organoruthenated complexes containing drugs. We hope this discussion may serve to shed light on future developments in ruthenium-based metallopharmaceuticals.
Collapse
Affiliation(s)
- Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| |
Collapse
|
7
|
Jiang J, Liu J, Gao P, Liu J. Effect of taking aspirin before diagnosis on the prognosis of esophageal squamous cell carcinoma and analysis of prognostic factors. J Int Med Res 2022; 50:3000605221089799. [PMID: 35400214 PMCID: PMC9006383 DOI: 10.1177/03000605221089799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Objective The 5-year survival rate of patients with esophageal squamous cell cancer (ESCC) is very low. However, long-term aspirin use has been suggested to have an adjuvant therapeutic effect. We therefore investigated the effect of long-term aspirin use before ESCC diagnosis on postoperative patient survival. Methods We carried out a retrospective cohort study of patients who underwent esophageal cancer resection in our hospital from 2008 to 2018. Patients were divided into an aspirin group (n = 79) and control group (n = 79), and were followed up until December 2019. We analyzed the clinicopathological and follow-up data of the patients during hospitalization, and the cyclooxygenase-2 (COX-2) protein expression levels by immunohistochemistry, and related these to postoperative survival. Results Patients who took aspirin had significantly lower survival rates than those who did not. COX-2-negative patients had better survival than patients with either low or high COX-2 expression levels. T stage was the only independent predictor of survival in patients who took aspirin. Conclusions Long-term regular use of aspirin before diagnosis had an adverse effect on postoperative survival in patients with ESCC. Different COX-2 protein expression levels were associated with significantly different postoperative survival rates, with COX-2-positive patients having the poorest survival.
Collapse
Affiliation(s)
- Jiang Jiang
- Hebei Medical University Third Affiliated Hospital, 139 Ziqiang Road, Shijiazhuang 050000, Hebei Province, China
| | - Junfeng Liu
- Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, 12 Jiankang Road, Shijiazhuang 050000, Hebei Province, China
| | - Ping Gao
- Hebei Medical University, 361 East Zhongshan Road 050011, Hebei Province, China
| | - Junying Liu
- Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, 12 Jiankang Road, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
8
|
Du P, Xuan L, Hu T, An Z, Liu L. Serum Eicosanoids Metabolomics Profile in a Mouse Model of Renal Cell Carcinoma: Predicting the Antitumor Efficacy of Anlotinib. Front Immunol 2022; 13:824607. [PMID: 35222406 PMCID: PMC8863591 DOI: 10.3389/fimmu.2022.824607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Anlotinib (ANL) shows promising efficacy in patients with renal cell cancer (RCC). Here, for the first time, a serum eicosanoid metabolomics profile and pharmacodynamics in Renca syngeneic mice treated with ANL was performed and integrated using our previous HPLC-MS/MS method and multivariate statistical analysis. The tumor growth inhibition rates of ANL were 39% and 52% at low (3 mg/kg) and high (6 mg/kg) dose levels, without obvious toxicity. A total of 15 disturbed metabolites were observed between the normal group and the model group, and the intrinsic metabolic phenotype alterations had occurred due to the treatment of ANL. A total of eight potential metabolites from the refined partial least squares (PLS) model were considered as potential predictive biomarkers for the efficacy of ANL, and the DHA held the most outstanding sensitivity and specificity with an area under the receiver operating characteristic curve of 0.88. Collectively, the results of this exploratory study not only provide a powerful reference for understanding eicosanoid metabolic reprogramming of ANL but also offer an innovative perspective for the development of therapeutic targets and strategies, the discovery of predictive biomarkers, and the determination of effective tumor monitoring approaches.
Collapse
Affiliation(s)
- Ping Du
- Department of Pharmacy/Phase I Clinical Trial & Research Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lingling Xuan
- Department of Pharmacy/Phase I Clinical Trial & Research Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ting Hu
- Department of Pharmacy/Phase I Clinical Trial & Research Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhuoling An
- Department of Pharmacy/Phase I Clinical Trial & Research Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lihong Liu
- Department of Pharmacy/Phase I Clinical Trial & Research Unit, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Segovia-Mendoza M, García-Quiroz J, Díaz L, García-Becerra R. Combinations of Calcitriol with Anticancer Treatments for Breast Cancer: An Update. Int J Mol Sci 2021; 22:12741. [PMID: 34884550 PMCID: PMC8657847 DOI: 10.3390/ijms222312741] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Preclinical, clinical, and epidemiological studies indicate that vitamin D3 (VD) deficiency is a risk factor for the development of breast cancer. Underlying mechanisms include the ability of calcitriol to induce cell differentiation, inhibit oncogenes expression, and modify different signaling pathways involved in the control of cell proliferation. In addition, calcitriol combined with different kinds of antineoplastic drugs has been demonstrated to enhance their beneficial effects in an additive or synergistic fashion. However, a recognized adjuvant regimen based on calcitriol for treating patients with breast cancer has not yet been fully established. Accordingly, in the present work, we review and discuss the preclinical and clinical studies about the combination of calcitriol with different oncological drugs, aiming to emphasize its main therapeutic benefits and opportunities for the treatment of this pathology.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico;
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
10
|
Ioannidou E, Moschetta M, Shah S, Parker JS, Ozturk MA, Pappas-Gogos G, Sheriff M, Rassy E, Boussios S. Angiogenesis and Anti-Angiogenic Treatment in Prostate Cancer: Mechanisms of Action and Molecular Targets. Int J Mol Sci 2021; 22:ijms22189926. [PMID: 34576107 PMCID: PMC8472415 DOI: 10.3390/ijms22189926] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PC) is the most common cancer in men and the second leading cause of cancer-related death worldwide. Many therapeutic advances over the last two decades have led to an improvement in the survival of patients with metastatic PC, yet the majority of these patients still succumb to their disease. Antiagiogenic therapies have shown substantial benefits for many types of cancer but only a marginal benefit for PC. Ongoing clinical trials investigate antiangiogenic monotherapies or combination therapies. Despite the important role of angiogenesis in PC, clinical trials in refractory castration-resistant PC (CRPC) have demonstrated increased toxicity with no clinical benefit. A better understanding of the mechanism of angiogenesis may help to understand the failure of trials, possibly leading to the development of new targeted anti-angiogenic therapies in PC. These could include the identification of specific subsets of patients who might benefit from these therapeutic strategies. This paper provides a comprehensive review of the pathways involved in the angiogenesis, the chemotherapeutic agents with antiangiogenic activity, the available studies on anti-angiogenic agents and the potential mechanisms of resistance.
Collapse
Affiliation(s)
- Evangelia Ioannidou
- Department of Paediatrics and Child Health, Chelsea and Westminster Hospital, 369 Fulham Rd., London SW10 9NH, UK;
| | - Michele Moschetta
- CHUV, Lausanne University Hospital, Rue du Bugnon 21, CH-1011 Lausanne, Switzerland;
| | - Sidrah Shah
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (S.S.); (J.S.P.)
| | - Jack Steven Parker
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (S.S.); (J.S.P.)
| | - Mehmet Akif Ozturk
- Department of Medical Oncology, Sisli Memorial Hospital, Kaptan Paşa Mah. Piyale Paşa Bulv., Okmeydanı Cd. 4, Istanbul 34384, Turkey;
| | - George Pappas-Gogos
- Department of Surgery, University Hospital of Ioannina, 45111 Ioannina, Greece;
| | - Matin Sheriff
- Department of Urology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK;
| | - Elie Rassy
- Department of Cancer Medicine, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent ME7 5NY, UK; (S.S.); (J.S.P.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki, Thermi, 57001 Thessaloniki, Greece
- Correspondence: or
| |
Collapse
|
11
|
Xie L, Li R, Zheng B, Xie Z, Fang X, Wang Y, Cuny GD, Li Z, Lin B, Chen X, Hu M. Development of Rofecoxib-Based Fluorescent Probes and Investigations on Their Solvatochromism, AIE Activity, Mechanochromism, and COX-2-Targeted Bioimaging. Anal Chem 2021; 93:11991-12000. [PMID: 34424685 DOI: 10.1021/acs.analchem.1c01978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyclooxygenase-2 (COX-2) fluorescent probes are promising tools for early diagnosis of cancer. Traditionally, COX-2 probes were designed by connecting two parts, a fluorophore and a COX-2 binding unit, via a flexible linker. Herein, a new class of COX-2-specific fluorescent probes have been developed via one-step modification from rofecoxib by an integrative approach to combine the binding unit and the fluorophore into one. Among them, several new rofecoxib analogues not only exhibited still potent COX-2 binding ability but also exhibited attractive fluorescence properties, such as tunable blue-red emission, solvatochromism, aggression-induced emission behavior, and mechanochromism. Notably, the emission of 2a16 can be switched between green-yellow in the crystalline state and red-orange in the amorphous state by grinding and fuming treatments. Furthermore, the highly fluorescent compound 2a16 (Φf = 0.94 in powder) displayed a much stronger fluorescence imaging of COX-2 in HeLa cancer cells overexpressing COX-2 than RAW264.7 normal cells with a minimal expression of COX-2. Most importantly, 2a16 can light up human cancer tissues from adjacent normal tissues with a much brighter fluorescence by targeting the COX-2 enzyme. These results demonstrated the potential of 2a16 as a new red fluorescent probe for human cancer imaging in clinical applications.
Collapse
Affiliation(s)
- Lijun Xie
- Fujian Provincial Key Laboratory of Screening for Novel Microbial Products, Fujian Institute of Microbiology, Fuzhou, Fujian 350007, P.R. China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Biyun Zheng
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350007, P.R. China
| | - Zuoxu Xie
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Xuefen Fang
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, Fujian 350007, P.R. China
| | - Yanqi Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Zhenli Li
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
12
|
Song X, Luo Y, Ma L, Hu X, Simal-Gandara J, Wang LS, Bajpai VK, Xiao J, Chen F. Recent trends and advances in the epidemiology, synergism, and delivery system of lycopene as an anti-cancer agent. Semin Cancer Biol 2021; 73:331-346. [PMID: 33794344 DOI: 10.1016/j.semcancer.2021.03.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
Dietary interventions are key nutritional strategies to prevent, improve, and prolong the survival of cancer patients. Lycopene, one of the strongest natural antioxidants, and its biologically active metabolites, have shown significant potential to prevent a variety of cancers, including prostate, breast, and stomach cancers, making it a promising anti-cancer agent. We review the potential regulatory mechanisms and epidemiological evidences of lycopene and its metabolites to delay the progression of cancers at different developmental stages. Recent studies have revealed that lycopene and its metabolites mediate multiple molecular mechanisms in cancer treatment such as redox homeostasis, selective anti-proliferation, apoptosis, anti-angiogenesis, tumour microenvironment regulation, and anti-metastasis and anti-invasion. Gut microbes and cholesterol metabolism are also the potential regulation targets of lycopene and its metabolites. As a dietary supplement, the synergistic interaction of lycopene with other drugs and nutrients is highlighted especially due to its binding activity with other nutrients in the diet found central to the fight against cancer. Furthermore, the application of several of novel lycopene delivery carriers are on the rise including nanoemulsions, nanostructured liposomes, and polymer nanoparticles for cancer prevention as discussed in this review with future needed development. Moreover, the synergistic mechanism between lycopene and other nutrients or drugs and novel delivery systems of lycopene should now be deeply investigated to improve its clinical application in cancer intervention in the future.
Collapse
Affiliation(s)
- Xunyu Song
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Yinghua Luo
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Lingjun Ma
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, 30 Pildong-ro 1-gil, Seoul 04620, Republic of Korea
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
13
|
Vidal I, Zheng Q, Hicks JL, Chen J, Platz EA, Trock BJ, Kulac I, Baena-Del Valle JA, Sfanos KS, Ernst S, Jones T, Maynard JP, Glavaris SA, Nelson WG, Yegnasubramanian S, De Marzo AM. GSTP1 positive prostatic adenocarcinomas are more common in Black than White men in the United States. PLoS One 2021; 16:e0241934. [PMID: 34191807 PMCID: PMC8244883 DOI: 10.1371/journal.pone.0241934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/28/2021] [Indexed: 12/16/2022] Open
Abstract
GSTP1 is a member of the Glutathione-S-transferase (GST) family silenced by CpG island DNA hypermethylation in 90-95% of prostate cancers. However, prostate cancers expressing GSTP1 have not been well characterized. We used immunohistochemistry against GSTP1 to examine 1673 primary prostatic adenocarcinomas on tissue microarrays (TMAs) with redundant sampling from the index tumor from prostatectomies. GSTP1 protein was positive in at least one TMA core in 7.7% of cases and in all TMA cores in 4.4% of cases. The percentage of adenocarcinomas from Black patients who had any GSTP1 positive TMA cores was 14.9%, which was 2.5 times higher than the percentage from White patients (5.9%; P < 0.001). Further, the percentages of tumors from Black patients who had all TMA spots positive for GSTP1 (9.5%) was 3-fold higher than the percentage from White patients (3.2%; P<0.001). In terms of association with other molecular alterations, GSTP1 positivity was enriched in ERG positive cancers among Black men. By in situ hybridization, GSTP1 mRNA expression was concordant with protein staining, supporting the lack of silencing of at least some GSTP1 alleles in GSTP1-positive tumor cells. This is the first report revealing that GSTP1-positive prostate cancers are substantially over-represented among prostate cancers from Black compared to White men. This observation should prompt additional studies to determine whether GSTP1 positive cases represent a distinct molecular subtype of prostate cancer and whether GSTP1 expression could provide a biological underpinning for the observed disparate outcomes for Black men.
Collapse
Affiliation(s)
- Igor Vidal
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Qizhi Zheng
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jessica L. Hicks
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jiayu Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elizabeth A. Platz
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Epidemiology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Bruce J. Trock
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | | | | - Karen S. Sfanos
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sarah Ernst
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tracy Jones
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Janielle P. Maynard
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie A. Glavaris
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William G. Nelson
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Srinivasan Yegnasubramanian
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Angelo M. De Marzo
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Brady Urological Research Institute at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
Symmetrical and un-symmetrical curcumin analogues as selective COX-1 and COX-2 inhibitor. Eur J Pharm Sci 2021; 160:105743. [PMID: 33540041 DOI: 10.1016/j.ejps.2021.105743] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/15/2022]
Abstract
Curcumin, a popular herbal medicine derived from turmeric, blocks the synthesis of prostaglandins by inhibiting Cyclooxygenase-1 and 2 (COX-1 and COX2). We have recently reported an efficient method of synthesizing curcumin and synthesised analogues. In the present study, we have investigated sixteen novel analogues of curcumin for their ability to inhibit COX-1 and COX-2. We report here that most of the curcumin analogues display selective inhibition of COX-2, whereas a few suppress COX-1 activity. Further, we examined the binding of these inhibitors by molecular docking and observed that the compound with pronounced selectivity for COX-2 displayed better binding to COX-2 compared to curcumin.
Collapse
|
15
|
Bahmad HF, Jalloul M, Azar J, Moubarak MM, Samad TA, Mukherji D, Al-Sayegh M, Abou-Kheir W. Tumor Microenvironment in Prostate Cancer: Toward Identification of Novel Molecular Biomarkers for Diagnosis, Prognosis, and Therapy Development. Front Genet 2021; 12:652747. [PMID: 33841508 PMCID: PMC8033163 DOI: 10.3389/fgene.2021.652747] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is by far the most commonly diagnosed cancer in men worldwide. Despite sensitivity to androgen deprivation, patients with advanced disease eventually develop resistance to therapy and may die of metastatic castration-resistant prostate cancer (mCRPC). A key challenge in the management of PCa is the clinical heterogeneity that is hard to predict using existing biomarkers. Defining molecular biomarkers for PCa that can reliably aid in diagnosis and distinguishing patients who require aggressive therapy from those who should avoid overtreatment is a significant unmet need. Mechanisms underlying the development of PCa are not confined to cancer epithelial cells, but also involve the tumor microenvironment. The crosstalk between epithelial cells and stroma in PCa has been shown to play an integral role in disease progression and metastasis. A number of key markers of reactive stroma has been identified including stem/progenitor cell markers, stromal-derived mediators of inflammation, regulators of angiogenesis, connective tissue growth factors, wingless homologs (Wnts), and integrins. Here, we provide a synopsis of the stromal-epithelial crosstalk in PCa focusing on the relevant molecular biomarkers pertaining to the tumor microenvironment and their role in diagnosis, prognosis, and therapy development.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL, United States
| | - Mohammad Jalloul
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Joseph Azar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maya M. Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abdul Samad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Deborah Mukherji
- Department of Internal Medicine, Division of Hematology-Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
16
|
Curcumin induces expression of 15-hydroxyprostaglandin dehydrogenase in gastric mucosal cells and mouse stomach in vivo: AP-1 as a potential target. J Nutr Biochem 2020; 85:108469. [DOI: 10.1016/j.jnutbio.2020.108469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
|
17
|
Sun MX, He XP, Huang PY, Qi Q, Sun WH, Liu GS, Hua J. Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathway. World J Gastroenterol 2020; 26:5822-5835. [PMID: 33132637 PMCID: PMC7579763 DOI: 10.3748/wjg.v26.i38.5822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors of the digestive system worldwide, posing a serious danger to human health. Cyclooxygenase (COX)-2 plays an important role in the carcinogenesis and progression of gastric cancer. Acetyl-11-keto-β-boswellic acid (AKBA) is a promising drug for cancer therapy, but its effects and mechanism of action on human gastric cancer remain unclear.
AIM To evaluate whether the phosphatase and tensin homolog (PTEN)/Akt/COX-2 signaling pathway is involved in the anti-tumor effect of AKBA in gastric cancer.
METHODS Human poorly differentiated BGC823 and moderately differentiated SGC7901 gastric cancer cells were routinely cultured in Roswell Park Memorial Institute 1640 medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. Gastric cancer cell proliferation was determined by methyl thiazolyl tetrazolium colorimetric assay. Apoptosis was measured by flow cytometry. Cell migration was assessed using the wound-healing assay. Expression of Bcl-2, Bax, proliferating cell nuclear antigen, PTEN, p-Akt, and COX-2 were detected by Western blot analysis. A xenograft nude mouse model of human gastric cancer was established to evaluate the anti-cancer effect of AKBA in vivo.
RESULTS AKBA significantly inhibited the proliferation of gastric cancer cells in a dose- and time-dependent manner, inhibited migration in a time-dependent manner, and induced apoptosis in a dose-dependent manner in vitro; it also inhibited tumor growth in vivo. AKBA up-regulated the expression of PTEN and Bax, and down-regulated the expression of proliferating cell nuclear antigen, Bcl-2, p-Akt, and COX-2 in a dose-dependent manner. The PTEN inhibitor bpv (Hopic) reversed the high expression of PTEN and low expression of p-Akt and COX-2 that were induced by AKBA. The Akt inhibitor MK2206 combined with AKBA down- regulated the expression of p-Akt and COX-2, and the combined effect was better than that of AKBA alone.
CONCLUSION AKBA inhibits the proliferation and migration and promotes the apoptosis of gastric cancer cells through the PTEN/Akt/COX-2 signaling pathway.
Collapse
Affiliation(s)
- Meng-Xue Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Xiao-Pu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Pei-Yun Huang
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Qi Qi
- Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Wei-Hao Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Gao-Shuang Liu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
18
|
Sun M, Hua J, Liu G, Huang P, Liu N, He X. Myrrh induces the apoptosis and inhibits the proliferation and migration of gastric cancer cells through down-regulating cyclooxygenase-2 expression. Biosci Rep 2020; 40:BSR20192372. [PMID: 32364228 PMCID: PMC7240199 DOI: 10.1042/bsr20192372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE The present study is designed to evaluate the anti-tumor effects of myrrh on human gastric cancer both in vitro and in vivo. METHODS The gastric cancer cell proliferation was determined by MTT assay. Apoptosis was measured by flow cytometry and Hoechst 33342 staining. Wound healing was performed to evaluate the effects of myrrh on the migration. COX-2, PCNA, Bcl-2, and Bax expressions were detected by Western blot analysis. A xenograft nude mice model of human gastric cancer was established to evaluate the anti-cancer effect of myrrh in vivo. RESULTS Myrrh significantly inhibited cellular proliferation, migration, and induced apoptosis in vitro as well as inhibited tumor growth in vivo. In addition, myrrh inhibited the expression of PCNA, COX-2, and Bcl-2 as well as increased Bax expression in gastric cancer cells. CONCLUSION Myrrh may inhibit the proliferation and migration of gastric cancer cells, as well as induced their apoptosis by down-regulating the expression of COX-2.
Collapse
Affiliation(s)
- Mengxue Sun
- Department of Geriatrics, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, China
| | - Jie Hua
- Department of Gastroenterology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, China
| | - Gaoshuang Liu
- Department of Geriatrics, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, China
| | - Peiyun Huang
- Department of Geriatrics, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, China
| | - Ningsheng Liu
- Department of Pathology, Nanjing Medical University, Nanjing 210000, China
- The Key laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing 210000, China
| | - Xiaopu He
- Department of Geriatrics, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, China
| |
Collapse
|
19
|
Nabiyeva T, Marschner C, Blom B. Synthesis, structure and anti-cancer activity of osmium complexes bearing π-bound arene substituents and phosphane Co-Ligands: A review. Eur J Med Chem 2020; 201:112483. [PMID: 32592914 DOI: 10.1016/j.ejmech.2020.112483] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 12/24/2022]
Abstract
While many examples of osmium complexes, as anti-cancer agents, have been reported and some reviews have been devoted to this topic, a particularly interesting and synthetically accessible sub-class of these compounds namely those bearing a π- bound arene and phosphane co-ligand have escaped review. These complexes have made a surprisingly late entry in the literature (2005) in terms of anti-cancer investigations. This is somewhat surprising considering the plethora of analogous complexes that have been reported for the lighter analogue, ruthenium. Herein we review all complexes, neutral and ionic, bearing the "(ƞ6-arene)Os(PR3)" moiety focusing on their synthesis, reactivity, structural features (by X-ray diffraction analysis) as well as anti-cancer biological activity. An attempt is made throughout the article to contrast these to each other and to analogous Ru systems, and a full summary of all existing in vitro biological data is presented.
Collapse
Affiliation(s)
- Tomiris Nabiyeva
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
20
|
Cho KS, Sohn W, Lee YC, Chi SA, Cho JY, Kim K, Paik YH. Use of cyclooxygenase inhibitor and the risk of hepatocellular carcinoma in patients with chronic hepatitis B: A nested case-control study using a nationwide population-based data. J Viral Hepat 2020; 27:68-73. [PMID: 31505085 DOI: 10.1111/jvh.13201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 02/04/2023]
Abstract
The study aimed to investigate the relationship between the use of COX inhibitors and the risk of hepatocellular carcinoma (HCC) development in patients with chronic hepatitis B (CHB) using a nationwide population-based data. A nested case-control study was conducted using the National Health Insurance Service-National Sample Cohort (NHIS-NSC) from 2002 to 2013 in Korea. We compared the use of COX inhibitors between HCC cases and matched controls by categorizing 5 groups according to the cumulative defined daily dose (cDDD, <28, 28-90, 91-180, 181-360, and >360) adjusting the use of antiviral agents. A total of 4980 patients with CHB were analysed as 996 HCC cases and 3984 matched controls. The number of COX inhibitor users (≥28 cDDD) was 358 patients (36%) and 1814 patients (45%) in the HCC group and control group, respectively. The use of COX inhibitors was significantly associated with a decreased risk of HCC development compared with nonusers (adjusted odds ratio [OR] 0.62, 95% confidence interval [CI] 0.52-0.73, P < .001). There was a dose-dependent inverse relationship between the use of COX inhibitors and the risk of HCC. The adjusted ORs were 0.75 (95% CI: 0.63-0.90), 0.41 (95% CI: 0.31-0.56), 0.38 (95% CI: 0.25-0.57) and 0.49 (95% CI: 0.31-0.79) for the 28-90, 91-180, 181-360 and >360 cDDDs, respectively (P < .01). In conclusion, the use of COX inhibitors was associated with a reduced risk of HCC in CHB. COX inhibitor may have a chemopreventive role in HCC development in patients with chronic liver disease.
Collapse
Affiliation(s)
- Kyoung Sun Cho
- Department of Digital Health, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, Korea
| | - Won Sohn
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Korea
| | - Yeong Chan Lee
- Department of Digital Health, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, Korea
| | - Sang Ah Chi
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, Korea
| | - Ju-Yeon Cho
- Division of Gastroenterology and Hepatology, Department of Medicine, Chosun University, Gwang-Ju, Korea
| | - Kyunga Kim
- Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, Korea.,Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Korea
| | - Yong-Han Paik
- Department of Digital Health, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, Korea.,Department of Health Science and Technology, Samsung Advanced Institute for Health Science and Technology, Sunkyunkwan University, Seoul, Korea.,Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Lee CW, Chen HJ, Chien YH, Hsia SM, Chen JH, Shih CK. Synbiotic Combination of Djulis ( Chenopodium formosanum) and Lactobacillus acidophilus Inhibits Colon Carcinogenesis in Rats. Nutrients 2019; 12:nu12010103. [PMID: 31905929 PMCID: PMC7019357 DOI: 10.3390/nu12010103] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 12/24/2022] Open
Abstract
Djulis is a functional grain containing prebiotic dietary fiber, which has an anti-cancer potential. This study examined the preventive effect of djulis alone or in combination with Lactobacillus acidophilus on colon carcinogenesis induced by 1,2-dimethylhydrazine (DMH) and dextran sulfate sodium (DSS). Rats were divided into five groups and fed B (AIN-93G, blank), C (AIN-93G, control), D (10% djulis), DLA (10% djulis plus 5 × 106 cfu L. acidophilus/g), and DHA (10% djulis plus 5 × 107 cfu L. acidophilus/g) diets, respectively. All rats except for those in group B received three doses of DMH (40 mg/kg) by intraperitoneal injection and 3% DSS in drinking water. After 10 weeks of feeding, the colon was analyzed for precancerous lesions and biomarkers. DMH and DSS treatment induced aberrant crypt foci (ACF), especially in the distal colon. D, DLA, and DHA significantly reduced the numbers of total ACF, sialomucin-producing ACF (SIM-ACF), and mucin-depleted foci (MDF) in the distal colon compared to C. Additionally, DLA and DHA further downregulated the expressions of proliferating cell nuclear antigen (PCNA) and cyclooxygenase-2 (COX-2) and regulated apoptosis-related proteins. These results suggest that synbiotic combination of djulis and L. acidophilus shows the best inhibitory effect on colon carcinogenesis via regulation of proliferative, inflammatory, and apoptotic pathways.
Collapse
Affiliation(s)
- Chih-Wei Lee
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (C.-W.L.); (Y.-H.C.); (S.-M.H.)
| | - Hong-Jhang Chen
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Yu-Hua Chien
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (C.-W.L.); (Y.-H.C.); (S.-M.H.)
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (C.-W.L.); (Y.-H.C.); (S.-M.H.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Jiann-Hwa Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Tzu Chi Hospital, New Taipei City 23142, Taiwan;
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (C.-W.L.); (Y.-H.C.); (S.-M.H.)
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-(2)-2736-1661 (ext. 6569)
| |
Collapse
|
22
|
Lu Y, Wang J, Ji Y, Chen K. Metabonomic Variation of Exopolysaccharide from Rhizopus nigricans on AOM/DSS-Induced Colorectal Cancer in Mice. Onco Targets Ther 2019; 12:10023-10033. [PMID: 31819498 PMCID: PMC6876213 DOI: 10.2147/ott.s226451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC), which occurs at the junction of the rectum and sigmoid colon, is a common malignancy associated with poor prognosis and high mortality worldwide. The exopolysaccharide (EPS1-1), isolated from the fermentation broth of Rhizopus nigricans (R. nigricans), has been reported to possess anti-CRC properties. However, the metabolic alterations caused by azoxymethane (AOM) and dextran sulfate sodium (DSS) are still unknown. METHODS In the present study, a mice colon cancer model was established by treatment with AOM/DSS. LC-MS/MS-based metabolomics studies were performed to analyze metabolic alterations at the tissue level. Partial least squares discriminant analysis (PLS-DA) was used to identify differentially expressed metabolites. RESULTS Nineteen distinct metabolites were identified that were associated with disruptions in the following pathways: biosynthesis of unsaturated fatty acids, pyrimidine metabolism, phenylalanine metabolism, fatty acid metabolism, folate biosynthesis, and inositol phosphate metabolism. Furthermore, six significantly altered metabolites were involved in these six pathways. Compared with the Model group, the expression of cytosine, deoxyuridine, 20-hydroxy-leukotriene E4, and L-homocysteic acid was lower, whereas that of 2-dehydro-3-deoxy-6-phospho-D-gluconic acid and hematoporphyrin was higher in the EPS1-1 group. CONCLUSION The results of multivariate statistical analysis demonstrate a promising application of the above metabolites by EPS1-1 in CRC therapy. Deeper understanding of the related mechanism warrants further investigation.
Collapse
Affiliation(s)
- Yan Lu
- School of Life Science, Shandong University, Qingdao266000, People’s Republic of China
| | - Jiayue Wang
- School of Life Science, Shandong University, Qingdao266000, People’s Republic of China
| | - Yueshan Ji
- School of Life Science, Shandong University, Qingdao266000, People’s Republic of China
| | - Kaoshan Chen
- School of Life Science, Shandong University, Qingdao266000, People’s Republic of China
- National Glycoengineering Research Center, Shandong University, Qingdao266000, People’s Republic of China
- Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Anhui Province Key Laboratory of Active Biological Macromolecules, Drug Research & Development Center, School of Pharmacy, Wannan Medical College, Wuhu241002, People’s Republic of China
| |
Collapse
|
23
|
Takahashi R, Amano H, Ito Y, Eshima K, Satoh T, Iwamura M, Nakamura M, Kitasato H, Uematsu S, Raouf J, Jakobsson PJ, Akira S, Majima M. Microsomal prostaglandin E synthase-1 promotes lung metastasis via SDF-1/CXCR4-mediated recruitment of CD11b +Gr1 +MDSCs from bone marrow. Biomed Pharmacother 2019; 121:109581. [PMID: 31715374 DOI: 10.1016/j.biopha.2019.109581] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/08/2019] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Accumulation of myeloid-derived suppressor cells (MDSCs) to tumors is related to cancer prognosis. We investigated the contribution of host stromal microsomal prostaglandin E synthase-1 (mPGES-1) to the accumulation of MDSCs in metastasized lungs of prostate cancer in mice. MATERIAL AND METHODS Eight-week-old male C57Bl/6 wild type (WT) mice and mPGES-1 knock out mice (mPGES-1KO) were injected with RM9 murine prostate cancer cell line (5 × 106 cells/mL). Lung metastasis was evaluated by the number of colonies, the weight of the lung, and the number of MDSCs (CD11b+Gr1+ cells) in the lung. RESULTS Intravenous injections of RM9, a murine prostate cancer cell line to WT mice revealed that lung metastasis and accumulation of MDCSs were suppressed with treatments with a Gr1 antibody, a COX-2 inhibitor, and an mPGES-1 inhibitor. Lung metastasis and accumulation of CD11b+Gr1+MDSCs were suppressed in mPGES-1KO mice. The mRNA level of stromal cell-derived factor-1 (SDF-1) in the lung and the number of accumulated SDF-1-expressing CD11b+Gr1+ MDSCs were elevated at an early stage in lung metastasis of C-X-C chemokine receptor type 4 (CXCR4)-expressing RM9 in an mPGES-1-dependent manner. The number of CXCR4-expressing CD11b+Gr1+MDSCs in WT mice was higher than that in mPGES-1KO mice. RM9 lung metastasis and accumulation of CD11b+Gr1+MDSCs were suppressed by CXCR4 antibody in WT mice but not in mPGES-1KO. WT mice transplanted with mPGES-1 KO bone marrow (BM) showed a significant reduction in lung metastasis and accumulation of CD11b+Gr1+MDSCs. CONCLUSION These results suggest that mPGES-1 enhances tumor metastasis by inducing accumulation of BM-derived MDSCs. Selective mPGES-1 inhibitors might, therefore, represent valuable therapeutic tools for the suppression of tumor metastasis.
Collapse
Affiliation(s)
- Ryo Takahashi
- Department of Pharmacology, Kitasato University School of Medicine, Japan; Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Japan; Medical Corporation Shibaakamonkai, Tochigi, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, Japan; Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Japan
| | - Yoshiya Ito
- Department of Pharmacology, Kitasato University School of Medicine, Japan; Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Japan
| | | | - Takefumi Satoh
- Department of Urology, Kitasato University School of Medicine, Japan
| | - Masatsugu Iwamura
- Department of Urology, Kitasato University School of Medicine, Japan
| | - Masaki Nakamura
- Department of Microbiology, Kitasato University School of Allied Health Science, Kanagawa, Japan
| | - Hidero Kitasato
- Department of Microbiology, Kitasato University School of Allied Health Science, Kanagawa, Japan
| | - Satoshi Uematsu
- Division of Innate immune regulation, International Research and Development Center for Mucosal Vaccine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Mucosal Immunology, School of Medicine, Chiba University, Chiba, Japan
| | - Joan Raouf
- Department of Medicine, Rheumatology Unit, Karolinska University Hospital, Karolinska Institutet, S-171 76, Stockholm, Sweden
| | - Per-Johan Jakobsson
- Department of Medicine, Rheumatology Unit, Karolinska University Hospital, Karolinska Institutet, S-171 76, Stockholm, Sweden
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Japan; Department of Molecular Pharmacology, Graduate School of Medical Sciences, Kitasato University, Japan.
| |
Collapse
|
24
|
Curry JM, Besmer DM, Erick TK, Steuerwald N, Das Roy L, Grover P, Rao S, Nath S, Ferrier JW, Reid RW, Mukherjee P. Indomethacin enhances anti-tumor efficacy of a MUC1 peptide vaccine against breast cancer in MUC1 transgenic mice. PLoS One 2019; 14:e0224309. [PMID: 31693710 PMCID: PMC6834267 DOI: 10.1371/journal.pone.0224309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/10/2019] [Indexed: 01/27/2023] Open
Abstract
In recent years, vaccines against tumor antigens have shown potential for combating invasive cancers, including primary tumors and metastatic lesions. This is particularly pertinent for breast cancer, which is the second-leading cause of cancer-related death in women. MUC1 is a glycoprotein that is normally expressed on glandular epithelium, but is overexpressed and under-glycosylated in most human cancers, including the majority of breast cancers. This under-glycosylation exposes the MUC1 protein core on the tumor-associated form of the protein. We have previously shown that a vaccine consisting of MUC1 core peptides stimulates a tumor-specific immune response. However, this immune response is dampened by the immunosuppressive microenvironment within breast tumors. Thus, in the present study, we investigated the effectiveness of MUC1 vaccination in combination with four different drugs that inhibit different components of the COX pathway: indomethacin (COX-1 and COX-2 inhibitor), celecoxib (COX-2 inhibitor), 1-methyl tryptophan (indoleamine 2,3 dioxygenase inhibitor), and AH6809 (prostaglandin E2 receptor antagonist). These treatment regimens were explored for the treatment of orthotopic MUC1-expressing breast tumors in mice transgenic for human MUC1. We found that the combination of vaccine and indomethacin resulted in a significant reduction in tumor burden. Indomethacin did not increase tumor-specific immune responses over vaccine alone, but rather appeared to reduce the proliferation and increase apoptosis of tumor cells, thus rendering them susceptible to immune cell killing.
Collapse
Affiliation(s)
- Jennifer M. Curry
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Dahlia M. Besmer
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Timothy K. Erick
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Nury Steuerwald
- Molecular Biology and Genomics Laboratory, Carolinas Medical Center, Charlotte, NC, United States of America
| | - Lopamudra Das Roy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Priyanka Grover
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Shanti Rao
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Sritama Nath
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Jacob W. Ferrier
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Robert W. Reid
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, United States of America
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, United States of America
- OncoTAb, Inc., Charlotte, NC, United States of America
- * E-mail:
| |
Collapse
|
25
|
Jiang K, Jiang X, Wen Y, Liao L, Liu FB. Relationship between long-term use of proton pump inhibitors and risk of gastric cancer: A systematic analysis. J Gastroenterol Hepatol 2019; 34:1898-1905. [PMID: 31206764 DOI: 10.1111/jgh.14759] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/25/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM This study aims to systematically analyze the effect of long-term therapy with proton pump inhibitors (PPIs) on the risk of gastric cancer. METHODS PubMed, EMBASE, Cochrane Library, China National Knowledge Infrastructure (CNKI), and China biomedical literature database (CBM) were searched for studies before February 2019. We evaluated the quality of the included articles through the Newcastle-Ottawa Scale and gathered relevant data to calculate the pooled odds ratio (OR) through Stata14.0. RESULTS Seven relevant articles conformed to the inclusion criteria; 943 070 patients were included. The pooled OR was 2.50; 95% CI (1.74, 3.85); the subgroup analysis results showed that patients who had used PPIs for more than 36 months were most likely to develop gastric cancer, and an increased risk was observed among patients after Helicobacter pylori eradication. Noncardia gastric cancer was more likely to develop. CONCLUSIONS Long-term use of PPIs can possibly increase the risk of gastric cancer even among patients after H. pylori eradication; in particular, for noncardia gastric cancer, the risk increases with longer durations of PPI use. Due to the limited number of studies, more high-quality studies are required to be designed.
Collapse
Affiliation(s)
- Kailin Jiang
- First College of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaotao Jiang
- First College of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wen
- First College of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liu Liao
- First College of Clinic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng-Bin Liu
- Department of Gastroenterology, First Affiliation Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Agozzino M, Russo T, Franceschini C, Mazzilli S, Garofalo V, Campione E, Bianchi L, Milani M, Argenziano G. Effects of topical piroxicam and sun filters in actinic keratosis evolution and field cancerization: a two-center, assessor-blinded, clinical, confocal microscopy and dermoscopy evaluation trial. Curr Med Res Opin 2019; 35:1785-1792. [PMID: 31148490 DOI: 10.1080/03007995.2019.1626227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background: Actinic keratosis (AK) is considered an "in situ" non-melanoma skin cancer induced by ultraviolet chronic exposure. Sunscreen and topical anti-inflammatory agents like diclofenac could improve the evolution of this kind of lesions. A topical product containing piroxicam 0.8% and sun filters (50 SPF) (ACTX) has been shown to be very effective in reducing AK lesions. So far, no data are available regarding the effects of this product on skin modifications evaluated by reflectance confocal microscopy (RCM) and dermoscopy at the lesion sites and on the skin around the lesions (field cancerization). Study aim: To evaluate in a two-center, assessor-blinded, prospective trial the effect of ACTX on AK number, RCM and dermoscopy parameter evolution of a target lesion in subjects with multiple AK lesions. Subjects and methods: A total of 54 subjects (42 men and 12 women; mean age 65 years) with AK lesions grade I-III located on the scalp (n = 36) or face (n = 18) were enrolled after their written informed consent. ACTX was applied twice daily on the face and scalp for six consecutive months. AK lesion count was performed at baseline and after 3 and 6 months. Lesion count was assessed in a blind fashion evaluating digital color high definition images performed at each visit and coded in a blinded fashion. RCM evaluations were performed at the same time-points. A dermoscopy evaluation was performed at baseline and after 6 months. RCM and dermoscopy were assessed on a pre-specified target lesion. The RCM severity score was used evaluating 11 items, examining stratum corneum, stratum granulosum, stratum spinous and dermal layers (maximum score 11 points). The dermoscopy score evaluated erythema, scaling and follicular plugs (from 0 to 4 for each item) and pigmentation (from 0 to 5). Results: Forty-nine subjects (90%) concluded the trial. At baseline, the mean (SD) number of AK lesions was 9.6 (5.2). AK lesions significantly decreased to 5.9 and to 5.6 after 3 and 6 months of ACTX treatment (p = .001; intention to treat analysis), representing a -42% reduction. A reduction of AK lesion numbers >50% in comparison with baseline was observed in 51% of subjects at month 6. New AK lesions appeared in five subjects (9%). The RCM mean (SD) severity score at baseline was 6.4 (2.0). ACTX treatment was associated with a progressive and significant (p = .002) reduction to 4.9 after 3 months and to 4.8 (2.3) at month 6 (a -25% reduction). The dermoscopy score at baseline was 5.5 (2) and it was reduced significantly (p = .007) to 4.5 (2) at the end of the study. The product was in general very well tolerated. Conclusion: A 6 month application of ACTX in subjects with AK lesions was associated with an improvement in AK lesion count and with a reduction in the RCM/dermoscopy severity scores of the target lesion. Trial registration number: ISRCTN22070974.
Collapse
Affiliation(s)
- Marina Agozzino
- Dermatology Unit, University of Campania Luigi Vanvitelli , Naples , Italy
| | - Teresa Russo
- Dermatology Unit, University of Campania Luigi Vanvitelli , Naples , Italy
| | | | - Sara Mazzilli
- Dermatology Clinic Tor Vergata University Rome , Rome , Italy
| | | | - Elena Campione
- Dermatology Clinic Tor Vergata University Rome , Rome , Italy
| | - Luca Bianchi
- Dermatology Clinic Tor Vergata University Rome , Rome , Italy
| | - Massimo Milani
- Cantabria Labs, Difa Cooper Caronno P , Caronno Pertusella , Italy
| | | |
Collapse
|
27
|
Elias A, Shebaby WN, Nehme B, Faour W, Bassil BS, Hakim JE, Iskandar R, Dib-Jalbout N, Mroueh M, Daher C, Taleb RI. In Vitro and In Vivo Evaluation of the Anticancer and Anti-inflammatory Activities of 2-Himachelen-7-ol isolated from Cedrus Libani. Sci Rep 2019; 9:12855. [PMID: 31492934 PMCID: PMC6731217 DOI: 10.1038/s41598-019-49374-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/23/2019] [Indexed: 11/20/2022] Open
Abstract
Cedrus libani is a majestic evergreen tree native to the Mediterranean mountains of Lebanon, Syria and Turkey. In this study, the tree heart wood was extracted using hexane to produce C. libani oil extract (CLOE) as a dark oil. GCMS analysis of CLOE identified up to 30 compounds whereby 2-himachalen-7-ol (7-HC) was the most abundant (40%). 7-HC was isolated using column chromatography and the identity of the white crystalline solid was confirmed via NMR spectroscopy and X-Ray Crystallography. 7-HC demonstrated potent cytotoxic activity against several human cancer cell lines including brain (SF-268, IC50 8.1 μg/mL) and colon (HT-29, IC50 10.1 μg/mL; Caco-2, IC50 9.9 μg/mL) with ovarian (Sk-OV-3, IC50 > 50 μg/mL) cells being the most resistant. However, while HT-29 displayed resistance to Cisplatin, 7-HC was 8–10 folds more potent. Co-treatment with 7-HC and Cisplatin showed a significant synergistic anti-proliferative effect against SF-268, HT-29 and Caco-2 cells. 7-HC also exhibited significant anti-inflammatory effect in formalin-induced paw edema in rats. Western blot analysis revealed that 7-HC displayed dose dependent inhibition of LPS-induced COX-2 protein expression in isolated rat monocytes. The present study demonstrates that 7-HC possesses promising anticancer and anti-inflammatory activities, and may serve as a lead molecule in cancer therapy.
Collapse
Affiliation(s)
- Andree Elias
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Wassim N Shebaby
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Bilal Nehme
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Wissam Faour
- School of Medicine, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Bassem S Bassil
- Faculty of Arts and Sciences, University of Balamand, PO Box 100, Tripoli, Lebanon
| | - Joelle El Hakim
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Rita Iskandar
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Nahia Dib-Jalbout
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Mohamad Mroueh
- School of Pharmacy, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Costantine Daher
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon
| | - Robin I Taleb
- Department of Natural Sciences, Lebanese American University, Byblos, 1102 2801, Lebanon.
| |
Collapse
|
28
|
Lycopene Inhibits Activation of Epidermal Growth Factor Receptor and Expression of Cyclooxygenase-2 in Gastric Cancer Cells. Nutrients 2019; 11:nu11092113. [PMID: 31491956 PMCID: PMC6770769 DOI: 10.3390/nu11092113] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) contribute to the oncogenic phenotype of cancer cells by acting as signaling molecules for inducing proliferation. ROS are known to activate the epidermal growth factor receptor (EGFR), which causes the activation of the Ras/mitogen-activated protein kinases (MAPKs) pathway. The Ras-dependent pathway promotes the activation of nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB), a transcriptional modulator of cyclooxygenase-2 (COX-2) that induces cell proliferation. Lycopene is a potent antioxidant carotenoid and is responsible for the red color of fruits and vegetables. This study aims to investigate whether lycopene inhibits proliferation and induces apoptosis in gastric cancer AGS cells by suppressing the EGFR/Ras/MAPK and NF-κB-COX-2 signaling axis. Lycopene decreased cell viability and increased apoptotic indices (DNA fragmentation, apoptosis inducing factor, cleavage of caspase-3 and caspase-9, Bax/Bcl-2 ratio). Lycopene reduced the level of intracellular and mitochondrial ROS and decreased the activation of the ROS-mediated EGFR/Ras/extracellular signal-regulated kinase (ERK) and p38 MAPK pathways, thus leading to attenuation of the DNA-binding activity of NF-κB p50/p50 and the level of COX-2 gene expression. These results show that lycopene-induced apoptosis and inhibition of proliferation occur via inhibition of ROS-activated EGFR/Ras/ERK and p38 MAPK pathways and NF-κB-mediated COX-2 gene expression in AGS cells. In conclusion, consumption of lycopene-enriched foods could decrease the incidence of gastric cancer.
Collapse
|
29
|
Cavalcoli F, Pusceddu S, Zilli A, Tamagno G, Femia D, Prinzi N, Travers J, Consonni D, Ciafardini C, Conte D, Massironi S. Effects of low-dose aspirin on clinical outcome and disease progression in patients with gastroenteropancreatic neuroendocrine neoplasm. Scand J Gastroenterol 2019; 54:1111-1117. [PMID: 31454281 DOI: 10.1080/00365521.2019.1656773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023]
Abstract
Objective: The chemopreventive effect of aspirin (ASA) has been observed in the setting of colorectal cancer and other solid neoplasms. Recently, ASA has demonstrated a promising anti-proliferative effect on GEP-NENs in vitro. However, the direct anti-neoplastic impact of ASA on GEP-NEN clinical outcome is yet to be clarified. Materials and methods: All the GEP-NEN patients followed up in three European Centers from January 2005 to September 2016 were retrospectively enrolled. Patients taking ASA in doses of 75-100 mg daily for cardiovascular prevention for at least six months were evaluated. The possible association between ASA and disease grading, staging, primary site, OS and PFS were evaluated. Results: Two hundred fifty one patients were included (117 males, median age 63 years). Of these, 64 patients were prescribed with ASA. No clear impact on OS or PFS was observed in GEP-NEN patients taking ASA compared to those not taking it. ASA intake was related with the patients' older age. At Cox multivariate analysis, stage IV and Ki-67 resulted independent predictors for OS and PFS. In the setting of intestinal NENs, a suggestive, but not statistically significant, protective role of ASA on PFS was observed [HR 0.41 (95% CI: 0.13-1.29)]. Conclusions: Despite ASA showed promising anti-proliferative effects in vitro and a chemopreventive action in NENs has been reported, a clear impact of ASA on survival in NENs has not emerged from the present study. However, in the subgroup of patients with small-intestine NENs, ASA showed a trend toward a protective role.
Collapse
Affiliation(s)
- Federica Cavalcoli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università Degli Studi di Milano , Milan , Italy
| | - Sara Pusceddu
- Medical Oncology, Unit 1, ENETS Center of Excellence, Fondazione IRCCS Istituto Tumori Milano , Milan , Italy
| | - Alessandra Zilli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università Degli Studi di Milano , Milan , Italy
| | - Gianluca Tamagno
- Department of Endocrinology/Diabetes, Mater Misericordiae University Hospital , Dublin , Ireland
| | - Daniela Femia
- Medical Oncology, Unit 1, ENETS Center of Excellence, Fondazione IRCCS Istituto Tumori Milano , Milan , Italy
| | - Natalie Prinzi
- Medical Oncology, Unit 1, ENETS Center of Excellence, Fondazione IRCCS Istituto Tumori Milano , Milan , Italy
| | - John Travers
- Department of Endocrinology/Diabetes, Mater Misericordiae University Hospital , Dublin , Ireland
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico , Milan , Italy
| | - Clorinda Ciafardini
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università Degli Studi di Milano , Milan , Italy
| | - Dario Conte
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università Degli Studi di Milano , Milan , Italy
| | - Sara Massironi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università Degli Studi di Milano , Milan , Italy
| |
Collapse
|
30
|
Luo L, Liang Y, Ding X, Ma X, Zhang G, Sun L. Significance of cyclooxygenase-2, prostaglandin E2 and CD133 levels in sunitinib-resistant renal cell carcinoma. Oncol Lett 2019; 18:1442-1450. [PMID: 31423209 DOI: 10.3892/ol.2019.10442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 04/24/2019] [Indexed: 01/14/2023] Open
Abstract
The current study investigated the mechanism underlying sunitinib resistance. The parental human renal cell carcinoma (RCC) cell line 786-O was continuously exposed to various doses of sunitinib to obtain sunitinib-resistant cells (786-O/S). Cell proliferation and colony formation assays were performed to assess the survival of 786-O/S cells. The half-inhibitory concentration for the drug-resistant cells was calculated. 786-O/S cells demonstrated notably morphological changes compared with parental cells. Compared with 786-O cells, 786-O/S cells exhibited stronger proliferative and colony-forming abilities. Western blot analysis was performed to measure the levels of cyclooxygenase 2 (COX-2) and prostaglandin E2 (PGE2). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of COX-2 and cluster of differentiation (CD) 133 in both 786-O and 786-O/S cells. Following incubation of the two cell lines with celecoxib, a COX-2 inhibitor, RT-qPCR was performed to detect the expression of COX-2 and CD133, and western blot analysis was used to assess the expression of CD133. The results revealed that the levels of COX-2 and PGE2 were significantly higher in 786-O/S cells compared with 786-O cells (P<0.01). Similarly, the expression of CD133 was 24-fold higher in 786-O/S compared with the parental cells (P<0.01). When celecoxib was incubated with the two cell lines, the expression of COX-2 and CD133 decreased significantly (P<0.0001). In summary, the results indicate that activation of the COX-2-PGE2 pathway in RCC leads to the development of sunitinib resistance and may serve an important role in the maintenance of the characteristics of stem cells that are closely associated with drug resistance.
Collapse
Affiliation(s)
- Lei Luo
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| | - Ye Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| | - Xuemei Ding
- Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| | - Xiaocheng Ma
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| | - Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| | - Lijiang Sun
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, Shangdong 266003, P.R. China
| |
Collapse
|
31
|
Szweda M, Rychlik A, Babińska I, Pomianowski A. Significance of Cyclooxygenase-2 in Oncogenesis. J Vet Res 2019; 63:215-224. [PMID: 31276061 PMCID: PMC6598184 DOI: 10.2478/jvetres-2019-0030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/23/2019] [Indexed: 12/25/2022] Open
Abstract
Abstract
The cyclooxygenase-2 (COX-2) enzyme catalyses the first stage of biosynthesis of prostanoids, proteins that are implicated in various physiological and pathological processes in humans and animals. The expression of COX-2 increases significantly during pathological processes accompanied by inflammation, pain and fever. Overexpression of COX-2 was determined in tumour tissues, which suggests that this enzyme participates in oncogenesis. In this paper the topics discussed are mechanisms regulating COX-2 expression, COX isoforms, their role in the body and the oncogenic mechanisms triggered by the overexpression of COX-2, including inhibition of apoptosis, intensification of neoangiogenesis, increased metastatic capacity, and weakening of the immune system. The significance of and the mechanisms by which COX-2 participates in oncogenesis have been studied intensively in recent years. The results are highly promising, and they expand our understanding of the complex processes and changes at the molecular, cellular and tissue level that promote oncogenesis and cancer progression. Notwithstanding the knowledge already gleaned, many processes and mechanisms have not yet been elucidated in human medicine and, in particular, in veterinary medicine. Further research is required to develop effective tumour diagnostic methods and treatment procedures for humans and animals.
Collapse
Affiliation(s)
- Marta Szweda
- Department of Internal Diseases with Clinic, 10-719Olsztyn, Poland
| | | | - Izabella Babińska
- Department of Pathophysiology, Forensic Medicine, and Administration Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | | |
Collapse
|
32
|
Mahmoud YK, Abdelrazek HMA. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed Pharmacother 2019; 115:108783. [PMID: 31060003 DOI: 10.1016/j.biopha.2019.108783] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/15/2022] Open
Abstract
Recently, there is growing interest in the natural bioactive components having anticancer activity. Thymoquinone (TQ), the principle active constituent of black seed (Nigella sativa), has promising properties including anticancer and chemosensitizing peculiarities. The anticancer power of TQ is accomplished by several aspects; including promotion of apoptosis, arrest of cell cycle and ROS generation. In addition, it boosts the immune system and lessens the side effects associated with traditional anticancer therapy. TQ also controls angiogenesis and cancer metastasis. This review focuses on the potential aspects and mechanisms by which TQ acquires its actions.
Collapse
Affiliation(s)
- Yasmina K Mahmoud
- Biochemistry Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Physiology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| |
Collapse
|
33
|
Ruthenium(II) salicylate complexes inducing ROS-mediated apoptosis by targeting thioredoxin reductase. J Inorg Biochem 2019; 193:112-123. [DOI: 10.1016/j.jinorgbio.2019.01.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/19/2019] [Accepted: 01/20/2019] [Indexed: 12/16/2022]
|
34
|
Jang HO, Lee HN, Woo JH, Lee JY, Kim A, Lee JK, Kim DH, Surh YJ, Na HK. 15-Deoxy-Δ12,14-prostaglandin J2 up-regulates the expression of 15-hydroxyprostaglandin dehydrogenase through DNA methyltransferase 1 inactivation. Free Radic Res 2019; 53:335-347. [DOI: 10.1080/10715762.2019.1576867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hye-Ok Jang
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ha-Na Lee
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jeong-Hwa Woo
- Department of Food and Nutrition, College of Health & Wellness, Sungshin Women’s University, Seoul, South Korea
| | - Ja-Young Lee
- Department of Food and Nutrition, College of Health & Wellness, Sungshin Women’s University, Seoul, South Korea
| | - Areumnuri Kim
- Laboratory of Radiation Exposure & Therapeutics, National Radiation Emergency Medical Center, Seoul, South Korea
| | - Jin Kyung Lee
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Do-Hee Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hye-Kyung Na
- Department of Food and Nutrition, College of Health & Wellness, Sungshin Women’s University, Seoul, South Korea
- Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women’s University, Seoul, South Korea
| |
Collapse
|
35
|
Ashraf A, Aman F, Movassaghi S, Zafar A, Kubanik M, Siddiqui WA, Reynisson J, Söhnel T, Jamieson SMF, Hanif M, Hartinger CG. Structural Modifications of the Antiinflammatory Oxicam Scaffold and Preparation of Anticancer Organometallic Compounds. Organometallics 2019. [DOI: 10.1021/acs.organomet.8b00751] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adnan Ashraf
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Farhana Aman
- Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Sanam Movassaghi
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ayesha Zafar
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Mario Kubanik
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Jóhannes Reynisson
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M. F. Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G. Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
36
|
Almatroudi A, Alsahli MA, Alrumaihi F, Allemailem KS, Rahmani AH. Ginger: A Novel Strategy to Battle Cancer through Modulating Cell Signalling Pathways: A Review. Curr Pharm Biotechnol 2019; 20:5-16. [PMID: 30659535 DOI: 10.2174/1389201020666190119142331] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/17/2018] [Accepted: 01/07/2019] [Indexed: 12/24/2022]
Abstract
Numerous studies have been performed in understanding the development of cancer. Though, the mechanism of action of genes in the development of cancer remains to be explained. The current mode of treatment of cancer shows adverse effects on normal cells and also alter the cell signalling pathways. However, ginger and its active compound have fascinated research based on animal model and laboratories during the past decade due to its potentiality in killing cancer cells. Ginger is a mixture of various compounds including gingerol, paradol, zingiberene and shogaol and such compounds are the main players in diseases management. Most of the health-promoting effects of ginger and its active compound can be attributed due to its antioxidant and anti-tumour activity. Besides, the active compound of ginger has proven its role in cancer management through its modulatory effect on tumour suppressor genes, cell cycle, apoptosis, transcription factors, angiogenesis and growth factor. In this review, the role of ginger and its active compound in the inhibition of cancer growth through modulating cell signalling pathways will be reviewed and discussed.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Arshad H Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
37
|
Sfanos KS, Yegnasubramanian S, Nelson WG, Lotan TL, Kulac I, Hicks JL, Zheng Q, Bieberich CJ, Haffner MC, De Marzo AM. If this is true, what does it imply? How end-user antibody validation facilitates insights into biology and disease. Asian J Urol 2019; 6:10-25. [PMID: 30775245 PMCID: PMC6363603 DOI: 10.1016/j.ajur.2018.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/30/2022] Open
Abstract
Antibodies are employed ubiquitously in biomedical sciences, including for diagnostics and therapeutics. One of the most important uses is for immunohistochemical (IHC) staining, a process that has been improving and evolving over decades. IHC is useful when properly employed, yet misuse of the method is widespread and contributes to the "reproducibility crisis" in science. We report some of the common problems encountered with IHC assays, and direct readers to a wealth of literature documenting and providing some solutions to this problem. We also describe a series of vignettes that include our approach to analytical validation of antibodies and IHC assays that have facilitated a number of biological insights into prostate cancer and the refutation of a controversial association of a viral etiology in gliomas. We postulate that a great deal of the problem with lack of accuracy in IHC assays stems from the lack of awareness by researchers for the critical necessity for end-users to validate IHC antibodies and assays in their laboratories, regardless of manufacturer claims or past publications. We suggest that one reason for the pervasive lack of end-user validation for research antibodies is that researchers fail to realize that there are two general classes of antibodies employed in IHC. First, there are antibodies that are "clinical grade" reagents used by pathologists to help render diagnoses that influence patient treatment. Such diagnostic antibodies, which tend to be highly validated prior to clinical implementation, are in the vast minority (e.g. < 500). The other main class of antibodies are "research grade" antibodies (now numbering >3 800 000), which are often not extensively validated prior to commercialization. Given increased awareness of the problem, both the United States, National Institutes of Health and some journals are requiring investigators to provide evidence of specificity of their antibody-based assays.
Collapse
Affiliation(s)
- Karen S. Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - William G. Nelson
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ibrahim Kulac
- Department of Pathology, Koc Universitesi Tip Fakultesi, Istanbul, Turkey
| | - Jessica L. Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles J. Bieberich
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Michael C. Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
38
|
Abstract
Breast cancer has a high incidence worldwide. The results of substantial studis reveal that inflammation plays an important role in the initiation, development, and aggressiveness of many malignancies. The use of celecoxib, a novel NSAID, is repetitively associated with the reduced risk of the occurrence and progression of a number of types of cancer, particularly breast cancer. This observation is also substantiated by various meta-analyses. Clinical trials have been implemented on integration treatment of celecoxib and shown encouraging results. Celecoxib could be treated as a potential candidate for antitumor agent. There are, nonetheless, some unaddressed questions concerning the precise mechanism underlying the anticancer effect of celecoxib as well as its activity against different types of cancer. In this review, we discuss different mechanisms of anticancer effect of celecoxib as well as preclinical/clinical results signifying this beneficial effect.
Collapse
Affiliation(s)
- Jieqing Li
- Department of Breast Surgery, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China.,Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,Department of Nuclear Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| |
Collapse
|
39
|
Components from the Leaves and Twigs of Mangrove Lumnitzera racemosa with Anti-Angiogenic and Anti-Inflammatory Effects. Mar Drugs 2018; 16:md16110404. [PMID: 30366373 PMCID: PMC6267291 DOI: 10.3390/md16110404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
One new neolignan, racelactone A (1), together with seven known compounds (2-8) were isolated from the methanolic extract of the leaves and twigs of Lumnitzera racemosa. The structure of racelactone A (1) was determined on the basis of the mass and NMR spectroscopic data interpretation. With respect to bioactivity, compound 1 displayed an anti-angiogenic effect by suppressing tube formation. Furthermore, compounds 1, 4, and 5 showed significant anti-inflammatory effects with IC50 values of 4.95 ± 0.89, 1.95 ± 0.40, and 2.57 ± 0.23 μM, respectively. The plausible biosynthesis pathway of racelactone A (1) was proposed.
Collapse
|
40
|
Targeting the mitochondrial apoptosis pathway by a newly synthesized COX-2 inhibitor in pediatric ALL lymphocytes. Future Med Chem 2018; 10:2277-2289. [PMID: 30304948 DOI: 10.4155/fmc-2018-0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM Acute lymphoblastic leukemia (ALL) is known as a barely curable malignancy. Particular mutations involved in apoptosis may have a main role in the onset of ALL in the pediatric patients. It has been proven that cycloxygenase-2 is capable of impairing the apoptosis pathway through mitochondria in tumor cells. METHODOLOGY In this study, we investigated selective toxicity of a newly synthesized chalconeferrocenyl derivative as a selective cycloxygenase-2 inhibitor in ALL and healthy B-lymphocytes, and also isolated mitochondria obtained from them. For this purpose, we evaluated the cellar parameters like viability, apoptosis/necrosis, caspase-3 activation and ATP content, and also mitochondrial parameters like mitochondrial membrane potential decline, reactive oxygen species formation, cytochrome C release and mitochondrial swelling. CONCLUSION Our results implied that this compound can selectively induce cellular and mitochondrial toxicity in cancerous ALL B-lymphocytes and obtained mitochondria from them without any detrimental effects on healthy subjects.
Collapse
|
41
|
Uram Ł, Filipowicz A, Misiorek M, Pieńkowska N, Markowicz J, Wałajtys-Rode E, Wołowiec S. Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-l-Leucine and its cytotoxicity for normal and cancer human cell lines. Eur J Pharm Sci 2018; 124:1-9. [PMID: 30118847 DOI: 10.1016/j.ejps.2018.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
Tumors still remain one of the main causes of mortality due to the lack of effective anti-cancer therapy. Recently it has been shown, that overexpression of inducible cyclooxygenase-2 (COX-2) and decrease of peroxisome proliferator-activated receptor γ (PPARγ) expression accompany many malignances, therefore, it has been proposed, that COX-2 inhibitors and PPARγ agonists are potential candidates for anticancer therapy and their synergistic, antineoplastic action has been described. In the present study a COX-2 inhibitor (celecoxib) and/or PPARγ agonist (Fmoc-l-Leucine) were conjugated with the biotinylated G3 PAMAM dendrimer to form a three different constructs targeted to cells with increased biotin uptake. All conjugates were characterized by the NMR spectroscopy. Investigation of three types of human cells: normal skin fibroblasts (BJ), immortalized keratinocytes (HaCaT) and cancer lines: glioblastoma (U-118 MG) and squamous cell carcinoma (SCC-15) revealed similar biotin labeled ATTO590 accumulation (after 24 h), except for SCC-15 with significantly lower loading. Constitutive expression of COX-2 protein was confirmed in all tested cells with significantly higher levels (2-2.5 times) in both cancer lines. Comparison of cytotoxicity of the new synthetized dendrimers clearly documented the highest cytotoxicity of the G31B16C15L dendrimer conjugated with both drugs (1: 1) as compared with drugs alone and single conjugates. Additive effects of construct with both compounds were shown for fibroblasts and both cancer cell lines in the order BJ > U-118 MG > SCC-15 with IC50 in the range: 0.69, 1.44 and 2.22 μM, respectively and lowest cytotoxicity in HaCaT cells (IC50 = 2.88). Our results showed, that biotinylated G3 PAMAM dendrimers substituted with COX-2 inhibitor, celecoxib, and PPARγ agonist, Fmoc-l-Leucine (1:1) may be a good candidate for local therapy of glioblastoma but not a skin cancer. Since the effect of PPARγ agonists on COX-2 expression vary depending upon the cell type, specificity of used agonist and the presence of other environmental factors, it is necessary to carefully evaluate the response of chosen drugs on the target cells.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Aleksandra Filipowicz
- Faculty of Medical Sciences, Rzeszów University of Information Technology and Management, 2 Sucharskiego Str, 35-225 Rzeszów, Poland
| | - Maria Misiorek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Natalia Pieńkowska
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Joanna Markowicz
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology,75 Koszykowa Str, 00-664 Warsaw, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| |
Collapse
|
42
|
Leblanc R, Houssin A, Peyruchaud O. Platelets, autotaxin and lysophosphatidic acid signalling: win-win factors for cancer metastasis. Br J Pharmacol 2018; 175:3100-3110. [PMID: 29777586 PMCID: PMC6031885 DOI: 10.1111/bph.14362] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022] Open
Abstract
Platelets play a crucial role in the survival of metastatic cells in the blood circulation. The interaction of tumour cells with platelets leads to the production of plethoric factors among which our review will focus on lysophosphatidic acid (LPA), because platelets are the highest producers of this bioactive lysophospholipid in the organism. LPA promotes platelet aggregation, and blocking platelet function decreases LPA signalling and leads to inhibition of breast cancer cell metastasis. Autotaxin (ATX), a lysophospholipase D responsible for the basal concentration of LPA in blood, was detected in platelet α-granules. Functionally, active ATX is eventually released following tumour cell-induced platelet aggregation, thereby promoting metastasis. Megakaryocytes do not express ATX but respond to LPA stimulation. Whether LPA-primed megakaryocytes contribute to the recently reported negative action of megakaryocytes on cancer metastasis is not yet known. However, an understanding of the ATX/LPA signalling pathways in platelets, cancer cells and megakaryocytes opens up new approaches for fighting cancer metastasis.
Collapse
Affiliation(s)
- Raphael Leblanc
- Centre de Recherche en Cancérologie de Marseille, INSERM, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Audrey Houssin
- INSERM, UMR_S1033, Université Claude Bernard Lyon-1, Lyon, France
| | | |
Collapse
|
43
|
The Novel Nutraceutical KJS018A Prevents Hepatocarcinogenesis Promoted by Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3909434. [PMID: 30154906 PMCID: PMC6093067 DOI: 10.1155/2018/3909434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023]
Abstract
Inflammation is tightly associated with carcinogenesis at both the initiation and development of tumor. Many reports indicated that Cox-2 substantially contributes to inflammation and tumorigenesis. The novel nutraceutical KJS018A (BRM270 Function Enhanced Products) is the extract mixture from 8 herbal plants, which have been used to inhibit cancers and inflammation. The aim of the present study is to examine the inhibitory effects of KJS018A mixture to hepatocarcinogenesis and inflammation. The results showed that KJS018A significantly inhibited the proliferation of hepatic malignant cells and downregulated levels of IL-6 and Cox-2. Furthermore, KJS018A diminished the effect of PMA, an inflammatory inducer via IL-6/STAT3/Cox-2 pathway. Furthermore, KJS018A suppressed metastatic traits of hepatic malignant cells via downregulating Twist, N-cadherin, and MMP-9 while restoring E-cadherin expression. KJS018A also restrained tumor growth and levels of IL-6 and Cox-2 in immunohistochemistry staining. Taken together, these data suggest potential application of KJS018A in prevention of hepatocarcinogenesis promoted by inflammation.
Collapse
|
44
|
Rai A, Kumar U, Raj V, Singh AK, Kumar P, Keshari AK, Kumar D, Maity B, De A, Samanta A, Nath S, Prakash A, Gosipatala SB, Chand G, Saha S. Novel 1,4-benzothazines obliterate COX-2 mediated JAK-2/STAT-3 signals with potential regulation of oxidative and metabolic stress during colorectal cancer. Pharmacol Res 2018; 132:188-203. [DOI: 10.1016/j.phrs.2017.12.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/07/2017] [Indexed: 01/04/2023]
|
45
|
Raj V, Bhadauria AS, Singh AK, Kumar U, Rai A, Keshari AK, Kumar P, Kumar D, Maity B, Nath S, Prakash A, Ansari KM, Jat JL, Saha S. Novel 1,3,4-thiadiazoles inhibit colorectal cancer via blockade of IL-6/COX-2 mediated JAK2/STAT3 signals as evidenced through data-based mathematical modeling. Cytokine 2018; 118:144-159. [PMID: 29580751 DOI: 10.1016/j.cyto.2018.03.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 02/09/2023]
Abstract
We attempted a preclinical study using DMH-induced CRC rat model to evaluate the antitumor potential of our recently synthesized 1,3,4-thiadiazoles. The molecular insights were confirmed through ELISA, qRT-PCR and western blot analyses. The CRC condition was produced in response to COX-2 and IL-6 induced activation of JAK2/STAT3 which, in turn, was due to the enhanced phosphorylation of JAK2 and STAT3. The treatment with 1,3,4-thiadiazole derivatives (VR24 and VR27) caused the significant blockade of this signaling pathway. The behavior of STAT3 populations in response to IL-6 and COX-2 stimulations was further confirmed through data-based mathematical modeling using the quantitative western blot data. Finally, VR24 and VR27 restored the perturbed metabolites associated to DMH-induced CRC as evidenced through 1H NMR based serum metabolomics. The tumor protecting ability of VR24 and VR27 was found comparable or to some degree better than the marketed chemotherapeutics, 5-flurouracil.
Collapse
Affiliation(s)
- Vinit Raj
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Archana S Bhadauria
- Faculty of Mathematical and Statistical Sciences, Shri Ramswaroop Memorial University, Deva Road, Lucknow 225003, India
| | - Ashok K Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Umesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Amit Rai
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Amit K Keshari
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Biswanath Maity
- Centre of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Sneha Nath
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Anand Prakash
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Kausar M Ansari
- Environmental Carcinogenesis, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Jawahar L Jat
- Department of Applied Chemistry, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raibareli Road, Lucknow 226025, India.
| |
Collapse
|
46
|
Gao J, Mfuh A, Amako Y, Woo CM. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs. J Am Chem Soc 2018. [PMID: 29543447 DOI: 10.1021/jacs.7b11639] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jinxu Gao
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Adelphe Mfuh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Yuka Amako
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| |
Collapse
|
47
|
Qiao Y, Yang T, Gan Y, Li W, Wang C, Gong Y, Lu Z. Associations between aspirin use and the risk of cancers: a meta-analysis of observational studies. BMC Cancer 2018. [PMID: 29534696 PMCID: PMC5851082 DOI: 10.1186/s12885-018-4156-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background Epidemiological studies have clarified the potential associations between regular aspirin use and cancers. However, it remains controversial on whether aspirin use decreases the risk of cancers risks. Therefore, we conducted an updated meta-analysis to assess the associations between aspirin use and cancers. Methods The PubMed, Embase, and Web of Science databases were systematically searched up to March 2017 to identify relevant studies. Relative risks (RRs) with 95% confidence intervals (CIs) were used to assess the strength of associations. Results A total of 218 studies with 309 reports were eligible for this meta-analysis. Aspirin use was associated with a significant decrease in the risk of overall cancer (RR = 0.89, 95% CI: 0.87–0.91), and gastric (RR = 0.75, 95% CI: 0.65–0.86), esophageal (RR = 0.75, 95% CI: 0.62–0.89), colorectal (RR = 0.79, 95% CI: 0.74–0.85), pancreatic (RR = 0.80, 95% CI: 0.68–0.93), ovarian (RR = 0.89, 95% CI: 0.83–0.95), endometrial (RR = 0.92, 95% CI: 0.85–0.99), breast (RR = 0.92, 95% CI: 0.88–0.96), and prostate (RR = 0.94, 95% CI: 0.90–0.99) cancers, as well as small intestine neuroendocrine tumors (RR = 0.17, 95% CI: 0.05–0.58). Conclusions These findings suggest that aspirin use is associated with a reduced risk of gastric, esophageal, colorectal, pancreatic, ovarian, endometrial, breast, and prostate cancers, and small intestine neuroendocrine tumors. Electronic supplementary material The online version of this article (10.1186/s12885-018-4156-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Tingting Yang
- Department of Nutriology, The People's Hospital of Henan Province, Zhengzhou, Henan, 450003, People's Republic of China
| | - Yong Gan
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wenzhen Li
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Chao Wang
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yanhong Gong
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Zuxun Lu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
48
|
Dell'Atti L. Correlation between Prolonged Use of Aspirin and Prognostic Risk in Prostate Cancer. TUMORI JOURNAL 2018. [DOI: 10.1177/1660.18156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lucio Dell'Atti
- Department of Urology, University Hospital S Anna, Ferrara, Italy
| |
Collapse
|
49
|
Mulvaney EP, Shilling C, Eivers SB, Perry AS, Bjartell A, Kay EW, Watson RW, Kinsella BT. Expression of the TPα and TPβ isoforms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical significance and diagnostic potential. Oncotarget 2018; 7:73171-73187. [PMID: 27689401 PMCID: PMC5341971 DOI: 10.18632/oncotarget.12256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022] Open
Abstract
The prostanoid thromboxane (TX) A2 plays a central role in haemostasis and is increasingly implicated in cancer progression. TXA2 signals through two T Prostanoid receptor (TP) isoforms termed TPα and TPβ, with both encoded by the TBXA2R gene. Despite exhibiting several functional and regulatory differences, the role of the individual TP isoforms in neoplastic diseases is largely unknown. This study evaluated expression of the TPα and TPβ isoforms in tumour microarrays of the benign prostate and different pathological (Gleason) grades of prostate cancer (PCa). Expression of TPβ was significantly increased in PCa relative to benign tissue and strongly correlated with increasing Gleason grade. Furthermore, higher TPβ expression was associated with increased risk of biochemical recurrence (BCR) and significantly shorter disease-free survival time in patients post-surgery. While TPα was more variably expressed than TPβ in PCa, increased/high TPα expression within the tumour also trended toward increased BCR and shorter disease-free survival time. Comparative genomic CpG DNA methylation analysis revealed substantial differences in the extent of methylation of the promoter regions of the TBXA2R that specifically regulate expression of TPα and TPβ, respectively, both in benign prostate and in clinically-derived tissue representative of precursor lesions and progressive stages of PCa. Collectively, TPα and TPβ expression is differentially regulated both in the benign and tumourigenic prostate, and coincides with clinical pathology and altered CpG methylation of the TBXA2R gene. Analysis of TPβ, or a combination of TPα/TPβ, expression levels may have significant clinical potential as a diagnostic biomarker and predictor of PCa disease recurrence.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Christine Shilling
- Department of Pathology, Beaumont Hospital and Royal College of Surgeons, Dublin, Ireland
| | - Sarah B Eivers
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Antoinette S Perry
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Skåne University Hospital Malmö, Lund University, Lund, Sweden
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital and Royal College of Surgeons, Dublin, Ireland
| | - R William Watson
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
50
|
Scarpa ES, Mari M, Antonini E, Palma F, Ninfali P. Natural and synthetic avenanthramides activate caspases 2, 8, 3 and downregulate hTERT, MDR1 and COX-2 genes in CaCo-2 and Hep3B cancer cells. Food Funct 2018; 9:2913-2921. [DOI: 10.1039/c7fo01804e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Avenanthramides inhibit proliferation of CaCo-2 and Hep3B cancer cells through induction of apoptosis and downregulation of pro-survival mechanisms.
Collapse
Affiliation(s)
- E. S. Scarpa
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - M. Mari
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - E. Antonini
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - F. Palma
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| | - P. Ninfali
- Department of Biomolecular Sciences
- University of Urbino Carlo Bo
- 61029 Urbino
- Italy
| |
Collapse
|