1
|
Sharma G, Badruddeen, Akhtar J, Khan MI, Ahmad M, Sharma PK. "Methyl jasmonate: bridging plant defense mechanisms and human therapeutics". NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03752-x. [PMID: 39847055 DOI: 10.1007/s00210-024-03752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
A volatile organic substance produced from jasmonic acid, methyl jasmonate (MJ/MeJA), is an important plant hormone involved in stress responses and plant defense. Apart from its role in plants, MJ has garnered significant attention because of its pharmacological effects and possible therapeutic use in human health. This thorough analysis looks into the many biological actions of MJ, such as its antioxidant, anti-inflammatory, and anti-cancer effects. The underlying mechanism of these actions is examined, emphasizing MJ's ability to modulate important signaling pathways, cause cancer cells to undergo apoptosis, and boost immunological responses. Furthermore, MJ's capacity to manage long-term illnesses like cancer and neurological conditions like Parkinson's and Alzheimer's is examined. Preclinical and clinical research are beginning to provide evidence that MJ may be a useful medicinal drug. Nevertheless, more research is needed to fully understand its mode of action, enhance its administration methods, and evaluate its efficacy and safety in humans. This review highlights MJ's therapeutic promise and supports earlier research into its pharmacological capabilities and possible medical applications. This abstract highlights methyl jasmonate's pharmacological effects and therapeutic potential by providing a concise overview of the main topics covered in a thorough review.
Collapse
Affiliation(s)
- Garima Sharma
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Badruddeen
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India.
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Irfan Khan
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Kursi Road, Lucknow, U.P., 226026, India
| | - Prakash Kumar Sharma
- Department of Anesthesiology, Hind Institute of Medical Sciences, Safedabad, Lucknow, U.P., 225001, India
| |
Collapse
|
2
|
Li B, Zu M, Jiang A, Cao Y, Wu J, Shahbazi MA, Shi X, Reis RL, Kundu SC, Xiao B. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials 2024; 307:122530. [PMID: 38493672 DOI: 10.1016/j.biomaterials.2024.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
The therapeutic efficacy of oral nanotherapeutics against colorectal cancer (CRC) is restricted by inadequate drug accumulation, immunosuppressive microenvironment, and intestinal microbiota imbalance. To overcome these challenges, we elaborately constructed 6-gingerol (Gin)-loaded magnetic mesoporous silicon nanoparticles and functionalized their surface with mulberry leaf-extracted lipids (MLLs) and Pluronic F127 (P127). In vitro experiments revealed that P127 functionalization and alternating magnetic fields (AMFs) promoted internalization of the obtained P127-MLL@Gins by colorectal tumor cells and induced their apoptosis/ferroptosis through Gin/ferrous ion-induced oxidative stress and magneto-thermal effect. After oral administration, P127-MLL@Gins safely passed to the colorectal lumen, infiltrated the mucus barrier, and penetrated into the deep tumors under the influence of AMFs. Subsequently, the P127-MLL@Gin (+ AMF) treatment activated antitumor immunity and suppressed tumor growth. We also found that this therapeutic modality significantly increased the abundance of beneficial bacteria (e.g., Bacillus and unclassified-c-Bacilli), reduced the proportions of harmful bacteria (e.g., Bacteroides and Alloprevotella), and increased lipid oxidation metabolites. Strikingly, checkpoint blockers synergistically improved the therapeutic outcomes of P127-MLL@Gins (+ AMF) against orthotopic and distant colorectal tumors and significantly prolonged mouse life spans. Overall, this oral therapeutic platform is a promising modality for synergistic treatment of CRC.
Collapse
Affiliation(s)
- Baoyi Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Aodi Jiang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yingui Cao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaxue Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Chemical Profiling, Antioxidant, Antiproliferative, and Antibacterial Potentials of Chemically Characterized Extract of Citrullus colocynthis L. Seeds. SEPARATIONS 2021. [DOI: 10.3390/separations8080114] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Citrullus colocynthis L. (C. colocynthis) is commonly known as colocynth. It belongs to the family Cucurbitaceae that is frequently used in alternative medicine in the north of Africa. The aim of the study: the present research was undertaken to investigate the chemical composition, antioxidant, antiproliferative, and antibacterial potentials of C. colocynthis seed extract. Material and methods: the chemical composition of C. colocynthis seed organic extract was characterized using gas chromatography/mass spectrometry (GC-MS). The antioxidant property was carried out using both β-carotene bleaching and DPPH assays. The antibacterial effect was effectuated using the agar disc diffusion method. The antiproliferative activity vs. human colorectal adenocarcinoma cell line (HT-29) and human breast adenocarcinoma cell line (MDA MB 231) were carried by WST-1 test. The chemical analysis showed the presence of interesting potentially bioactive compounds. The studied plant extract exhibited antioxidant potential with IC50 value of 2. 22 mg/mL (β-carotene bleaching) and 8.98 ± 0.619 mg/mL (DPPH). Concerning the antiproliferative activity, the seed extract was effective in MDA-MB-231 and HT-29 cancer cells with IC50 values 86.89 ± 3.395 and 242.1 ± 17.9 μg/mL, respectively, whilst the extract of Citrullus colocynthis seeds was non-toxic in healthy human dermal fibroblasts. Regarding the antibacterial test, the extract was effective in Gram-positive bacteria only. Conclusion: The outcome of this research indicated that the extracts from C. colocynthis seeds may compose a promising source with interesting compounds that can be used to fight cancer, free radicals damage, and bacterial infections.
Collapse
|
4
|
Ren B, Ye L, Gong J, Ren H, Ding Y, Chen X, Liu X, Lu P, Wei F, Xu W, Zheng Q, Li D. Alteronol Enhances the Anti-tumor Activity and Reduces the Toxicity of High-Dose Adriamycin in Breast Cancer. Front Pharmacol 2019; 10:285. [PMID: 31001113 PMCID: PMC6455060 DOI: 10.3389/fphar.2019.00285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/07/2019] [Indexed: 12/14/2022] Open
Abstract
The first-line chemotherapy drug adriamycin (ADM) is widely used for the treatment of breast cancer, but the acquired drug resistance and the normal tissue toxicity remain clinical challenges. Alteronol has been reported to exert wide-ranging anti-tumor activity. In this study, we firstly examined the synergistic anti-tumor effects and the underlying mechanisms of alteronol combined with ADM in breast cancer. We have found that the combination of alteronol and ADM significantly suppressed the expression levels of the cell cycle-related proteins (CDC2 and Cyclin B1) and induced cell cycle arrest at the G2/M phase, leading to cell proliferation inhibition in breast cancer 4T1 cells. Moreover, co-treatment of alteronol and ADM (i) remarkably activated p38 and JNK kinases, (ii) elevated ROS levels, (iii) triggered mitochondrial dysfunction, (iv) released cytochrome c into the cytoplasm, (v) upregulated apoptosis-related proteins, e.g., cleaved PARP, Bax, and cleaved caspase-3/9, and (vi) downregulated the expression of Bcl-2, followed by apoptosis. Furthermore, our in vivo studies showed that the low-dose combination of alteronol (2 mg/kg) and ADM (1 mg/kg) significantly inhibited tumor growth in tumor bearing mice, and the anti-tumor effect of the combination was the same as that of high-dose ADM (8 mg/kg). In addition, the low-dose combination group showed lower toxicities to major organs than the high-dose ADM group. Taken together, these data demonstrate that the low-dose combination of alteronol and ADM could notably improve the anti-tumor activity and have lower toxicities to major organs than those in high-dose ADM group.
Collapse
Affiliation(s)
- Boxue Ren
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Lei Ye
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Jianwei Gong
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, China
| | - Huanhuan Ren
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Yangfang Ding
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Xiaoyu Chen
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Xiaona Liu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Peng Lu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Fei Wei
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Wenjuan Xu
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| | - Qiusheng Zheng
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China
| | - Defang Li
- School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, China
| |
Collapse
|
5
|
Liu Q, Liu J, Fan S, Yang D, Wang H, Wang Y. Rapid discovery and global characterization of multiple components in corn silk using a multivariate data processing approach based on UHPLC coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry. J Sep Sci 2018; 41:4022-4030. [PMID: 30194802 DOI: 10.1002/jssc.201800605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/27/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022]
Abstract
Corn silk is an important traditional Chinese medicine which has been widely used as diuretic, antilithiasic, uricosuric, antiseptic, etc. for thousands of years. However, it is a pity that the chemical ingredients in corn silk, especially the constituents absorbed into blood, are unclear up to now. The aim of our study was to investigate the multiple components of corn silk in vitro and in vivo. In this present study, a sensitive and rapid method using ultra high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight tandem mass spectrometry and a multivariate data processing approach was established to detect the constituents of corn silk in vitro and in vivo. Consequently, total 41 ingredients in vitro and 19 of them absorbed into blood including luteolin, various C-glycosyl flavones, jasmonic acid, abscisic acid, gibberellin A, etc. were tentatively characterized in sequence. Furthermore, of particular importance, a kind of stable compound named C-glycosyl flavones is a great discovery in vivo, which can point the further pharmacological study target in future. In a word, this is the first serum pharmacochemistry study of corn silk, which played a critical role in exploring the pharmacological and effective data for further research.
Collapse
Affiliation(s)
- Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Jianhua Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Songjie Fan
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dezhu Yang
- Pharmacy School, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Huimin Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
6
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Russo A, Cardile V, Graziano ACE, Avola R, Bruno M, Rigano D. Involvement of Bax and Bcl-2 in Induction of Apoptosis by Essential Oils of Three Lebanese Salvia Species in Human Prostate Cancer Cells. Int J Mol Sci 2018; 19:292. [PMID: 29351194 PMCID: PMC5796237 DOI: 10.3390/ijms19010292] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is one of the most common forms of cancer in men, and research to find more effective and less toxic drugs has become necessary. In the frame of our ongoing program on traditionally used Salvia species from the Mediterranean Area, here we report the biological activities of Salvia aurea, S. judaica and S. viscosa essential oils against human prostate cancer cells (DU-145). The cell viability was measured by 3(4,5-dimethyl-thiazol-2-yl)2,5-diphenyl-tetrazolium bromide (MTT) test and lactate dehydrogenase (LDH) release was used to quantify necrosis cell death. Genomic DNA, caspase-3 activity, expression of cleaved caspase-9, B-cell lymphoma 2 (Bcl-2) and Bcl-2 associated X (Bax) proteins were analyzed in order to study the apoptotic process. The role of reactive oxygen species in cell death was also investigated. We found that the three essential oils, containing caryophyllene oxide as a main constituent, are capable of reducing the growth of human prostate cancer cells, activating an apoptotic process and increasing reactive oxygen species generation. These results suggest it could be profitable to further investigate the effects of these essential oils for their possible use as anticancer agents in prostate cancer, alone or in combination with chemotherapy agents.
Collapse
Affiliation(s)
- Alessandra Russo
- Department of Drug Sciences, University of Catania, V.le A. Doria 6, 95125 Catania, Italy.
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy.
| | - Adriana C E Graziano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy.
| | - Rosanna Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Via S. Sofia, 89, 95123 Catania, Italy.
| | - Maurizio Bruno
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, V.le delle Scienze, Parco d'Orleans II, 90128 Palermo, Italy.
| | - Daniela Rigano
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy.
| |
Collapse
|
8
|
Cardile V, Graziano ACE, Avola R, Piovano M, Russo A. Potential anticancer activity of lichen secondary metabolite physodic acid. Chem Biol Interact 2017; 263:36-45. [PMID: 28012710 DOI: 10.1016/j.cbi.2016.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 11/12/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023]
Abstract
Secondary metabolites present in lichens, which comprise aliphatic, cycloaliphatic, aromatic and terpenic compounds, are unique with respect to those of higher plants and show interesting biological and pharmacological activities. However, only a few of these compounds, have been assessed for their effectiveness against various in vitro cancer models. In the present study, we investigated the cytotoxicity of three lichen secondary metabolites (atranorin, gyrophoric acid and physodic acid) on A375 melanoma cancer cell line. The tested compounds arise from different lichen species collected in different areas of Continental and Antarctic Chile. The obtained results confirm the major efficiency of depsidones. In fact, depsides atranorin and gyrophoric acid, showed a lower activity inhibiting the melanoma cancer cells only at more high concentrations. Whereas the depsidone physodic acid, showed a dose-response relationship in the range of 6.25-50 μM concentrations in A375 cells, activating an apoptotic process, that probably involves the reduction of Hsp70 expression. Although the molecular mechanism, by which apoptosis is induced by physodic acid remains unclear, and of course further studies are needed, the results here reported confirm the promising biological properties of depsidone compounds, and may offer a further impulse to the development of analogues with more powerful efficiency against melanoma cells.
Collapse
Affiliation(s)
- V Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - A C E Graziano
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - R Avola
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, V.le A. Doria 6, 95125, Catania, Italy
| | - M Piovano
- Department of Chemistry, University Técnica Federico Santa Maria, Casilla 110-V, Valparaìso, Chile
| | - A Russo
- Department of Drug Sciences, Section of Biochemistry, University of Catania, V.le A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
9
|
Russo A, Cardile V, Graziano ACE, Rigano D, Aktumsek A, Zengin G, Senatore F. Effect of Three Centaurea Species Collected from Central Anatolia Region of Turkey on Human Melanoma Cells. Nat Prod Commun 2016; 11:275-278. [PMID: 27169173 DOI: 10.1177/1934578x1601100302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2025] Open
Abstract
Centaurea is the largest genus within the Asteraceae family. Many members of this genus are used in traditional folk medicine, such as Centaurea pulchella used to treat skin problems such as to resolve the abscess. Although biological activities of many Centaurea species have been investigated in different countries and Turkey, cytotoxic effect of C. patula, C. pulchella and C. tchihatcheffii has not been studied yet. Melanoma is one of the most invasive and deadly forms of skin cancer. Therefore, in an ongoing effort to identify new natural anticancer products for the treatment and/or prevention of melanoma cancer, the present study was undertaken to investigate the effect of these Centaurea species, collected from Central Anatolia region of Turkey on cell growth and death in human melanoma cell line, A375.The results revealed that all extracts were able to inhibit, after 48 h of treatment, the growth of cancer cells, that could be related to an overall action of the phenolic compounds present. In fact, C. pulchella, with the highest level of phenolics, showed a major activity followed by C. patula and C. tchihatcheffii. Our data also demonstrate that these natural products induce apoptotic cell death. In conclusion, the study of plant extracts for their cytotoxic and apoptotic properties has shown that medicinal herbs from Centaurea species might have also importance in the prevention and treatment of melanoma.
Collapse
|
10
|
Madrid A, Cardile V, González C, Montenegro I, Villena J, Caggia S, Graziano A, Russo A. Psoralea glandulosa as a potential source of anticancer agents for melanoma treatment. Int J Mol Sci 2015; 16:7944-7959. [PMID: 25860949 PMCID: PMC4425060 DOI: 10.3390/ijms16047944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 11/29/2022] Open
Abstract
With the aim of identifying novel agents with antigrowth and pro-apoptotic activity on melanoma cancer, the present study was undertaken to investigate the biological activity of the resinous exudate of aerial parts from Psoralea glandulosa, and its active components (bakuchiol (1), 3-hydroxy-bakuchiol (2) and 12-hydroxy-iso-bakuchiol (3)) against melanoma cells (A2058). In addition, the effect in cancer cells of bakuchiol acetate (4), a semi-synthetic derivative of bakuchiol, was examined. The results obtained show that the resinous exudate inhibited the growth of cancer cells with IC50 value of 10.5 μg/mL after 48 h of treatment, while, for pure compounds, the most active was the semi-synthetic compound 4. Our data also demonstrate that resin is able to induce apoptotic cell death, which could be related to an overall action of the meroterpenes present. In addition, our data seem to indicate that the apoptosis correlated to the tested products appears, at least in part, to be associated with an increase of reactive oxygen species (ROS) production. In summary, our study provides the first evidence that P. glandulosa may be considered a source of useful molecules in the development of analogues with more potent efficacy against melanoma cells.
Collapse
Affiliation(s)
- Alejandro Madrid
- Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, 2340000 Valparaíso, Chile.
| | - Venera Cardile
- Department of Biomedical Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - César González
- Departamento de Química, Universidad Técnica Federico Santa María, Av. España N° 1680, 2340000 Valparaíso, Chile.
| | - Ivan Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de medicina, Universidad de Valparaíso, Blanco N° 1911, 2340000 Valparaíso, Chile.
| | - Joan Villena
- Centro de Investigaciones Biomédicas (CIB), Escuela de Medicina, Universidad de Valparaíso, Av. Hontaneda N° 2664, 2340000 Valparaíso, Chile.
| | - Silvia Caggia
- Department of Biomedical Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Adriana Graziano
- Department of Biomedical Sciences, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| | - Alessandra Russo
- Department of Drug Sciences, Biochemistry Section, University of Catania, V. le A. Doria 6, 95125 Catania, Italy.
| |
Collapse
|
11
|
|
12
|
Bruchim I, Sarfstein R, Reiss A, Flescher E, Werner H. IGF1R tyrosine kinase inhibitor enhances the cytotoxic effect of methyl jasmonate in endometrial cancer. Cancer Lett 2014; 352:214-9. [PMID: 24997432 DOI: 10.1016/j.canlet.2014.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 05/31/2014] [Accepted: 06/24/2014] [Indexed: 02/08/2023]
Abstract
The present study evaluated the cytotoxic activity of methyl jasmonate (MJ) in endometrial cancer cells and examined the hypothesis that the apoptotic and anti-proliferative actions of MJ in these cell lines can be enhanced by co-targeting the insulin-like growth factor-1 receptor (IGF1R) signaling pathway. MJ had a potent pro-apoptotic effect and exhibited significant toxicity in all cell lines tested. MJ in combination with NVP-AEW541, a selective IGF1R tyrosine kinase inhibitor, had significantly increased cytotoxicity. MJ decreased IGF1R phosphorylation, however, it enhanced AKT phosphorylation and abolished the anti-apoptotic effect of IGF1. These findings suggest that combined IGF1R inhibitor and MJ administration may constitute an attractive modality for treating endometrial cancer.
Collapse
Affiliation(s)
- Ilan Bruchim
- Gynecologic Oncology Unit, Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba 44281, Israel.
| | - Rive Sarfstein
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ari Reiss
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eliezer Flescher
- Department of Human Microbiology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Qin XY, Liu YN, Yu QQ, Yang LC, Liu Y, Zhou YH, Liu J. Mixed-ligand mononuclear copper(II) complex: crystal structure and anticancer activity. ChemMedChem 2014; 9:1665-71. [PMID: 24839939 DOI: 10.1002/cmdc.201402060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Indexed: 12/12/2022]
Abstract
A novel copper(II) complex with mixed ligands including β-[(3-formyl-5-methyl-2-hydroxy-benzylidene)amino]propionic acid anion and 1,10'-phenanthroline was synthesized, and its crystal structure was thoroughly characterized. It exerted excellent inducing apoptosis, anti-angiogenesis and antiproliferative properties in vitro. The complex can bind human serum albumin (HSA) at physiological pH conditions. Remarkably, it can induce formation of the mixed parallel/antiparallel G-quadruplex structures in the G-rich sequence of the proximal vascular endothelial growth factor (VEGF) promoter, and stabilize these G-quadruplex structures, which provide an opportunity for anti-angiogenesis chemotherapeutics. Furthermore, the complex showed a strong uptake, and exhibited multiple anticancer functions by inhibiting the expression of p-Akt and p-Erk1/2 proteins and by upregulating the levels of reactive oxygen species (ROS). Because of the reported results, this new copper(II) complex qualifies itself as a potential anticancer drug candidate.
Collapse
Affiliation(s)
- Xiu-Ying Qin
- Department of Chemistry, Jinan University, Guangzhou 510632, China; College of Pharmacy, Guilin Medical University, Guilin 541004 (China)
| | | | | | | | | | | | | |
Collapse
|
14
|
Ghasemi Pirbalouti A, Sajjadi SE, Parang K. A review (research and patents) on jasmonic acid and its derivatives. Arch Pharm (Weinheim) 2014; 347:229-239. [PMID: 24470216 DOI: 10.1002/ardp.201300287] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 01/03/2023]
Abstract
In medicinal chemistry there is a growing interest in using small molecules, including plant stress hormones. Jasmonic acid (JA) and its volatile methyl ester (MJ), collectively termed jasmonates, are lipid-derived cyclopentanone compounds that occur ubiquitously and exclusively in the plant kingdom. This review covers the synthesis, usage, and biological activities of JA and its derivatives. A brief overview of the available information on JA and its features is given, followed by a detailed review of JA and its derivatives as drugs and prodrugs; the properties in plants and the synthesis in recent patents are described. This review shows the direction of long-term drug/nutraceutical safety trials and provides insights for future research in this area. Research on JA continues to be of major interest. Recent innovations offer hope for the development of new therapeutics in related fields. It is anticipated that several analogs can be advanced to preclinical and clinical studies.
Collapse
Affiliation(s)
- Abdollah Ghasemi Pirbalouti
- Department of Medicinal Plants, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran; Medicinal Plants Program, Stockbridge School of Agriculture, College of Natural Science, Massachusetts University, Amherst, MA, USA
| | | | | |
Collapse
|
15
|
Cesari IM, Carvalho E, Figueiredo Rodrigues M, Mendonça BDS, Amôedo ND, Rumjanek FD. Methyl jasmonate: putative mechanisms of action on cancer cells cycle, metabolism, and apoptosis. Int J Cell Biol 2014; 2014:572097. [PMID: 24648844 PMCID: PMC3933403 DOI: 10.1155/2014/572097] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 12/29/2022] Open
Abstract
Methyl jasmonate (MJ), an oxylipid that induces defense-related mechanisms in plants, has been shown to be active against cancer cells both in vitro and in vivo, without affecting normal cells. Here we review most of the described MJ activities in an attempt to get an integrated view and better understanding of its multifaceted modes of action. MJ (1) arrests cell cycle, inhibiting cell growth and proliferation, (2) causes cell death through the intrinsic/extrinsic proapoptotic, p53-independent apoptotic, and nonapoptotic (necrosis) pathways, (3) detaches hexokinase from the voltage-dependent anion channel, dissociating glycolytic and mitochondrial functions, decreasing the mitochondrial membrane potential, favoring cytochrome c release and ATP depletion, activating pro-apoptotic, and inactivating antiapoptotic proteins, (4) induces reactive oxygen species mediated responses, (5) stimulates MAPK-stress signaling and redifferentiation in leukemia cells, (6) inhibits overexpressed proinflammatory enzymes in cancer cells such as aldo-keto reductase 1 and 5-lipoxygenase, and (7) inhibits cell migration and shows antiangiogenic and antimetastatic activities. Finally, MJ may act as a chemosensitizer to some chemotherapics helping to overcome drug resistant. The complete lack of toxicity to normal cells and the rapidity by which MJ causes damage to cancer cells turn MJ into a promising anticancer agent that can be used alone or in combination with other agents.
Collapse
Affiliation(s)
- Italo Mario Cesari
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Erika Carvalho
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Mariana Figueiredo Rodrigues
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Bruna dos Santos Mendonça
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Nivea Dias Amôedo
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Franklin David Rumjanek
- Laboratório de Bioquímica e Biologia Molecular do Câncer, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Prédio CCS, Bloco E, Sala 22, Ilha do Fundão, Cidade Universitária, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Farooqi AA, Butt G, Razzaq Z. Algae extracts and methyl jasmonate anti-cancer activities in prostate cancer: choreographers of 'the dance macabre'. Cancer Cell Int 2012. [PMID: 23181808 PMCID: PMC3575221 DOI: 10.1186/1475-2867-12-50] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is an overwhelmingly increasing trend of analysis of naturally occurring ingredients in treatment of prostate cancer. Substantial fraction of information has been added that highlights activity at various levels and steps of deregulated cellular proliferation, metastasis and apoptosis. Among such ingredients, algae extracts and jasmonates are documented to have anti-cancer activity in vitro and in vivo and induce growth inhibition in cancer cells, while leaving the non-transformed cells intact. In this short review we outline systematically, how these ingredients predispose prostate cancer cells to undergo apoptosis.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Laboratory For Translational Oncology and Personalized Medicine, Rashid Latif Medical College, 35 Km Ferozepur Road, Lahore, Pakistan.
| | | | | |
Collapse
|