1
|
Liu J, Dai Y, Yang W, Chen ZY. Role of Mushroom Polysaccharides in Modulation of GI Homeostasis and Protection of GI Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6416-6441. [PMID: 40063730 PMCID: PMC11926878 DOI: 10.1021/acs.jafc.5c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Edible and medicinal mushroom polysaccharides (EMMPs) have been widely studied for their various biological activities. It has been shown that EMMPs could modulate microbiota in the large intestine and improve intestinal health. However, the role of EMMPs in protecting the gastric barrier, regulating gastric microbiota, and improving gastric health cannot be ignored. Hence, this review will elucidate the effect of EMMPs on gastric and intestinal barriers, with emphasis on the interaction of EMMPs with microbiota in maintaining overall gastrointestinal health. Additionally, this review highlights the gastroprotective effects and underlying mechanisms of EMMPs against gastric mucosa injury, gastritis, gastric ulcer, and gastric cancer. Furthermore, the effects of EMMPs on intestinal diseases, including inflammatory bowel disease, colorectal cancer, and intestinal infection, are also summarized. This review will also discuss the future perspective and challenges in the use of EMMPs as a dietary supplement or a nutraceutical in preventing and treating gastrointestinal diseases.
Collapse
Affiliation(s)
- Jianhui Liu
- Collaborative
Innovation Center for Modern Grain Circulation and Safety, Jiangsu
Province Engineering Research Center of Edible Fungus Preservation
and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Yi Dai
- Collaborative
Innovation Center for Modern Grain Circulation and Safety, Jiangsu
Province Engineering Research Center of Edible Fungus Preservation
and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Wenjian Yang
- Collaborative
Innovation Center for Modern Grain Circulation and Safety, Jiangsu
Province Engineering Research Center of Edible Fungus Preservation
and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Zhen-Yu Chen
- School
of Life Sciences, The Chinese University
of Hong Kong, Shatin, NT, Hong Kong 999077, China
| |
Collapse
|
2
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
3
|
Chutimanukul P, Phatthanamas W, Thepsilvisut O, Chantarachot T, Thongtip A, Chutimanukul P. Commercial scale production of Yamabushitake mushroom (Hericium erinaceus (Bull.) Pers. 1797) using rubber and bamboo sawdust substrates in tropical regions. Sci Rep 2023; 13:13316. [PMID: 37587218 PMCID: PMC10432537 DOI: 10.1038/s41598-023-40601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023] Open
Abstract
Yamabushitake (Hericium erinaceus) is one of the most sought out mushrooms that is widely used for both direct consumption and medicinal purposes. While its demand increases worldwide, cultivation of the mushroom is limited to temperate areas and its production in tropical regions has never been explored. The aim of this study was to test the utilization of rubber and bamboo sawdust, alone or as a substrate mixture, for industrial scale Yamabushitake mushroom production. Five substrate treatments with various ratios of the two sawdust were compared for their physicochemical properties in relation to mushroom productivity. The highest mushroom fresh and dry (113.22 and 23.25 g, respectively), biological efficiency (42.61%), and cap size (9.53 cm) were obtained from the substrates containing 100% rubber sawdust, with the mushroom yield decreasing proportional to the ratio of bamboo sawdust. The 100% rubber sawdust substrate provided a higher initial organic matter and carbon content together with C:N ratio at 63.2%, 36.7% and 65.48, respectively, whereas the 100% bamboo sawdust provided higher nitrogen content (1.03%), which was associated with lower mushroom yield but higher number of fruiting bodies. As in the 100% rubber sawdust substrate, a comparable mushroom yield and growth attributes were also obtained in the 3:1 rubber-bamboo sawdust mixture substrate. Principle component analysis of the measured variables indicated a strong influence of substrate C:N ratio before spawning and the change in substrate electrical conductivity and N content after cultivation to the variation in mushroom productivity among the treatments. The results demonstrate the applicability of rubber sawdust and its combination with up to 25% of bamboo sawdust for Yamabushitake mushroom cultivation and provide the basis for substrate optimization in the tropical Yamabushitake mushroom industry through a circular economy framework.
Collapse
Affiliation(s)
- Preuk Chutimanukul
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Wongsakorn Phatthanamas
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Ornprapa Thepsilvisut
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Thanin Chantarachot
- Department of Botany, Faculty of Science, Center of Excellence in Environment and Plant Physiology, Chulalongkorn University, Pathum Wan, Bangkok, 10330, Thailand
| | - Akira Thongtip
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, 12120, Thailand
| | - Panita Chutimanukul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Khlong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
4
|
Gravina AG, Pellegrino R, Auletta S, Palladino G, Brandimarte G, D’Onofrio R, Arboretto G, Imperio G, Ventura A, Cipullo M, Romano M, Federico A. Hericium erinaceus, a medicinal fungus with a centuries-old history: Evidence in gastrointestinal diseases. World J Gastroenterol 2023; 29:3048-3065. [PMID: 37346156 PMCID: PMC10280799 DOI: 10.3748/wjg.v29.i20.3048] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023] Open
Abstract
Hericium erinaceus is an edible and medicinal mushroom commonly used in traditional Chinese medicine for centuries. Several studies have highlighted its therapeutic potential for gastrointestinal disorders such as gastritis and inflammatory bowel diseases. In addition, some components of this mushroom appear to possess strong antineoplastic capabilities against gastric and colorectal cancer. This review aims to analyse all available evidence on the digestive therapeutic potential of this fungus as well as the possible underlying molecular mechanisms.
Collapse
Affiliation(s)
| | - Raffaele Pellegrino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Salvatore Auletta
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Giovanna Palladino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Giovanni Brandimarte
- Division of Internal Medicine and Gastroenterology, Cristo Re Hospital, Rome 00167, Italy
| | - Rossella D’Onofrio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Giusi Arboretto
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Giuseppe Imperio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Andrea Ventura
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Marina Cipullo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Marco Romano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| |
Collapse
|
5
|
Maharjan S, Lee MG, Kim SY, Lee KS, Nam KS. Morin Sensitizes MDA-MB-231 Triple-Negative Breast Cancer Cells to Doxorubicin Cytotoxicity by Suppressing FOXM1 and Attenuating EGFR/STAT3 Signaling Pathways. Pharmaceuticals (Basel) 2023; 16:ph16050672. [PMID: 37242455 DOI: 10.3390/ph16050672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Considerable emphasis is being placed on combinatorial chemotherapeutic/natural treatments for breast cancer. This study reveals the synergistic anti-tumor activity of morin and Doxorubicin (Dox) co-treatment on MDA-MB-231 triple-negative breast cancer (TNBC) cell proliferation. Morin/Dox treatment promoted Dox uptake and induced DNA damage and formation of nuclear foci of p-H2A.X. Furthermore, DNA repair proteins, RAD51 and survivin, and cell cycle proteins, cyclin B1 and forkhead Box M1 (FOXM1), were induced by Dox alone but attenuated by morin/Dox co-treatment. In addition, Annexin V/7-AAD analysis revealed that necrotic cell death after co-treatment and apoptotic cell death by Dox alone were associated with the induction of cleaved PARP and caspase-7 without Bcl-2 family involvement. FOXM1 inhibition by thiostrepton showed that co-treatment caused FOXM1-mediated cell death. Furthermore, co-treatment downregulated the phosphorylation of EGFR and STAT3. Flow cytometry showed that the accumulation of cells in the G2/M and S phases might be linked to cellular Dox uptake, p21 upregulation, and cyclin D1 downregulation. Taken together, our study shows that the anti-tumor effect of morin/Dox co-treatment is due to the suppression of FOXM1 and attenuation of EGFR/STAT3 signaling pathways in MDA-MB-231 TNBC cells, which suggests that morin offers a means of improving therapeutic efficacy in TNBC patients.
Collapse
Affiliation(s)
- Sushma Maharjan
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Min-Gu Lee
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - So-Young Kim
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyu-Shik Lee
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, College of Medicine and Intractable Disease Research Center, Dongguk University, Gyeongju 38066, Republic of Korea
| |
Collapse
|
6
|
Han Y, Huang J, Zhao C, Zhang F, Gu Y, Wang C, Jin E. Hericium erinaceus polysaccharide improves the microstructure, immune function, proliferation and reduces apoptosis of thymus and spleen tissue cells of immunosuppressed mice. Biosci Biotechnol Biochem 2023; 87:279-289. [PMID: 36494196 DOI: 10.1093/bbb/zbac198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
In order to study the effect of Hericium erinaceus polysaccharide (HEP) on the immune and antioxidation functions of immunosuppressed mice. The control group received distilled water orally and the model and experimental groups I, II, and III received 0, 80, 160, and 320 mg/kg HEP respectively for a fortnight after re-molding with cyoclphosphnalide (CTX). Compared with the control group, the secretion of IL-2, IL-4, and IFN-γ, the activity or content of T-AOC, T-SOD, and GSH-PX, and the expression of PCNA mRNA in the thymus and spleen were reduced in immunosuppressed mice (P < .05 or P < .01). Compared with immunosuppressed mice, the levels of IL-2, IFN-γ, and GSH-PX and the PCNA mRNA expression of spleen and thymus were increased (P < .05 or P < .01), and the microstructure were also obviously improved in the experimental group III. Overall, 320 mg/kg of HEP significantly improved the immune and antioxidant functions.
Collapse
Affiliation(s)
- Yujiao Han
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Jialiang Huang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China.,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, China
| | - Chenfang Wang
- College of life and Health Sciences, Anhui Science and Technology University, Chuzhou, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China.,Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, China
| |
Collapse
|
7
|
Ren Y, Sun Q, Gao R, Sheng Y, Guan T, Li W, Zhou L, Liu C, Li H, Lu Z, Yu L, Shi J, Xu Z, Xue Y, Geng Y. Low Weight Polysaccharide of Hericium erinaceus Ameliorates Colitis via Inhibiting the NLRP3 Inflammasome Activation in Association with Gut Microbiota Modulation. Nutrients 2023; 15:nu15030739. [PMID: 36771444 PMCID: PMC9920828 DOI: 10.3390/nu15030739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Ulcerative colitis (UC), one of the typical inflammatory bowel diseases caused by dysregulated immunity, still requires novel therapeutic medicine with high efficacy and low toxicity. Hericium erinaceus has been widely used to treat different health problems especially gastrointestinal sickness in China for thousands of years. Here, we isolated, purified, and characterized a novel low weight polysaccharide (HEP10, Mw: 9.9 kDa) from the mycelia of H. erinaceus in submerged culture. We explored the therapeutic effect of HEP10 on UC and explored its underlying mechanisms. On one hand, HEP10 suppressed the production of TNF-α, IL-1β, IL-6, inducible iNOS, and COX-2 in LPS challenged murine macrophage RAW264.7 cells, as well as in colons from DSS-induced colitis mice. On the other hand, HEP10 treatment markedly suppressed the activation of NLRP3 inflammasome, NF-κB, AKT, and MAPK pathways. Moreover, HEP10 reversed DSS-induced alternation of the gut community composition and structure by significantly increasing Akkermansia muciniphila and also promoting functional shifts in gut microbiota. Structural equation modeling also highlighted that HEP10 can change widely through gut microbiota. In conclusion, HEP10 has a better prebiotic effect than the crude polysaccharides of H. erinaceus, which can be used as a novel dietary supplement and prebiotic to ameliorate colitis.
Collapse
Affiliation(s)
- Yilin Ren
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- School of Medicine, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| | - Qige Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruonan Gao
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Yinyue Sheng
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Tianyue Guan
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wang Li
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Lingxi Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chang Liu
- School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi 214122, China
| | - Huaxiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhenming Lu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Lihua Yu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Jinsong Shi
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhenghong Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
| | - Yuzheng Xue
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| | - Yan Geng
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China
- Correspondence: (Y.R.); (Y.X.); (Y.G.)
| |
Collapse
|
8
|
Pathak MP, Pathak K, Saikia R, Gogoi U, Ahmad MZ, Patowary P, Das A. Immunomodulatory effect of mushrooms and their bioactive compounds in cancer: A comprehensive review. Biomed Pharmacother 2022; 149:112901. [DOI: 10.1016/j.biopha.2022.112901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
|
9
|
Nowakowski P, Markiewicz-Żukowska R, Bielecka J, Mielcarek K, Grabia M, Socha K. Treasures from the forest: Evaluation of mushroom extracts as anti-cancer agents. Biomed Pharmacother 2021; 143:112106. [PMID: 34482165 DOI: 10.1016/j.biopha.2021.112106] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022] Open
Abstract
Mushrooms provide a reliable source of bioactive compounds and have numerous nutritional values, which is one of the reasons why they are widely used for culinary purposes. They may also be a remedy for several medical conditions, including cancer diseases. Given the constantly increasing number of cancer incidents, the great anticancer potential of mushrooms has unsurprisingly become an object of interest to researchers. Therefore, this review aimed to collect and summarize all the available scientific data on the anti-cancer activity of mushroom extracts. Our research showed that mushroom extracts from 92 species, prepared using 12 different solvents, could reduce the viability of 38 various cancers. Additionally, we evaluated different experimental models: in vitro (cell model), in vivo (mice and rat model, case studies and randomized controlled trials), and in silico. Breast cancer proved to be sensitive to the highest number of mushroom extracts. The curative mechanisms of the studied mushrooms consisted in: inhibition of cancer cell proliferation, unregulated proportion of cells in cell cycle phases, induction of autophagy and phagocytosis, improved response of the immune system, and induction of apoptotic death of cells via upregulation of pro-apoptotic factors and downregulation of anti-apoptotic genes. The processes mainly involved the expression of caspases -3, -8, -9, AKT, p27, p53, BAX, and BCL2. The quoted results could lead to the classification of mushrooms as nutraceuticals used to prevent a variety of disorders or to support treatment of cancer diseases.
Collapse
Affiliation(s)
- Patryk Nowakowski
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland.
| | - Renata Markiewicz-Żukowska
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Joanna Bielecka
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Konrad Mielcarek
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Monika Grabia
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Katarzyna Socha
- Department of Bromatology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
10
|
Zhang F, Lv H, Zhang X. Erinacerins, Novel Glioma Inhibitors from Hericium erinaceus, Induce Apoptosis of U87 Cells through Bax/Capase-2 Pathway. Anticancer Agents Med Chem 2021; 20:2082-2088. [PMID: 32753025 DOI: 10.2174/1871520620666200804104243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/21/2020] [Accepted: 06/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioma is the most common tumor of the central nervous system. Hericium erinaceus, which has been reported to have a variety of pharmacological activities, is a widely used Traditional Chinese Medicine (TCM), and also a kind of delicious food accepted by the public. METHODS AND RESULTS In this study, two new natural products, compounds 1 and 2, were isolated and identified from Hericium erinaceus. They were named erinacerin O and erinacerin P, respectively, after the structural identification, and their effects on human glioma cell line U87 were evaluated. Erinacerin P (2) exhibited obvious cytotoxicity on human glioma cell line U87. The IC50 value of 2 was 19.32μg/mL. The results showed that the apoptosis of U87 cells treated with 2 increased and the morphology of U87 cells altered significantly. Flow cytometry experiment showed that 2 could significantly increase the apoptosis rate of U87 cells and reduce DNA replication. Western blot results suggested the Bax/capase-3 pathway was involved in the U87 cell apoptosis induced by 2. CONCLUSION Erinacerin O and Erinacerin P are novel compounds obtained from Hericium erinaceus and Erinacerin P could be a potential novel glioma inhibitor.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neurosurgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Hui Lv
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Xuhua Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| |
Collapse
|
11
|
Nakayama H, Hata K, Matsuoka I, Zang L, Kim Y, Chu D, Juneja LR, Nishimura N, Shimada Y. Anti-Obesity Natural Products Tested in Juvenile Zebrafish Obesogenic Tests and Mouse 3T3-L1 Adipogenesis Assays. Molecules 2020; 25:molecules25245840. [PMID: 33322023 PMCID: PMC7764013 DOI: 10.3390/molecules25245840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/15/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
(1) Background: The obesity epidemic has been drastically progressing in both children and adults worldwide. Pharmacotherapy is considered necessary for its treatment. However, many anti-obesity drugs have been withdrawn from the market due to their adverse effects. Instead, natural products (NPs) have been studied as a source for drug discovery for obesity, with the goal of limiting the adverse effects. Zebrafish are ideal model animals for in vivo testing of anti-obesity NPs, and disease models of several types of obesity have been developed. However, the evidence for zebrafish as an anti-obesity drug screening model are still limited. (2) Methods: We performed anti-adipogenic testing using the juvenile zebrafish obesogenic test (ZOT) and mouse 3T3-L1 preadipocytes using the focused NP library containing 38 NPs and compared their results. (3) Results: Seven and eleven NPs reduced lipid accumulation in zebrafish visceral fat tissues and mouse adipocytes, respectively. Of these, five NPs suppressed lipid accumulation in both zebrafish and 3T3-L1 adipocytes. We confirmed that these five NPs (globin-digested peptides, green tea extract, red pepper extract, nobiletin, and Moringa leaf powder) exerted anti-obesity effects in diet-induced obese adult zebrafish. (4) Conclusions: ZOT using juvenile fish can be a high-throughput alternative to ZOT using adult zebrafish and can be applied for in vivo screening to discover novel therapeutics for visceral obesity and potentially also other disorders.
Collapse
Affiliation(s)
- Hiroko Nakayama
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan; (H.N.); (K.H.); (I.M.); (L.Z.); (N.N.)
- Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Japan
| | - Kanae Hata
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan; (H.N.); (K.H.); (I.M.); (L.Z.); (N.N.)
| | - Izumi Matsuoka
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan; (H.N.); (K.H.); (I.M.); (L.Z.); (N.N.)
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan; (H.N.); (K.H.); (I.M.); (L.Z.); (N.N.)
- Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Japan
| | - Youngil Kim
- Rohto Pharmaceutical Co., Ltd, Osaka 544-0012, Japan; (Y.K.); (D.C.); (L.R.J.)
| | - Djongchi Chu
- Rohto Pharmaceutical Co., Ltd, Osaka 544-0012, Japan; (Y.K.); (D.C.); (L.R.J.)
| | - Lekh Raj Juneja
- Rohto Pharmaceutical Co., Ltd, Osaka 544-0012, Japan; (Y.K.); (D.C.); (L.R.J.)
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Japan; (H.N.); (K.H.); (I.M.); (L.Z.); (N.N.)
- Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Japan
| | - Yasuhito Shimada
- Zebrafish Drug Screening Center, Mie University, Tsu 514-8507, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu 514-8507, Japan
- Correspondence: ; Tel.: +81-592-31-5411
| |
Collapse
|
12
|
Liu JY, Hou XX, Li ZY, Shan SH, Chang MC, Feng CP, Wei Y. Isolation and structural characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its arrest of cell cycle at S-phage in colon cancer cells. Int J Biol Macromol 2020; 157:288-295. [DOI: 10.1016/j.ijbiomac.2020.04.162] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
|
13
|
Lu H, Lou H, Hu J, Liu Z, Chen Q. Macrofungi: A review of cultivation strategies, bioactivity, and application of mushrooms. Compr Rev Food Sci Food Saf 2020; 19:2333-2356. [DOI: 10.1111/1541-4337.12602] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 05/31/2020] [Accepted: 06/05/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Hongyun Lu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Hanghang Lou
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Jingjin Hu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Zhengjie Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| | - Qihe Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food ScienceZhejiang University Hangzhou Zhejiang China
| |
Collapse
|
14
|
Hu N, Liu J, Xue X, Li Y. The effect of emodin on liver disease -- comprehensive advances in molecular mechanisms. Eur J Pharmacol 2020; 882:173269. [PMID: 32553811 DOI: 10.1016/j.ejphar.2020.173269] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 01/30/2023]
Abstract
Liver injury could be caused by a variety of causes, including alcohol, drug poisoning, autoimmune overreaction, etc. In the period of liver injury, hepatic stellate cells (HSCs) will be activated and produce excessive extracellular matrix (ECM). If injury cannot be suppressed, liver injury will develop into fibrosis, even cirrhosis and liver cancer. It is reported that some monomer components extracted from traditional Chinese medicine have better effects on protecting liver. Emodin, an anthraquinone compound extracted from the traditional Chinese medicine RHEI RADIX ET RHIZOMA, has anti-inflammatory, antioxidant, liver protection and anti-cancer effects, and can prevent liver injury induced by a variety of factors. By searching literatures related to the liver protection of emodin in PUBMED, SINOMED, EBM and CNKI databases, it was found that emodin could inhibit the production and promote the secretion of bile acids, and have a protective effect on intrahepatic cholestasis. Also, emodin reduce collagen synthesis and anti-hepatic fibrosis by inhibiting oxidative stress, TGF-β/Smad pathway and HSCs proliferation, and promoting apoptosis of HSCs. Emodin can also regulate lipid metabolism and regulate the synthesis and oxidation of lipids and cholesterol to protect the nonalcoholic fatty liver. Besides, emodin can induce the apoptosis of hepatocellular carcinoma cells by acting on the death receptor pathway and mitochondrial apoptosis pathway, thus inhibiting the development of hepatocellular carcinoma. Moreover, emodin can modulate immunity and improve immune rejection in liver transplantation animals. In conclusion, emodin has a good effect on liver protection, but further experimental data are needed to verify it.
Collapse
Affiliation(s)
- Naihua Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Jie Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyan Xue
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China
| | - Yunxia Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, National Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Chengdu, 611137, China.
| |
Collapse
|
15
|
Lee KC, Lee KF, Tung SY, Huang WS, Lee LY, Chen WP, Chen CC, Teng CC, Shen CH, Hsieh MC, Kuo HC. Induction Apoptosis of Erinacine A in Human Colorectal Cancer Cells Involving the Expression of TNFR, Fas, and Fas Ligand via the JNK/p300/p50 Signaling Pathway With Histone Acetylation. Front Pharmacol 2019; 10:1174. [PMID: 31680958 PMCID: PMC6804634 DOI: 10.3389/fphar.2019.01174] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/12/2019] [Indexed: 12/31/2022] Open
Abstract
Erinacine A, which is one of the major bioactive diterpenoid compounds extracted from cultured mycelia of H. erinaceus, displays great antitumorigenic activity. However, the molecular mechanisms underlying erinacine A inducing cancer cell apoptosis in colorectal cancer (CRC) remain unclear. This study found that treatment with erinacine A not only triggers the activation of extrinsic apoptosis pathways (TNFR, Fas, FasL, and caspases) but also suppresses the expression of antiapoptotic molecules Bcl-2 and Bcl-XL via a time-dependent manner in DLD-1 cells. Furthermore, phosphorylation of Jun N-terminus kinase (JNK1/2), NFκB p50, and p300 is involved in erinacine A–induced cancer cell apoptosis. Inhibition of these signaling pathways by kinase inhibitors blocks erinacine A–induced transcriptional activation implicates histone H3K9K14ac (Acetyl Lys9/Lys14) of the TNFR, Fas, and FasL as promoters. Moreover, histochemical and immunohistochemical analyses revealed that erinacine A treatment significantly induced the TNFR, Fas, and FasL levels in the in vivo xenograft mouse model. Together, these results demonstrated an increase in the cellular transcriptional levels of TNFR, Fas, and FasL by erinacine A induction to cell apoptosis via the activation of the JNK, p300, and NFκB p50 signaling modules, thereby providing a new mechanism for erinacine A treatment in vitro and in vivo.
Collapse
Affiliation(s)
- Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Information Management & College of Liberal Education, Shu-Te University, Kaohsiung, Taiwan
| | - Kam-Fai Lee
- Department of Pathology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Shui-Yi Tung
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Wen-Shih Huang
- School of Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | | | | | | | - Chih-Chuan Teng
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chien-Heng Shen
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Meng-Chiao Hsieh
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Department of Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi, Taiwan
| |
Collapse
|
16
|
Dong XD, Yu J, Meng FQ, Feng YY, Ji HY, Liu A. Antitumor effects of seleno-short-chain chitosan (SSCC) against human gastric cancer BGC-823 cells. Cytotechnology 2019; 71:1095-1108. [PMID: 31598888 DOI: 10.1007/s10616-019-00347-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Seleno-short-chain chitosan (SSCC) is a derivative of chitosan. In the present study, we sought to investigate the underlying antitumor mechanism of SSCC on human gastric cancer BGC-823 cells in vitro. MTT assay suggested that SSCC exhibited a dose-dependent inhibitory effect on the proliferation of BGC-823 cells. We found the SSCC-treated cells showed typical morphological characteristics of apoptosis in a dose dependent manner by observing on microscope. Annexin V-FITC/PI double staining and cell cycle assay identified that SSCC could induce BGC-823 cells apoptosis by triggering G2/M phase arrest. Our research provided the first evidence that SSCC could effectively induce the apoptosis of BGC-823 cells via an intrinsic mitochondrial pathway, as indicated by inducing the disruption of mitochondrial membrane potential (MMP), the excessive accumulation of reactive oxidative species (ROS), the increase of Bax/Bcl-2 ratio and the activation of caspase 3, caspase 9 and cytochrome C (Cyt-C) in BGC-823 cells. These combined results clearly indicated that SSCC could induce BGC-823 cells apoptosis by the involvement of mitochondrial signaling pathway, which provided precise experimental evidence for SSCC as a potential agent in the prevention and treatment of human gastric cancer.
Collapse
Affiliation(s)
- Xiao-Dan Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,QingYunTang Biotech (Beijing) Co., Ltd, No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Juan Yu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,QingYunTang Biotech (Beijing) Co., Ltd, No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Fan-Qi Meng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,QingYunTang Biotech (Beijing) Co., Ltd, No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Ying-Ying Feng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,QingYunTang Biotech (Beijing) Co., Ltd, No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Hai-Yu Ji
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.,QingYunTang Biotech (Beijing) Co., Ltd, No. 14, Zhonghe Street, Beijing Economic-Technological Development Area, Beijing, 100176, China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. .,Tianjin Key Laboratory of Food Nutrition and Safety, School of Food Engineering and Biological Technology, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economic and Technological Development Zone, Tianjin, 300457, China.
| |
Collapse
|
17
|
Gao Y, Zheng W, Wang M, Xiao X, Gao M, Gao Q, Xu D. Molecular properties, structure, and antioxidant activities of the oligosaccharide Hep-2 isolated from cultured mycelium of Hericium erinaceus. J Food Biochem 2019; 43:e12985. [PMID: 31489657 DOI: 10.1111/jfbc.12985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/30/2022]
Abstract
The oligosaccharide Hep-2 from cultured mycelium of Hericium erinaceus was obtained with a hollow-fiber ultrafiltration cartridge and purified with a DEAE Sephadex A-50 column followed by a Bio-Gel P-30 column. The properties, structure, and antioxidant activities of Hep-2 were studied. Hep-2 had the molecular weight of 1,080 Da and consists of Glc and Gal in a molar ratio of 1.0:0.4. Fragmentation analysis by GC-MS suggests that the structure of Hep-2 consists of three linear sugar residues. Furthermore, we used the LC-MSn combined methylation method to determine the types of bonds between sugar residues. We found that the structure of Hep-2 is based on 2-7 sugars. Among these, the trisaccharides and pentasaccharides consist of 1 → 6-Gal, whereas the tetrasaccharides, hexasaccharides, and heptasaccharides consist of 1 → 4-Glc and 1 → 6-Gal. The activity tests indicated that Hep-2 significantly reduced the damage caused by H2 O2 in GES-1 cells, and could induce expression of T-SOD and GSH-px, scavengers of oxygen free radicals, in a concentration-response manner. Hep-2 also reduced cell apoptosis as assessed by changes in the ratio of Bcl-2/Bax proteins by western blot. Both sets of results suggest that Hep-2 might possess significant antioxidant activity. PRACTICAL APPLICATIONS: This paper reports the physical and the chemical parameters, structure and biological potential of oligosaccharides from Hericium erinaceus, a common edible fungus. Hericium erinaceus has been used as an anti-atrophic gastritis drug in China with good effect. Oligosaccharides are more easily digested and utilized by human body, and have strong antioxidant activity. These results can increase people's interest in the product, and thus have a positive impact on the oligosaccharides of Hericium erinaceus as health food.
Collapse
Affiliation(s)
- Yang Gao
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun, China.,Jilin Province Key Lab of Macromolecule of Chinese Medicine, Changchun, China
| | - Wei Zheng
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Xulang Xiao
- Pharmacy Department, Kangping County People's Hospital, Shenyang, China
| | - Miaomiao Gao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Qipin Gao
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun, China.,Jilin Province Key Lab of Macromolecule of Chinese Medicine, Changchun, China
| | - Duoduo Xu
- Jilin Institute of Ginseng Science, Changchun University of Chinese Medicine, Changchun, China.,Key Laboratory of Pharmacodynamic Constituents of Dao-di Herbs in Changbai Mountain, Changchun, China
| |
Collapse
|
18
|
Tsai YC, Lin YC, Huang CC, Villaflores OB, Wu TY, Huang SM, Chin TY. Hericium erinaceus Mycelium and Its Isolated Compound, Erinacine A, Ameliorate High-Fat High-Sucrose Diet-Induced Metabolic Dysfunction and Spatial Learning Deficits in Aging Mice. J Med Food 2019; 22:469-478. [DOI: 10.1089/jmf.2018.4288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yun-Chieh Tsai
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Lin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | | | | | - Tzong-Yuan Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Shih-Ming Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Ting-Yu Chin
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
19
|
Emami F, Banstola A, Vatanara A, Lee S, Kim JO, Jeong JH, Yook S. Doxorubicin and Anti-PD-L1 Antibody Conjugated Gold Nanoparticles for Colorectal Cancer Photochemotherapy. Mol Pharm 2019; 16:1184-1199. [PMID: 30698975 DOI: 10.1021/acs.molpharmaceut.8b01157] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related death worldwide. The prognosis and overall survival of CRC are known to be significantly correlated with the overexpression of PD-L1. Since combination therapies can significantly improve therapeutic efficacy, we constructed doxorubicin (DOX) conjugated and anti-PD-L1 targeting gold nanoparticles (PD-L1-AuNP-DOX) for the targeted chemo-photothermal therapy of CRC. DOX and anti-PD-L1 antibody were conjugated to the α-terminal end group of lipoic acid polyethylene glycol N-hydroxysuccinimide (LA-PEG-NHS) using an amide linkage, and PD-L1-AuNP-DOX was constructed by linking LA-PEG-DOX, LA-PEG-PD-L1, and a short PEG chain on the surface of AuNP using thiol-Au covalent bonds. Physicochemical characterizations and biological studies of PD-L1-AuNP-DOX were performed in the presence of near-infrared (NIR) irradiation (biologic studies were conducted using cellular uptake, apoptosis, and cell cycle assays in CT-26 cells). PD-L1-AuNP-DOX (40.0 ± 3.1 nm) was successfully constructed and facilitated the efficient intracellular uptake of DOX as evidenced by pronounced apoptotic effects (66.0%) in CT-26 cells. PD-L1-AuNP-DOX treatment plus NIR irradiation significantly and synergistically suppressed the in vitro proliferation of CT-26 cells by increasing apoptosis and cell cycle arrest. The study demonstrates that PD-L1-AuNP-DOX in combination with synergistic targeted chemo-photothermal therapy has a considerable potential for the treatment of localized CRC.
Collapse
Affiliation(s)
- Fakhrossadat Emami
- College of Pharmacy , Tehran University of Medical Science , Tehran , Iran
| | - Asmita Banstola
- College of Pharmacy , Keimyung University , Daegu 42601 , Republic of Korea
| | - Alireza Vatanara
- College of Pharmacy , Tehran University of Medical Science , Tehran , Iran
| | - Sooyeon Lee
- College of Pharmacy , Keimyung University , Daegu 42601 , Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy , Yeungnam University , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy , Yeungnam University , Gyeongsan , Gyeongbuk 38541 , Republic of Korea
| | - Simmyung Yook
- College of Pharmacy , Keimyung University , Daegu 42601 , Republic of Korea
| |
Collapse
|
20
|
Mazumder A, Assawapanumat W, Dwivedi A, Reabroi S, Chairoungdua A, Nasongkla N. Glucose targeted therapy against liver hepatocellular carcinoma: In vivo study. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Effects of Atmospheric and Room Temperature Plasma (ARTP) Mutagenesis on Physicochemical Characteristics and Immune Activity In Vitro of Hericium erinaceus Polysaccharides. Molecules 2019; 24:molecules24020262. [PMID: 30641994 PMCID: PMC6358873 DOI: 10.3390/molecules24020262] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 12/04/2022] Open
Abstract
The polysaccharide is the main active substance contained in Hericium erinaceus and is commonly used in the treatment of neurasthenia, tumors, and digestive diseases. Six intracellular polysaccharide components were obtained from H. erinaceus fruiting bodies cultivated by ARTP (atmospheric and room temperature plasma) mutagenic strain (321) and the original strain (0605), respectively. This study was designed to investigate the physicochemical characteristics of these polysaccharide components and their potential immunomodulatory activities on RAW264.7 macrophages. The results showed that the yield of fruiting body cultivated by mutated strain increased by 22% and the polysaccharide content improved by 16% compared with the original one owing to ARTP mutagenesis. The molecular weight distribution and the monosaccharide compositions of polysaccharide components from H. erinaceus induced by ARTP mutagenesis were significantly different from that of the original one. The NO, IL-6, IL-10, IL-1β, and TNF-α production activities of macrophages were enhanced by stimulation of 20% ethanol precipitated polysaccharides from H. erinaceus induced by ARTP mutagenesis. These results indicated that ARTP is an efficient and practical method for high polysaccharide content breeding of the H. erinaceus strain and this provided a reference for obtaining high quality resources and healthy product development from H. erinaceus.
Collapse
|
22
|
Effects of Heat Treatment on the Structural Characteristics and Antitumor Activity of Polysaccharides from Grifola frondosa. Appl Biochem Biotechnol 2018; 188:481-490. [DOI: 10.1007/s12010-018-02936-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
|
23
|
Zhu B, He H, Hou T. A Comprehensive Review of Corn Protein-derived Bioactive Peptides: Production, Characterization, Bioactivities, and Transport Pathways. Compr Rev Food Sci Food Saf 2018; 18:329-345. [DOI: 10.1111/1541-4337.12411] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Biyang Zhu
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| | - Hui He
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| | - Tao Hou
- College of Food Science and Technology; Huazhong Agricultural Univ.; Wuhan 430070 China
- Key Lab of Environment Correlative Dietology (Huazhong Agricultural Univ.); Ministry of Education; Wuhan 43000 China
| |
Collapse
|
24
|
Wang XY, Zhang DD, Yin JY, Nie SP, Xie MY. Recent developments in Hericium erinaceus polysaccharides: extraction, purification, structural characteristics and biological activities. Crit Rev Food Sci Nutr 2018; 59:S96-S115. [DOI: 10.1080/10408398.2018.1521370] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiao-Yin Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Duo-duo Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Wu P, Meng X, Zheng H, Zeng Q, Chen T, Wang W, Zhang X, Su J. Kaempferol Attenuates ROS-Induced Hemolysis and the Molecular Mechanism of Its Induction of Apoptosis on Bladder Cancer. Molecules 2018; 23:molecules23102592. [PMID: 30309003 PMCID: PMC6222750 DOI: 10.3390/molecules23102592] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
Bladder cancer has become the most common malignant urinary carcinoma. Studies have shown that significant antioxidant and bladder cancer-fighting properties of several plant-based diets like Psidium guajava, ginger and amomum, are associated with their high kaempferol content. In this paper, we evaluated the antioxidant and anticancer activities of kaempferol and its mechanism of induction to apoptosis on bladder cancer cells. Our findings demonstrated that kaempferol showed an obvious radical scavenging activity in erythrocytes damaged by oxygen. Kaempferol promoted antioxidant enzymes, inhibited ROS generation and lipid peroxidation and finally prevented the occurrence of hemolysis. Additionally, kaempferol exhibited a strong inhibitory effect on bladder cancer cells and high safety on normal bladder cells. At the molecular level, kaempferol suppressed EJ bladder cancer cell proliferation by inhibiting the function of phosphorylated AKT (p-AKT), CyclinD1, CDK4, Bid, Mcl-1 and Bcl-xL, and promoting p-BRCA1, p-ATM, p53, p21, p38, Bax and Bid expression, and finally triggering apoptosis and S phase arrest. We found that Kaempferol exhibited strong anti-oxidant activity on erythrocyte and inhibitory effects on the growth of cancerous bladder cells through inducing apoptosis and S phase arrest. These findings suggested that kaempferol might be regarded as a bioactive food ingredient to prevent oxidative damage and treat bladder cancer.
Collapse
Affiliation(s)
- Ping Wu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Xiaofeng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Huade Zheng
- Department of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Qin Zeng
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China.
| | - Wen Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| | - Xia Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jianyu Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
26
|
Anticancer and other therapeutic relevance of mushroom polysaccharides: A holistic appraisal. Biomed Pharmacother 2018; 105:377-394. [DOI: 10.1016/j.biopha.2018.05.138] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 11/17/2022] Open
|
27
|
Wu D, Zhao Y, Fu S, Zhang J, Wang W, Yan Z, Guo H, Liu A. Seleno-short-chain chitosan induces apoptosis in human breast cancer cells through mitochondrial apoptosis pathway in vitro. Cell Cycle 2018; 17:1579-1590. [PMID: 29895197 DOI: 10.1080/15384101.2018.1464845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and -3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway.
Collapse
Affiliation(s)
- Di Wu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Yana Zhao
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Shengnan Fu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Jianbo Zhang
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Wenhang Wang
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Zhexian Yan
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Heng Guo
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| | - Anjun Liu
- a Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology , Tianjin University of Science and Technology , Tianjin , PR , China
| |
Collapse
|
28
|
Antitumor effects of seleno-β-lactoglobulin (Se-β-Lg) against human gastric cancer MGC-803 cells. Eur J Pharmacol 2018; 833:109-115. [DOI: 10.1016/j.ejphar.2018.05.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
|
29
|
Zeng X, Ling H, Yang J, Chen J, Guo S. Proteome analysis provides insight into the regulation of bioactive metabolites in Hericium erinaceus. Gene 2018; 666:108-115. [PMID: 29738838 DOI: 10.1016/j.gene.2018.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hericium erinaceus, a famous edible mushroom, is also a well-known traditional medicinal fungus. To date, a large number of bioactive metabolites with antitumor, antibacterial, and immune-boosting effects were isolated from the free-living mycelium and fruiting body of H. erinaceus. OBJECTIVE Here we used the proteomic approach to explore proteins involved in the regulation of bioactive metabolites, including terpenoid, polyketide, sterol and etc. RESULTS: Using mass spectrometry, a total of 2543 unique proteins were identified using H. erinaceus genome, of which 2449, 1855, 1533 and 690 proteins were successfully annotated in Nr, KOG, KEGG and GO databases. Among them, 722 proteins were differentially expressed (528 up- and 194 down-regulated) in fruiting body compared with mycelium. Most of differentially expressed proteins were putatively involved in energy metabolism, molecular signaling, and secondary metabolism. Additionally, numerous proteins involved in terpenoid, polyketide, and sterol biosynthesis were identified. Our data revealed that proteins involved in polyketide biosynthesis were up-regulated in the fruiting body, while some proteins in mevalonate (MEP) pathway from terpenoid biosynthesis were generally up-regulated in mycelium. CONCLUSIONS The present study suggested that the differential regulation of biosynthesis genes could produce various bioactive metabolites with pharmacological effects in H. erinaceus.
Collapse
Affiliation(s)
- Xu Zeng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, PR China
| | - Hong Ling
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, PR China
| | - Jianwen Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, PR China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, PR China
| | - Shunxing Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, 100193, PR China.
| |
Collapse
|
30
|
Wu F, Zhou C, Zhou D, Ou S, Zhang X, Huang H. Structure characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its immunomodulatory activities. Food Funct 2018; 9:294-306. [DOI: 10.1039/c7fo01389b] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hericium erinaceus polysaccharide (HEP-S) can significantly stimulate the immunomodulatory activity on murine macrophages and spleen lymphocytes.
Collapse
Affiliation(s)
- Fangfang Wu
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| | - Chunhui Zhou
- Guangdong Apollo Group Co
- Ltd
- Guangzhou 510665
- China
| | - Dandan Zhou
- Guangdong Apollo Group Co
- Ltd
- Guangzhou 510665
- China
| | - Shiyi Ou
- Department of Food Science and Engineering
- Jinan University
- Guangzhou 510632
- China
| | - Xiaoai Zhang
- Agrobiological Gene Research Center
- Guangdong Academy of Agricultural Sciences
- Guangzhou 510640
- China
| | - Huihua Huang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510641
- China
| |
Collapse
|
31
|
Gou C, Wang J, Wang Y, Dong W, Shan X, Lou Y, Gao Y. Hericium caput-medusae (Bull.:Fr.) Pers. polysaccharide enhance innate immune response, immune-related genes expression and disease resistance against Aeromonas hydrophila in grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 72:604-610. [PMID: 29146446 DOI: 10.1016/j.fsi.2017.11.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/18/2017] [Accepted: 11/12/2017] [Indexed: 06/07/2023]
Abstract
The objective was to add 0, 400, 800 or 1200 mg/kg of Hericium caput-medusae polysaccharide (HCMP) to the basal diet of grass carp (Ctenopharyngodon idella) and determine effects on humoral innate immunity, expression of immune-related genes and disease resistance. Adding HCMP enhanced (P < 0.05) bactericidal activity at 1, 2 and 3 weeks and also lysozyme activity, complement C3, and SOD activity at 2 and 3 weeks. Supplementing 800 or 1200 mg/kg of HCMP for 2 or 3 weeks increased (P < 0.05) serum concentrations of total protein, albumin and globulin. Two immune-related genes (IL-1β and TNF-α) were up-regulated (P < 0.05) in HCMP supplemented groups given 800 or 1200 mg/kg HCMP after 2 and 3 weeks of feeding. Expression of anti-inflammatory cytokine IL-10 was down-regulated (P < 0.05) after receiving 800 or 1200 mg/kg HCMP for 2 or 3 weeks. Fish fed 800 mg/kg HCMP had maximal disease resistance against Aeromonas hydrophila (65.4%). In conclusion, HCMP enhanced immune response and expression of immune-related genes and increased disease resistance against Aeromonas hydrophila in grass carp, with greatest effects in fish given 800 mg/kg HCMP for 3 weeks.
Collapse
Affiliation(s)
- Changlong Gou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Jiazhen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yuqiong Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlong Dong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xiaofeng Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Yunhang Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin 130118, China.
| |
Collapse
|
32
|
Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Zhang J, Li J, Shi Z, Yang Y, Xie X, Lee SM, Wang Y, Leong KW, Chen M. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater 2017; 58:349-364. [PMID: 28455219 DOI: 10.1016/j.actbio.2017.04.029] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 01/24/2023]
Abstract
Co-delivery of multiple drugs with complementary anticancer mechanisms by nano-carriers offers an effective strategy to treat cancer. The combination of drugs with pro-apoptotic and anti-angiogenic activities is potentially effective in treating human hepatocellular carcinoma (HCC). Herein, we developed a co-delivery system for doxorubicin (Dox), a pro-apoptotic drug, and curcumin (Cur), a potent drug for antiangiogenesis, in pH-sensitive nanoparticles (NPs) constituted with amphiphilic poly(β-amino ester) copolymer. Dox & Cur co-loaded NPs ((D+C)/NPs) were prepared with optimized drug ratio, showing low polydispersity, high encapsulation efficiency, and enhanced release in the acidic environment of cancer cells. Furthermore, enhanced cellular internalization of cargoes delivered from (D+C)/NPs were observed in human liver cancer SMMC 7721 cells and human umbilical vein endothelial cells (HUVECs) compared to the use of free drugs. The (D+C)/NPs induced a high rate of apoptosis in SMMC 7721 cells through decreased mitochondrial membrane potential. Additionally, (D+C)/NPs exhibited stronger anti-angiogenic effects including inhibition of HUVEC proliferation, migration, invasion, and tube formation mediated VEGF pathway modulation in vitro and in vivo. Taken together, encapsulation of the pro-apoptotic drug Dox and antiangiogenic agent Cur in pH-sensitive NPs provides a promising strategy to effectively inhibit HCC progression in a synergistic manner. STATEMENT OF SIGNIFICANCE The combination of multiple drugs has been demonstrated to be more effective than single treatment. However, the different physicochemical and pharmacokinetic profiles of each drug render optimal delivery challenging. In view of the great delivery advantage of nanocarriers to unify the multiple drugs in vivo, stimulus-responsive nano-carriers are more crucial to increase efficacy and reduce toxicity from off-target exposure. Therefore, herein the pH-sensitive nanoparticles, composed by d-α-tocopheryl polyethylene glycol 1000-block-poly (β-amino ester) (TPGS-PAE) polymers, have been fabricated for doxorubicin (Dox) and curcumin (Cur) co-delivery, which exhibited diverse anticancer approaches, i.e. pro-apoptosis and antiangiogenesis. The precise intracellular target site and effective drug combination concentration result in the enhanced antitumor efficiency and the reduced systematic toxicity of Dox. The co-encapsulation of the pro-apoptotic drug and antiangiogenic agent in pH-sensitive NPs provides a promising strategy to effectively inhibit malignant neoplasm progression in a synergistic manner.
Collapse
|
34
|
Sheng X, Yan J, Meng Y, Kang Y, Han Z, Tai G, Zhou Y, Cheng H. Immunomodulatory effects of Hericium erinaceus derived polysaccharides are mediated by intestinal immunology. Food Funct 2017; 8:1020-1027. [PMID: 28266682 DOI: 10.1039/c7fo00071e] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study was aimed at investigating the immunomodulating activity of Hericium erinaceus polysaccharide (HEP) in mice, by assessing splenic lymphocyte proliferation (cell-mediated immunity), serum hemolysin levels (humoral immunity), phagocytic capacity of peritoneal cavity phagocytes (macrophage phagocytosis), and NK cell activity. ELISA of immunoglobulin A (SIgA) in the lamina propria, and western blotting of small intestinal proteins were also performed to gain insight into the mechanism by which HEP affects the intestinal immune system. Here, we report that HEP improves immune function by functionally enhancing cell-mediated and humoral immunity, macrophage phagocytosis, and NK cell activity. In addition, HEP was found to upregulate the secretion of SIgA and activate the MAPK and AKT cellular signaling pathways in the intestine. In conclusion, all these results allow us to postulate that the immunomodulatory effects of HEP are most likely attributed to the effective regulation of intestinal mucosal immune activity.
Collapse
Affiliation(s)
- Xiaotong Sheng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Jingmin Yan
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Yue Meng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Yuying Kang
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Zhen Han
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Guihua Tai
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Yifa Zhou
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| | - Hairong Cheng
- Jilin Province Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, PR China.
| |
Collapse
|
35
|
Zhao Y, Zhang S, Wang P, Fu S, Wu D, Liu A. Seleno-short-chain chitosan induces apoptosis in human non-small-cell lung cancer A549 cells through ROS-mediated mitochondrial pathway. Cytotechnology 2017; 69:851-863. [PMID: 28421411 DOI: 10.1007/s10616-017-0098-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/09/2017] [Indexed: 01/05/2023] Open
Abstract
Seleno-short-chain chitosan (SSCC) is a synthesized chitosan derivative. In this study, antitumor activity and underlying mechanism of SSCC on human non-small-cell lung cancer A549 cells were investigated in vitro. The MTT assay showed that SSCC could inhibit cell viability in a dose- and time-dependent manner, and 200 μg/ml SSCC exhibited significantly toxic effects on A549 cells. The cell cycle assay showed that SSCC triggered S phase cell cycle arrest in a dose- and time-dependent manner, which was related to a downregulation of S phase associated cyclin A. The DAPI staining and Annexin V-FITC/PI double staining identified that the SSCC could induce A549 cells apoptosis. Further studies found that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) by DCFH-DA and Rhodamin 123 staining, respectively. Meanwhile, free radical scavengers N-acetyl-L-cysteine (NAC) pretreatment confirmed that SSCC-induced A549 cells apoptosis was associated with ROS generation. Furthermore, real-time PCR and western blot assay showed that SSCC up-regulated Bax and down-regulated Bcl-2, subsequently incited the release of cytochrome c from mitochondria to cytoplasm, activated the increase of cleaved-caspase 3 and finally induced A549 cells apoptosis in vitro. In general, the present study demonstrated that SSCC induced A549 cells apoptosis via ROS-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Yana Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Shaojing Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Pengfei Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Shengnan Fu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Di Wu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
36
|
He X, Wang X, Fang J, Chang Y, Ning N, Guo H, Huang L, Huang X, Zhao Z. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s Mane) mushroom: A review. Int J Biol Macromol 2017; 97:228-237. [DOI: 10.1016/j.ijbiomac.2017.01.040] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 01/25/2023]
|
37
|
Zhao Y, Sun H, Ma L, Liu A. Polysaccharides from the peels of Citrus aurantifolia induce apoptosis in transplanted H22 cells in mice. Int J Biol Macromol 2017; 101:680-689. [PMID: 28363658 DOI: 10.1016/j.ijbiomac.2017.03.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 12/19/2022]
Abstract
In this study, an acidic polysaccharide (CAs) was extracted and purified from the peels of Citrus aurantifolia by Sephadex G-150. HPGPC showed the molecular weight of CAs was about 7.94×106Da. Ion chromatography (IC) analysis showed CAs was mainly composed of rhamnose (Rha), arabinose (Ara), galactose (Gal), glucose (Glu), mannose (Man) and galacturonic acid (GalA), with the molar ratio of 0.67: 7.67: 10.83: 3.83: 4.00: 1.00. 1H and 13C NMR spectra of CAs also identified the presence of five kinds of monosaccharides and galacturonic acid. Moreover, the antitumor activity of CAs was evaluated in mice transplanted H22 hepatoma cells. It was shown that CAs dose-dependently suppressed tumor cells growth with few toxic effects on host. Further investigations revealed that CAs increased the levels of tumor infiltrating CD8+ T lymphocytes, blocked tumor cell cycle in S phase, down-regulated anti-apoptotic protein Bcl-xL and Mcl-1 expression, and led to the activation of caspase 3. These results suggested that CAs had capacity of inducing tumor cells apoptosis in vivo, and it supported considering CAs as an adjuvant reagent in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Yana Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hongyan Sun
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ling Ma
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Anjun Liu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
38
|
Polysaccharides isolated from liquid culture broth of Inonotus obliquus inhibit the invasion of human non-small cell lung carcinoma cells. BIOTECHNOL BIOPROC E 2017. [DOI: 10.1007/s12257-016-0458-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Anti-obesity activity of Yamabushitake (Hericium erinaceus) powder in ovariectomized mice, and its potentially active compounds. J Nat Med 2017; 71:482-491. [PMID: 28181079 DOI: 10.1007/s11418-017-1075-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 01/14/2017] [Indexed: 10/20/2022]
Abstract
Hericium erinaceus (H. erinaceus) improves the symptoms of menopause. In this study, using ovariectomized mice as a model of menopause, we investigated the anti-obesity effect of this mushroom in menopause. Mice fed diets containing H. erinaceus powder showed significant decreases in the amounts of fat tissue, plasma levels of total cholesterol, and leptin. To determine the mechanism, groups of mice were respectively fed a diet containing H. erinaceus powder, a diet containing ethanol extract of H. erinaceus, and a diet containing a residue of the extract. As a result, H. erinaceus powder was found to increase fecal lipid levels in excreted matter. Further in vitro investigation showed that ethanol extract inhibited the activity of lipase, and four lipase-inhibitory compounds were isolated from the extract: hericenone C, hericenone D, hericenone F, and hericenone G. In short, we suggest that H. erinaceus has an anti-obesity effect during menopause because it decreases the ability to absorb lipids.
Collapse
|
40
|
Zhou LW, Dai YC. Taxonomy and phylogeny of wood-inhabiting hydnoid species in Russulales: two new genera, three new species and two new combinations. Mycologia 2017; 105:636-49. [DOI: 10.3852/12-011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Li-Wei Zhou
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, P.R. China
| | - Yu-Cheng Dai
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, P.R. China
| |
Collapse
|
41
|
Lee KC, Kuo HC, Shen CH, Lu CC, Huang WS, Hsieh MC, Huang CY, Kuo YH, Hsieh YY, Teng CC, Lee LY, Tung SY. A proteomics approach to identifying novel protein targets involved in erinacine A-mediated inhibition of colorectal cancer cells' aggressiveness. J Cell Mol Med 2016; 21:588-599. [PMID: 27709782 PMCID: PMC5323879 DOI: 10.1111/jcmm.13004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/31/2016] [Indexed: 12/20/2022] Open
Abstract
Erinacine A, a major active component of a diterpenoid derivative isolated from Hericium erinaceus mycelium, has been demonstrated to exert anticancer effects. Herein, we present an investigation of the molecular mechanism of erinacine A induction associated with cancer cells’ aggressive status and death. A proteomic approach was used to purify and identify the differentially expressed proteins following erinacine A treatment and the mechanism of its action in apoptotic and the targets of erinacine A. Our results demonstrate that erinacine A treatment of HCT‐116 and DLD‐1 cells increased cell cytotoxicity and reactive oxygen species (ROS) production as well as decreased cell proliferation and invasiveness. Ten differentially displayed proteins were determined and validated in vitro and in vivo between the erinacine A‐treated and untreated groups. In addition, erinacine A time‐dependent induction of cell death and inhibitory invasiveness was associated with sustained phosphorylation of the PI3K/mTOR/p70S6K and ROCK1/LIMK2/Cofilin pathways. Furthermore, we demonstrated that erinacine A–induced HCT‐116 and DLD‐1 cells viability and anti‐invasion properties by up‐regulating the activation of PI3K/mTOR/p70S6K and production of ROS. Experiments involving specific inhibitors demonstrated that the differential expression of cofilin‐1 (COFL1) and profilin‐1 (PROF1) during erinacine A treatment could be involved in the mechanisms of HCT‐116 and DLD‐1 cells death and decreased aggressiveness, which occurred via ROCK1/LIMK2/Cofilin expression, with activation of the PI3K/mTOR/p70S6K signalling pathway. These findings elucidate the mechanism of erinacine A inhibiting the aggressive status of cells by activating PI3K/mTOR/p70S6K downstream signalling and the novel protein targets COF1 and PROF1; this could be a good molecular strategy to limit the aggressiveness of CRC cells.
Collapse
Affiliation(s)
- Ko-Chao Lee
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsing-Chun Kuo
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan.,Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Chronic Diseases and Health Promotion Research Center, CGUST, Chiayi, Taiwan
| | - Chien-Heng Shen
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Chang Lu
- Division of Colorectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wen-Shih Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital Chiayi, Chiayi, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Meng-Chiao Hsieh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital Chiayi, Chiayi, Taiwan
| | - Cheng-Yi Huang
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital Chiayi, Chiayi, Taiwan
| | - Yi-Hung Kuo
- Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital Chiayi, Chiayi, Taiwan
| | - Yung-Yu Hsieh
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Chuan Teng
- Department of Nursing, Chang Gung University of Science and Technology, Chiayi, Taiwan
| | - Li-Ya Lee
- Grape King Biotechnology Inc (Grape King Bio Ltd.), Zhong-Li, Taiwan
| | - Shui-Yi Tung
- Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
42
|
Meng X, Liang H, Luo L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr Res 2016; 424:30-41. [DOI: 10.1016/j.carres.2016.02.008] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 02/02/2023]
|
43
|
Cui Y, Lu P, Song G, Liu Q, Zhu D, Liu X. Involvement of PI3K/Akt, ERK and p38 signaling pathways in emodin-mediated extrinsic and intrinsic human hepatoblastoma cell apoptosis. Food Chem Toxicol 2016; 92:26-37. [PMID: 27032576 DOI: 10.1016/j.fct.2016.03.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 01/05/2023]
Abstract
As a natural anthraquinone derivative, 1,3,8-trihydroxy-6-methylanthraquinone, known as emodin, has recently been reported to possess potential chemopreventive capacity, but the underlying molecular mechanism of its hepatocyte toxicity remains poorly clarified. The present research indicated that emodin targeted HepG2 cells without being cytotoxic to primary human hepatocyte cells in comparison with chrysophanol and rhein. The anti-proliferative effect of emodin was ascribed to occurrence of apoptosis, which characterized by higher ethidium bromide signal, brighter DAPI fluorescence, cleavages of procaspase-3 and poly (ADP-ribose) polymerase as well as quantitative result from Annexin V-FITC/PI double staining. Furthermore, emodin improved Bax/Bcl-2 ratio, elicited disruption of mitochondrial membrane potential and promoted efflux of cytochrome c to cytosol, indicative of features of mitochondria-dependent apoptotic signals. Emodin concurrently led to activations of Fas, Fas-L, caspase-8 and tBid, which provoked death receptor apoptotic signals. Notably, activated tBid relayed the Fas apoptotic signal to the mitochondrial pathway. Besides, emodin effectively attenuated phosphorylations of Akt and ERK and promoted phosphorylation of p38. Inhibitions of PI3K/Akt and ERK and activation of p38 mediated emodin-induced apoptosis through modulating the mitochondrial pathway and/or death receptor pathway. Additionally, there was a cross-talk between PI3K/Akt and MAPKs pathways in emodin-induced apoptosis.
Collapse
Affiliation(s)
- Yuting Cui
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Peiran Lu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ge Song
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qian Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Di Zhu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
44
|
Hericium erinaceus mycelium and its isolated erinacine A protection from MPTP-induced neurotoxicity through the ER stress, triggering an apoptosis cascade. J Transl Med 2016; 14:78. [PMID: 26988860 PMCID: PMC4797317 DOI: 10.1186/s12967-016-0831-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/05/2016] [Indexed: 11/10/2022] Open
Abstract
Background Hericium erinaceus is an edible mushroom; its various pharmacological effects which have been investigated. This study aimed to demonstrate whether efficacy of oral administration of H. erinaceus mycelium (HEM) and its isolated diterpenoid derivative, erinacine A, can act as an anti-neuroinflammatory agent to bring about neuroprotection using an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model of Parkinson’s disease, which results in motor disturbances, in addition to elucidating the mechanisms involved. Methods Mice were treated with and without HEM or erinacine A, after MPTP injection for brain injuries by the degeneration of dopaminergic nigrostriatal neurons. The efficacy of oral administration of HEM improved MPTP-induced loss of tyrosine hydroxylase positive neurons and brain impairment in the substantia nigra pars compacta as measured by brain histological examination. Results Treatment with HEM reduced MPTP-induced dopaminergic cell loss, apoptotic cell death induced by oxidative stress, as well as the level of glutathione, nitrotyrosine and 4-hydroxy-2-nonenal (4-HNE). Furthermore, HEM reversed MPTP-associated motor deficits, as revealed by the analysis of rotarod assessment. Our results demonstrated that erinacine A decreases the impairment of MPP-induced neuronal cell cytotoxicity and apoptosis, which were accompanied by ER stress-sustained activation of the IRE1α/TRAF2, JNK1/2 and p38 MAPK pathways, the expression of C/EBP homologous protein (CHOP), IKB-β and NF-κB, as well as Fas and Bax. Conclusion These physiological and brain histological changes provide HEM neuron-protective insights into the progression of Parkinson’s disease, and this protective effect seems to exist both in vivo and in vitro.
Collapse
|
45
|
Zhou Y, Li Y, Zhou T, Zheng J, Li S, Li HB. Dietary Natural Products for Prevention and Treatment of Liver Cancer. Nutrients 2016; 8:156. [PMID: 26978396 PMCID: PMC4808884 DOI: 10.3390/nu8030156] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023] Open
Abstract
Liver cancer is the most common malignancy of the digestive system with high death rate. Accumulating evidences suggests that many dietary natural products are potential sources for prevention and treatment of liver cancer, such as grapes, black currant, plum, pomegranate, cruciferous vegetables, French beans, tomatoes, asparagus, garlic, turmeric, ginger, soy, rice bran, and some edible macro-fungi. These dietary natural products and their active components could affect the development and progression of liver cancer in various ways, such as inhibiting tumor cell growth and metastasis, protecting against liver carcinogens, immunomodulating and enhancing effects of chemotherapeutic drugs. This review summarizes the potential prevention and treatment activities of dietary natural products and their major bioactive constituents on liver cancer, and discusses possible mechanisms of action.
Collapse
Affiliation(s)
- Yue Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Tong Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
46
|
Inhibitory effect of Erinacines A on the growth of DLD-1 colorectal cancer cells is induced by generation of reactive oxygen species and activation of p70S6K and p21. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
47
|
FURUTA S, KUWAHARA R, HIRAKI E, OHNUKI K, YASUO S, SHIMIZU K. Hericium erinaceus extracts alter behavioral rhythm in mice . Biomed Res 2016; 37:227-32. [DOI: 10.2220/biomedres.37.227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Shoko FURUTA
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University
| | - Rika KUWAHARA
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University
| | - Eri HIRAKI
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University
| | - Koichiro OHNUKI
- Department of Biological and Environmental Chemistry, Kinki University
| | - Shinobu YASUO
- Department of Bioresource Sciences, Faculty of Agriculture, Kyushu University
| | - Kuniyoshi SHIMIZU
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University
| |
Collapse
|
48
|
Thongbai B, Rapior S, Hyde KD, Wittstein K, Stadler M. Hericium erinaceus, an amazing medicinal mushroom. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1105-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
49
|
Friedman M. Chemistry, Nutrition, and Health-Promoting Properties of Hericium erinaceus (Lion's Mane) Mushroom Fruiting Bodies and Mycelia and Their Bioactive Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7108-23. [PMID: 26244378 DOI: 10.1021/acs.jafc.5b02914] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The culinary and medicinal mushroom Hericium erinaceus is widely consumed in Asian countries, but apparently not in the United States, for its nutritional and health benefits. To stimulate broader interest in the reported beneficial properties, this overview surveys and consolidates the widely scattered literature on the chemistry (isolation and structural characterization) of polysaccharides and secondary metabolites such as erinacines, hericerins, hericenones, resorcinols, steroids, mono- and diterpenes, and volatile aroma compounds, nutritional composition, food and industrial uses, and exceptional nutritional and health-promoting aspects of H. erinaceus. The reported health-promoting properties of the mushroom fruit bodies, mycelia, and bioactive pure compounds include antibiotic, anticarcinogenic, antidiabetic, antifatigue, antihypertensive, antihyperlipodemic, antisenescence, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties and improvement of anxiety, cognitive function, and depression. The described anti-inflammatory, antioxidative, and immunostimulating properties in cells, animals, and humans seem to be responsible for the multiple health-promoting properties. A wide range of research advances and techniques are described and evaluated. The collated information and suggestion for further research might facilitate and guide further studies to optimize the use of the whole mushrooms and about 70 characterized actual and potential bioactive secondary metabolites to help prevent or treat human chronic, cognitive, and neurological diseases.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan Street, Albany, California 94710, United States
| |
Collapse
|
50
|
An evaluation system for characterization of polysaccharides from the fruiting body of Hericium erinaceus and identification of its commercial product. Carbohydr Polym 2015; 124:201-7. [DOI: 10.1016/j.carbpol.2015.02.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/05/2015] [Accepted: 02/06/2015] [Indexed: 11/19/2022]
|