1
|
Dera AA, Al Fayi M. CEG-0598, a novel dual inhibitor of EGFR and C5aR demonstrates in vitro anticancer and antimetastatic activity in prostate cancer cells. Discov Oncol 2025; 16:710. [PMID: 40343625 PMCID: PMC12064535 DOI: 10.1007/s12672-025-02574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/05/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND The EGFR is abundantly expressed in prostate cancer (PC). The anaphylatoxin C5a induces leukocyte migration via the C5a receptor (C5aR) by releasing matrix metalloproteinases (MMP) to favor metastasis in the tumor microenvironment. This work aims to selectively inhibit the EGFR and C5aR in PC cells to abort cell growth/ proliferation and metastasis. METHODS For lead identification, high-throughput virtual screening (HTVS) of the ChemBridge library was followed by protein-ligand interaction profilers, GROMACS, and GMX-MMPBSA techniques. LNCaP and PC3 cells were used to validate in vitro efficacy. RESULTS HTVS identified CEG-0598 with favorable binding affinities of - 10.2 kcal/mol and - 13.5 kcal/mol towards EGFR and C5aR respectively. Molecular dynamic simulations demonstrated stable binding interactions for CEG-0598 with Root Mean Square Deviation values around 0.06 nm. The ΔG binding calculation was - 50.29, and - 51.64 for EGFR and C5aR respectively. ADME supported favorable small molecule characteristics and selective inhibition profiles. Kinome-wide off-target virtual screening predicted EGFR to have above-average docking scores. CEG-0598 inhibited EGFR and C5aR activities with IC50 values of 145.8 nM and 55.51 nM respectively. The compound effectively controlled the proliferation of LNCaP and PC3cells with GI50 values of 156.1 nM, and 112.2 nM respectively. CEG-0598 prompted dose-responsive apoptosis in the PC cells and decreased the tarns endothelial migration of both PC cells. Treatment with CEG-0598 reduced the C5a-induced MMP activity in the LNCaP and PC3cells. CONCLUSION CEG-0598 is a selective EGFR/C5a dual inhibitor that downregulates MMP activity to control proliferation, migration and induce apoptosis, in PC cells warranting further preclinical developments.
Collapse
Affiliation(s)
- Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| | - Majed Al Fayi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
2
|
Shi J, Liu X, Gao M, Yu J, Chai T, Jiang Y, Li J, Zhang Y, Wu L. Adverse event profiles of EGFR-TKI: network meta-analysis and disproportionality analysis of the FAERS database. Front Pharmacol 2025; 16:1519849. [PMID: 40135231 PMCID: PMC11933087 DOI: 10.3389/fphar.2025.1519849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Background Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors (EGFR-TKIs) in clinical use show promise but can cause AEs, impacting patients' wellbeing and increasing costs. Methods This study utilized two methods: network meta-analysis (NMA) and disproportionality analysis (DA). For NMA, we searched PubMed, Embase, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov up to 10 September 2024, for phase II/III RCTs comparing EGFR-TKI monotherapy with chemotherapy or other EGFR-TKIs. Using STATA 18.0, we calculated odds ratios (ORs) with 95% confidence intervals (CIs) and assessed heterogeneity via Chi-squared and I2 tests. Adverse events (AEs) were ranked using the surface under the cumulative ranking curve (SUCRA). For DA, we analyzed FAERS data (January 2004-June 2024), evaluating AE signals with reporting odds ratios (RORs) and 95% CIs; signals were considered significant if the ROR and its 95% CI lower bound exceeded 1. Primary outcomes for NMA included all-grade AEs, grade ≥3 AEs, specific AEs, and AE-related mortality. For DA, outcomes included EGFR-TKI as the primary AE cause, time from treatment to AE, and AE-related mortality. Results NMA: 48% of EGFR-TKI patients experienced AEs, with 32.7% being severe. Afatinib showed highest toxicity; Icotinib was safest. Osimertinib was associated with highest risks of leukopenia (8%) and thrombocytopenia (9%). DA: Osimertinib had strongest links to cardiac diseases and blood/lymphatic disorders. Gefitinib had the strongest signal for interstitial lung diseases; Erlotinib for anorexia. Most AEs occurred within 30 days, but cardiac disorders had a median onset of 41 days. Osimertinib had the highest AE-related mortality, with cardiac disorders leading in fatalities. Conclusion This study used NMA and DA to explore EGFR-TKI-related AEs. Drugs varied in AE profiles, mostly mild, but Osimertinib and Dacomitinib were associated with more severe events. Osimertinib carried a high cardiac risk, delayed onset, and high mortality. Thus, comprehensive patient assessment and close monitoring are crucial with EGFR-TKI use.
Collapse
Affiliation(s)
- Jing Shi
- Xinjiang Medical University, Urumqi, China
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinya Liu
- Xinjiang Medical University, Urumqi, China
- The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Mengjiao Gao
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Jian Yu
- Xinjiang Medical University, Urumqi, China
| | - Ting Chai
- Department of Oncology Cardiology, Xinjiang Cardiovascular and Cerebrovascular Hospital, Urumqi, China
| | - Yun Jiang
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiawei Li
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Yuanming Zhang
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Wu
- Department of Oncology Cardiology, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Babicz RSE, Baylor N, Terlouw A, Faber DA, Fukushima K, Biondi RM, Bouley R, Brown D. Ribosomal s6 kinase is a mediator of aquaporin-2 S256 phosphorylation and membrane accumulation after EGFR inhibition with erlotinib. Am J Physiol Renal Physiol 2025; 328:F344-F359. [PMID: 39823198 DOI: 10.1152/ajprenal.00353.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025] Open
Abstract
Vasopressin (VP) activates protein kinase A (PKA), resulting in phosphorylation events and membrane accumulation of aquaporin-2 (AQP2). Epidermal growth factor receptor (EGFR) inhibition with erlotinib also induces AQP2 membrane trafficking with a phosphorylation pattern similar to VP, but without increasing PKA activity. Here, we identify the ribosomal s6 kinase (RSK) as a major mediator phosphorylating AQP2 in this novel, erlotinib-induced pathway. We found that RSK was expressed in collecting duct principal cells in rat kidneys. RSK inhibition with BI-D1870 blocked erlotinib-induced AQP2 serine 256 (S256) phosphorylation and membrane accumulation. CRISPR-generated RSK knockout (KO) cells failed to show increased S256 phosphorylation in response to erlotinib. Like PKA, RSK was able to phosphorylate AQP2 S256 in vitro. Inhibition of phosphoinositide-dependent kinase-1 (PDK1), a known activator of RSK, blocked erlotinib-induced AQP2 S256 phosphorylation and membrane accumulation. We conclude that RSK is a crucial terminal kinase phosphorylating AQP2 at S256 upon EGFR inhibition by erlotinib.NEW & NOTEWORTHY Epidermal growth factor receptor (EGFR) inhibition with erlotinib induces aquaporin-2 (AQP2) membrane accumulation with a phosphorylation pattern similar to vasopressin (VP). Here, we identify the ribosomal s6 kinase (RSK) as a major mediator phosphorylating AQP2 in this novel, erlotinib-induced pathway. In addition, we show that phosphoinositide-dependent kinase-1 (PDK1), a known activator of RSK, is implicated in this pathway: PDK1 inhibition blocks erlotinib-induced AQP2 S256 phosphorylation and membrane accumulation.
Collapse
Affiliation(s)
- Richard S E Babicz
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Noah Baylor
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Abby Terlouw
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Daphne A Faber
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Kazuhiko Fukushima
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Richard Bouley
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Dennis Brown
- Division of Nephrology, Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Abd Al Rahim NA, Razzak Mahmood AA, Tahtamouni LH, AlSakhen MF, Yasin SR, Saleh AM. New 4-amino-3-chloro benzoate ester derivatives as EGFR inhibitors: synthesis, in silico and biological analyses. Future Med Chem 2024; 16:2647-2662. [PMID: 39568325 PMCID: PMC11730846 DOI: 10.1080/17568919.2024.2431478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
AIM The main goal of this study was to synthesize new derivatives of 4-amino-3-chloro benzoate ester, including 1,3,4-oxadiazole derivatives (N3a-d), benzohydrazone derivatives (N4a-c), and hydrazine-1-carbothioamide derivatives (N5a-d) that target epidermal growth factor receptor (EGFR) tyrosine kinase. MATERIALS & METHODS The new derivatives were characterized using various spectroscopic techniques. Docking studies were used to investigate the binding patterns to EGFR, and the anti-proliferative properties were tested in vitro. RESULTS In silico analysis showed that the hydrazine-1-carbothioamide derivatives (N5a-d) had the best matching pattern with EGFR pharmacophoric queries compared to erlotinib, exhibited a favorable safety profile, and showed the best stability among the tested compounds. Compound N5a induced cytotoxicity in the three cancer cell lines tested (A549, HepG2, and HCT-116), by targeting EGFR and activating caspase 3 and caspase 8, therefore, inducing the extrinsic apoptotic pathway. CONCLUSION The results of this study show that compound N5a is a promising cytotoxic compound that inhibits the tyrosine kinase activity of EGFR.
Collapse
Affiliation(s)
- Nedaa A. Abd Al Rahim
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Ammar A. Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Lubna H. Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mai F. AlSakhen
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Salem R. Yasin
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa, Jordan
| | - Abdulrahman M. Saleh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Aweash El-Hagar Family Medicine Center, Epidemiological Surveillance Unit, MOHP, Mansoura, Egypt
| |
Collapse
|
5
|
Rossi V, Hochkoeppler A, Govoni M, Di Stefano G. Lactate-Induced HBEGF Shedding and EGFR Activation: Paving the Way to a New Anticancer Therapeutic Opportunity. Cells 2024; 13:1533. [PMID: 39329717 PMCID: PMC11430493 DOI: 10.3390/cells13181533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cancer cells can release EGF-like peptides, acquiring the capacity of autocrine stimulation via EGFR-mediated signaling. One of these peptides (HBEGF) was found to be released from a membrane-bound precursor protein and is critically implicated in the proliferative potential of cancer cells. We observed that the increased lactate levels characterizing neoplastic tissues can induce the release of uPA, a protease promoting HBEGF shedding. This effect led to EGFR activation and increased ERK1/2 phosphorylation. Since EGFR-mediated signaling potentiates glycolytic metabolism, this phenomenon can induce a self-sustaining deleterious loop, favoring tumor growth. A well characterized HBEGF inhibitor is CRM197, a single-site variant of diphtheria toxin. We observed that, when administered individually, CRM197 did not trigger evident antineoplastic effects. However, its association with a uPA inhibitor caused dampening of EGFR-mediated signaling and apoptosis induction. Overall, our study highlights that the increased glycolytic metabolism and lactate production can foster the activated state of EGFR receptor and suggests that the inhibition of EGFR-mediated signaling can be attempted by means of CRM197 administered with an appropriate protease inhibitor. This attempt could help in overcoming the problem of the acquired resistance to the conventionally used EGFR inhibitors.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy; (V.R.); (M.G.)
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Marzia Govoni
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy; (V.R.); (M.G.)
| | - Giuseppina Di Stefano
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy; (V.R.); (M.G.)
| |
Collapse
|
6
|
He J, Qiu Z, Fan J, Xie X, Sheng Q, Sui X. Drug tolerant persister cell plasticity in cancer: A revolutionary strategy for more effective anticancer therapies. Signal Transduct Target Ther 2024; 9:209. [PMID: 39138145 PMCID: PMC11322379 DOI: 10.1038/s41392-024-01891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/15/2024] Open
Abstract
Non-genetic mechanisms have recently emerged as important drivers of anticancer drug resistance. Among these, the drug tolerant persister (DTP) cell phenotype is attracting more and more attention and giving a predominant non-genetic role in cancer therapy resistance. The DTP phenotype is characterized by a quiescent or slow-cell-cycle reversible state of the cancer cell subpopulation and inert specialization to stimuli, which tolerates anticancer drug exposure to some extent through the interaction of multiple underlying mechanisms and recovering growth and proliferation after drug withdrawal, ultimately leading to treatment resistance and cancer recurrence. Therefore, targeting DTP cells is anticipated to provide new treatment opportunities for cancer patients, although our current knowledge of these DTP cells in treatment resistance remains limited. In this review, we provide a comprehensive overview of the formation characteristics and underlying drug tolerant mechanisms of DTP cells, investigate the potential drugs for DTP (including preclinical drugs, novel use for old drugs, and natural products) based on different medicine models, and discuss the necessity and feasibility of anti-DTP therapy, related application forms, and future issues that will need to be addressed to advance this emerging field towards clinical applications. Nonetheless, understanding the novel functions of DTP cells may enable us to develop new more effective anticancer therapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Jun He
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zejing Qiu
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jingjing Fan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xiaohong Xie
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
7
|
Wang C, Li Z, Zhai H, Shen X, Li F, Zhang Q, Li D, Hou H. Targeted blocking of EGFR and GLUT1 by compound H reveals a new strategy for treatment of triple-negative breast cancer and nasopharyngeal carcinoma. Eur J Pharm Sci 2024; 198:106789. [PMID: 38710335 DOI: 10.1016/j.ejps.2024.106789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/28/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Cytoplasmic epidermal growth factor receptor (EGFR) is overexpressed in both nasopharyngeal carcinoma (NPC) and triple-negative breast cancer (TNBC), while clinical outcome and prognosis vary greatly among patients treated with gefitinib, and all patients eventually develop resistance to this agent. Therefore, we propose a new concept for synthesizing multitarget compounds and reveal new therapeutic strategies for NPC and TNBC expressing EGFR. METHODS Compound H was synthesized in our previous study. Molecular docking, and cell thermal shift assays (CETSAs) and drug affinity responsive target stability(DARTS) were used to confirm the binding of compound H to EGFR and GLUT1. Methylthiazolyldiphenyl-tetrazolium bromide(MTT), annexin V-PE assays, mitochondrial membrane potential (MMP) assays, and animal models were used to evaluate the inhibitory effect of compound H on TNBC cell lines. Energy metabolism tests, Western blotting, and immunofluorescence staining were performed to evaluate the synergistic effects on EGFR- and glucose transporter type 1(GLUT1)-mediated energy metabolism. RESULTS Compound H can simultaneously act on the EGFR tyrosine kinase ATP-binding site and inhibit GLUT1-mediated energy metabolism, resulting in reductions in ATP, MMP, intra-cellular lactic acid, and EGFR nuclear transfer. The anti-tumor activity of compound H is significantly superior to the combination of GLUT1 inhibitor BAY876 and EGFR inhibitor gefitinib. Compound H has remarkable anti-proliferative effects on TNBC MDA-MB231 cells, and importantly, no obvious toxicity effects of compound H were found in vivo. CONCLUSIONS Synergistic effects of inhibition of EGFR- and GLUT1-mediated energy metabolism by compound H may present a new strategy for the treatment of TNBC and NPC.
Collapse
Affiliation(s)
- Chunmiao Wang
- Guangxi Zhuang Autonomous Region, Life Sciences Institute, Guangxi Medical University, Shuangyong Road No. 22, Nanning 530021, China
| | - Zhaoquan Li
- Clinical Pharmacology Discipline, GongRen Hospital of Wuzhou, Wuzhou 543000, China; College of Pharmacy, Guangxi Zhuang Autonomous Region, Guangxi Medical University, Shuangyong Road No. 22, Nanning 530021, China
| | - Honglan Zhai
- College of Pharmacy, Guangxi Zhuang Autonomous Region, Guangxi Medical University, Shuangyong Road No. 22, Nanning 530021, China
| | - Xiaoyan Shen
- College of Pharmacy, Guangxi Zhuang Autonomous Region, Guangxi Medical University, Shuangyong Road No. 22, Nanning 530021, China
| | - Fengming Li
- College of Pharmacy, Guangxi Zhuang Autonomous Region, Guangxi Medical University, Shuangyong Road No. 22, Nanning 530021, China
| | - Qiuping Zhang
- College of Pharmacy, Guangxi Zhuang Autonomous Region, Guangxi Medical University, Shuangyong Road No. 22, Nanning 530021, China
| | - Danrong Li
- Guangxi Zhuang Autonomous Region, Life Sciences Institute, Guangxi Medical University, Shuangyong Road No. 22, Nanning 530021, China.
| | - Huaxin Hou
- College of Pharmacy, Guangxi Zhuang Autonomous Region, Guangxi Medical University, Shuangyong Road No. 22, Nanning 530021, China.
| |
Collapse
|
8
|
Sharifi M, Alizadeh AA, Mivehroud MH, Dastmalchi S. Construction of a bacteriophage-derived vector with potential applications in targeted drug delivery and cell imaging. Biotechnol Lett 2024; 46:147-159. [PMID: 38184487 DOI: 10.1007/s10529-023-03455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 01/08/2024]
Abstract
There is a strong relationship between the dysregulation of epidermal growth factor receptor (EGFR) and the development of epithelial-derived cancers. Therefore, EGFR has usually been considered the desired target for gene therapy. Here, we propose an approach for targeting EGFR-expressing cells by phage particles capable of displaying EGF and GFP as tumor-targeting and reporting elements, respectively. For this purpose, the superfolder GFP-EGF (sfGFP-EGF) coding sequence was inserted at the N-terminus of the pIII gene in the pIT2 phagemid. The capability of the constructed phage to recognize EGFR-overexpressing cells was monitored by fluorescence microscopy, fluorescence-activated cell sorting (FACS), and cell-based ELISA experiments. FACS analysis showed a significant shift in the mean fluorescence intensity (MFI) of the cells treated with phage displaying sfGFP-EGF compared to phage displaying only sfGFP. The binding of phage displaying sfGFP-EGF to A-431 cells, monitored by fluorescence microscopy, indicated the formation of the sfGFP-EGF-EGFR complex on the surface of the treated cells. Cell-based ELISA experiments showed that phages displaying either EGF or sfGFP-EGF can specifically bind EGFR-expressing cells. The vector constructed in the current study has the potential to be engineered for gene delivery purposes as well as cell-based imaging for tumor detection.
Collapse
Affiliation(s)
- Mehdi Sharifi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Maryam Hamzeh Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Faculty of Pharmacy, Near East University, Po. Box: 99138, Nicosia, North Cyprus, Mersin 10, Turkey.
| |
Collapse
|
9
|
Yang X, Yang B, Li D, Pan W, Tong Q, Wang L, Chen D, Fu C. Thromboembolic Events Associated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors: A Pharmacovigilance Analysis of the US FDA Adverse Event Reporting System (FAERS) Database. Clin Drug Investig 2024; 44:199-207. [PMID: 38376794 DOI: 10.1007/s40261-024-01346-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND AND OBJECTIVES Although thromboembolic events (TEEs) have been reported with the use of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), their association remains largely unknown. In this study, we aimed to provide a comprehensive review of TEEs associated with EGFR-TKIs. METHODS We collected EGFR-TKIs (gefitinib, erlotinib, afatinib, and osimertinib) adverse reaction reports from 2015 Q1 to 2023 Q1 from the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS) database. Disproportionality analysis was conducted to identify thromboembolic adverse events associated with EGFR-TKIs by comparing them with the overall FAERS database according to the reporting odds ratio (ROR). Associated factors were explored using univariate logistic regression. RESULTS We identified 1068 reports of TEEs associated with EGFR-TKIs (1.24% accounts for all TEEs). Affected patients were females (49.72%) and those older than 65 years (41.20%). The reported TEE case fatality was 30.24%. The median time to onset (TTO) of all cases was 39 days [interquartile range (IQR) 11-161], and the median TTO of fatalities [31 days (IQR 10-116)] was significantly shorter than that of non-fatal cases [46 days (IQR 12-186)]. CONCLUSION This study yielded three key findings. Firstly, EGFR-TKIs seem to exhibit prothrombotic effects, elevating the risk of TEEs. Secondly, the clinical outcomes of TEEs associated with EGFR-TKIs were poor. Thirdly, most TEEs occurred within the initial 3 months, and fatal cases occurred earlier than non-fatal cases.
Collapse
Affiliation(s)
- Xiongwen Yang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Bo Yang
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Dan Li
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Wei Pan
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Qin Tong
- Department of Oncology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lili Wang
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Danjun Chen
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China
| | - Chengxiao Fu
- Department of Pharmacy, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
- Institute of Pharmacy and Pharmacology, College of Basic Medical Science, Hengyang Medical School, University of South China, Hengyang, 421200, Hunan, People's Republic of China.
- Clinical Pharmacology Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Li S, Sun Y. Phytochemicals targeting epidermal growth factor receptor (EGFR) for the prevention and treatment of HNSCC: A review. Medicine (Baltimore) 2023; 102:e34439. [PMID: 37800790 PMCID: PMC10553117 DOI: 10.1097/md.0000000000034439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/30/2023] [Indexed: 10/07/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) develops from the mucosal epithelium of the oral cavity, pharynx, and larynx, and is the most common malignancy of the head and neck, the incidence of which continues to rise. The epidermal growth factor receptor is thought to play a key role in the pathogenesis of HNSCC. Inhibition of epidermal growth factor receptor has been identified as an effective target for the treatment of HNSCC. Many phytochemicals have emerged as potential new drugs for the treatment of HNSCC. A systematic search was conducted for research articles published in PubMed, and Medline on relevant aspects. This review provides an overview of the available literature and reports highlighting the in vitro effects of phytochemicals on epidermal growth factor in various HNSCC cell models and in vivo in animal models and emphasizes the importance of epidermal growth factor as a current therapeutic target for HNSCC. Based on our review, we conclude that phytochemicals targeting the epidermal growth factor receptor are potentially effective candidates for the development of new drugs for the treatment of HNSCC. It provides an idea for further development and application of herbal medicines for cancer treatment.
Collapse
Affiliation(s)
- Shaling Li
- The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Longmatan District, Luzhou City, Sichuan Province, China
| | | |
Collapse
|
11
|
Chaudhary R, Slebos RJ, Noel LC, Song F, Poole MI, Hoening DS, Hernandez-Prera JC, Conejo-Garcia JR, Guevara-Patino JA, Wang X, Xie M, Tan AC, Chung CH. EGFR Inhibition by Cetuximab Modulates Hypoxia and IFN Response Genes in Head and Neck Squamous Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:896-907. [PMID: 37377902 PMCID: PMC10202124 DOI: 10.1158/2767-9764.crc-22-0443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/01/2023] [Accepted: 05/02/2023] [Indexed: 06/29/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) has one of the most hypoxic and immunosuppressive tumor microenvironments (TME) among solid tumors. However, there is no proven therapeutic strategy to remodel the TME to be less hypoxic and proinflammatory. In this study, we classified tumors according to a Hypoxia-Immune signature, characterized the immune cells in each subgroup, and analyzed the signaling pathways to identify a potential therapeutic target that can remodel the TME. We confirmed that hypoxic tumors had significantly higher numbers of immunosuppressive cells, as evidenced by a lower ratio of CD8+ T cells to FOXP3+ regulatory T cells, compared with nonhypoxic tumors. Patients with hypoxic tumors had worse outcomes after treatment with pembrolizumab or nivolumab, anti-programmed cell death-1 inhibitors. Our expression analysis also indicated that hypoxic tumors predominantly increased the expression of the EGFR and TGFβ pathway genes. Cetuximab, an anti-EGFR inhibitor, decreased the expression of hypoxia signature genes, suggesting that it may alleviate the effects of hypoxia and remodel the TME to become more proinflammatory. Our study provides a rationale for treatment strategies combining EGFR-targeted agents and immunotherapy in the management of hypoxic HNSCC. Significance While the hypoxic and immunosuppressive TME of HNSCC has been well described, comprehensive evaluation of the immune cell components and signaling pathways contributing to immunotherapy resistance has been poorly characterized. We further identified additional molecular determinants and potential therapeutic targets of the hypoxic TME to fully leverage currently available targeted therapies that can be administered with immunotherapy.
Collapse
Affiliation(s)
- Ritu Chaudhary
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Robbert J.C. Slebos
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Leenil C. Noel
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Feifei Song
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Maria I. Poole
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | - Dirk S. Hoening
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| | | | | | | | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Mengyu Xie
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Aik Choon Tan
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
12
|
Piasna-Słupecka E, Leszczyńska T, Drozdowska M, Dziadek K, Domagała B, Domagała D, Koronowicz A. Young Shoots of Red Beet and the Root at Full Maturity Inhibit Proliferation and Induce Apoptosis in Breast Cancer Cell Lines. Int J Mol Sci 2023; 24:ijms24086889. [PMID: 37108053 PMCID: PMC10138517 DOI: 10.3390/ijms24086889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Modern medicine is struggling with the problem of fully effective treatment of neoplastic diseases despite deploying innovative chemotherapeutic agents. Therefore, undertaking cancer-prevention measures, such as proper eating habits, should be strongly recommended. The present research aimed to compare the effects of juice from young shoots of beetroot compared to juice from root at full maturity on human breast cancer and normal cells. The juice from young shoots, both in the native and digested form, was most often a significantly stronger inhibitor of the proliferation of both analyzed breast cancer cell lines (MCF-7 and MDA-MB-231), compared to the native and digested juice from red beetroot. Regardless of juice type, a significantly greater reduction was most often shown in the proliferation of estrogen-dependent cells (MCF-7 line) than of estrogen-independent cells (MDA-MB-231 line). All analyzed types of beetroot juice and, in particular, the ones from young shoots and the root subjected to digestion and absorption, exerted an antiproliferative and apoptotic effect (pinpointing the internal apoptosis pathway) on the cells of both cancer lines studied. There is a need to continue the research to comprehensively investigate the factors responsible for both these effects.
Collapse
Affiliation(s)
- Ewelina Piasna-Słupecka
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Krakow, Poland
| | - Teresa Leszczyńska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Krakow, Poland
| | - Mariola Drozdowska
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Krakow, Poland
| | - Kinga Dziadek
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Krakow, Poland
| | - Barbara Domagała
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425 Krakow, Poland
| | - Dominik Domagała
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Krakow, Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Balicka 122, 31-149 Krakow, Poland
| |
Collapse
|
13
|
Chakravarthy KK, Pavithra V, Joseph LD, Martin J. Overexpression of EGFR in esophageal squamous cell carcinomas - A new biological target in cancer therapy. J Cancer Res Ther 2023; 19:S461-S465. [PMID: 38384005 DOI: 10.4103/jcrt.jcrt_933_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/16/2022] [Indexed: 02/23/2024]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is the predominant type of esophageal cancer in the Asian belt. These cancers show poor prognosis with an overall 5-year survival rate less than 19%. Exploring new molecular therapeutic targets such as epidermal growth factor receptor (EGFR) could be the corner stone of new curative treatment. The present study was done to analyze the overexpression of EGFR in different grades of ESCC and explore its role as a diagnostic and theranostic marker in ESCC. METHODS In this retrospective study, 50 formalin-fixed paraffin-embedded blocks of ESCCs diagnosed from 2014 to 2019 were retrieved. The biopsies were subjected to immunohistochemistry staining of EGFR. The intensity of the membrane staining was reviewed and scored. Compared with various intrinsic and extrinsic factors using Chi-square test, scores more than 2+ were considered as overexpression. RESULTS Majority (84%) specimens demonstrated overexpression of EGFR where high-grade ESCCs had greater overexpression rates compared to low-grade ESCC (P < 0.05). CONCLUSION By targeting the EGFR molecules, anti-EGFR drugs could block their signals and stop the growth and spread of ESCCs especially high-grade tumors while harming the normal cells as little as possible. A clinical trial using anti-EGFR monoclonal antibodies will help in the long run to develop immunotherapy drugs.
Collapse
Affiliation(s)
- K Kavin Chakravarthy
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - V Pavithra
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Leena D Joseph
- Department of Pathology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Jovita Martin
- Department of Medical Oncology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Zhang P, Mao R, Zhang C, Qiu Y, Chen M. Gastrointestinal injury induced by immunomodulators: A review article. Therap Adv Gastroenterol 2023; 16:17562848231158549. [PMID: 37113189 PMCID: PMC10126616 DOI: 10.1177/17562848231158549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/02/2023] [Indexed: 04/29/2023] Open
Abstract
An increasing number of immunomodulators, either anti-inflammatory or immunity-enhancing, have brought about a revolutionary effect in the management of a variety of autoimmune disorders and malignancies. However, their ability to cause gastrointestinal (GI) injury and induce GI symptoms has been increasingly and unexpectedly recognized. GI injury associated with immunomodulators may demonstrate various histologic and endoscopic patterns. Optimal diagnosis and treatment require a multidisciplinary approach. This review aims to provide an overview of the literature on its pathogenesis, the clinical, endoscopic, and histologic features, and suggested approaches to manage these newly recognized immunomodulator-induced GI adverse effects (AEs). We also reviewed current biomarkers predictive of GI toxicity and potential risk factors to identify susceptible patients. In addition, these immune-mediated AEs were compared with inflammatory bowel disease, a well-documented form of inflammation-driven GI injury. We hope this review will raise awareness and vigilance among clinicians of these entities to increase early diagnosis and rapid referral to specialist care.
Collapse
Affiliation(s)
- Pingxin Zhang
- Department of Gastroenterology, The First
Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province,
China
| | - Ren Mao
- Department of Gastroenterology, The First
Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province,
China
| | - Chuhan Zhang
- Department of Gastroenterology, The First
Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province,
China
| | | | - Minhu Chen
- Department of Gastroenterology, The First
Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province,
China
| |
Collapse
|
15
|
Cui J, Shibata Y, Itaka K, Zhou J, Zhang J. Unbiased comparison and modularization identify time-related transcriptomic reprogramming in exercised rat cartilage: Integrated data mining and experimental validation. Front Physiol 2022; 13:974266. [PMID: 36187764 PMCID: PMC9520919 DOI: 10.3389/fphys.2022.974266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Exercise is indispensable for maintaining cartilage integrity in healthy joints and remains a recommendation for knee osteoarthritis. Although the effects of exercise on cartilage have been implied, the detailed mechanisms, such as the effect of exercise time which is important for exercise prescription, remain elusive. In this study, bioinformatic analyses, including unbiased comparisons and modularization, were performed on the transcriptomic data of rat cartilage to identify the time-related genes and signaling pathways. We found that exercise had a notable effect on cartilage transcriptome. Exercise prominently suppressed the genes related to cell division, hypertrophy, catabolism, inflammation, and immune response. The downregulated genes were more prominent and stable over time than the upregulated genes. Although exercise time did not prominently contribute to the effects of exercise, it was a factor related to a batch of cellular functions and signaling pathways, such as extracellular matrix (ECM) homeostasis and cellular response to growth factors and stress. Two clusters of genes, including early and late response genes, were identified according to the expression pattern over time. ECM organization, BMP signaling, and PI3K-Akt signaling were early responsive in the exercise duration. Moreover, time-related signaling pathways, such as inositol phosphate metabolism, nicotinate/nicotinamide metabolism, cell cycle, and Fc epsilon RI signaling pathway, were identified by unbiased mapping and polarization of the highly time-correlated genes. Immunohistochemistry staining showed that Egfr was a late response gene that increased on day 15 of exercise. This study elucidated time-related transcriptomic reprogramming induced by exercise in cartilage, advancing the understanding of cartilage homeostasis.
Collapse
Affiliation(s)
- Jiarui Cui
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, Tokyo, Japan
| | - Keiji Itaka
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- *Correspondence: Jun Zhou, ; Jiaming Zhang,
| | - Jiaming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Zhou, ; Jiaming Zhang,
| |
Collapse
|
16
|
Plasmonic Biosensing for Label-Free Detection of Two Hallmarks of Cancer Cells: Cell-Matrix Interaction and Cell Division. BIOSENSORS 2022; 12:bios12090674. [PMID: 36140059 PMCID: PMC9496138 DOI: 10.3390/bios12090674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
Two key features of cancer cells are sustained proliferation and invasion, which is preceded by a modification of the adhesion properties to the extracellular matrix. Currently, fluorescence-based techniques are mainly used to detect these processes, including flow cytometry and fluorescence resonance energy transfer (FRET) microscopy. We have previously described a simple, fast and label-free method based on a gold nanohole array biosensor to detect the spectral response of single cells, which is highly dependent on the actin cortex. Here we used this biosensor to study two cellular processes where configuration of the actin cortex plays an essential role: cell cycle and cell–matrix adhesion. Colorectal cancer cells were maintained in culture under different conditions to obtain cells stopped either in G0/G1 (resting cells/cells at the initial steps of cell growth) or G2 (cells undergoing division) phases of the cell cycle. Data from the nanohole array biosensor showed an ability to discriminate between both cell populations. Additionally, cancer cells were monitored with the biosensor during the first 60 min after cells were deposited onto a biosensor coated with fibronectin, an extracellular matrix protein. Spectral changes were detected in the first 20 min and increased over time as the cell–biosensor contact surface increased. Our data show that the nanohole array biosensor provides a label-free and real-time procedure to detect cells undergoing division or changes in cell–matrix interaction in both clinical and research settings.
Collapse
|
17
|
In Silico Prospects and Therapeutic Applications of Ouabagenin and Hydroxylated Corticosteroid Analogues in the Treatment of Lung Cancer. Appl Biochem Biotechnol 2022; 194:6106-6125. [PMID: 35895251 DOI: 10.1007/s12010-022-04083-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 11/02/2022]
Abstract
Lung cancer is the second most prevalent carcinoma around the world, and about 80% of patients are of non-small cell lung cancer (NS-CLC). Epidermal growth factor receptor (EGFR) is the most expressed protein kinases in lung cancer and hence can be used in target-related anti-cancer therapy. Here, computational approach is used for the exploration of the anti-cancer potential of new steroid derivatives as previously no in vitro data was available for them. Initially, DFT calculations of all compounds were determined to analyze the electronic density of optimized structures. The HOMO and LUMO orbital analysis of all derivatives was analyzed, to investigate the reactivity of compounds. Afterwards, optimized structures were used for molecular docking studies in which all ouabagenin derivatives were docked within the EGFR active site using MOE software. Moreover, anti-cancer potential of selected derivatives was evaluated on the basis of binding interactions with three anti-cancer proteins. The binding scores of these compounds were compared with the FDA-approved drug, i.e., gefitinib. The findings of current study suggested that selected derivatives exhibited significant inhibiting potential of anti-cancer proteins and EGFR. Particularly, compound OD3 is the potent inhibitor of anti-cancer and EGFR protein with the highest binding energies. These novel steroidal derivatives are subjected to in silico analysis for the first time against lung cancer. These compounds possess potential anti-cancerous properties and can be explored further for in vitro and in vivo studies.
Collapse
|
18
|
Bi Y, Du T, Pan W, Tang F, Wang Y, Jiao D, Han X, Ren J. Transcatheter arterial chemoembolization is safe and effective for patients with late-stage or recurrent oral carcinoma. Front Oncol 2022; 12:831583. [PMID: 35936680 PMCID: PMC9353522 DOI: 10.3389/fonc.2022.831583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE We reported the long-term outcomes of transcatheter chemoembolization (TACE) for patients with late-stage or recurrent oral carcinoma. METHODS This retrospective study enrolled 18 patients with late-stage or recurrent oral carcinoma between December 2015 and April 2021. The tumor-feeding artery was catheterized, and cisplatin/oxaliplatin and 5-FU/raltitrexed were infused with embolization using polyvinyl alcohol or gelatin sponge. Computed tomography was performed at about 1, 3, and 6 months after the procedure, and every 6 months after that. During the procedure and follow-up, procedure outcomes, complications, treatment efficacy, and overall survival were analyzed. RESULTS A total of 31 sessions of TACE were performed, with a technical success rate of 100%. Of 12 patients combined with oral hemorrhage, two patients showed rebleeding 35 and 37 days later, with a clinical efficiency of hemostasis of 88.9%. Mild complications were observed in 11 patients (61.1%). Severe complications or procedure-related deaths were not observed during or after the procedure. The objective response rate and disease control rate were 20.0% and 86.7%, 38.5% and 61.5%, and 25.0% and 50.0% at 1, 3, and 6 months later, respectively. Seventeen patients (94.4%) were followed up, with a median duration of 37.8 months (IQR 22.3-56.8). Nine patients died of tumor progression, one died of massive rebleeding, and one died of severe lung infection. The median overall survival was 23.8 months. CONCLUSION TACE is a safe and effective procedure with minimal invasiveness for treating late-stage or recurrent oral carcinoma. TACE can be recommended as a palliative treatment, particularly for patients with oral hemorrhage.
Collapse
Affiliation(s)
- Yonghua Bi
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tianfeng Du
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenting Pan
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fan Tang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianzhuang Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Controlling Cell Trafficking: Addressing Failures in CAR T and NK Cell Therapy of Solid Tumours. Cancers (Basel) 2022; 14:cancers14040978. [PMID: 35205725 PMCID: PMC8870056 DOI: 10.3390/cancers14040978] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
The precision guiding of endogenous or adoptively transferred lymphocytes to the solid tumour mass is obligatory for optimal anti-tumour effects and will improve patient safety. The recognition and elimination of the tumour is best achieved when anti-tumour lymphocytes are proximal to the malignant cells. For example, the regional secretion of soluble factors, cytotoxic granules, and cell-surface molecule interactions are required for the death of tumour cells and the suppression of neovasculature formation, tumour-associated suppressor, or stromal cells. The resistance of individual tumour cell clones to cellular therapy and the hostile environment of the solid tumours is a major challenge to adoptive cell therapy. We review the strategies that could be useful to overcoming insufficient immune cell migration to the tumour cell mass. We argue that existing 'competitive' approaches should now be revisited as complementary approaches to improve CAR T and NK cell therapy.
Collapse
|
20
|
Abourehab MAS, Alqahtani AM, Youssif BGM, Gouda AM. Globally Approved EGFR Inhibitors: Insights into Their Syntheses, Target Kinases, Biological Activities, Receptor Interactions, and Metabolism. Molecules 2021; 26:6677. [PMID: 34771085 PMCID: PMC8587155 DOI: 10.3390/molecules26216677] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
Targeting the EGFR with small-molecule inhibitors is a confirmed valid strategy in cancer therapy. Since the FDA approval of the first EGFR-TKI, erlotinib, great efforts have been devoted to the discovery of new potent inhibitors. Until now, fourteen EGFR small-molecule inhibitors have been globally approved for the treatment of different types of cancers. Although these drugs showed high efficacy in cancer therapy, EGFR mutations have emerged as a big challenge for these drugs. In this review, we focus on the EGFR small-molecule inhibitors that have been approved for clinical uses in cancer therapy. These drugs are classified based on their chemical structures, target kinases, and pharmacological uses. The synthetic routes of these drugs are also discussed. The crystal structures of these drugs with their target kinases are also summarized and their bonding modes and interactions are visualized. Based on their binding interactions with the EGFR, these drugs are also classified into reversible and irreversible inhibitors. The cytotoxicity of these drugs against different types of cancer cell lines is also summarized. In addition, the proposed metabolic pathways and metabolites of the fourteen drugs are discussed, with a primary focus on the active and reactive metabolites. Taken together, this review highlights the syntheses, target kinases, crystal structures, binding interactions, cytotoxicity, and metabolism of the fourteen globally approved EGFR inhibitors. These data should greatly help in the design of new EGFR inhibitors.
Collapse
Affiliation(s)
- Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Alaa M. Alqahtani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Bahaa G. M. Youssif
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Ahmed M. Gouda
- Department of Medicinal Chemistry, Faculty of pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
21
|
Induction of apoptosis, cytotoxicity and radiosensitization by novel 3,4-dihydroquinazolinone derivatives. Bioorg Med Chem Lett 2021; 49:128308. [PMID: 34363937 DOI: 10.1016/j.bmcl.2021.128308] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022]
Abstract
Twenty new quinazolinone derivatives bearing a piperonyl moiety were designed and synthesized. The structures of the target compounds were in agreement with the microanalytical and spectral data. Compounds 4-10, 13, 14 and 17-27 were screened for their cytotoxic activity against HepG-2 and MCF-7 cancer cell lines. The target compounds showed IC50 in the range of 2.46-36.85 µM and 3.87-88.93 µM for HepG-2 and MCF-7, respectively. The promising compounds 7, 19, 26 and 27 were selected to measure their EGFR inhibitory activity. The IC50 values of the promising compounds were in the range of 146.9-1032.7 nM for EGFR in reference to Erlotinib (IC50 = 96.6 nM). In further studies on compounds 7, 19, 26 and 27 using HepG-2 cell line, there was significant overexpression of p21 and downregulation of two members of IAPs protein family; Survivin and XIAP, relative to their controls. Annexin V-FITC and caspase-3 analyses have established a significant increase in early apoptosis. Moreover, the four selected compounds have impaired cell proliferation by cell cycle arrest at the G2/M phase compared to their respective control. Considering radiotherapy as the primary treatment for many types of solid tumors, the radiosensitizing abilities of compounds 7, 19, 26 and 27 were measured against HepG-2 and MCF-7 cell lines combined with a single dose of 8 Gy gamma radiation. Measurement of the IC50 of the promising compounds after irradiation revealed their ability to sensitize the cells to the lethal effect of gamma irradiation (IC50 = 1.56-4.32 µM and 3.06-5.93 µM for HepG-2 and MCF-7 cells, respectively). Molecular docking was performed to gain insights into the ligand-binding interactions of 7, 19, 26 and 27 inside the EGFR binding sites and revealed their essential interactions, explaining their good activity towards EGFR.
Collapse
|
22
|
Mihai MM, Ion A, Giurcăneanu C, Nițipir C, Popa AM, Chifiriuc MC, Popa MI, Říčař J, Popa LG, Sârbu I, Lazăr V. The Impact of Long-Term Antibiotic Therapy of Cutaneous Adverse Reactions to EGFR Inhibitors in Colorectal Cancer Patients. J Clin Med 2021; 10:jcm10153219. [PMID: 34362003 PMCID: PMC8347035 DOI: 10.3390/jcm10153219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is an important public health issue, in terms of incidence and mortality, with approximately 1.8 million new cases reported worldwide in 2018. Advancements in understanding pathophysiological key steps in CRC tumorigenesis have led to the development of new targeted therapies such as those based on epidermal growth factor receptor inhibitors (EGFR inhibitors). The cutaneous adverse reactions induced by EGFR inhibitors, particularly papulopustular rash, often require long-term antibiotic treatment with tetracycline agents (mostly minocycline and doxycycline). However, this raises several issues of concern: possible occurrence of gut dysbiosis in already vulnerable CRC patients, selection of highly antibiotic resistant and/or virulent clones, development of adverse reactions related to tetracyclines, interference of antibiotics with the response to oncologic therapy, with a negative impact on disease prognosis etc. In the context of scarce information regarding these issues and controversial opinions regarding the role of tetracyclines in patients under EGFR inhibitors, our aim was to perform a thorough literature review and discuss the main challenges raised by long-term use of tetracyclines in advanced CRC patients receiving this targeted therapy.
Collapse
Affiliation(s)
- Mara Mădălina Mihai
- Department of Oncologic Dermatology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (L.G.P.)
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania; (M.-C.C.); (V.L.)
- Correspondence: (M.M.M.); (A.I.); Tel.: +40-74-336-4164 (M.M.M.)
| | - Ana Ion
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
- Correspondence: (M.M.M.); (A.I.); Tel.: +40-74-336-4164 (M.M.M.)
| | - Călin Giurcăneanu
- Department of Oncologic Dermatology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (L.G.P.)
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
| | - Cornelia Nițipir
- Department of Oncology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.N.); (A.-M.P.)
| | - Ana-Maria Popa
- Department of Oncology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.N.); (A.-M.P.)
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania; (M.-C.C.); (V.L.)
| | - Mircea Ioan Popa
- Department of Microbiology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Jan Říčař
- Department of Dermatology and Venereology, Charles University, Medical School and Teaching Hospital Pilsen, 30599 Pilsen, Czech Republic;
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (L.G.P.)
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
| | - Ionela Sârbu
- Department of Genetics, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania;
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania; (M.-C.C.); (V.L.)
| |
Collapse
|
23
|
Muraro E, Fanetti G, Lupato V, Giacomarra V, Steffan A, Gobitti C, Vaccher E, Franchin G. Cetuximab in locally advanced head and neck squamous cell carcinoma: Biological mechanisms involved in efficacy, toxicity and resistance. Crit Rev Oncol Hematol 2021; 164:103424. [PMID: 34245856 DOI: 10.1016/j.critrevonc.2021.103424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 06/02/2021] [Accepted: 07/04/2021] [Indexed: 12/17/2022] Open
Abstract
Since its introduction, the use of cetuximab in the treatment of head and neck squamous cell carcinoma (HNSCC) has experienced an evolution. Currently, cetuximab associated with radiotherapy is limited to the treatment of patients affected by a locally advanced malignancy and unfit for cisplatin. However, reliable biomarkers of cetuximab efficacy in this cancer setting are still lacking. This review focuses on the mechanisms of action of cetuximab, highlighting, in particular, the consequences of the binding to EGFR, and the pathways involved in the development of adverse events or acquired resistance. Indeed, adverse events, such as skin rash, have been associated with cetuximab efficacy in HNSCC several times. Acquired resistance is associated with microenvironment plasticity, which is, in turn, characterized by an increased immune infiltrate. The better definition of patients eligible for this kind of therapy could improve HNSCC management, possibly proposing a combined treatment with radiotherapy, cetuximab and immune checkpoint inhibitors as recently investigated.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, CRO Aviano National Cancer Institute, Aviano, PN, Italy.
| | - Giuseppe Fanetti
- Department of Radiation Oncology, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Valentina Lupato
- Unit of Otolaryngology, General Hospital "S. Maria degli Angeli", Pordenone, Italy
| | - Vittorio Giacomarra
- Unit of Otolaryngology, General Hospital "S. Maria degli Angeli", Pordenone, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Carlo Gobitti
- Department of Radiation Oncology, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Emanuela Vaccher
- Department of Medical Oncology, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Giovanni Franchin
- Department of Radiation Oncology, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| |
Collapse
|
24
|
Kaniowski D, Ebenryter-Olbińska K, Kulik K, Suwara J, Cypryk W, Jakóbik-Kolon A, Leśnikowski Z, Nawrot B. Composites of Nucleic Acids and Boron Clusters (C 2B 10H 12) as Functional Nanoparticles for Downregulation of EGFR Oncogene in Cancer Cells. Int J Mol Sci 2021; 22:ijms22094863. [PMID: 34064412 PMCID: PMC8125477 DOI: 10.3390/ijms22094863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is one of the most promising molecular targets for anticancer therapy. We used boron clusters as a platform for generation of new materials. For this, functional DNA constructs conjugated with boron clusters (B-ASOs) were developed. These B-ASOs, built from 1,2-dicarba-closo-dodecaborane linked with two anti-EGFR antisense oligonucleotides (ASOs), form with their complementary congeners torus-like nanostructures, as previously shown by atomic force microscope (AFM) and transmission electron cryo-microscopy (cryo-TEM) imaging. In the present work, deepened studies were carried out on B-ASO's properties. In solution, B-ASOs formed four dominant complexes as confirmed by non-denaturing polyacrylamide gel electrophoresis (PAGE). These complexes exhibited increased stability in cell lysate comparing to the non-modified ASO. Fluorescently labeled B-ASOs localized mostly in the cytoplasm and decreased EGFR expression by activating RNase H. Moreover, the B-ASO complexes altered the cancer cell phenotype, decreased cell migration rate, and arrested the cells in the S phase of cell cycle. The 1,2-dicarba-closo-dodecaborane-containing nanostructures did not activate NLRP3 inflammasome in human macrophages. In addition, as shown by inductively coupled plasma mass spectrometry (ICP MS), these nanostructures effectively penetrated the human squamous carcinoma cells (A431), showing their potential applicability as anticancer agents.
Collapse
Affiliation(s)
- Damian Kaniowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Katarzyna Ebenryter-Olbińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Justyna Suwara
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Wojciech Cypryk
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
| | - Agata Jakóbik-Kolon
- Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6, 44-100 Gliwice, Poland;
| | - Zbigniew Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 92-232 Lodz, Poland;
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.E.-O.); (K.K.); (J.S.); (W.C.)
- Correspondence: ; Tel.: +48-42-6803248
| |
Collapse
|
25
|
Tajadura-Ortega V, Gambardella G, Skinner A, Halim A, Van Coillie J, Schjoldager KTBG, Beatson R, Graham R, Achkova D, Taylor-Papadimitriou J, Ciccarelli FD, Burchell JM. O-linked mucin-type glycosylation regulates the transcriptional programme downstream of EGFR. Glycobiology 2021; 31:200-210. [PMID: 32776095 DOI: 10.1093/glycob/cwaa075] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Aberrant mucin-type O-linked glycosylation is a common occurrence in cancer where the upregulation of sialyltransferases is often seen leading to the early termination of O-glycan chains. Mucin-type O-linked glycosylation is not limited to mucins and occurs on many cell surface glycoproteins including EGFR, where the number of sites can be limited. Upon EGF ligation, EGFR induces a signaling cascade and may also translocate to the nucleus where it directly regulates gene transcription, a process modulated by Galectin-3 and MUC1 in some cancers. Here, we show that upon EGF binding, breast cancer cells carrying different O-glycans respond by transcribing different gene expression signatures. MMP10, the principal gene upregulated when cells carrying sialylated core 1 glycans were stimulated with EGF, is also upregulated in ER-positive breast carcinoma reported to express high levels of ST3Gal1 and hence mainly core 1 sialylated O-glycans. In contrast, isogenic cells engineered to carry core 2 glycans upregulate CX3CL1 and FGFBP1 and these genes are upregulated in ER-negative breast carcinomas, also known to express longer core 2 O-glycans. Changes in O-glycosylation did not significantly alter signal transduction downstream of EGFR in core 1 or core 2 O-glycan expressing cells. However, striking changes were observed in the formation of an EGFR/galectin-3/MUC1/β-catenin complex at the cell surface that is present in cells carrying short core 1-based O-glycans but absent in core 2 carrying cells.
Collapse
Affiliation(s)
- Virginia Tajadura-Ortega
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, Burlington Danes Building, Du Cane Road, London W12 0NN, UK
| | - Gennaro Gambardella
- Department of Chemical Materials and Industrial Engineering, University of Naples Federico II, 1-80125 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Alexandra Skinner
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Adnan Halim
- Functional and Cellular Glycobiology, Glycomics Programme, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julie Van Coillie
- Functional and Cellular Glycobiology, Glycomics Programme, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | - Richard Beatson
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Rosalind Graham
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Daniela Achkova
- CAR Mechanics Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
- Autolus Ltd. Forest House, 58 Wood Ln, White City, London W12 7RZ, UK
| | - Joyce Taylor-Papadimitriou
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| | - Francesca D Ciccarelli
- Cancer Systems Biology Laboratory, Francis Crick Institute, London NW1 1AT, UK
- CRUK King's Health Partner Centre, King's College London, London SE1 9RT, UK
| | - Joy M Burchell
- Breast Cancer Biology Lab, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9RT, UK
| |
Collapse
|
26
|
Ihmaid SK, Alraqa SY, Aouad MR, Aljuhani A, Elbadawy HM, Salama SA, Rezki N, Ahmed HEA. Design of molecular hybrids of phthalimide-triazole agents with potent selective MCF-7/HepG2 cytotoxicity: Synthesis, EGFR inhibitory effect, and metabolic stability. Bioorg Chem 2021; 111:104835. [PMID: 33798850 DOI: 10.1016/j.bioorg.2021.104835] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
This study reports an efficient and convenient click chemistry synthesis of a novel series of phthalimide scaffold linked to 1,2,3 triazole ring and terminal lipophilic fragments. Structures of newly synthesized compounds were well characterized by different spectroscopic tools. In vitro MTT cytotoxicity assay was performed comparing the cytotoxic effects of newly synthesized compounds to staurosporine using three different types: human liver cancer cell line (HepG2), Michigan cancer foundation-7 (MCF-7) and human colorectal carcinoma cell line (HCT116). The initial screening showed excellent to moderate anticancer activity for these newly synthesized compounds with high degree of cell line selectivity with micromolar (µM) half maximal inhibitory concentration (IC50) values against tumor cells. The SAR analysis of these derivatives confirmed the role of molecular fragments including phthalimide, linker, triazole, and terminal tails in correlation to activity. In addition, enzymatic inhibitory assay against wild type EGFR was performed for the most active compounds to get more details about their mechanism of action. In order to further explore their binding affinities, molecular docking simulation was studied against EGFR site. The results obtained from molecular docking study and those obtained from cytotoxic screening were correlated. One of the most prominent analogs is (6f) with terminal disubstituted ring and amide linker showed selective MCF-7 cytotoxicity profile with IC50 0.22 µM and 79 nM to EGFR target. Extensive structure activity relationship (SAR) analyses were also carried out. The pharmacokinetic profile of (6f) was studied showing good metabolic stability and long duration behavior. This design offered a potent selective anticancer phthalimide-triazole leads for further optimization in cancer drug discovery.
Collapse
Affiliation(s)
- Saleh K Ihmaid
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.
| | - Shaya Yahya Alraqa
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Mohamed R Aouad
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Ateyatallah Aljuhani
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Hossein M Elbadawy
- Pharmacology and Toxicology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Samir A Salama
- Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Nadjet Rezki
- Chemistry Department, College of Sciences, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
27
|
Pathak P, Rimac H, Grishina M, Verma A, Potemkin V. Hybrid Quinazoline 1,3,5-Triazines as Epidermal Growth Factor Receptor (EGFR) Inhibitors with Anticancer Activity: Design, Synthesis, and Computational Study. ChemMedChem 2020; 16:822-838. [PMID: 33155373 DOI: 10.1002/cmdc.202000646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/08/2020] [Indexed: 11/07/2022]
Abstract
We report a series of hybrid quinazoline-1,3,5-triazine derivatives as EGFR inhibitors, which were synthesised and tested by using a variety of in vitro, in silico, and in vivo techniques. The derivatives were found to be active against different cancer cell lines and nontoxic against normal ones, with compounds 7 c, 7 d, 7 e, and 7 j being the most potent ones. The derivatives were also evaluated for angiogenesis inhibition potency in chicken eggs, and molecular docking and dynamics simulation studies were carried out to elucidate the fundamental substituent groups essential for their bioactivity. Additionally, a SAR study of the derivatives was performed for future compound optimisation. These studies suggested that the derivatives have a high affinity towards EGFR with favourable pharmacological properties. The most active compound (7 e) was further evaluated for in vivo anticancer activity against DMBA-induced tumours in female Sprague-Dawley rats as well as its effects on plasma antioxidant status, biotransformation enzymes, and lipid profile. The study suggested that 7 e has lead properties against breast cancer and can serve as a starting compound for further development of anti-EGFR compounds.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Dose-Response Relationship, Drug
- Drug Design
- Drug Screening Assays, Antitumor
- ErbB Receptors/antagonists & inhibitors
- ErbB Receptors/metabolism
- Female
- Humans
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Models, Molecular
- Molecular Structure
- Protein Kinase Inhibitors/chemical synthesis
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Quinazolines/chemistry
- Quinazolines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Structure-Activity Relationship
- Triazines/chemistry
- Triazines/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Prateek Pathak
- Laboratory of Computational Modelling of Drugs, South Ural State University, Chaikovskogo 20A, Chelyabinsk, 454008, Russia
| | - Hrvoje Rimac
- Laboratory of Computational Modelling of Drugs, South Ural State University, Chaikovskogo 20A, Chelyabinsk, 454008, Russia
- Department of Medicinal Chemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, Ante Kovacica 1, Zagreb, 10000, Croatia
| | - Maria Grishina
- Laboratory of Computational Modelling of Drugs, South Ural State University, Chaikovskogo 20A, Chelyabinsk, 454008, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences Naini, Prayagraj, Uttar Pradesh, 211007, India
| | - Vladimir Potemkin
- Laboratory of Computational Modelling of Drugs, South Ural State University, Chaikovskogo 20A, Chelyabinsk, 454008, Russia
| |
Collapse
|
28
|
Chen G, Seukep AJ, Guo M. Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs. Mar Drugs 2020; 18:md18110545. [PMID: 33143025 PMCID: PMC7692358 DOI: 10.3390/md18110545] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022] Open
Abstract
Marine drugs have long been used and exhibit unique advantages in clinical practices. Among the marine drugs that have been approved by the Food and Drug Administration (FDA), the protein–ligand interactions, such as cytarabine–DNA polymerase, vidarabine–adenylyl cyclase, and eribulin–tubulin complexes, are the important mechanisms of action for their efficacy. However, the complex and multi-targeted components in marine medicinal resources, their bio-active chemical basis, and mechanisms of action have posed huge challenges in the discovery and development of marine drugs so far, which need to be systematically investigated in-depth. Molecular docking could effectively predict the binding mode and binding energy of the protein–ligand complexes and has become a major method of computer-aided drug design (CADD), hence this powerful tool has been widely used in many aspects of the research on marine drugs. This review introduces the basic principles and software of the molecular docking and further summarizes the applications of this method in marine drug discovery and design, including the early virtual screening in the drug discovery stage, drug target discovery, potential mechanisms of action, and the prediction of drug metabolism. In addition, this review would also discuss and prospect the problems of molecular docking, in order to provide more theoretical basis for clinical practices and new marine drug research and development.
Collapse
Affiliation(s)
- Guilin Chen
- Key Laboratory of Plant Germplasm Enhancement & Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (G.C.); (A.J.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
| | - Armel Jackson Seukep
- Key Laboratory of Plant Germplasm Enhancement & Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (G.C.); (A.J.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, P.O. Box 63 Buea, Cameroon
| | - Mingquan Guo
- Key Laboratory of Plant Germplasm Enhancement & Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (G.C.); (A.J.S.)
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
- Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: ; Tel.: +86-27-8770-0850
| |
Collapse
|
29
|
Minoli M, Kiener M, Thalmann GN, Kruithof-de Julio M, Seiler R. Evolution of Urothelial Bladder Cancer in the Context of Molecular Classifications. Int J Mol Sci 2020; 21:E5670. [PMID: 32784716 PMCID: PMC7461199 DOI: 10.3390/ijms21165670] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is a heterogeneous disease that is not depicted by current classification systems. It was originally classified into non-muscle invasive and muscle invasive. However, clinically and genetically variable tumors are summarized within both classes. A definition of three groups may better account for the divergence in prognosis and probably also choice of treatment. The first group represents mostly non-invasive tumors that reoccur but do not progress. Contrarily, the second group represent non-muscle invasive tumors that likely progress to the third group, the muscle invasive tumors. High throughput tumor profiling improved our understanding of the biology of bladder cancer. It allows the identification of molecular subtypes, at least three for non-muscle invasive bladder cancer (Class I, Class II and Class III) and six for muscle-invasive bladder cancer (luminal papillary, luminal non-specified, luminal unstable, stroma-rich, basal/squamous and neuroendocrine-like) with distinct clinical and molecular phenotypes. Molecular subtypes can be potentially used to predict the response to treatment (e.g., neoadjuvant chemotherapy and immune checkpoint inhibitors). Moreover, they may allow to characterize the evolution of bladder cancer through different pathways. However, to move towards precision medicine, the understanding of the biological meaning of these molecular subtypes and differences in the composition of cell subpopulations will be mandatory.
Collapse
Affiliation(s)
- Martina Minoli
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (M.M.); (M.K.); (G.N.T.); (M.K.-d.J.)
| | - Mirjam Kiener
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (M.M.); (M.K.); (G.N.T.); (M.K.-d.J.)
| | - George N. Thalmann
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (M.M.); (M.K.); (G.N.T.); (M.K.-d.J.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (M.M.); (M.K.); (G.N.T.); (M.K.-d.J.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Roland Seiler
- Department of BioMedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (M.M.); (M.K.); (G.N.T.); (M.K.-d.J.)
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| |
Collapse
|
30
|
Novel scaffold hopping of potent benzothiazole and isatin analogues linked to 1,2,3-triazole fragment that mimic quinazoline epidermal growth factor receptor inhibitors: Synthesis, antitumor and mechanistic analyses. Bioorg Chem 2020; 103:104133. [PMID: 32745759 DOI: 10.1016/j.bioorg.2020.104133] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/11/2020] [Accepted: 07/18/2020] [Indexed: 12/13/2022]
Abstract
A series of benzothiazole/isatin linked to 1,2,3-triazole moiety and terminal sulpha drugs 5a-e and 6a-e were synthesized and evaluated for cytotoxic activity against a panel of cancer cell lines. The novel compounds showed variable IC50 range of activity and some of them were potent compared to reference drug. The promising compounds were subjected as postulated the mimicry proposal for quinazoline-based EGFR inhibitors for their inhibitory profile against EGFR TK enzyme. That data obtained revealed that most of these compounds were potent EGFR TK inhibitors at nanomolar concentrations. Among these, compounds 5a and 5b showed more potent activity on EGFR compared to erlotinib (IC50 103 and 104 versus 67.6 nM). Based upon the results, molecular docking analysis was performed on EGFR receptor and proved the strong contribution of fragments; benzothiazole, isatin, and triazole to the binding ATP pocket. When these selected compounds 5a and 5b were tested in an HepG2 model, they could effectively inhibited tumor growth, strongly induced cancer cell apoptosis, and suppressed cell cycle progression leading to DNA fragmentation. Well-DMET profile of the most active derivatives was presented and compared to the reference drugs. Taken together, we introduced novel triazole-sulpha drug hybrid for the first time as EGFR inhibitors and the results of our studies indicate that the newly discovered inhibitors have significant potential for anticancer treatment.
Collapse
|
31
|
Han Y, Peng Y, Fu Y, Cai C, Guo C, Liu S, Li Y, Chen Y, Shen E, Long K, Wang X, Yu J, Shen H, Zeng S. MLH1 Deficiency Induces Cetuximab Resistance in Colon Cancer via Her-2/PI3K/AKT Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000112. [PMID: 32670759 PMCID: PMC7341094 DOI: 10.1002/advs.202000112] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/29/2020] [Indexed: 05/13/2023]
Abstract
The rapid onset of resistance to cetuximab (CTX) limits its clinical utility in colorectal cancer (CRC) patients. This study aims to understand a potential role of mismatch repair gene mutL homolog 1 (MLH1) in CTX response. Functional analysis of MLH1 in Her-2/phosphoinositide 3-kinases (PI3K)/PKB protein kinase (AKT)-regulated CTX sensitivity is performed using human CRC specimens, CRC cell lines with different MLH1 expression levels, and a subcutaneous xenograft model. Overexpression, knockdown, small interfering RNA, and inhibitors are used to examine the role of MLH1 and HER-2 downstream signaling and apoptotic targets in CTX sensitivity. Reduced MLH1 expression is correlated with unfavorable prognosis in cetuximab-treated patients. MLH1 loss decreases CTX sensitivity through Her-2/PI3K/AKT signaling and apoptosis resistance in culture and in xenografts, while MLH1 overexpression increases CTX sensitivity. Blocking Her-2 signaling increases CTX sensitivity of microsatellite instability CRC in vitro and in vivo. MLH1 loss induces activation of Her-2/PI3K/AKT signaling and leads to cetuximab resistance in colon cancer.
Collapse
Affiliation(s)
- Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Yinghui Peng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory for Molecular Radiation Oncology of Hunan ProvinceXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yaojie Fu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory for Molecular Radiation Oncology of Hunan ProvinceXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Cao Guo
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory for Molecular Radiation Oncology of Hunan ProvinceXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Shanshan Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yiyi Li
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory for Molecular Radiation Oncology of Hunan ProvinceXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Yihong Chen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory for Molecular Radiation Oncology of Hunan ProvinceXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Edward Shen
- Department of Life ScienceMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Kexin Long
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory for Molecular Radiation Oncology of Hunan ProvinceXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Xinwen Wang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory for Molecular Radiation Oncology of Hunan ProvinceXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Jian Yu
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory for Molecular Radiation Oncology of Hunan ProvinceXiangya HospitalCentral South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangshaHunan410008China
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunan410008China
- Key Laboratory for Molecular Radiation Oncology of Hunan ProvinceXiangya HospitalCentral South UniversityChangshaHunan410008China
| |
Collapse
|
32
|
Identification of Two Kinase Inhibitors with Synergistic Toxicity with Low-Dose Hydrogen Peroxide in Colorectal Cancer Cells in vitro. Cancers (Basel) 2020; 12:cancers12010122. [PMID: 31906582 PMCID: PMC7016670 DOI: 10.3390/cancers12010122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal carcinoma is among the most common types of cancers. With this disease, diffuse scattering in the abdominal area (peritoneal carcinosis) often occurs before diagnosis, making surgical removal of the entire malignant tissue impossible due to a large number of tumor nodules. Previous treatment options include radiation and its combination with intraperitoneal heat-induced chemotherapy (HIPEC). Both options have strong side effects and are often poor in therapeutic efficacy. Tumor cells often grow and proliferate dysregulated, with enzymes of the protein kinase family often playing a crucial role. The present study investigated whether a combination of protein kinase inhibitors and low-dose induction of oxidative stress (using hydrogen peroxide, H2O2) has an additive cytotoxic effect on murine, colorectal tumor cells (CT26). Protein kinase inhibitors from a library of 80 substances were used to investigate colorectal cancer cells for their activity, morphology, and immunogenicity (immunogenic cancer cell death, ICD) upon mono or combination. Toxic compounds identified in 2D cultures were confirmed in 3D cultures, and additive cytotoxicity was identified for the substances lavendustin A, GF109203X, and rapamycin. Toxicity was concomitant with cell cycle arrest, but except HMGB1, no increased expression of immunogenic markers was identified with the combination treatment. The results were validated for GF109203X and rapamycin but not lavendustin A in the 3D model of different colorectal (HT29, SW480) and pancreatic cancer cell lines (MiaPaca, Panc01). In conclusion, our in vitro data suggest that combining oxidative stress with chemotherapy would be conceivable to enhance antitumor efficacy in HIPEC.
Collapse
|
33
|
Synthesis and screening of novel anthraquinone−quinazoline multitarget hybrids as promising anticancer candidates. Future Med Chem 2020; 12:111-126. [PMID: 31718309 DOI: 10.4155/fmc-2019-0230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: The EGF receptor (EGFR) is overexpressed in multiple epithelial-derived cancers and is considered to be a vital target closely associated with cancer therapy. In this study, a series of novel anthraquinone−quinazoline hybrids targeting several vital sites for cancer therapy were designed and synthesized. Methodology & results: Most of the synthesized hybrids demonstrated excellent antiproliferative activity and downregulation of the expression of EGFR. The most promising compound 7d showed the strongest antiproliferation activity; this compound significantly downregulated the expression of p-EGFR protein, induced a remarkable apoptosis effect, promoted the rearrangement of F-actin filaments and destruction of cytoskeleton, induced DNA damage and enhanced radiosensitivity of A549 cells. Conclusion: The novel anthraquinone−quinazoline hybrid 7d emerges as an anticancer drug candidate with promising multitargeted biological activities.
Collapse
|
34
|
Jin M, Hong Y, Lee H, Tran Q, Cho H, Kim M, Kwon SH, Kang NH, Park J, Park J. 1,2-Dichloropropane (1,2-DCP)-Induced Angiogenesis in Dermatitis. Toxicol Res 2019; 35:361-369. [PMID: 31636847 PMCID: PMC6791663 DOI: 10.5487/tr.2019.35.4.361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/29/2022] Open
Abstract
1,2-Dichloropropane (1,2-DCP) has been used as an industrial solvent and a chemical intermediate, as well as in soil fumigants. Human exposure may occur during its production and industrial use. The target organs of 1,2-DCP are the eyes, respiratory system, liver, kidneys, central nervous system, and skin. Repeated or prolonged contact may cause skin sensitization. In this study, 1,2-DCP was dissolved in corn oil at 0, 2.73, 5.75, and 8.75 mL/kg. The skin of mice treated with 1,2-DCP was investigated using western blotting, hematoxylin and eosin staining, and immunohistochemistry. 1,2-DCP was applied to the dorsal skin and both ears of C57BL/6J mice. The thickness of ears and the epidermis increased significantly following treatment, and the appearance of blood vessels was observed in the dorsal skin. Additionally, the expression of vascular endothelial growth factor, which is tightly associated with neovascularization, increased significantly. The levels of protein kinase-B (PKB), phosphorylated PKB, mammalian target of rapamycin (mTOR), and phosphorylated mTOR, all of which are key components of the phosphoinositide 3-kinase/PKB/mTOR signaling pathway, were also enhanced. Taken together, 1,2-DCP induced angiogenesis in dermatitis through the PI3K/PKB/mTOR pathway in the skin.
Collapse
Affiliation(s)
- Meiying Jin
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Youngeun Hong
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyunji Lee
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Quangdon Tran
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Hyeonjeong Cho
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Minhee Kim
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - So Hee Kwon
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Nak Heon Kang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jisoo Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jongsun Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
35
|
Hübner J, Raschke M, Rütschle I, Gräßle S, Hasenberg T, Schirrmann K, Lorenz A, Schnurre S, Lauster R, Maschmeyer I, Steger-Hartmann T, Marx U. Simultaneous evaluation of anti-EGFR-induced tumour and adverse skin effects in a microfluidic human 3D co-culture model. Sci Rep 2018; 8:15010. [PMID: 30301942 PMCID: PMC6177413 DOI: 10.1038/s41598-018-33462-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022] Open
Abstract
Antibody therapies targeting the epithelial growth factor receptor (EGFR) are being increasingly applied in cancer therapy. However, increased tumour containment correlates proportionally with the severity of well-known adverse events in skin. The prediction of the latter is not currently possible in conventional in vitro systems and limited in existing laboratory animal models. Here we established a repeated dose “safficacy” test assay for the simultaneous generation of safety and efficacy data. Therefore, a commercially available multi-organ chip platform connecting two organ culture compartments was adapted for the microfluidic co-culture of human H292 lung cancer microtissues and human full-thickness skin equivalents. Repeated dose treatment of the anti-EGFR-antibody cetuximab showed an increased pro-apoptotic related gene expression in the tumour microtissues. Simultaneously, proliferative keratinocytes in the basal layer of the skin microtissues were eliminated, demonstrating crucial inhibitory effects on the physiological skin cell turnover. Furthermore, antibody exposure modulated the release of CXCL8 and CXCL10, reflecting the pattern changes seen in antibody-treated patients. The combination of a metastatic tumour environment with a miniaturized healthy organotypic human skin equivalent make this “safficacy” assay an ideal tool for evaluation of the therapeutic index of EGFR inhibitors and other promising oncology candidates.
Collapse
Affiliation(s)
- Juliane Hübner
- Technische Universität Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany. .,TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany.
| | - Marian Raschke
- Bayer AG, Investigational Toxicology, 13353, Berlin, Germany
| | | | - Sarah Gräßle
- Technische Universität Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.,TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany
| | | | - Kerstin Schirrmann
- The University of Manchester, Manchester Centre for Nonlinear Dynamics, Oxford Rd, Manchester, M13 9PL, UK
| | | | | | - Roland Lauster
- Technische Universität Berlin, Institute of Biotechnology, Department Medical Biotechnology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | | | | | - Uwe Marx
- TissUse GmbH, Oudenarder Str. 16, 13347, Berlin, Germany
| |
Collapse
|
36
|
Liang H, Liu X, Wang M. Immunotherapy combined with epidermal growth factor receptor-tyrosine kinase inhibitors in non-small-cell lung cancer treatment. Onco Targets Ther 2018; 11:6189-6196. [PMID: 30288054 PMCID: PMC6163004 DOI: 10.2147/ott.s178497] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In recent years, targeted therapy and immunotherapy have played important roles in the treatment of patients with non-small-cell lung cancer (NSCLC). Drugs that target epidermal growth factor receptor (EGFR) mutations (eg, gefitinib, erlotinib, icotinib, and osimertinib) are among the most commonly used targeted therapies. Afatinib is an irreversible second-generation EGFR-tyrosine kinase inhibitor (EGFR-TKI), and the LUX-Lung 3 trial demonstrated the superiority of afatinib to cisplatin and pemetrexed in the frontline treatment of treatment-naïve patients with advanced EGFR mutation adenocarcinoma of the lung. Although these drugs show significant therapeutic efficacy, most patients invariably experience disease progression resulting in death. Immunotherapy targeting programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) has now been approved for the first-line treatment of patients with advanced NSCLC. These can produce sustained clinical responses by reversing negative regulators of T-cell function; however, immunotherapy response rates remain low, and only a few patients ultimately benefit from this approach. Here, we discuss the potential of EGFR-TKIs for inducing antitumor immunity and the feasibility of their combination with immunotherapy (including PD-1/PD-L1 inhibitors) in NSCLC patients and the associated challenges for clinical application.
Collapse
Affiliation(s)
- Hongge Liang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Dongcheng District, Beijing 100730, China,
| | - Xiaoyan Liu
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Dongcheng District, Beijing 100730, China,
| | - Mengzhao Wang
- Department of Respiratory Medicine, Peking Union Medical College Hospital, Dongcheng District, Beijing 100730, China,
| |
Collapse
|
37
|
Zhang Z, Yao L, Yang J, Wang Z, Du G. PI3K/Akt and HIF‑1 signaling pathway in hypoxia‑ischemia (Review). Mol Med Rep 2018; 18:3547-3554. [PMID: 30106145 PMCID: PMC6131612 DOI: 10.3892/mmr.2018.9375] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-ischemia (H-I) is frequently observed in perinatal asphyxia and other diseases. It can lead to serious cardiac injury, cerebral damage, neurological disability and mortality. Previous studies have demonstrated that the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, which regulates a wide range of cellular functions, is involved in the resistance response to H-I through the activation of proteins associated with survival and inactivation of apoptosis-associated proteins. It can also regulate the expression of hypoxia-induced factor-1α (HIF-1α). HIF-1α can further regulate the expression of downstream proteins involved in glucose metabolism and angiogenesis, such as vascular endothelial growth factor and erythropoietin, to facilitate ischemic adaptation. Notably, HIF-1α may also induce detrimental effects. The effects of HIF-1 on ischemic outcomes may be dependent on the H-I duration, animal age and species. Thus, further investigation of the PI3K/Akt signaling pathway may provide further insights of the potential targets for treating diseases accompanied by H-I.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Science, Guangzhou, Guangdong 510100, P.R. China
| | - Li Yao
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, Guangdong 510670, P.R. China
| | - Jinhua Yang
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, Guangdong 510670, P.R. China
| | - Zhenkang Wang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Gang Du
- Department of Bioinformatics, Guangzhou GenCoding Lab, Guangzhou, Guangdong 510670, P.R. China
| |
Collapse
|
38
|
Goodspeed A, Jean A, Theodorescu D, Costello JC. A Gene Expression Signature Predicts Bladder Cancer Cell Line Sensitivity to EGFR Inhibition. Bladder Cancer 2018; 4:269-282. [PMID: 30112438 PMCID: PMC6087449 DOI: 10.3233/blc-170161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Bladder cancer remains a cancer type in need of novel and alternative therapies. While multiple inhibitors of EGFR have been evaluated for efficacy in bladder cancer, the results have largely been disappointing with few patients responding to these therapies. Yet, there is a subset of patients that positively responds to EGFR inhibition with tumor shrinkage, indicating it is an effective treatment for a targeted set of bladder tumors. Objective: To derive a gene expression signature capable of predicting the response to EGFR inhibition in bladder cancer cell lines. Methods: he response to cetuximab for 68 colorectal cancer patients was used as training data to generate a gene expression signature. We applied this signature to bladder cancer cell lines and predictions were compared to the responses to seven EGFR inhibitors. Results: A novel 67-gene signature derived from colorectal cancer was able to significantly identify bladder cancer cell lines by their response to several EGFR inhibitors. Conclusions: The 67-gene signature can determine bladder cancer cell line sensitivity to EGFR inhibition. This work demonstrates a preclinical strategy to identify bladder cancer cell lines for EGFR-targeted therapy.
Collapse
Affiliation(s)
- Andrew Goodspeed
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Annie Jean
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dan Theodorescu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Department of Surgery (Urology), University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,University of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
39
|
Albert S, Arndt C, Koristka S, Berndt N, Bergmann R, Feldmann A, Schmitz M, Pietzsch J, Steinbach J, Bachmann M. From mono- to bivalent: improving theranostic properties of target modules for redirection of UniCAR T cells against EGFR-expressing tumor cells in vitro and in vivo. Oncotarget 2018; 9:25597-25616. [PMID: 29876011 PMCID: PMC5986651 DOI: 10.18632/oncotarget.25390] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/28/2018] [Indexed: 02/06/2023] Open
Abstract
CAR-modified T cells show impressive results in clinical trials. However, cytokine release syndrome and "on-target, off-tumor" reactions represent most concerning side effects. To improve the safety of CAR-T cell therapy, we established a switchable CAR platform termed UniCAR system consisting of two components: UniCAR-modified T cells and tumor-specific target modules (TM). For treatment of EGFR+ epithelial tumors, we recently described a monovalent nanobody-based α-EGFR TM, either expressed in bacteria or eukaryotic cells. In spite of the identical primary sequence the eukaryotic TM showed a reduced killing capability and affinity. Here we describe a novel bivalent α-EGFR-EGFR TM. As expected, the avidity of the bivalent TM is higher than that of its monovalent counterpart. Binding of neither the monovalent α-EGFR TM nor the bivalent α-EGFR-EGFR TM to EGFR effected the EGF-mediated signaling. While the monovalent α-EGFR TM could only mediate the killing of tumor cells expressing high levels of EGFR, the bivalent α-EGFR-EGFR TM could redirect UniCAR T cells to tumor cells expressing low levels of EGFR. According to PET experiments in vivo, the increased avidity of the bivalent α-EGFR-EGFR TM improves the enrichment at the tumor site and its use for PET imaging.
Collapse
Affiliation(s)
- Susann Albert
- UniversityCancerCenter (UCC) Dresden, Tumor Immunology, ‘Carl Gustav Carus’ Technische Universität Dresden, Dresden, Germany
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Nicole Berndt
- German Cancer Consortium (DKTK), part\ner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Marc Schmitz
- German Cancer Consortium (DKTK), part\ner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Immunology, Medical Faculty, ‘Carl Gustav Carus’ Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Germany
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Germany
| | - Michael Bachmann
- UniversityCancerCenter (UCC) Dresden, Tumor Immunology, ‘Carl Gustav Carus’ Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- German Cancer Consortium (DKTK), part\ner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Dresden, Germany
| |
Collapse
|
40
|
Design and discovery of novel monastrol-1,3,5-triazines as potent anti-breast cancer agent via attenuating Epidermal Growth Factor Receptor tyrosine kinase. Sci Rep 2017; 7:5851. [PMID: 28724908 PMCID: PMC5517562 DOI: 10.1038/s41598-017-05934-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/06/2017] [Indexed: 11/09/2022] Open
Abstract
A novel series of hybrid analogues of monastrol-1,3,5-triazine were designed and developed via one-pot synthesis using Bi(NO3)3 as a catalyst. Entire compounds were evaluated for their anticancer activity against HeLa (cervical cancer), MCF-7 (breast cancer), HL-60 (Human promyelocytic leukemia), HepG2 (Hepatocellular carcinoma) and MCF 12A (normal epithelial breast cell line) using MTT assay, where they showed highest inhibitory activity against MCF-7. The molecules were also found to be non-toxic to MCF 12A cells. These molecules showed considerable inhibitory percentage against Epidermal Growth Factor Receptor tyrosine kinase (EGFR-TK), in in-vitro assay. Molecular docking study was carried out on the analogs and reference compound (Erlotinib) into the ATP binding site of EGFR-TK domain (PDB ID:1M17) to elucidate vital structural residues necessary for bioactivity. The effect of most active compound 7l was also estimated in-vivo in DMBA induced mammary tumor in female Sprague-Dawley rats. The effect of anti-breast cancer effect of 7l was quantified on the basis of tumour incidence, body weight and tumor volume in DMBA-induced rats. Its effect on biochemical parameters, such as antioxidant status (SOD, CAT, GPX and GSH) and lipid peroxidation was also studied. The compound 7l showed inhibition of EGFR downstream signalling in the western blot analysis.
Collapse
|
41
|
Cembrene Diterpenoids with Ether Linkages from Sarcophyton ehrenbergi: An Anti-Proliferation and Molecular-Docking Assessment. Mar Drugs 2017. [PMID: 28635645 PMCID: PMC5484142 DOI: 10.3390/md15060192] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Three new cembrene diterpenoids, sarcoehrenbergilid A–C (1–3), along with four known diterpenoids, sarcophine (4), (+)-7α,8β-dihydroxydeepoxysarcophine (5), sinulolide A (6), and sinulolide B (7), and one steroid, sardisterol (8), were isolated and characterized from a solvent extract of the Red Sea soft coral Sarcophyton ehrenbergi. Chemical structures were elucidated by NMR and MS analyses with absolute stereochemistry determined by X-ray analysis. Since these isolated cembrene diterpenes contained 10 or more carbons in a large flexible ring, conformer stabilities were examined based on density functional theory calculations. Anti-proliferative activities for 1–8 were evaluated against three human tumor cell lines of different origins including the: lung (A549), colon (Caco-2), and liver (HepG2). Sardisterol (8) was the most potent of the metabolites isolated with an IC50 of 27.3 µM against the A549 cell line. Since an elevated human-cancer occurrence is associated with an aberrant receptor function for the epidermal growth factor receptor (EGFR), molecular docking studies were used to examine preferential metabolite interactions/binding and probe the mode-of-action for metabolite-anti tumor activity.
Collapse
|
42
|
Dysregulation of angiogenesis-specific signalling in adult testis results in xenograft degeneration. Sci Rep 2017; 7:2605. [PMID: 28572601 PMCID: PMC5454001 DOI: 10.1038/s41598-017-02604-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/12/2017] [Indexed: 01/17/2023] Open
Abstract
Ectopic xenografting of testis is a feasible option for preservation of male fertility and angiogenesis plays a pivotal role in xenograft survival and functionality. When compared to immature testis, the adult testis is unable to establish functional xenografts due to potentially lower efficiency to induce angiogenesis. The precise molecular mechanism, however, remains elusive. In the present study, we compared adult and immature testis xenografts for survival, maturation and germ cell differentiation. Further, we evaluated differential expression of angiogenesis signalling-specific proteins in adult and immature testis and their xenografts. Results showed that adult testis xenografts degenerated whereas immature testis xenografts survived and established spermatogenesis with the production of haploid germ cells. Protein expression analysis demonstrated that immature testis xenografts were able to establish angiogenesis either through eNOS activation via VEGF and PI3K/AKT or through EGFR-mediated STAT3 pathway. The role of ERK/MAPK pathway in xenograft angiogenesis was ruled out. The absence or reduced expression of angiogenesis-specific proteins in adult testis and its xenografts possibly resulted in poor angiogenesis and in their subsequent degeneration. This study provides insight into angiogenesis mechanism that can be utilized to augment testis xenografting efficiency.
Collapse
|
43
|
Thomas Koch D, Pickhard A, Gebel L, Buchberger AMS, Bas M, Mogler C, Reiter R, Piontek G, Wirth M. Epidermal growth factor receptor variant III in head and neck squamous cell carcinoma is not relevant for targeted therapy and irradiation. Oncotarget 2017; 8:32668-32682. [PMID: 28427242 PMCID: PMC5464818 DOI: 10.18632/oncotarget.15949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 02/21/2017] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) is an important regulator of cell growth and survival, and is highly variable in tumor cells. The most prevalent variation of the EGFR extracellular domain is the EGFR variant III (EGFRvIII). Some studies imply that EGFRvIII may be responsible for the poor response to the monoclonal EGFR-antibody Cetuximab, used therapeutically in head and neck squamous cell carcinoma (HNSCC). Due to inconsistent data in the literature regarding EGFRvIII prevalence and clinical relevance in HNSCC, especially its predictive value, we examined EGFRvIII-transfected cell lines and patient tissue samples. RESULTS In contrast to other recent publications, we were able to demonstrate EGFRvIII expression in HNSCC. However, we noted that the different detection methods yielded inconsistent results. Furthermore, our EGFRvIII transfected and EGFR wild type cell lines exhibited similar characteristics and response rates in the performed in vitro experiments. MATERIALS AND METHODS We conducted various inhibition and combined irradiation experiments using three EGFRvIII-transfected cell lines. Moreover, a patient cohort of 149 cases consisting of formalin fixed and paraffin embedded (FFPE) and fresh-frozen specimens was assayed via reverse transcriptase PCR (rtPCR) with gel electrophoresis and sequencing for EGFRvIII prevalence. In the rtPCR assays, we used five previously published EGFRvIII primers and EGFRvIII-positive glioblastoma tissue as a positive control. In addition, immunohistochemical staining was conducted. CONCLUSIONS EGFRvIII can be detected in HNSCC patient samples. Nevertheless, the low prevalence and similar response rates to targeted drugs and irradiation in vitro cast doubt regarding the clinical relevance of EGFRvIII in HNSCC.
Collapse
Affiliation(s)
- Dominik Thomas Koch
- Department of Otorhinolaryngology Head and Neck Surgery, Technical University of Munich, 81675 Munich, Germany
| | - Anja Pickhard
- Department of Otorhinolaryngology Head and Neck Surgery, Technical University of Munich, 81675 Munich, Germany
| | - Lena Gebel
- Department of Otorhinolaryngology Head and Neck Surgery, Technical University of Munich, 81675 Munich, Germany
| | - Anna Maria S Buchberger
- Department of Otorhinolaryngology Head and Neck Surgery, Technical University of Munich, 81675 Munich, Germany
| | - Murat Bas
- Department of Otorhinolaryngology Head and Neck Surgery, Technical University of Munich, 81675 Munich, Germany
| | - Carolin Mogler
- Institute of Pathology, Technical University of Munich, 81675 Munich, Germany
| | - Rudolf Reiter
- Department of Otolaryngology Head and Neck Surgery, Section of Phoniatrics and Pedaudiology, University of Ulm, 89070 Ulm, Germany
| | - Guido Piontek
- Department of Otorhinolaryngology Head and Neck Surgery, Technical University of Munich, 81675 Munich, Germany
| | - Markus Wirth
- Department of Otorhinolaryngology Head and Neck Surgery, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
44
|
Xu J, Liu X, Yang S, Zhang X, Shi Y. Efficacy of icotinib in lung squamous-cell cancer: A real-world experience from single institution. Asia Pac J Clin Oncol 2017; 13:379-384. [PMID: 28276163 DOI: 10.1111/ajco.12669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/11/2017] [Indexed: 11/28/2022]
Abstract
AIM Squamous cell carcinoma is a less common type of nonsmall cell lung cancer (NSCLC) which associates with a poor clinical prognosis and lacks specific therapy. This study aimed to evaluate the efficacy and safety of icotinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has proven to be effective in EGFR-mutated NSCLC, in patients with lung squamous-cell cancer. METHODS Retrospective analysis was conducted in patients who had advanced lung squamous-cell cancer confirmed by cytology or histology. Patients were treated orally with icotinib (125 mg, three times daily) until event of unacceptable toxicity, disease progression or death. The primary endpoint was overall survival. The secondary endpoints were progression-free survival, overall response rate and disease control rate. RESULTS Between January 2014 and May 2016, 20 patients were enrolled and evaluated for the efficacy and safety of icotinib. Overall, the median overall survival and progression-free survival were 9.93 months (95% confidence interval (CI): 3.46-16.40) and 3.0 months (95% CI: 0.00-8.35), respectively. The overall response rate and disease control rate were 20% and 70%, respectively. For treatment-naive patients (n = 11), the overall survival and progression-free survival were 9.93 months (95% CI: 0.00-23.49) and 6.27 months (95% CI: 0.00-12.61); the response rate and disease control rate were 27.3% and 54.5%, respectively. The overall survival and progression-free survival of patients treated with second- or multiple-line icotinib treatment (n = 9) were 6.5 months (95% CI: 0.80-12.20) and 1.2 months (95% CI: 1.10-1.30). A total of 11 patients experienced at least one treatment-related adverse event, most of which were mild to moderate. The most common manifestations were rash (n = 6, 30%) followed by diarrhea (n = 2, 10%). CONCLUSION Icotinib has demonstrated a favorable efficacy and safety profile in patients with advanced lung squamous-cell cancer.
Collapse
Affiliation(s)
- Jianping Xu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Sheng Yang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiangru Zhang
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Amorphous Silica Particles Relevant in Food Industry Influence Cellular Growth and Associated Signaling Pathways in Human Gastric Carcinoma Cells. NANOMATERIALS 2017; 7:nano7010018. [PMID: 28336852 PMCID: PMC5295208 DOI: 10.3390/nano7010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023]
Abstract
Nanostructured silica particles are commonly used in biomedical and biotechnical fields, as well as, in cosmetics and food industry. Thus, their environmental and health impacts are of great interest and effects after oral uptake are only rarely investigated. In the present study, the toxicological effects of commercially available nano-scaled silica with a nominal primary diameter of 12 nm were investigated on the human gastric carcinoma cell line GXF251L. Besides the analysis of cytotoxic and proliferative effects and the comparison with effects of particles with a nominal primary diameter of 200 nm, emphasis was also given to their influence on the cellular epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPK) signaling pathways—both of them deeply involved in the regulation of cellular processes like cell cycle progression, differentiation or proliferation. The investigated silica nanoparticles (NPs) were found to stimulate cell proliferation as measured by microscopy and the sulforhodamine B assay. In accordance, the nuclear level of the proliferation marker Ki-67 was enhanced in a concentration-dependent manner. At high particle concentrations also necrosis was induced. Finally, silica NPs affected the EGFR and MAPK pathways at various levels dependent on concentration and time. However, classical activation of the EGFR, to be reflected by enhanced levels of phosphorylation, could be excluded as major trigger of the proliferative stimulus. After 45 min of incubation the level of phosphorylated EGFR did not increase, whereas enhanced levels of total EGFR protein were observed. These results indicate interference with the complex homeostasis of the EGFR protein, whereby up to 24 h no impact on the transcription level was detected. In addition, downstream on the level of the MAP kinases ERK1/2 short term incubation appeared to affect total protein levels without clear increase in phosphorylation. Depending on the concentration range, enhanced levels of ERK1/2 phosphorylation were only observed after 24 h of incubation. Taken together, the present study demonstrates the potential of the tested silica particles to enhance the growth of gastric carcinoma cells. Although interference with the EGFR/MAPK cascade is observed, additional mechanisms are likely to be involved in the onset of the proliferative stimulus.
Collapse
|
46
|
Adams SR, Yang HC, Savariar EN, Aguilera J, Crisp JL, Jones KA, Whitney MA, Lippman SM, Cohen EEW, Tsien RY, Advani SJ. Anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize. Nat Commun 2016; 7:13019. [PMID: 27698471 PMCID: PMC5059467 DOI: 10.1038/ncomms13019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 08/25/2016] [Indexed: 12/25/2022] Open
Abstract
Tumour resistance to radiotherapy remains a barrier to improving cancer patient outcomes. To overcome radioresistance, certain drugs have been found to sensitize cells to ionizing radiation (IR). In theory, more potent radiosensitizing drugs should increase tumour kill and improve patient outcomes. In practice, clinical utility of potent radiosensitizing drugs is curtailed by off-target side effects. Here we report potent anti-tubulin drugs conjugated to anti-ErbB antibodies selectively radiosensitize to tumours based on surface receptor expression. While two classes of potent anti-tubulins, auristatins and maytansinoids, indiscriminately radiosensitize tumour cells, conjugating these potent anti-tubulins to anti-ErbB antibodies restrict their radiosensitizing capacity. Of translational significance, we report that a clinically used maytansinoid ADC, ado-trastuzumab emtansine (T-DM1), with IR prolongs tumour control in target expressing HER2+ tumours but not target negative tumours. In contrast to ErbB signal inhibition, our findings establish an alternative therapeutic paradigm for ErbB-based radiosensitization using antibodies to restrict radiosensitizer delivery. Drugs that sensitize tumour cells to ionizing radiation are prized because they can overcome resistance to radiotherapy. Here, the authors show that anti-tubulin drugs conjugated to cetuximab or trastuzumab can radiosensitize EGFR- or HER2-expressing tumors by increasing DNA damage and cell death due to ionizing radiation.
Collapse
Affiliation(s)
- Stephen R Adams
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Howard C Yang
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Elamprakash N Savariar
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Joe Aguilera
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Jessica L Crisp
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Karra A Jones
- Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| | - Michael A Whitney
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA
| | - Scott M Lippman
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA
| | - Ezra E W Cohen
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA
| | - Roger Y Tsien
- Department of Pharmacology, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA.,Department of Chemistry and Biochemistry and Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093, USA
| | - Sunil J Advani
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093, USA.,UC San Diego, Moores Cancer Center, La Jolla, California 92093, USA
| |
Collapse
|
47
|
Anti-cancer synergy of dichloroacetate and EGFR tyrosine kinase inhibitors in NSCLC cell lines. Eur J Pharmacol 2016; 789:458-467. [PMID: 27514773 DOI: 10.1016/j.ejphar.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/27/2016] [Accepted: 08/02/2016] [Indexed: 11/23/2022]
Abstract
Glycolysis has been observed as a predominant process for most cancer cells to utilize glucose, which was referred to as "Warburg Effect". Targeting critical enzymes, such as pyruvate dehydrogenase kinase (PDK) that inversely regulating the process of glycolysis could be a promising approach to work alone or in combination with other treatments for cancer therapy. EGFR inhibitors for Non-Small-Cell Lung Cancer (NSCLC) treatment have been applied for decades in clinical practices with great success, but also their clinical benefits were somewhat hampered by the rising acquired-resistance. Combination drug therapy is an effective strategy to cope with the challenge. In this study, we utilized Dichloroacetate (DCA), a widely regarded PDK inhibitor, together with Erlotinib and Gefitinib, two well-known EGFR inhibitors, and demonstrated that the applications of DCA in combination with either Erlotinib or Gefitinib significantly attenuated the viability of EGFR mutant NSCLC cells (NCI-H1975 and NCI-H1650) in a synergistic manner. This synergistic outcome appears to be a combination effect in promoting apoptosis, rather than co-suppression of either EGFR or PDK signaling pathways. Moreover, we have shown that the combination treatment did not exhibit synergistic effect in other NSCLC cell lines without EGFR mutations (A549 or NCI-H460). Together, these observations suggested that combined targeting of EGFR and PDK in NSCLC cells exerted synergistic effects in an EGFR mutation-dependent fashion.
Collapse
|
48
|
Jo P, König A, Schirmer M, Kitz J, Conradi LC, Azizian A, Bernhardt M, Wolff HA, Grade M, Ghadimi M, Ströbel P, Schildhaus HU, Gaedcke J. Heterogeneity of KRAS Mutation Status in Rectal Cancer. PLoS One 2016; 11:e0153278. [PMID: 27064574 PMCID: PMC4827807 DOI: 10.1371/journal.pone.0153278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 03/25/2016] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION Anti-EGFR targeted therapy is of increasing importance in advanced colorectal cancer and prior KRAS mutation testing is mandatory for therapy. However, at which occasions this should be performed is still under debate. We aimed to assess in patients with locally advanced rectal cancer whether there is intra-specimen KRAS heterogeneity prior to and upon preoperative chemoradiotherapy (CRT), and if there are any changes in KRAS mutation status due to this intervention. MATERIALS AND METHODS KRAS mutation status analyses were performed in 199 tumor samples from 47 patients with rectal cancer. To evaluate the heterogeneity between different tumor areas within the same tumor prior to preoperative CRT, 114 biopsies from 34 patients (mean 3 biopsies per patient) were analyzed (pre-therapeutic intratumoral heterogeneity). For the assessment of heterogeneity after CRT residual tumor tissue (85 samples) from 12 patients (mean 4.2 tissue samples per patient) were analyzed (post-therapeutic intratumoral heterogeneity) and assessment of heterogeneity before and after CRT was evaluated in corresponding patient samples (interventional heterogeneity). Primer extension method (SNaPshot™) was used for initial KRAS mutation status testing for Codon 12, 13, 61, and 146. Discordant results by this method were reevaluated by using the FDA-approved KRAS Pyro Kit 24, V1 and the RAS Extension Pyro Kit 24, V1 Kit (therascreen® KRAS test). RESULTS For 20 (43%) out of the 47 patients, a KRAS mutation was detected. With 12 out of 20, the majority of these mutations affected codon 35. We did not obtained evidence that CRT results in changes of the KRAS mutation pattern. In addition, no intratumoral heterogeneity in the KRAS mutational status could be proven. This was true for both the biopsies prior to CRT and the resection specimens thereafter. The discrepancy observed in some samples when using the SNaPshot™ assay was due to insufficient sensitivity of this technique upon massive tumor regression by CRT as application of the therascreen® KRAS test revealed concordant results. CONCLUSION Our results indicate that the KRAS mutation status at the primary tumor site of rectal cancer is homogenous. Its assessment for therapeutic decisions is feasible in pre-therapeutic biopsies as well as in post-therapeutic resected specimens. The amount of viable tumor cells seems to be an important determinant for assay sensitivity and should thus be considered for selection of the analytical method.
Collapse
Affiliation(s)
- Peter Jo
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Alexander König
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Markus Schirmer
- Department of Clinical Pharmacology, University Medical Center Goettingen, Goettingen, Germany
| | - Julia Kitz
- Department of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Azadeh Azizian
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Markus Bernhardt
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | | | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Medical Center Goettingen, Goettingen, Germany
| | | | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
49
|
Xu J, Liu X, Yang S, Zhang X, Shi Y. [Clinical Experience of Gefitinib in the Treatment of 32 Lung Adenocarcinoma Patients with Brain Metastases]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 18:554-8. [PMID: 26383979 PMCID: PMC6000113 DOI: 10.3779/j.issn.1009-3419.2015.09.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
背景与目的 脑转移是晚期非小细胞肺癌(non-small cell lung cancer, NSCLC)常见的转移部位,预后欠佳。吉非替尼是一种表皮生长因子受体(epithelial growth factor receptor, EGFR)酪氨酸激酶抑制剂,用于治疗晚期NSCLC。本研究旨在探讨吉非替尼治疗肺腺癌脑转移的疗效及毒副反应。 方法 回顾性分析32例肺腺癌脑转移患者的临床资料,所有患者均口服吉非替尼250 mg Qd,直到疾病进展或发生不可耐受的毒副反应。 结果 全组32例患者的中位生存时间(median overall survival, mOS)和中位无进展生存时间(median progression-free survival, mPFS)分别为24.7个月和11.2个月,有效率(response rate, RR)和疾病控制率(disease control rate, DCR)分别为62.5%和93.8%。吉非替尼用于初治患者的mOS和mPFS分别为35.6个月和11.3个月,RR和DCR分别为75.0%和100.0%。吉非替尼用于复治患者的mOS和mPFS分别为18.6个月和6.7个月,RR和DCR分别为50.0%和83.3%。EGFR敏感性突变患者的mOS和mPFS分别为24.8个月和10.8个月,RR和DCR分别为75.0%和100.0%。EGFR突变状态不明患者的mOS和mPFS分别为35.6个月和12.3个月,RR和DCR分别为53.3%和86.7%。全组患者耐受性好,未观察到严重毒副反应。常见的毒副反应包括:皮疹15例(46.9%)、腹泻7例(21.9%)、口腔溃疡1例(3.1%)。 结论 吉非替尼对肺腺癌脑转移患者有效率较高且耐受性好,可以作为肺腺癌脑转移患者的一种治疗选择。
Collapse
Affiliation(s)
- Jianping Xu
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Xiaoyan Liu
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Sheng Yang
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Xiangru Zhang
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Yuankai Shi
- Department of Medical Oncology, Cancer Hospital Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
50
|
Howe GA, Xiao B, Zhao H, Al-Zahrani KN, Hasim MS, Villeneuve J, Sekhon HS, Goss GD, Sabourin LA, Dimitroulakos J, Addison CL. Focal Adhesion Kinase Inhibitors in Combination with Erlotinib Demonstrate Enhanced Anti-Tumor Activity in Non-Small Cell Lung Cancer. PLoS One 2016; 11:e0150567. [PMID: 26962872 PMCID: PMC4786279 DOI: 10.1371/journal.pone.0150567] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/14/2016] [Indexed: 11/18/2022] Open
Abstract
Blockade of epidermal growth factor receptor (EGFR) activity has been a primary therapeutic target for non-small cell lung cancers (NSCLC). As patients with wild-type EGFR have demonstrated only modest benefit from EGFR tyrosine kinase inhibitors (TKIs), there is a need for additional therapeutic approaches in patients with wild-type EGFR. As a key component of downstream integrin signalling and known receptor cross-talk with EGFR, we hypothesized that targeting focal adhesion kinase (FAK) activity, which has also been shown to correlate with aggressive stage in NSCLC, would lead to enhanced activity of EGFR TKIs. As such, EGFR TKI-resistant NSCLC cells (A549, H1299, H1975) were treated with the EGFR TKI erlotinib and FAK inhibitors (PF-573,228 or PF-562,271) both as single agents and in combination. We determined cell viability, apoptosis and 3-dimensional growth in vitro and assessed tumor growth in vivo. Treatment of EGFR TKI-resistant NSCLC cells with FAK inhibitor alone effectively inhibited cell viability in all cell lines tested; however, its use in combination with the EGFR TKI erlotinib was more effective at reducing cell viability than either treatment alone when tested in both 2- and 3-dimensional assays in vitro, with enhanced benefit seen in A549 cells. This increased efficacy may be due in part to the observed inhibition of Akt phosphorylation when the drugs were used in combination, where again A549 cells demonstrated the most inhibition following treatment with the drug combination. Combining erlotinib with FAK inhibitor was also potent in vivo as evidenced by reduced tumor growth in the A549 mouse xenograft model. We further ascertained that the enhanced sensitivity was irrespective of the LKB1 mutational status. In summary, we demonstrate the effectiveness of combining erlotinib and FAK inhibitors for use in known EGFR wild-type, EGFR TKI resistant cells, with the potential that a subset of cell types, which includes A549, could be particularly sensitive to this combination treatment. As such, further evaluation of this combination therapy is warranted and could prove to be an effective therapeutic approach for patients with inherent EGFR TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Grant A Howe
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Bin Xiao
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Huijun Zhao
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Khalid N Al-Zahrani
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mohamed S Hasim
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - James Villeneuve
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Surgery, University of Ottawa, Ottawa, ON, Canada
| | | | - Glenwood D Goss
- Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Luc A Sabourin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jim Dimitroulakos
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Christina L Addison
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Department of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|