1
|
Zhang X, Liu Y, Li L, Ma W, Bai D, Dugarjaviin M. Physiological and Metabolic Responses of Mongolian Horses to a 20 km Endurance Exercise and Screening for New Oxidative-Imbalance Biomarkers. Animals (Basel) 2025; 15:1350. [PMID: 40362165 PMCID: PMC12071025 DOI: 10.3390/ani15091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
The traditional horse industry has undergone a remarkable evolution, with horse racing emerging as a prominent and pivotal economic driver within the sector. Among the various breeds, Mongolian horses, renowned for their exceptional endurance and speed, occupy a significant position in the horse industry. To investigate their homeostasis mechanisms during and after a 20 km endurance exercise and identify novel oxidative-imbalance markers, we selected 12 two-year-old horses and collected blood samples at various time points before, during (at 5, 10, 15, and 20 km), and after the exercise (at 1, 2, 4, and 6 h post-exercise). These samples were analyzed for haematology, blood biochemistry, antioxidant enzyme activities, and liquid chromatography-mass spectrometry (LC-MS) metabolomics. Our results revealed significant changes in heart rate, speed, blood cells, and biochemical markers throughout the exercise. Antioxidant indicators decreased, while malondialdehyde increased, indicating oxidative imbalance post-exercise. Metabolomics analysis identified 122 differential metabolites, including uric acid and L-tyrosine, which were enriched in pathways related to energy metabolism. Uric acid and tyrosine correlated positively with serum creatine kinase, suggesting their potential as markers of oxidative-imbalance injury. These findings elucidate the mechanisms of endurance adaptability in Mongolian horses and provide a theoretical basis for mitigating oxidative imbalance, enhancing horse performance, and promoting the sustainable development of the equine industry.
Collapse
Affiliation(s)
- Xinzhuang Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lianhao Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wei Ma
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
2
|
Nishida A, Andoh A. The Role of Inflammation in Cancer: Mechanisms of Tumor Initiation, Progression, and Metastasis. Cells 2025; 14:488. [PMID: 40214442 PMCID: PMC11987742 DOI: 10.3390/cells14070488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Inflammation is an essential component of the immune response that protects the host against pathogens and facilitates tissue repair. Chronic inflammation is a critical factor in cancer development and progression. It affects every stage of tumor development, from initiation and promotion to invasion and metastasis. Tumors often create an inflammatory microenvironment that induces angiogenesis, immune suppression, and malignant growth. Immune cells within the tumor microenvironment interact actively with cancer cells, which drives progression through complex molecular mechanisms. Chronic inflammation is triggered by factors such as infections, obesity, and environmental toxins and is strongly linked to increased cancer risk. However, acute inflammatory responses can sometimes boost antitumor immunity; thus, inflammation presents both challenges and opportunities for therapeutic intervention. This review examines how inflammation contributes to tumor biology, emphasizing its dual role as a critical factor in tumorigenesis and as a potential therapeutic target.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Medicine, Shiga University of Medical Science, Seta-Tsukinowa, Otsu 520-2192, Shiga, Japan;
| | | |
Collapse
|
3
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
4
|
Lv B, Xing S, Wang Z, Zhang A, Wang Q, Bian Y, Pei Y, Sun H, Chen Y. NRF2 inhibitors: Recent progress, future design and therapeutic potential. Eur J Med Chem 2024; 279:116822. [PMID: 39241669 DOI: 10.1016/j.ejmech.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is a crucial transcription factor involved in oxidative stress response, which controls the expression of various cytoprotective genes. Recent research has indicated that constitutively activated NRF2 can enhance patients' resistance to chemotherapy drugs, resulting in unfavorable prognosis. Therefore, the development of NRF2 inhibitors has emerged as a promising approach for overcoming drug resistance in cancer treatment. However, there are limited reports and reviews focusing on NRF2 inhibitors. This review aims to provide a comprehensive analysis of the structure and regulation of the NRF2 signaling pathway, followed by a comprehensive review of reported NRF2 inhibitors. Moreover, the current design strategies and future prospects of NRF2 inhibitors will be discussed, aiming to establish a foundation for the development of more effective NRF2 inhibitors.
Collapse
Affiliation(s)
- Bingbing Lv
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Shuaishuai Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Zhiqiang Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Ao Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Qinjie Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Center of TCM External Medication Researching and Industrializing, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Yuqiong Pei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China.
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
5
|
Ajuwon OR, Nsole-Biteghe FA, Ndong JD, Davids LM, Ajiboye BO, Brai B, Bamisaye FA, Falode JA, Odoh IM, Adegbite KI, Adegoke BO, Ntwasa M, Lebelo SL, Ayeleso AO. Nrf2-Mediated Antioxidant Response and Drug Efflux Transporters Upregulation as Possible Mechanisms of Resistance in Photodynamic Therapy of Cancers. Onco Targets Ther 2024; 17:605-627. [PMID: 39131905 PMCID: PMC11313505 DOI: 10.2147/ott.s457749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/08/2024] [Indexed: 08/13/2024] Open
Abstract
Photodynamic therapy (PDT) is a groundbreaking approach involving the induction of cytotoxic reactive oxygen species (ROS) within tumors through visible light activation of photosensitizers (PS) in the presence of molecular oxygen. This innovative therapy has demonstrated success in treating various cancers. While PDT proves highly effective in most solid tumors, there are indications that certain cancers exhibit resistance, and some initially responsive cancers may develop intrinsic or acquired resistance to PDT. The molecular mechanisms underlying this resistance are not fully understood. Recent evidence suggests that, akin to other traditional cancer treatments, the activation of survival pathways, such as the KEAP1/Nrf2 signaling pathway, is emerging as an important mechanism of post-PDT resistance in many cancers. This article explores the dual role of Nrf2, highlighting evidence linking aberrant Nrf2 expression to treatment resistance across a range of cancers. Additionally, it delves into the specific role of Nrf2 in the context of photodynamic therapy for cancers, emphasizing evidence that suggests Nrf2-mediated upregulation of antioxidant responses and induction of drug efflux transporters are potential mechanisms of resistance to PDT in diverse cancer types. Therefore, understanding the specific role(s) of Nrf2 in PDT resistance may pave the way for the development of more effective cancer treatments using PDT.
Collapse
Affiliation(s)
| | | | | | | | | | - Bartholomew Brai
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | | | - John Adeolu Falode
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Ikenna Maximillian Odoh
- Department of Biochemistry, Federal University, Oye-Ekiti, Ekiti State, Nigeria
- Medical Center, Federal University, Oye-Ekiti, Ekiti-State, Nigeria
| | - Kabirat Iyabode Adegbite
- Department of Environmental Health Science, College of Basic Medical and Health Sciences, Fountain University, Osogbo, Osun State, Nigeria
| | | | - Monde Ntwasa
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Sogolo Lucky Lebelo
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
| | - Ademola Olabode Ayeleso
- Department of Life and Consumer Sciences, University of South Africa, Florida Park 1709, Roodeport, South Africa
- Biochemistry Programme, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
6
|
Devika T, Mahalakshmi G, Mythili K, Srinivasa Rao K, Srinivasamurthy SK, Biswajit D, Shewade DG. Ethnic Differences, Lung Cancer Risk, and Association of NRF2 Gene Polymorphism with Gemcitabine-Based Chemotherapy. Cureus 2024; 16:e64849. [PMID: 39026573 PMCID: PMC11257374 DOI: 10.7759/cureus.64849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 07/20/2024] Open
Abstract
INTRODUCTION The cancer burden is rising every year. Lung cancer is one of the most common cancers and non-small cell lung cancer is the most common type. Chemotherapy based on platinum drugs and third-generation nucleoside anti-metabolites such as gemcitabine are used widely. Gemcitabine has a complex metabolic pathway, with many mechanisms contributing to its cytotoxicity. Derangements in the metabolic pathway genes contribute to drug resistance and toxicity with this drug. Association studies including these genetic polymorphisms in the metabolic pathway, clinical outcomes, and cancer risk reported inter-individual differences. Thus, the aim of this study was to ascertain the role of these genetic variants in South Indian cancer patients treated with gemcitabine-based therapy. METHODS The study was done with 184 healthy volunteers for frequency establishment and 123 cancer patients were treated with gemcitabine-based chemotherapy for response and toxicity assessment. The participants were aged 18-65 years and resided in the southern states of India. DNA extraction was done from the leukocyte fraction of the blood by phenol-chloroform extraction procedures and genotyping was done by reverse transcription-polymerase chain reaction (RT-PCR) techniques to identify DNA repair gene polymorphisms. Tumor response was determined using Response evaluation criteria in solid tumors (RECIST) guidelines and toxicity using Common Terminology Criteria for Adverse Events (CTCAE), version 4.03. The patients were followed up for survival analysis. RESULTS The minor allele frequency of the single nucleotide polymorphism (SNP) NRF2-617 C>A (rs6721961) in the healthy population was 12.8%. SNPs were in Hardy-Weinberg equilibrium (p>0.05). Gender-based differences were not observed with the studied SNP in the healthy population and the lung cancer patients. These frequencies of NRF2 were found to be similar when compared to EUR (European) and all the South Asian subpopulations. They are significantly divergent compared to AFR (African), AMR (American), and EAS (East Asian) populations. The minor allele frequency in cancer patients was found to be 14.2% and the lung cancer risk with the SNP studied could not be detected. There was no association found with the response, toxicity, and survival among lung cancer patients. CONCLUSION NRF2, being a multifaced molecule, did not show a significant association with lung cancer risk, response, and toxicity in patients with gemcitabine-based chemotherapy.
Collapse
Affiliation(s)
| | | | - K Mythili
- Department of Physiology, Siddhartha Medical College, Vijayawada, IND
| | - Katiboina Srinivasa Rao
- Department of Pharmacology, All India Institute of Medical Sciences, Mangalagiri, Mangalagiri, IND
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, RAK (Ras Al Khaimah) College of Medical Sciences, RAK Medical and Health Sciences University, Ras AI Khaimah, ARE
| | - Dubashi Biswajit
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| | - Deepak Gopal Shewade
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, IND
| |
Collapse
|
7
|
Shi G, Li X, Wang W, Hou L, Yin L, Wang L. Allicin Overcomes Doxorubicin Resistance of Breast Cancer Cells by Targeting the Nrf2 Pathway. Cell Biochem Biophys 2024; 82:659-667. [PMID: 38411783 DOI: 10.1007/s12013-024-01215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024]
Abstract
Breast cancer (BC) is a lethal disorder that threatens the life safety of the majority of females globally, with rising morbidity and mortality year by year. Doxorubicin is a cytotoxic anthracycline antibiotic that is widely used as one of the first-line chemotherapy agents for patients with BC. However, the efficacy of doxorubicin in the clinic is largely limited by its serious side effects and acquired drug resistance. Allicin (diallyl thiosulfinate), as the major component and key active compound present in freshly crushed garlic, has shown potential effects in suppressing chemotherapy resistance in various cancers. Our research aimed to explore the relationship between allicin and doxorubicin resistance in BC. To generate doxorubicin-resistant BC cell lines (MCF-7/DOX and MDA-MB-231/DOX), doxorubicin-sensitive parental cell lines MCF-7 and MDA-MB-231 were continuously exposed to stepwise increased concentrations of doxorubicin over a period of 6 months. CCK-8, colony formation, flow cytometry, RT-qPCR, and western blotting assays were performed to investigate the effects of allicin and/or doxorubicin treatment on the viability, proliferation and apoptosis and the expression of Nrf2, HO-1, phosphate AKT and AKT in doxorubicin-resistant BC cells. Our results showed that combined treatment of allicin with doxorubicin exhibited better effects on inhibiting the proliferation and enhancing the apoptosis of doxorubicin-resistant BC cells than treatment with allicin or doxorubicin alone. Mechanistically, allicin suppressed the levels of Nrf2, HO-1, and phosphate AKT in doxorubicin-resistant BC cells. Collectively, allicin improves the doxorubicin sensitivity of BC cells by inactivating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Guojian Shi
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Xiaohua Li
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Weiping Wang
- Department of General Surgery, Kunshan Second People's Hospital, Suzhou, 215300, China
| | - Lili Hou
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Lei Yin
- Department of Thyroid and Breast Surgery, Suzhou Wuzhong People's Hospital, Suzhou, 215128, China
| | - Li Wang
- Department of Oncology, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, 215300, China.
| |
Collapse
|
8
|
Lu XX, Xue C, Dong JH, Zhang YZ, Gao F. Nanoplatform-based strategies for enhancing the lethality of current antitumor PDT. J Mater Chem B 2024; 12:3209-3225. [PMID: 38497405 DOI: 10.1039/d4tb00008k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Photodynamic therapy (PDT) exhibits great application prospects in future clinical oncology due to its spatiotemporal controllability and good biosafety. However, the antitumor efficacy of PDT is seriously hindered by many factors, including tumor hypoxia, limited light penetration ability, and strong defense mechanisms of tumors. Considering that it is difficult to completely solve the first two problems, enhancing the lethality of antitumor PDT has become a good idea to extend its clinical application. Herein, we summarize the nanoplatform-involved strategies to effectively amplify the tumoricidal capability of current PDT and then discuss the present bottlenecks and prospects of the nanoplatform-based PDT sensitization strategies in tumor therapy. We hope this review will provide some references for others to design high-performance PDT nanoplatforms for tumor therapy.
Collapse
Affiliation(s)
- Xin-Xin Lu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Chun Xue
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Jian-Hui Dong
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yi-Zhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
9
|
Lim ES, Lee SE, Park MJ, Han DH, Lee HB, Ryu B, Kim EY, Park SP. Piperine improves the quality of porcine oocytes by reducing oxidative stress. Free Radic Biol Med 2024; 213:1-10. [PMID: 38159890 DOI: 10.1016/j.freeradbiomed.2023.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Oxidative stress caused by light and high temperature arises during in vitro maturation (IVM), resulting in low-quality embryos compared with those obtained in vivo. To overcome this problem, we investigated the influence of piperine (PIP) treatment during maturation of porcine oocytes on subsequent embryo development in vitro. Porcine oocytes were cultured in IVM medium supplemented with 0, 50, 100, 200, or 400 μM PIP. After parthenogenetic activation, the blastocyst (BL) formation was significantly higher and the apoptosis rate was significantly lower using 200 μM PIP-treated oocytes (200 PIP). In the 200 PIP group, the level of reactive oxygen species at the metaphase II stage was decreased, accompanied by an increased level of glutathione and increased expression of antioxidant processes (Nrf2, CAT, HO-1, SOD1, and SOD2). Consistently, chromosome misalignment and aberrant spindle organization were alleviated and phosphorylated p44/42 mitogen-activated protein kinase activity was increased in the 200 PIP group. Expression of development-related (CDX2, NANOG, POU5F1, and SOX2), anti-apoptotic (BCL2L1 and BIRC5), and pro-apoptotic (BAK, FAS, and CASP3) processes was altered in the 200 PIP group. Ultimately, embryo development was improved in the 200 PIP group following somatic cell nuclear transfer. These findings suggest that PIP improves the quality of porcine oocytes by reducing oxidative stress, which inevitably arises via IVM. In-depth mechanistic studies of porcine oocytes will improve the efficiencies of assisted reproductive technologies.
Collapse
Affiliation(s)
- Eun-Seo Lim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Seung-Eun Lee
- Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Cronex Co., 110 Hwangtalli-gil, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28174, South Korea
| | - Min-Jee Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Dong-Hun Han
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Han-Bi Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Bokyeong Ryu
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, South Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, South Korea.
| |
Collapse
|
10
|
Glorieux C, Enríquez C, González C, Aguirre-Martínez G, Buc Calderon P. The Multifaceted Roles of NRF2 in Cancer: Friend or Foe? Antioxidants (Basel) 2024; 13:70. [PMID: 38247494 PMCID: PMC10812565 DOI: 10.3390/antiox13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Physiological concentrations of reactive oxygen species (ROS) play vital roles in various normal cellular processes, whereas excessive ROS generation is central to disease pathogenesis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor that regulates the cellular antioxidant systems in response to oxidative stress by governing the expression of genes encoding antioxidant enzymes that shield cells from diverse oxidative alterations. NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) have been the focus of numerous investigations in elucidating whether NRF2 suppresses tumor promotion or conversely exerts pro-oncogenic effects. NRF2 has been found to participate in various pathological processes, including dysregulated cell proliferation, metabolic remodeling, and resistance to apoptosis. Herein, this review article will examine the intriguing role of phase separation in activating the NRF2 transcriptional activity and explore the NRF2 dual impacts on tumor immunology, cancer stem cells, metastasis, and long non-coding RNAs (LncRNAs). Taken together, this review aims to discuss the NRF2 multifaceted roles in both cancer prevention and promotion while also addressing the advantages, disadvantages, and limitations associated with modulating NRF2 therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Programa de Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Constanza González
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
| | - Gabriela Aguirre-Martínez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
11
|
Wang S, Lin D, Cao J, Wang L. APPA Increases Lifespan and Stress Resistance via Lipid Metabolism and Insulin/IGF-1 Signal Pathway in Caenorhabditis elegans. Int J Mol Sci 2023; 24:13682. [PMID: 37761985 PMCID: PMC10531162 DOI: 10.3390/ijms241813682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Animal studies have proven that 1-acetyl-5-phenyl-1H-pyrrol-3-yl acetate (APPA) is a powerful antioxidant as a novel aldose reductase inhibitor independently synthesized by our laboratory; however, there is no current information on APPA's anti-aging mechanism. Therefore, this study examined the impact and mechanism of APPA's anti-aging and anti-oxidation capacity using the Caenorhabditis elegans model. The results demonstrated that APPA increases C. elegans' longevity without affecting the typical metabolism of Escherichia coli OP50 (OP50). APPA also had a non-toxic effect on C. elegans, increased locomotor ability, decreased the levels of reactive oxygen species, lipofuscin, and fat, and increased anti-stress capacity. QRT-PCR analysis further revealed that APPA upregulated the expression of antioxidant genes, including sod-3, gst-4, and hsp-16.2, and the critical downstream transcription factors, daf-16, skn-1, and hsf-1 of the insulin/insulin-like growth factor (IGF) receptor, daf-2. In addition, fat-6 and nhr-80 were upregulated. However, the APPA's life-prolonging effects were absent on the daf-2, daf-16, skn-1, and hsf-1 mutants implying that the APPA's life-prolonging mechanism depends on the insulin/IGF-1 signaling system. The transcriptome sequencing also revealed that the mitochondrial route was also strongly associated with the APPA life extension, consistent with mev-1 and isp-1 mutant life assays. These findings aid in the investigation of APPA's longevity extension mechanism.
Collapse
Affiliation(s)
| | | | | | - Liping Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (S.W.); (D.L.); (J.C.)
| |
Collapse
|
12
|
Raj D, Kraish B, Martikainen J, Podraza-Farhanieh A, Kao G, Naredi P. Cisplatin toxicity is counteracted by the activation of the p38/ATF-7 signaling pathway in post-mitotic C. elegans. Nat Commun 2023; 14:2886. [PMID: 37210583 DOI: 10.1038/s41467-023-38568-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 05/09/2023] [Indexed: 05/22/2023] Open
Abstract
Cisplatin kills proliferating cells via DNA damage but also has profound effects on post-mitotic cells in tumors, kidneys, and neurons. However, the effects of cisplatin on post-mitotic cells are still poorly understood. Among model systems, C. elegans adults are unique in having completely post-mitotic somatic tissues. The p38 MAPK pathway controls ROS detoxification via SKN-1/NRF and immune responses via ATF-7/ATF2. Here, we show that p38 MAPK pathway mutants are sensitive to cisplatin, but while cisplatin exposure increases ROS levels, skn-1 mutants are resistant. Cisplatin exposure leads to phosphorylation of PMK-1/MAPK and ATF-7 and the IRE-1/TRF-1 signaling module functions upstream of the p38 MAPK pathway to activate signaling. We identify the response proteins whose increased abundance depends on IRE-1/p38 MAPK activity as well as cisplatin exposure. Four of these proteins are necessary for protection from cisplatin toxicity, which is characterized by necrotic death. We conclude that the p38 MAPK pathway-driven proteins are crucial for adult cisplatin resilience.
Collapse
Affiliation(s)
- Dorota Raj
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Bashar Kraish
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Jari Martikainen
- Bioinformatics and Data Centre, Sahlgrenska Academy, University of Gothenburg, Gothenburg, SE413 45, Gothenburg, Sweden
| | - Agnieszka Podraza-Farhanieh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden
| | - Gautam Kao
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden.
| | - Peter Naredi
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE413 45, Gothenburg, Sweden.
- Department of Surgery, Sahlgrenska University Hospital, SE413 45, Gothenburg, Sweden.
| |
Collapse
|
13
|
Thiruvengadam R, Venkidasamy B, Samynathan R, Govindasamy R, Thiruvengadam M, Kim JH. Association of nanoparticles and Nrf2 with various oxidative stress-mediated diseases. Chem Biol Interact 2023; 380:110535. [PMID: 37187268 DOI: 10.1016/j.cbi.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regultes the cellular antioxidant defense system at the posttranscriptional level. During oxidative stress, Nrf2 is released from its negative regulator Kelch-like ECH-associated protein 1 (Keap1) and binds to antioxidant response element (ARE) to transcribe antioxidative metabolizing/detoxifying genes. Various transcription factors like aryl hydrocarbon receptor (AhR) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) and epigenetic modification including DNA methylation and histone methylation might also regulate the expression of Nrf2. Despite its protective role, Keap1/Nrf2/ARE signaling is considered as a pharmacological target due to its involvement in various pathophysiological conditions such as diabetes, cardiovascular disease, cancer, neurodegenerative diseases, hepatotoxicity and kidney disorders. Recently, nanomaterials have received a lot of attention due to their unique physiochemical properties and are also used in various biological applications, for example, biosensors, drug delivery systems, cancer therapy, etc. In this review, we will be discussing the functions of nanoparticles and Nrf2 as a combined therapy or sensitizing agent and their significance in various diseases such as diabetes, cancer and oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Rajakumar Govindasamy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
14
|
Ji J, Ma S, Zhu Y, Zhao J, Tong Y, You Q, Jiang Z. ARE-PROTACs Enable Co-degradation of an Nrf2-MafG Heterodimer. J Med Chem 2023; 66:6070-6081. [PMID: 36892138 DOI: 10.1021/acs.jmedchem.2c01909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Proteolysis-targeting chimera (PROTAC) technology has emerged as a potential strategy to degrade "undruggable" proteins in recent years. Nrf2, an aberrantly activated transcription factor in cancer, is generally considered undruggable as lacking active sites or allosteric pockets. Here, we constructed the chimeric molecule C2, which consists of an Nrf2-binding element and a CRBN ligand, as a first-in-class Nrf2 degrader. Surprisingly, C2 was found to selectively degrade an Nrf2-MafG heterodimer simultaneously via the ubiquitin-proteasome system. C2 impeded Nrf2-ARE transcriptional activity significantly and improved the sensitivity of NSCLC cells to ferroptosis and therapeutic drugs. The degradation character of ARE-PROTACs suggests that the PROTAC hijacking the transcription element of TFs could achieve co-degradation of the transcription complex.
Collapse
Affiliation(s)
- Jianai Ji
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sinan Ma
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jinglong Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
15
|
Jiang M, Zhang J, Xu S, Li Y, Li W, Liang H, Yang F. Designing a multitarget In(III) compound to overcome the resistance of lung cancer cells to cisplatin. Dalton Trans 2023; 52:269-280. [PMID: 36519582 DOI: 10.1039/d2dt03374g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Designing novel anticancer non-platinum metal agents is fully challenging. Herein, a series of little-known indium (In) 2-acetylpyridine thiosemicarbazone compounds as potential anticancer agents were designed, synthesized, and characterized. The hydrogen atoms at the N-4 position with the alkyl of the In compounds significantly increased cellular uptake and cytotoxicity. In(III) compounds showed significantly higher cytotoxicity toward cisplatin-resistant cell lines than cisplatin. More importantly, C4 greatly inhibited A549DDP tumor growth in a vaccinated mouse model. C4 exerted cytotoxic effects via a multitarget mechanism. First, it activated p53 and blocked the cell cycle at the S phase, which then led to weak expression levels of cyclin and related kinases and upregulation of the expression levels of cyclin-dependent kinase inhibitors. C4 also depolarized the mitochondrial membrane potential and regulated the expression of the Bcl-2 family, which then released cyt-c and activated caspase-3/8/9 to execute apoptotic pathways. Then, it inhibited telomerase through the inhibition of the expression of the c-Myc regulator gene and expression of the human telomerase reverse transcriptase. Furthermore, C4 showed excellent antimetastatic activity.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Juzheng Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Shihang Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Yanping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Wenjuan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| | - Feng Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin, Guangxi, China.
| |
Collapse
|
16
|
Ezaka M, Marutani E, Miyazaki Y, Kanemaru E, Selig MK, Boerboom SL, Ostrom KF, Stemmer-Rachamimov A, Bloch DB, Brenner GJ, Ohshima E, Ichinose F. Oral Administration of Glutathione Trisulfide Increases Reactive Sulfur Levels in Dorsal Root Ganglion and Ameliorates Paclitaxel-Induced Peripheral Neuropathy in Mice. Antioxidants (Basel) 2022; 11:2122. [PMID: 36358494 PMCID: PMC9686764 DOI: 10.3390/antiox11112122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Peripheral neuropathy is a dose-limiting side effect of chemotherapy with paclitaxel. Paclitaxel-induced peripheral neuropathy (PIPN) is typically characterized by a predominantly sensory neuropathy presenting with allodynia, hyperalgesia and spontaneous pain. Oxidative mitochondrial damage in peripheral sensory neurons is implicated in the pathogenesis of PIPN. Reactive sulfur species, including persulfides (RSSH) and polysulfides (RSnH), are strong nucleophilic and electrophilic compounds that exert antioxidant effects and protect mitochondria. Here, we examined the potential neuroprotective effects of glutathione trisulfide (GSSSG) in a mouse model of PIPN. Intraperitoneal administration of paclitaxel at 4 mg/kg/day for 4 days induced mechanical allodynia and thermal hyperalgesia in mice. Oral administration of GSSSG at 50 mg/kg/day for 28 days ameliorated mechanical allodynia, but not thermal hyperalgesia. Two hours after oral administration, 34S-labeled GSSSG was detected in lumber dorsal root ganglia (DRG) and in the lumber spinal cord. In mice treated with paclitaxel, GSSSG upregulated expression of genes encoding antioxidant proteins in lumber DRG, prevented loss of unmyelinated axons and inhibited degeneration of mitochondria in the sciatic nerve. In cultured primary neurons from cortex and DRG, GSSSG mitigated paclitaxel-induced superoxide production, loss of axonal mitochondria, and axonal degeneration. These results indicate that oral administration of GSSSG mitigates PIPN by preventing axonal degeneration and mitochondria damage in peripheral sensory nerves. The findings suggest that administration of GSSSG may be an approach to the treatment or prevention of PIPN and other peripheral neuropathies.
Collapse
Affiliation(s)
- Mariko Ezaka
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Eiki Kanemaru
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Martin K. Selig
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sophie L. Boerboom
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Katrina F. Ostrom
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Donald B. Bloch
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary J. Brenner
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Etsuo Ohshima
- Corporate Strategy Department, Kyowa Hakko Bio Co., Ltd., Tokyo 164-0001, Japan
| | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
17
|
Tossetta G, Marzioni D. Natural and synthetic compounds in Ovarian Cancer: A focus on NRF2/KEAP1 pathway. Pharmacol Res 2022; 183:106365. [PMID: 35901941 DOI: 10.1016/j.phrs.2022.106365] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022]
Abstract
Among gynecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumor occurrence, development and procession. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signaling inducing the expression of antioxidant enzymes such as heme oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance inactivating drug-mediated oxidative stress that normally leads cancer cells to death. In this review we analyzed the current literature regarding the role of natural and synthetic compounds in modulating NRF2/KEAP1 (Kelch Like ECH Associated Protein 1) pathway in in vitro models of ovarian cancer. In particular, we reported how these compounds can modulate chemotherapy response.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy; Clinic of Obstetrics and Gynaecology, Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, Azienda Ospedaliero Universitaria, Ancona, Italy.
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
18
|
Jovanović M, Podolski-Renić A, Krasavin M, Pešić M. The Role of the Thioredoxin Detoxification System in Cancer Progression and Resistance. Front Mol Biosci 2022; 9:883297. [PMID: 35664671 PMCID: PMC9161637 DOI: 10.3389/fmolb.2022.883297] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
The intracellular redox homeostasis is a dynamic balancing system between the levels of free radical species and antioxidant enzymes and small molecules at the core of cellular defense mechanisms. The thioredoxin (Trx) system is an important detoxification system regulating the redox milieu. This system is one of the key regulators of cells’ proliferative potential as well, through the reduction of key proteins. Increased oxidative stress characterizes highly proliferative, metabolically hyperactive cancer cells, which are forced to mobilize antioxidant enzymes to balance the increase in free radical concentration and prevent irreversible damage and cell death. Components of the Trx system are involved in high-rate proliferation and activation of pro-survival mechanisms in cancer cells, particularly those facing increased oxidative stress. This review addresses the importance of the targetable redox-regulating Trx system in tumor progression, as well as in detoxification and protection of cancer cells from oxidative stress and drug-induced cytotoxicity. It also discusses the cancer cells’ counteracting mechanisms to the Trx system inhibition and presents several inhibitors of the Trx system as prospective candidates for cytostatics’ adjuvants. This manuscript further emphasizes the importance of developing novel multitarget therapies encompassing the Trx system inhibition to overcome cancer treatment limitations.
Collapse
Affiliation(s)
- Mirna Jovanović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mikhail Krasavin
- Organic Chemistry Division, Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, Russia
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”- National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
- *Correspondence: Milica Pešić, , orcid.org/0000-0002-9045-8239
| |
Collapse
|
19
|
Role of NRF2 in Ovarian Cancer. Antioxidants (Basel) 2022; 11:antiox11040663. [PMID: 35453348 PMCID: PMC9027335 DOI: 10.3390/antiox11040663] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Among gynaecologic malignancies, ovarian cancer is one of the most dangerous, with a high fatality rate and relapse due to the occurrence of chemoresistance. Many researchers demonstrated that oxidative stress is involved in tumour occurrence, growth and development. Nuclear factor erythroid 2-related factor 2 (NRF2) is an important transcription factor, playing an important role in protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) activate NRF2 signalling, inducing the expression of antioxidant enzymes, such as haem oxygenase (HO-1), catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD), that protect cells against oxidative stress. However, NRF2 activation in cancer cells is responsible for the development of chemoresistance, inactivating drug-mediated oxidative stress that normally leads to cancer cells’ death. In this review, we report evidence from the literature describing the effect of NRF2 on ovarian cancer, with a focus on its function in drug resistance, NRF2 natural and synthetic modulators and its protective function in normal ovarian preservation.
Collapse
|
20
|
Dasari S, Njiki S, Mbemi A, Yedjou CG, Tchounwou PB. Pharmacological Effects of Cisplatin Combination with Natural Products in Cancer Chemotherapy. Int J Mol Sci 2022; 23:ijms23031532. [PMID: 35163459 PMCID: PMC8835907 DOI: 10.3390/ijms23031532] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/20/2022] Open
Abstract
Cisplatin and other platinum-based drugs, such as carboplatin, ormaplatin, and oxaliplatin, have been widely used to treat a multitude of human cancers. However, a considerable proportion of patients often relapse due to drug resistance and/or toxicity to multiple organs including the liver, kidneys, gastrointestinal tract, and the cardiovascular, hematologic, and nervous systems. In this study, we sought to provide a comprehensive review of the current state of the science highlighting the use of cisplatin in cancer therapy, with a special emphasis on its molecular mechanisms of action, and treatment modalities including the combination therapy with natural products. Hence, we searched the literature using various scientific databases., such as MEDLINE, PubMed, Google Scholar, and relevant sources, to collect and review relevant publications on cisplatin, natural products, combination therapy, uses in cancer treatment, modes of action, and therapeutic strategies. Our search results revealed that new strategic approaches for cancer treatment, including the combination therapy of cisplatin and natural products, have been evaluated with some degree of success. Scientific evidence from both in vitro and in vivo studies demonstrates that many medicinal plants contain bioactive compounds that are promising candidates for the treatment of human diseases, and therefore represent an excellent source for drug discovery. In preclinical studies, it has been demonstrated that natural products not only enhance the therapeutic activity of cisplatin but also attenuate its chemotherapy-induced toxicity. Many experimental studies have also reported that natural products exert their therapeutic action by triggering apoptosis through modulation of mitogen-activated protein kinase (MAPK) and p53 signal transduction pathways and enhancement of cisplatin chemosensitivity. Furthermore, natural products protect against cisplatin-induced organ toxicity by modulating several gene transcription factors and inducing cell death through apoptosis and/or necrosis. In addition, formulations of cisplatin with polymeric, lipid, inorganic, and carbon-based nano-drug delivery systems have been found to delay drug release, prolong half-life, and reduce systemic toxicity while other formulations, such as nanocapsules, nanogels, and hydrogels, have been reported to enhance cell penetration, target cancer cells, and inhibit tumor progression.
Collapse
Affiliation(s)
- Shaloam Dasari
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Sylvianne Njiki
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Ariane Mbemi
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
| | - Clement G. Yedjou
- Department of Biological Sciences, College of Science and Technology, Florida Agricultural and Mechanical University, 1610 S. Martin Luther King Blvd, Tallahassee, FL 32307, USA;
| | - Paul B. Tchounwou
- Environmental Toxicology Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS 39217, USA; (S.D.); (S.N.); (A.M.)
- Correspondence: ; Tel.: +1-601-979-0777
| |
Collapse
|
21
|
Role of NRF2 cascade in determining the differential response of cervical cancer cells to anticancer drugs: an in vitro study. Mol Biol Rep 2021; 49:109-119. [PMID: 34674139 DOI: 10.1007/s11033-021-06848-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/15/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cervical cancers are usually treatable if detected in early stages by a combination of therapies. However, the prognosis of cervical cancer patients with metastasis remains unfavorable due to the fact that most of the cervical carcinomas are either resistant to anticancer drugs or show signs of relapse after initial treatment. Therefore, it is important to control the chemoresistance as it is the key to develop effective treatment options for cervical cancer. OBJECTIVE The current study aimed at evaluating the differential responses of cervical cancer cells to anti-cancer drugs and assessed whether the differences in the expression profiles of antioxidant genes regulated by nuclear factor erythroid-2-related factor 2 (NRF2), led to the variations in the sensitivities of the cancer cells to treatment. METHODOLOGY Three cervical cancer cell lines were investigated for their differences in NRF2 pathway by measuring the gene expression and enzyme activity. The differences in the sensitivity to anti-cancer drugs and variation in ROS profile was also evaluated. The addition of exogenous drugs to manipulate the intracellular ROS and its effect on NRF2 pathway genes was also investigated. RESULTS HeLa and SiHa cells were more sensitive to cisplatin and oxaliplatin treatment than C33A cells. HeLa and SiHa cells had significantly lower NRF2 gene levels, NQO1 enzyme activity and basal GSH levels than C33A cells. Levels of ROS induced were higher in HeLa than C33A cells. CONCLUSION Overall, the differences in the cellular levels of antioxidant regulatory genes led to the differential response of cervical cancer cells to anti-cancer drugs.
Collapse
|
22
|
Novaes VCN, Ervolino E, Fernandes GL, Cunha CP, Theodoro LH, Garcia VG, de Almeida JM. Influence of the treatment with the antineoplastic agents 5-fluorouracil and cisplatin on the severity of experimental periodontitis in rats. Support Care Cancer 2021; 30:1967-1980. [PMID: 34633539 DOI: 10.1007/s00520-021-06586-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE The determination on how antineoplastic agents interfere on the progression of periodontitis is critical for improvement and even development of novel therapeutic approaches for periodontal management. This study evaluated the influence of chemotherapy with 5-fluorouracil (5-FU) or cisplatin (CIS) on healthy periodontal tissues and on the progression of experimental periodontitis (EP). METHODS One hundred forty-four male rats were divided into six groups (n = 24). Each group was treated with physiological saline solution (PSS) 0.9%, 5-FU, or CIS. Experimental periodontitis (EP) was induced by ligature placement. Animals were euthanized at 7, 15, and 30 days after treatment. Data were statistically analyzed (p ≤ 0.05). RESULTS The groups with EP and treated with 5-FU or CIS showed lower percentage of bone volume in the furcation region and higher percentage of alveolar bone loss, higher number of TRAP-positive cells, and lower number of PCNA-positive cells when compared group with EP and treated with PSS (p ≤ 0.05). Groups with EP and treated with 5-FU or CIS showed high immunolabelling pattern of RANKL, TNF-α, and IL-1β, moderate of BAX, and low of HIF-1α. Histological analysis showed severe tissue breakdown in the groups with EP and treated with 5-FU or CIS. CONCLUSIONS Chemotherapy with antineoplastic agents 5-FU and CIS increased the intensity and duration of the inflammation and compromised tissue repair by reduction in cellular and vascular turnover. The more severe periodontal breakdown was caused by 5-FU.
Collapse
Affiliation(s)
- Vivian Cristina Noronha Novaes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Edilson Ervolino
- Department of Basic Science, Histology Division, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, SP, Brazil
| | - Giovani Lopes Fernandes
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Clara Possarle Cunha
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Leticia Helena Theodoro
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Valdir Gouveia Garcia
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil
| | - Juliano Milanezi de Almeida
- Department of Diagnosis and Surgery, Division of Periodontics, School of Dentistry of Araçatuba, São Paulo State University (UNESP), St. José Bonifácio 1193 - Vila Mendonça, Araçatuba, SP, 16015-050, Brazil.
| |
Collapse
|
23
|
Di Federico A, De Giglio A, Parisi C, Gelsomino F. STK11/LKB1 and KEAP1 mutations in non-small cell lung cancer: Prognostic rather than predictive? Eur J Cancer 2021; 157:108-113. [PMID: 34500370 DOI: 10.1016/j.ejca.2021.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 11/18/2022]
Abstract
Immune checkpoint inhibitors (ICIs), either alone or combined with chemotherapy, represent the cornerstone of the treatment of advanced non-small cell lung cancer (NSCLC) without targetable gene alterations. Programmed death ligand-1 expression currently represents the only available biomarker to predict response to ICI, although its reliability is debated. However, most patients still do not derive benefit from immunotherapy, making the identification of further predictive biomarkers extremely needed. Serine/threonine kinase 11 (STK11)/liver kinase B1 (LKB1) and Kelch-like ECH-associated protein 1 (KEAP1) mutations occur in 25-30% and 11-27% of advanced NSCLC, respectively. Several studies associated their presence with poor outcomes in patients treated with ICI. However, more recent evidence showed poor outcomes among NSCLC with STK11/LKB1 and/or KEAP1 mutations regardless of the treatment received. We reviewed the literature to provide a comprehensive, timely and structured overview of the role of STK11/LKB1 and KEAP1 mutations in NSCLC. Although conflicting outcomes have been reported by studies evaluating their impact in KRAS wild-type patients or regardless of KRAS mutation, the correlation between STK11/LKB1 and KEAP1 mutations and poor outcomes with ICI appears to be consistent in presence of concurrent KRAS mutations. The main limitations of most studies are represented by the inclusion of other gene mutations (e.g. TP53) together with STK11 and KEAP1 mutations as a group and by the lack of comparison arms including patients who received other treatments (e.g. chemotherapy). Studies evaluating the impact of STK11 and KEAP1 mutations on the outcomes with ICI and other therapies showed a similar effect regardless of the treatment received, suggesting a prognostic, rather than predictive, value.
Collapse
Affiliation(s)
- Alessandro Di Federico
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy.
| | - Andrea De Giglio
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy.
| | - Claudia Parisi
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy.
| | - Francesco Gelsomino
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy.
| |
Collapse
|
24
|
Antineoplastic agents aggravate the damages caused by nicotine on the peri-implant bone: an in vivo histomorphometric and immunohistochemical study in rats. Clin Oral Investig 2021; 26:1477-1489. [PMID: 34386857 DOI: 10.1007/s00784-021-04121-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To assess the interaction between chemotherapy and normal tissues is critical to assure quality of life during and after the treatment of cancer. This study evaluated the influence of cisplatin (CIS) and 5-fluorouracil (5-FU) over the peri-implant tissues around osseointegrated titanium implants in animals previously exposed to nicotine. Materials and methods One hundred twenty male rats were divided into two groups, receiving via subcutaneous injection, either physiological saline solution (PSS) (n = 30) or nicotine hemissulfate (NIC) (n = 90) for 30 days prior to implants' placement. One titanium implant (4.0 × 2.2 mm) was installed in each tibia of all animals. PSS and NIC were continued for 30 days after surgery. Five days after cessation, rats were subdivided into three subgroups in accordance with systemic treatments with either PSS, CIS, or 5-FU. Euthanasia was performed at 50, 65, and 95 days post-surgery. Histometric, histopathological, and immunohistochemical analyses were performed. RESULTS NIC-CIS and NIC-5FU presented lower BIC (50, 65, and 95 days) and bone area fraction occupancy (BAFO) (65 and 95 days) than group NIC. Intense inflammatory infiltration, severe tissue breakdown, reduced expression of bone formation biomarkers, and upregulation of TRAP were observed in NIC-CIS and NIC-5FU when compared with group NIC. TRAP expression was significantly higher in NIC-5FU as compared with NIC-CIS at 50 and 95 days. Groups NIC, NIC-CIS, and NIC-5FU presented statistically significant negative impact in all outcome parameters than group PSS. CONCLUSION CIS and 5-FU severely disrupted the peri-implant tissues around osseointegrated implants in animals previously exposed to nicotine. CLINICAL RELEVANCE Assessing the interaction between chemotherapy and normal tissues is critical to assure quality of life during and after the cancer treatment.
Collapse
|
25
|
Sarwar S, Alamro AA, Alghamdi AA, Naeem K, Ullah S, Arif M, Yu JQ, Huq F. Enhanced Accumulation of Cisplatin in Ovarian Cancer Cells from Combination with Wedelolactone and Resulting Inhibition of Multiple Epigenetic Drivers. Drug Des Devel Ther 2021; 15:2211-2227. [PMID: 34079223 PMCID: PMC8164677 DOI: 10.2147/dddt.s288707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Cisplatin resistance is a major concern in ovarian cancer treatment. The aim of this study was to investigate if wedelolactone could perform better in resistant ovarian cancer cells when used in combination with cisplatin. METHODS Growth inhibitory potential of wedelolactone and cisplatin was investigated through MTT reduction assay in ovarian cancer cell lines including A2780 (sensitive), A2780cisR (cisplatin resistant) and A2780ZD0473R. Resistance factor (RF) of drugs was determined in these three cell lines. Combination index (CI) was calculated as a measure of combined drug action. Effect of this combination on changes in the cellular accumulation of platinum levels and platinum-DNA binding was also determined in vitro using AutoDock Vina while the effect of wedelolactone on inhibition of possible key culprits of resistance including Chk1, CD73, AT tip60, Nrf2, Brd1, PCAF, IGF1, mTOR1 and HIF2α was investigated in silico. RESULTS Cisplatin and wedelolactone showed a dose-dependent growth inhibitory effect. RF value of wedelolactone was 1.1 in the case of A2780cisR showing its potential to bring more cell death in cisplatin-resistant cells. CI values were found to vary showing antagonistic to additive outcomes. Additive effect was observed for all sequences of administration (0/0, 0/4 and 4/0 h) in A2780cisR. Enhanced cellular accumulation of cisplatin was observed in parent and resistant cells on combination. Docking results revealed that among the selected oncotargets, Chk1, CD73, Nrf2, PCAF and AT tip60 were more vulnerable to wedelolactone than their respective standard inhibitors. CONCLUSION These findings have shown that additive outcome of drug combination in A2780cisR and raised levels of platinum accumulation followed a clear pattern. This observation indicates that the presence of wedelolactone might have contributed to sensitize A2780cisR. However, in silico results point to the possible effects of this compound on epigenetic factors involving tumor microenvironment, epithelial mesenchymal transition, and immune-checkpoint kinases.
Collapse
Affiliation(s)
- Sadia Sarwar
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, Sydney, NSW, Australia
- Department of Pharmacognosy, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Abir A Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Amani A Alghamdi
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Komal Naeem
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Salamat Ullah
- Acute Medicine, Northampton General Hospital, NHS, UK
| | - Muazzam Arif
- Department of Pharmaceutical Chemistry, Riphah Institute of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jun Qing Yu
- Discipline of Biomedical Sciences, Sydney Medical School, The University of Sydney, Cumberland Campus, Sydney, NSW, Australia
| | - Fazlul Huq
- Eman Research Journal, Eman Research, Sydney, NSW, Australia
| |
Collapse
|
26
|
Mirzaei S, Mohammadi AT, Gholami MH, Hashemi F, Zarrabi A, Zabolian A, Hushmandi K, Makvandi P, Samec M, Liskova A, Kubatka P, Nabavi N, Aref AR, Ashrafizadeh M, Khan H, Najafi M. Nrf2 signaling pathway in cisplatin chemotherapy: Potential involvement in organ protection and chemoresistance. Pharmacol Res 2021; 167:105575. [PMID: 33771701 DOI: 10.1016/j.phrs.2021.105575] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/20/2021] [Accepted: 03/21/2021] [Indexed: 12/14/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a vital transcription factor and its induction is of significant importance for protecting against oxidative damage. Increased levels of Reactive Oxygen Species (ROS) stimulate Nrf2 signaling, enhancing the activity of antioxidant enzymes such as catalase, superoxide dismutase and glutathione peroxidase. These enzymes are associated with retarding oxidative stress. On the other hand, Nrf2 activation in cancer cells is responsible for the development of chemoresistance due to disrupting oxidative mediated-cell death by reducing ROS levels. Cisplatin (CP), cis-diamminedichloroplatinum(II), is a potent anti-tumor agent extensively used in cancer therapy, but its frequent application leads to the development of chemoresistance as well. In the present study, association of Nrf2 signaling with chemoresistance to CP and protection against its deleterious effects is discussed. Anti-tumor compounds, mainly phytochemicals, retard chemoresistance by suppressing Nrf2 signaling. Upstream mediators such as microRNAs can regulate Nrf2 expression during CP chemotherapy regimens. Protection against side effects of CP is mediated via activating Nrf2 signaling and its downstream targets activating antioxidant defense system. Protective agents that activate Nrf2 signaling, can ameliorate CP-mediated ototoxicity, nephrotoxicity and neurotoxicity. Reducing ROS levels and preventing cell death are the most important factors involved in alleviating CP toxicity upon Nrf2 activation. As pre-clinical experiments advocate the role of Nrf2 in chemoprotection and CP resistance, translating these findings to the clinic can provide a significant progress in treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aliasghar Tabatabaei Mohammadi
- Asu Vanda Gene Research Company, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Science Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- Centre for Materials Interface, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, 56025 Pisa, Pontedera, Italy
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6 Canada
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc., Boston, MA, USA
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141, Iran; Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
27
|
Choi BH, Kim JM, Kwak MK. The multifaceted role of NRF2 in cancer progression and cancer stem cells maintenance. Arch Pharm Res 2021; 44:263-280. [PMID: 33754307 DOI: 10.1007/s12272-021-01316-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor erythroid 2-like 2 (NEF2L2; NRF2) plays crucial roles in the defense system against electrophilic or oxidative stress by upregulating an array of genes encoding antioxidant proteins, electrophile/reactive oxygen species (ROS) detoxifying enzymes, and drug efflux transporters. In contrast to the protective roles in normal cells, the multifaceted role of NRF2 in tumor growth and progression, resistance to therapy and intratumoral stress, and metabolic adaptation is rapidly expanding, and the complex association of NRF2 with cancer signaling networks is being unveiled. In particular, the implication of NRF2 signaling in cancer stem cells (CSCs), a small population of tumor cells responsible for therapy resistance and tumor relapse, is emerging. Here, we described the dark side of NRF2 signaling in cancers discovered so far. A particular focus was put on the role of NRF2 in CSCs maintenance and therapy resistance, showing that low ROS levels and refractory drug response of CSCs are mediated by the activation of NRF2 signaling. A better understanding of the roles of the NRF2 pathway in CSCs will allow us to develop a novel therapeutic approach to control tumor relapse after therapy.
Collapse
Affiliation(s)
- Bo-Hyun Choi
- Department of Pharmacology, School of Medicine, Daegu Catholic University, Daegu, 42472, Republic of Korea
| | - Jin Myung Kim
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea
| | - Mi-Kyoung Kwak
- Department of Pharmacy, Graduate School of The Catholic University of Korea, Gyeonggi-do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Bucheon, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
28
|
Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol 2021; 13:303-328. [PMID: 33776489 PMCID: PMC7987268 DOI: 10.2147/jep.s267383] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin and other platinum-based chemotherapeutic drugs have been used extensively for the treatment of human cancers such as bladder, blood, breast, cervical, esophageal, head and neck, lung, ovarian, testicular cancers, and sarcoma. Cisplatin is commonly administered intravenously as a first-line chemotherapy for patients suffering from various malignancies. Upon absorption into the cancer cell, cisplatin interacts with cellular macromolecules and exerts its cytotoxic effects through a series of biochemical mechanisms by binding to Deoxyribonucleic acid (DNA) and forming intra-strand DNA adducts leading to the inhibition of DNA synthesis and cell growth. Its primary molecular mechanism of action has been associated with the induction of both intrinsic and extrinsic pathways of apoptosis resulting from the production of reactive oxygen species through lipid peroxidation, activation of various signal transduction pathways, induction of p53 signaling and cell cycle arrest, upregulation of pro-apoptotic genes/proteins, and down-regulation of proto-oncogenes and anti-apoptotic genes/proteins. Despite great clinical outcomes, many studies have reported substantial side effects associated with cisplatin monotherapy, while others have shown substantial drug resistance in some cancer patients. Hence, new formulations and several combinational therapies with other drugs have been tested for the purpose of improving the clinical utility of cisplatin. Therefore, this review provides a comprehensive understanding of its molecular mechanisms of action in cancer therapy and discusses the therapeutic approaches to overcome cisplatin resistance and side effects.
Collapse
Affiliation(s)
- Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Shaloam Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Felicite K Noubissi
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Paresh Ray
- Department of Chemistry and Biochemistry, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
29
|
Food-Derived Pharmacological Modulators of the Nrf2/ARE Pathway: Their Role in the Treatment of Diseases. Molecules 2021; 26:molecules26041016. [PMID: 33671866 PMCID: PMC7918973 DOI: 10.3390/molecules26041016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress, which refers to unbalanced accumulation of reactive oxygen species (ROS) levels in cells, has been linked to acute and chronic diseases. Nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays a vital role in regulating cytoprotective genes and enzymes in response to oxidative stress. Therefore, pharmacological regulation of Nrf2/ARE pathway is an effective method to treat several diseases that are mainly characterized by oxidative stress and inflammation. Natural products that counteract oxidative stress by modulating Nrf2 have contributed significantly to disease treatment. In this review, we focus on bioactive compounds derived from food that are Nrf2/ARE pathway regulators and describe the molecular mechanisms for regulating Nrf2 to exert favorable effects in experimental models of diseases.
Collapse
|
30
|
Clinico-pathological and prognostic implications of Srx, Nrf2, and PROX1 expression in gastric cancer and adjacent non-neoplastic mucosa - an immunohistochemical study. Contemp Oncol (Pozn) 2021; 24:229-240. [PMID: 33531870 PMCID: PMC7836280 DOI: 10.5114/wo.2020.102671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Sulfiredoxin (Srx), which is an endogenous antioxidant substance which could, regulate the signaling pathways of reactive oxygen species. Nuclear factor erythroid 2-related factor 2 (Nrf2) is Cap-N-collar (CNC) transcription factors family member that have essential roles in regulation of antioxidant response. The transcription factor PROX1 is a transcription factor and a key regulatory protein in cancer development. Aim of the study To analyze levels of tissue expression of Srx, Nrf2, and PROX1 in gastric cancer and adjacent non-neoplastic gastric mucosa to clarify the relationship between their expression levels, clinical, pathological parameters and patients’ outcome. The results might lead to discovering novel targeted therapies to gastric cancers. Material and methods We included 70 paraffin-embedded samples: 50 specimens from gastric carcinomas and 20 specimens from adjacent non-neoplastic gastric mucosa. All samples are stained with Srx, Nrf2, and PROX1 using immunohistochemistry, correlated their expression with clinicopathological and prognostic parameters of patients. Results High levels of Srx and Nrf2 expression were positively associated with higher cancer grade (p = 0.006, 0.031 respectively), advanced stage (p < 0.001, 0.02 respectively), higher incidence of distant metastases (p = 0.029, 0.03 respectively) and dismal outcome (p < 0.001). High levels of PROX1 expression were associated with lower cancer grade (p = 0.005), absence of lymph nodes metastases (p = 0.023), early stage (p = 0.003), absence of relapse (p = 0.004), and favorable outcome (p < 0.001). Conclusions Srx and Nrf2 expression increase gastric cancer invasiveness, suggesting their utility as poor prognostic markers, but PROX1 serves as a favorable prognostic marker of gastric cancer patients.
Collapse
|
31
|
Jin X, Gong L, Peng Y, Li L, Liu G. Enhancer-bound Nrf2 licenses HIF-1α transcription under hypoxia to promote cisplatin resistance in hepatocellular carcinoma cells. Aging (Albany NY) 2020; 13:364-375. [PMID: 33290263 PMCID: PMC7835028 DOI: 10.18632/aging.202137] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/05/2020] [Indexed: 12/23/2022]
Abstract
Tumor microenvironment is hypoxic, which can cause resistance to chemotherapy, but the detailed mechanisms remain elusive. Here we find that mild hypoxia (5% O2) further increases cisplatin resistance in the already resistant HepG2/DDP but not the sensitive HepG2 cells. We find that Nrf2 is responsible for cisplatin resistance under hypoxia, as Nrf2 knockdown sensitizes HepG2/DDP cells while Nrf2 hyper-activation (though KEAP1 knockdown) increases resistance of HepG2 cells to cisplatin. Nrf2 binds to an enhancer element in the upstream of HIF-1α gene independently of hypoxia, promoting HIF-1α mRNA synthesis under hypoxic condition. As a result, Nrf2-dependent transcription counteracts HIF-1α degradation under mild hypoxia condition, leading to preferential cisplatin-resistance in HepG2/DDP cells. Our data suggest that Nrf2 regulation of HIF-1α could be an important mechanism for chemotherapy resistance in vivo.
Collapse
Affiliation(s)
- Xin Jin
- Department of Nuclear Medicine, Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Liansheng Gong
- Department of Biliary Surgery, Xiangya Hospital, Central South University. Changsha 410008, Hunan, China
| | - Ying Peng
- Department of International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment and Standards, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Le Li
- Hunan Yuantai Biotechnology Co., Ltd, Changsha 410000, Hunan, China
| | - Gang Liu
- Department of Biliary Surgery, Xiangya Hospital, Central South University. Changsha 410008, Hunan, China
| |
Collapse
|
32
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
33
|
Liao H, Zhu D, Bai M, Chen H, Yan S, Yu J, Zhu H, Zheng W, Fan G. Stigmasterol sensitizes endometrial cancer cells to chemotherapy by repressing Nrf2 signal pathway. Cancer Cell Int 2020; 20:480. [PMID: 33041661 PMCID: PMC7541302 DOI: 10.1186/s12935-020-01470-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Background Chemoresistance reduces the 5-year survival rate of endometrial cancer patient, which is the current major obstacle for cancer therapy. Increasing evidence state that Nrf2 contributes to chemoresistance in several kinds of cancer. However, its role in endometrial cancer cells remains unclarified. Methods Immunohistochemistry staining was used to detect the expression of Nrf2 in normal patient and endometrial cancer patient. Stable transfection Ishikawa cell line with high level of Nrf2 was established to evaluate its role in chemoresistance. Dot blot assays were used to assess global hydroxymethylation level after stigmasterol treatment. Cellular growth profile was detected by CCK8 assay. Western blot was used to evaluate the changes of the target molecules after various treatments. Results Nrf2 is overexpressed in endometrial cancer tissues compared with the normal endometrium. Overexpression of Nrf2 resulted in decrease sensitivity to cisplatin. In addition, stigmasterol has been identified as a novel Nrf2 inhibitor. It enhanced the sensitivity of endometrial cancer cells to cisplatin, and the underlying mechanism is that stigmasterol declines the Nrf2 protein level. Conclusions Our findings identified stigmasterol as a new potential inhibitor of Nrf2 and highlight a critical role of stigmasterol in overcoming chemoresistance in endometrial cancer therapy.
Collapse
Affiliation(s)
- Hong Liao
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040 China.,The Graduate School, Tongji University School of Medicine, Shanghai, 200040 China
| | - Dan Zhu
- College of Pharmacy, Guangxi Medical University, Nanning, 530021 China
| | - Mingzhu Bai
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080 China
| | - Huifen Chen
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040 China
| | - Shihuan Yan
- College of Pharmacy, Guangxi Medical University, Nanning, 530021 China
| | - Jing Yu
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040 China
| | - Huiting Zhu
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040 China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA.,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Guorong Fan
- The Graduate School, Tongji University School of Medicine, Shanghai, 200040 China.,Department of Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080 China
| |
Collapse
|
34
|
Comparative Analysis of Cytotoxic Activity of New Nitrosyl Iron-Sulfur Complexes in Human Tumor Cells In Vitro. Bull Exp Biol Med 2020; 169:130-136. [PMID: 32495168 DOI: 10.1007/s10517-020-04839-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Indexed: 10/24/2022]
Abstract
We studied cytotoxic activity of new tetranitrosyl NO-generating binuclear iron-sulfur [Fe-S] complexes containing different ligands in the molecule against tumor cells in vitro. Cytotoxic activity of the most active complex with cysteamine (CysAm) was compared with that of antitumor drug cisplatin. Caspase activation and morphological changes in cells were visualized by fluorescence microscopy. Fluorescence of active caspases 3 and 7 and changes in nuclear DNA in cells in the presence of CyAm were detected by using fluorochrome-labeled inhibitor of caspases (FLICA) and Hoechst and propidium iodide reagents. Similar cytotoxic activities of CyAm and cisplatin were demonstrated in various human tumor cell lines of different histogenesis. Therefore, a new class of NO-donating [Fe-S] complexes can provide the base of potential drugs for chemotherapy with a new mechanism of action.
Collapse
|
35
|
Xu P, Jiang L, Yang Y, Wu M, Liu B, Shi Y, Shen Q, Jiang X, He Y, Cheng D, Xiong Q, Yang Z, Duan L, Lin J, Zhao S, Shi P, Yang C, Chen Y. PAQR4 promotes chemoresistance in non-small cell lung cancer through inhibiting Nrf2 protein degradation. Am J Cancer Res 2020; 10:3767-3778. [PMID: 32206121 PMCID: PMC7069097 DOI: 10.7150/thno.43142] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/20/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose: Lung cancer is the leading cause of cancer related deaths worldwide. We have previously identified many differentially expressed genes (DEGs) from large scale pan-cancer dataset using the Cross-Value Association Analysis (CVAA) method. Here we focus on Progestin and AdipoQ Receptor 4 (PAQR4), a member of the progestin and adipoQ receptor (PAQR) family localized in the Golgi apparatus, to determine their clinical role and mechanism in the development of non-small cell lung cancer (NSCLC). Methods: The protein expression profile of PAQR4 was examined by IHC using tissue microarrays, and the effects of PAQR4 on cell proliferation, colony formation and xenograft tumor formation were tested in NSCLC cells. Real-time RT-PCR, co-immunoprecipitation (co-IP) and GST-pulldown assays were used to explore the mechanism of action of PAQR4. Results: We provided evidence showing that PAQR4 is increased in NSCLC cancer cell lines (A549, H1299, H1650, H1975, H358, GLC-82 and SPC-A1), and identified many mutations in PAQR4 in non-small cell lung cancer (NSCLC) tissues. We demonstrated that PAQR4 high expression correlates with a worse clinical outcome, and that its knockdown suppresses cell proliferation by inducing apoptosis. Importantly, overexpressed PAQR4 physically interacts with Nrf2 in NSCLC cells, blocking the interaction between Nrf2 and Keap1. Conclusion: Our results suggest that PAQR4 depletion enhances the sensitivity of cancerous cell to chemotherapy both in vitro and xenograft tumor formation in vivo, by promoting Nrf2 protein degradation through a Keap1-mediated ubiquitination process.
Collapse
|
36
|
The dual role of curcumin and ferulic acid in counteracting chemoresistance and cisplatin-induced ototoxicity. Sci Rep 2020; 10:1063. [PMID: 31974389 PMCID: PMC6978317 DOI: 10.1038/s41598-020-57965-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Platinum-based agents, such as cisplatin, form the mainstay of currently used chemotherapeutic regimens for several malignancies; however, the main limitations are chemoresistance and ototoxic side effects. In this study we used two different polyphenols, curcumin and ferulic acid as adjuvant chemotherapeutics evaluating (1) in vivo their antioxidant effects in protecting against cisplatin ototoxicity and (2) in vitro the transcription factors involved in tumor progression and cisplatin resistance. We reported that both polyphenols show antioxidant and oto-protective activity in the cochlea by up-regulating Nrf-2/HO-1 pathway and downregulating p53 phosphorylation. However, only curcumin is able to influence inflammatory pathways counteracting NF-κB activation. In human cancer cells, curcumin converts the anti-oxidant effect into a pro-oxidant and anti-inflammatory one. Curcumin exerts permissive and chemosensitive properties by targeting the cisplatin chemoresistant factors Nrf-2, NF-κB and STAT-3 phosphorylation. Ferulic acid shows a biphasic response: it is pro-oxidant at lower concentrations and anti-oxidant at higher concentrations promoting chemoresistance. Thus, polyphenols, mainly curcumin, targeting ROS-modulated pathways may be a promising tool for cancer therapy. Thanks to their biphasic activity of antioxidant in normal cells undergoing stressful conditions and pro-oxidant in cancer cells, these polyphenols probably engage an interplay among the key factors Nrf-2, NF-κB, STAT-3 and p53.
Collapse
|
37
|
Zhou Y, Zhou Y, Wang K, Li T, Yang M, Wang R, Chen Y, Cao M, Hu R. Flumethasone enhances the efficacy of chemotherapeutic drugs in lung cancer by inhibiting Nrf2 signaling pathway. Cancer Lett 2020; 474:94-105. [PMID: 31954771 DOI: 10.1016/j.canlet.2020.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2), a transcription factor, participates in protecting cells from electrophilic or oxidative stresses through regulating expression of cytoprotective and antioxidant genes. It has become one of the emerging targets for cancer chemosensitization, and small molecule inhibitors of Nrf2 can enhance the efficacy of chemotherapeutic drugs. Here, we found that flumethasone, a glucocorticoid, inhibited Nrf2 signaling in A549 and H460 cells by promoting Nrf2 protein degradation. Moreover, flumethasone significantly increased the sensitivity of A549 and H460 cells to chemotherapeutic drugs including cisplatin, doxorubicin and 5-FU. In mice bearing A549-shControl cells-derived xenografts, the size and weight of xenografts in the flumethasone and cisplatin combination group had a significant reduction compared with those in the cisplatin group, while in mice bearing A549-shNrf2 cells-derived xenografts, the size and weight of the xenografts in the combination group had no significant difference compared with those in the cisplatin group, demonstrating that chemosensitization effect of flumethasone is Nrf2-dependent. This work suggests that flumethasone can potentially be used as an adjuvant sensitizer to enhance the efficacy of chemotherapeutic drugs in lung cancer.
Collapse
Affiliation(s)
- Yunjiang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yang Zhou
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Keke Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tao Li
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mengdi Yang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Rui Wang
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yaxin Chen
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mengran Cao
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Rong Hu
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China.
| |
Collapse
|
38
|
Gusman DJR, Ervolino E, Theodoro LH, Garcia VG, Nagata MJH, Alves BES, de Araujo NJ, Matheus HR, de Almeida JM. Antineoplastic agents exacerbate periodontal inflammation and aggravate experimental periodontitis. J Clin Periodontol 2019; 46:457-469. [PMID: 30854670 DOI: 10.1111/jcpe.13101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 12/22/2018] [Accepted: 03/02/2019] [Indexed: 12/15/2022]
Abstract
AIM This study evaluated the effects of 5-fluorouracil (5-FU) and cisplatin (CIS) in healthy periodontal tissues and in the early stages of experimental periodontitis (EP) in rats. METHODS One hundred and eighty male rats were divided into three groups, which were submitted to the following systemic treatments: physiological saline solution (PSS); CIS and 5FU. Each group was subdivided into two subgroups: without (NEP) and with (EP) induction of EP. Animals were euthanized at 3, 5 and 7 days post-treatment. Histological, histometric (percentage of bone in the furcation [PBF]) and immunohistochemical (for tumour necrosis factor-α, interleukin-1β and receptor activator of nuclear factor-κB ligand) analyses were performed. Data were statistically analysed. RESULTS CIS-NEP and 5FU-NEP showed more inflammation than PSS-NEP at 3, 5 and 7 days. CIS-EP and 5FU-EP showed more inflammation and lower PBF than PSS-EP at all periods of evaluation. 5FU-EP showed lower PBF than CIS-EP at 5 and 7 days. CONCLUSION 5-FU and CIS exacerbated periodontal inflammation and aggravated the progression of EP in its early stages.
Collapse
Affiliation(s)
- David Jonathan Rodrigues Gusman
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.,Department of Periodontics, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Letícia Helena Theodoro
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Valdir Gouveia Garcia
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Maria José Hitomi Nagata
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Breno Edson Sendão Alves
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil.,Department of Periodontics, Maringa University Center (UNINGA), Maringá, Paraná, Brazil
| | - Nathalia Januario de Araujo
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Henrique Rinaldi Matheus
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Juliano Milanezi de Almeida
- Department of Surgery and Integrated Clinic - Division of Periodontics, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| |
Collapse
|
39
|
Inhibition of the Nrf2-TrxR Axis Sensitizes the Drug-Resistant Chronic Myelogenous Leukemia Cell Line K562/G01 to Imatinib Treatments. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6502793. [PMID: 31828114 PMCID: PMC6885806 DOI: 10.1155/2019/6502793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is involved in tumor drug resistance, but its role in imatinib resistance of chronic myeloid leukemia (CML) remains elusive. We aimed to investigate the effects of Nrf2 on drug sensitivity, thioredoxin reductase (TrxR) expression, reactive oxygen species (ROS) production, and apoptosis induction in imatinib-resistant CML K562/G01 cells and explored their potential mechanisms. Stable K562/G01 cells with knockdown of Nrf2 were established by infection of siRNA-expressing lentivirus. The mRNA and protein expression levels of Nrf2 and TrxR were determined by real-time quantitative polymerase chain reaction and western blot, respectively. ROS generation and apoptosis were assayed by flow cytometry, while drug sensitivity was measured by the Cell Counting Kit-8 assay. Imatinib-resistant K562/G01 cells had higher levels of Nrf2 expression than the parental K562 cells at both mRNA and protein levels. Expression levels of Nrf2 and TrxR were positively correlated in K562/G01 cells. Knockdown of Nrf2 in K562/G01 cells enhanced the intracellular ROS level, suppressed cell proliferation, and increased apoptosis in response to imatinib treatments. Nrf2 expression contributes to the imatinib resistance of K562/G01 cells and is positively correlated with TrxR expression. Targeted inhibition of the Nrf2-TrxR axis represents a potential therapeutic approach for imatinib-resistant CML.
Collapse
|
40
|
Ji L, Zhang R, Chen J, Xue Q, Moghal N, Tsao MS. PIDD interaction with KEAP1 as a new mutation-independent mechanism to promote NRF2 stabilization and chemoresistance in NSCLC. Sci Rep 2019; 9:12437. [PMID: 31455821 PMCID: PMC6712044 DOI: 10.1038/s41598-019-48763-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 08/12/2019] [Indexed: 01/15/2023] Open
Abstract
Chemotherapy resistance is a major problem in non-small cell lung cancer (NSCLC) treatment. A major mechanism of chemoresistance involves stabilization of the NRF2 transcription factor. NRF2 levels are normally tightly regulated through interaction with KEAP1, an adaptor that targets NRF2 to the CUL3 E3 ubiquitin ligase for proteolysis. In NSCLC, aberrant NRF2 stabilization is best understood through mutations in NRF2, KEAP1, or CUL3 that disrupt their interaction. Biochemical studies, however, have revealed that NRF2 can also be stabilized through expression of KEAP1-interacting proteins that competitively sequester KEAP1 away from NRF2. Here, we have identified PIDD, as a novel KEAP1-interactor in NSCLC that regulates NRF2. We show that this interaction allows PIDD to reduce NRF2 ubiquitination and increase its stability. We also demonstrate that PIDD promotes chemoresistance in NSCLC cells both in vitro and in vivo, and that this effect is dependent on NRF2. Finally, we report that NRF2 protein expression in a NSCLC cohort exceeds the typical incidence of combined NRF2, KEAP1, and CUL3 mutations, and that NRF2 expression in this cohort is correlated with PIDD levels. Our data identify PIDD as a new NRF2 regulator, and suggest that variations in PIDD levels contribute to differential chemosensitivities among NSCLC patients.
Collapse
Affiliation(s)
- Lili Ji
- Department of Pathology, Medical College of Nantong University, Nantong, Jiangsu, 226001, China. .,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.
| | - Rui Zhang
- Department of Tuberculosis, the Sixth Hospital of Nantong, Nantong, Jiangsu, 226000, China
| | - Jie Chen
- Department of Oncology, Jiangyin People's Hospital, Jiangyin, China
| | - Qun Xue
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Nadeem Moghal
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
41
|
Expression of Antioxidant Enzymes in Patients with Uterine Polyp, Myoma, Hyperplasia, and Adenocarcinoma. Antioxidants (Basel) 2019; 8:antiox8040097. [PMID: 30978928 PMCID: PMC6523488 DOI: 10.3390/antiox8040097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/17/2022] Open
Abstract
We previously found that compared to patients with benign uterine diseases (polyps, myomas), patients with premalignant (hyperplasia simplex and complex) and malignant (adenocarcinoma) lesions had enhanced lipid peroxidation and altered uterine antioxidant enzyme (AOE) activities. To further elucidate the mechanism of the observed changes, we examined protein and mRNA levels of copper-zinc superoxide dismutase (CuZnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and transcription factor Nrf2. We also examined correlations of AOE expression with AOE activity, lipid hydroperoxides (LOOH) level, and level of Nrf2. Our results showed decreased CuZnSOD, CAT, and Nrf2 levels, and increased GPx and GR levels in hyperplasias, while in patients with adenocarcinoma, the level of CAT was decreased and GR was increased, compared to benign groups. Similar changes in mRNA levels were also detected, indicating predominantly translational control of the AOE expression. The positive correlation of enzyme expression/activity was recorded for CuZnSOD, GPx, and GR, but only among groups with benign diseases. Only GR and GPx expressions were positively correlated with LOOH. Nrf2 protein was positively correlated with mRNA levels of CuZnSOD and GR. Observed results indicate involvement of diverse redox mechanisms in etiopathogenesis of different gynecological diseases, and may improve redox-based approaches in current clinical practice.
Collapse
|
42
|
Wu S, Lu H, Bai Y. Nrf2 in cancers: A double-edged sword. Cancer Med 2019; 8:2252-2267. [PMID: 30929309 PMCID: PMC6536957 DOI: 10.1002/cam4.2101] [Citation(s) in RCA: 332] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
The Nrf2/Keap1 pathway is an important signaling cascade responsible for the resistance of oxidative damage induced by exogenous chemicals. It maintains the redox homeostasis, exerts anti-inflammation and anticancer activity by regulating its multiple downstream cytoprotective genes, thereby plays a vital role in cell survival. Interestingly, in recent years, accumulating evidence suggests that Nrf2 has a contradictory role in cancers. Aberrant activation of Nrf2 is associated with poor prognosis. The constitutive activation of Nrf2 in various cancers induces pro-survival genes and promotes cancer cell proliferation by metabolic reprogramming, repression of cancer cell apoptosis, and enhancement of self-renewal capacity of cancer stem cells. More importantly, Nrf2 is proved to contribute to the chemoresistance and radioresistance of cancer cells as well as inflammation-induced carcinogenesis. A number of Nrf2 inhibitors discovered for cancer treatment were reviewed in this report. These provide a new strategy that targeting Nrf2 could be a promising therapeutic approach against cancer. This review aims to summarize the dual effects of Nrf2 in cancer, revealing its function both in cancer prevention and inhibition, to further discover novel anticancer treatment.
Collapse
Affiliation(s)
- Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hong Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
43
|
Hori R, Yamaguchi K, Sato H, Watanabe M, Tsutsumi K, Iwamoto S, Abe M, Onodera H, Nakamura S, Nakai R. The discovery and characterization of K-563, a novel inhibitor of the Keap1/Nrf2 pathway produced by Streptomyces sp. Cancer Med 2019; 8:1157-1168. [PMID: 30735010 PMCID: PMC6434342 DOI: 10.1002/cam4.1949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Keap1/Nrf2 pathway regulates the antioxidant stress response, detoxification response, and energy metabolism. Previous reports found that aberrant Keap1/Nrf2 pathway activation due to Kelch‐like ECH‐associated protein 1 (Keap1) mutations or Nuclear factor E2‐related factor 2 (Nrf2) mutations induced resistance of cancer cells to chemotherapy and accelerated cell growth via the supply of nutrients. Therefore, Keap1/Nrf2 pathway activation is associated with a poor prognosis in many cancers. These previous findings suggested that inhibition of Keap1/Nrf2 pathway could be a target for anti‐cancer therapies. To discover a small‐molecule Keap1/Nrf2 pathway inhibitor, we conducted high‐throughput screening in Keap1 mutant human lung cancer A549 cells using a transcriptional reporter assay. Through this screening, we identified the novel Keap1/Nrf2 pathway inhibitor K‐563, which was isolated from actinomycete Streptomyces sp. K‐563 suppressed the expression of Keap1/Nrf2 pathway downstream target genes or the downstream target protein, which induced suppression of GSH production, and activated reactive oxygen species production in A549 cells. K‐563 also inhibited the expression of downstream target genes in other Keap1‐ or Nrf2‐mutated cancer cells. Furthermore, K‐563 exerted anti‐proliferative activities in these mutated cancer cells. These in vitro analyses showed that K‐563 was able to inhibit cell growth in Keap1‐ or Nrf2‐mutated cancer cells by Keap1/Nrf2 pathway inhibition. K‐563 also exerted synergistic combinational effects with lung cancer chemotherapeutic agents. An in vivo study in mice xenotransplanted with A549 cells to further explore the therapeutic potential of K‐563 revealed that it also inhibited Keap1/Nrf2 pathway in lung cancer tumors. K‐563, a novel Keap1/Nrf2 pathway inhibitor, may be a lead compound for development as an anti‐cancer agent.
Collapse
Affiliation(s)
- Ran Hori
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kozo Yamaguchi
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Hidetaka Sato
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Miwa Watanabe
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Kyoko Tsutsumi
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Susumu Iwamoto
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Masayuki Abe
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Hideyuki Onodera
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Ryuichiro Nakai
- R&D Division, Kyowa Hakko Kirin Co., Ltd., Sunto, Shizuoka, Japan
| |
Collapse
|
44
|
Paramasivan P, Kankia IH, Langdon SP, Deeni YY. Emerging role of nuclear factor erythroid 2-related factor 2 in the mechanism of action and resistance to anticancer therapies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:490-515. [PMID: 35582567 PMCID: PMC8992506 DOI: 10.20517/cdr.2019.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 04/28/2023]
Abstract
Nuclear factor E2-related factor 2 (NRF2), a transcription factor, is a master regulator of an array of genes related to oxidative and electrophilic stress that promote and maintain redox homeostasis. NRF2 function is well studied in in vitro, animal and general physiology models. However, emerging data has uncovered novel functionality of this transcription factor in human diseases such as cancer, autism, anxiety disorders and diabetes. A key finding in these emerging roles has been its constitutive upregulation in multiple cancers promoting pro-survival phenotypes. The survivability pathways in these studies were mostly explained by classical NRF2 activation involving KEAP-1 relief and transcriptional induction of reactive oxygen species (ROS) neutralizing and cytoprotective drug-metabolizing enzymes (phase I, II, III and 0). Further, NRF2 status and activation is associated with lowered cancer therapeutic efficacy and the eventual emergence of therapeutic resistance. Interestingly, we and others have provided further evidence of direct NRF2 regulation of anticancer drug targets like receptor tyrosine kinases and DNA damage and repair proteins and kinases with implications for therapy outcome. This novel finding demonstrates a renewed role of NRF2 as a key modulatory factor informing anticancer therapeutic outcomes, which extends beyond its described classical role as a ROS regulator. This review will provide a knowledge base for these emerging roles of NRF2 in anticancer therapies involving feedback and feed forward models and will consolidate and present such findings in a systematic manner. This places NRF2 as a key determinant of action, effectiveness and resistance to anticancer therapy.
Collapse
Affiliation(s)
- Poornima Paramasivan
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
| | - Ibrahim H. Kankia
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University, Katsina PMB 2218, Nigeria
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, United Kingdom
| | - Yusuf Y. Deeni
- Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom
- Correspondence Address: Prof. Yusuf Y Deeni, Division of Science, School of Applied Sciences, Abertay University, Dundee DD1 1HG, United Kingdom. E-mail:
| |
Collapse
|
45
|
Cisplatin Loaded Multiwalled Carbon Nanotubes Induce Resistance in Triple Negative Breast Cancer Cells. Pharmaceutics 2018; 10:pharmaceutics10040228. [PMID: 30428555 PMCID: PMC6321179 DOI: 10.3390/pharmaceutics10040228] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
In this paper we developed a method for multiwalled carbon nanotubes (MWCNTs) use as carriers for a drug based on platinum in breast cancer therapy. The method of functionalization involves the carboxyl functionalization of nanotubes and encapsulation of cisplatin (CDDP) into MWCNTs. The biological properties of MWCNTs loaded with CDDP (MWCNT-COOH-CDDP) and of individual components MWCNT-COOH and free CDDP were evaluated on MDA-MB-231 cells. Various concentrations of CDDP (0.316–2.52 µg/mL) and MWCNTs (0.5–4 µg/mL) were applied on cells for 24 and 48 h. Only at high doses of CDDP (1.26 and 2.52 µg/mL) and MWCNT-COOH-CDDP (2 and 4 µg/mL) cell morphological changes were observed. The cellular viability decreased only with approx. 40% after 48 h of exposure to 2.52 µg/mL CDDP and 4 µg/mL MWCNT-COOH-CDDP despite the high reactive oxygen species (ROS) production induced by MWCNTs starting with 24 h. After 48 h, ROS level dropped as a result of the antioxidant defence activation. We also found a significant decrease of caspase-3 and p53 expression after 48 h, accompanied by a down-regulation of NF-κB in cells exposed to MWCNT-COOH-CDDP system which promotes apoptosis escape and thus failing to overcome the triple negative breast cancer (TNBC) cells resistance.
Collapse
|
46
|
Barrera-Rodríguez R. Importance of the Keap1-Nrf2 pathway in NSCLC: Is it a possible biomarker? Biomed Rep 2018; 9:375-382. [PMID: 30345037 PMCID: PMC6176108 DOI: 10.3892/br.2018.1143] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Worldwide, lung cancer remains the most common cause of cancer-related mortality, with non-small cell lung cancer (NSCLC) accounting for 85% of all diagnosed lung cancer cases. Chemotherapy is considered the standard of care for patients with advanced NSCLC; however, the tumors can develop mechanisms that inactivate these drugs. Comparative genomic analyses have revealed that disruptions in the kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid-2-related factor-2 (Nrf2) pathway are frequent in NSCLC, although Nrf2 mutations occur less frequently than Keap1 mutations. As the Keap1-Nrf2 pathway appears to be a primary regulator of key cellular processes that aid to resist the action of chemotherapy drugs, the clinical implementation of Nrf2 inhibitors in patients with advanced NSCLC may be a useful therapeutic approach for patients harboring KEAP1-NRF2 mutations. The aim of the present review was to highlight findings of how constitutive Nrf2 activation may be a specific biomarker for predicting patients most likely to benefit from classical chemotherapy drugs, overall improving patient survival rate.
Collapse
Affiliation(s)
- Raúl Barrera-Rodríguez
- Department of Biochemistry and Environmental Medicine, National Institute of Respiratory Diseases, Mexico City 14080, Mexico
| |
Collapse
|
47
|
Lin P, Ren Y, Yan X, Luo Y, Zhang H, Kesarwani M, Bu J, Zhan D, Zhou Y, Tang Y, Zhu S, Xu W, Zhou X, Mei C, Ma L, Ye L, Hu C, Azam M, Ding W, Jin J, Huang G, Tong H. The high NRF2 expression confers chemotherapy resistance partly through up-regulated DUSP1 in myelodysplastic syndromes. Haematologica 2018; 104:485-496. [PMID: 30262569 PMCID: PMC6395322 DOI: 10.3324/haematol.2018.197749] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/26/2018] [Indexed: 11/15/2022] Open
Abstract
Although cytarabine has been widely considered as one of the chemotherapy drugs for high-risk myelodysplastic syndromes (MDS), the overall response rate is only approximately 20-30%. Nuclear factor erythroid 2-related factor 2 (NRF2, also called NFE2L2) has been shown to play a pivotal role in preventing cancer cells from being affected by chemotherapy. However, it is not yet known whether NRF2 can be used as a prognostic biomarker in MDS, or whether elevated NRF2 levels are associated with cytarabine resistance. Here, we found that NRF2 expression levels in bone marrow from high-risk patients exceeded that of low-risk MDS patients. Importantly, high NRF2 levels are correlated with inferior outcomes in MDS patients (n=137). Downregulation of NRF2 by the inhibitor Luteolin, or lentiviral shRNA knockdown, enhanced the chemotherapeutic efficacy of cytarabine, while MDS cells treated by NRF2 agonist Sulforaphane showed increased resistance to cytarabine. More importantly, pharmacological inhibition of NRF2 could sensitize primary high-risk MDS cells to cytarabine treatment. Mechanistically, downregulation of dual specificity protein phosphatase 1, an NRF2 direct target gene, could abrogate cytarabine resistance in NRF2 elevated MDS cells. Silencing NRF2 or dual specificity protein phosphatase 1 also significantly sensitized cytarabine treatment and inhibited tumors in MDS cells transplanted mouse models in vivo. Our study suggests that targeting NRF2 in combination with conventional chemotherapy could pave the way for future therapy for high-risk MDS.
Collapse
Affiliation(s)
- Peipei Lin
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Yanling Ren
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaomei Yan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Yingwan Luo
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hua Zhang
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Meenu Kesarwani
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Jiachen Bu
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Di Zhan
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Yile Zhou
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Yuting Tang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Shuanghong Zhu
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weilai Xu
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinping Zhou
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Mei
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Ma
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Li Ye
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Hu
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Mohammad Azam
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Wei Ding
- Department of Pathology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, OH, USA
| | - Hongyan Tong
- Department of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China .,Institute of Hematology, Zhejiang University, Hangzhou, China.,Myelodysplastic Syndromes Diagnosis and Therapy Center, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Fujigaki S, Nishiumi S, Kobayashi T, Suzuki M, Iemoto T, Kojima T, Ito Y, Daiko H, Kato K, Shouji H, Honda K, Azuma T, Yoshida M. Identification of serum biomarkers of chemoradiosensitivity in esophageal cancer via the targeted metabolomics approach. Biomark Med 2018; 12:827-840. [PMID: 30043633 DOI: 10.2217/bmm-2017-0449] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To identify the serum metabolomics signature that is correlated with the chemoradiosensitivity of esophageal squamous cell carcinoma (ESCC). MATERIALS & METHODS Untargeted and targeted metabolomics analysis of serum samples from 26 ESCC patients, which were collected before the neoadjuvant chemoradiotherapy, was performed. RESULTS On receiving the results of untargeted metabolomics analysis, we performed the targeted metabolomics analysis of the six metabolites (arabitol, betaine, glycine, L-serine, L-arginine and L-aspartate). The serum levels of the four metabolites (arabitol, glycine, L-serine and L-arginine) were significantly lower in the patients who achieved pathological complete response with neoadjuvant chemoradiotherapy compared with the patients who did not achieve pathological complete response (p = 0.0086, 0.0345, 0.0106 and 0.0373, respectively). CONCLUSION The serum levels of metabolites might be useful for predicting the chemoradiosensitivity of ESCC patients.
Collapse
Affiliation(s)
- Seiji Fujigaki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Shin Nishiumi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takashi Kobayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Makoto Suzuki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takao Iemoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Takashi Kojima
- Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Yoshinori Ito
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hiroyuki Daiko
- Department of Esophageal Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Ken Kato
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hirokazu Shouji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kazufumi Honda
- Department of Biomarkers for Early Detection of Cancer, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeshi Azuma
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan
| | - Masaru Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Hyogo, Japan.,Division of Metabolomics Research, Department of Internal Related, Kobe University Graduate School of Medicine, Kobe, Japan.,AMED-CREST, AMED, Kobe, Japan
| |
Collapse
|
49
|
Akino N, Wada-Hiraike O, Terao H, Honjoh H, Isono W, Fu H, Hirano M, Miyamoto Y, Tanikawa M, Harada M, Hirata T, Hirota Y, Koga K, Oda K, Kawana K, Fujii T, Osuga Y. Activation of Nrf2 might reduce oxidative stress in human granulosa cells. Mol Cell Endocrinol 2018; 470:96-104. [PMID: 28986302 DOI: 10.1016/j.mce.2017.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 09/08/2017] [Accepted: 10/02/2017] [Indexed: 12/15/2022]
Abstract
Nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)-antioxidant response element (ARE) signaling pathway is one of the most important defense mechanisms against oxidative stress (OS). It is well documented that equilibration status of OS plays fundamental roles in human reproductive medicine, and the physiological role of Nrf2 in ovarian granulosa cells (GCs) has not been determined yet. Herein we aimed to study the function of Nrf2 in GCs. Human ovarian tissues were subjected to immunohistochemistry to localize Nrf2 and Keap1 and we detected the expression of Nrf2 and Keap1 in the human GCs. Human luteinized GCs were isolated and cultured, and hydrogen peroxide (H2O2) or Dimethylfumarates (DMF), an activator of Nrf2, were added to GCs to analyze the relationship between Nrf2 and antioxidants by quantitative RT-PCR. The mRNA levels of Nrf2, catalase, superoxide dismutase 1 (SOD1), and 8-Oxoguanine DNA glycosylase (OGG1) were elevated by H2O2, and DMF treatment showed similar but pronounced effects through activation of Nrf2. To determine the relationship of Nrf2 and the generation of antioxidants, siRNAs were used and quantitative RT-PCR were conducted. Decreased expression of Nrf2 resulted in a decreased level of these antioxidant mRNA. Intracellular levels of ROS were investigated by fluorescence of 8-hydroxy-2'-deoxyguanosine and fluorescent dye, 2',7'-dichlorodihydrofluorescein diacetate after H2O2 and/or DMF treatment, and DMF treatment quenched intracellular ROS generation by H2O2. These results show that activation of Nrf2 might lead to alleviate OS in human GCs, and this could provide novel insight to conquer the age-related fertility decline that is mainly attributed to the accumulation of aberrant OS.
Collapse
Affiliation(s)
- Nana Akino
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan.
| | - Hiromi Terao
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Harunori Honjoh
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Wataru Isono
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan; Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Houju Fu
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Mana Hirano
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Yuichiro Miyamoto
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Michihiro Tanikawa
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Miyuki Harada
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Tetsuya Hirata
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Kaori Koga
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 8655, Japan
| |
Collapse
|
50
|
Bai M, Yang L, Liao H, Liang X, Xie B, Xiong J, Tao X, Chen X, Cheng Y, Chen X, Feng Y, Zhang Z, Zheng W. Metformin sensitizes endometrial cancer cells to chemotherapy through IDH1-induced Nrf2 expression via an epigenetic mechanism. Oncogene 2018; 37:5666-5681. [PMID: 29921847 DOI: 10.1038/s41388-018-0360-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 02/07/2023]
Abstract
Chemoresistance is the major obstacle to cure endometrial cancer, whereas metformin has demonstrated sensitization to chemotherapy in endometrial cancer. A novel finding states that isocitrate dehydrogenase 1 (IDH1) involves in cancer chemoresistance. Recent studies have revealed that epigenetic modifications facilitate chemoresistance. However, whether IDH1 play a role in metformin-induced endometrial cancer chemosensitivity through epigenetic modification is incompletely understood. Immunohistochemistry and Elisa assays were used to evaluate the expression pattern of IDH1 in endometrial tissue and serum, respectively. Western blot was performed to determine changes in expression of key molecules in the IDH1-ɑ-KG-TET1-Nrf2 signaling pathway after various treatments. Dot blot assays were used to assess global hydroxymethylation levels after metformin administration or plasmid transfection. Antioxidant response element (ARE) activity in the IDH1 promoter region was monitored by luciferase assay. Cancer cell sensitivity to chemotherapy was detected by SRB assay. We found that activation of the IDH1 signaling pathway in endometrial cancer tissue resulting from aberrant expression of IDH1 and its downstream mediators conferred chemoresistance. We found that this effect was abated by metformin treatment. Dot blot and HMeDIP assays revealed that metformin blocked IDH1-ɑ-KG-TET1-mediated enhancement of Nrf2 hydroxymethylation levels, eliminating chemoresistance. Moreover, we observed that chemoresistance was enhanced via a regulatory loop in which Nrf2 activated IDH1-ɑ-KG-TET1-Nrf2 signaling via binding to the ARE sites in the IDH1 promoter region. Our findings highlight a critical role of IDH1-ɑ-KG-TET1-Nrf2 signaling in chemoresistance and suggest that rational combination therapy with metformin and chemotherapeutics has the potential to suppress chemoresistance.
Collapse
Affiliation(s)
- Mingzhu Bai
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Linlin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China.,Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Hong Liao
- Department of Cervical Diseases, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Xiaoyan Liang
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Bingying Xie
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Ji Xiong
- Department of Pathology, Huashan Hospital of Fudan University, Shanghai, 200040, China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiong Chen
- Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China
| | - Yali Cheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Xiaojun Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Youji Feng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China. .,Department of Obstetrics and Gynecology, Shanghai First People's Hospital, Baoshan Branch, Shanghai, 201900, China.
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA. .,Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|