1
|
Taghizadeh-Teymorloei M, Jafarlou V, Matin S, Raeisi M, Roosta Y, Mansouri-Derakhshani S, Feizi AAH, Karimi A. Clinical implications of Alu-based cell-free DNA and serum onco-piRNA monitoring in colorectal cancer management. Clin Transl Oncol 2025:10.1007/s12094-025-03863-8. [PMID: 39969763 DOI: 10.1007/s12094-025-03863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Colorectal cancer (CRC) remains a significant global health challenge, characterized by high morbidity and mortality rates. This study explores the potential of Alu-based cell-free DNA (cfDNA) and specific PIWI-interacting RNAs (piRNAs) as innovative biomarkers for monitoring treatment responses in CRC patients. METHODS We analyzed plasma samples from 70 CRC patients, equally divided between those undergoing chemotherapy and surgical interventions. RESULTS Our findings reveal that certain piRNAs, particularly piRNA-823, piRNA-54265, and piRNA-1245, exhibit significant prognostic value, with notable expression changes observed in the chemotherapy group compared to the surgery group. Furthermore, the levels of ALU-based cfDNA fragments showed a marked decrease post-chemotherapy, suggesting their utility in assessing therapeutic efficacy. CONCLUSIONS This research underscores the importance of integrating these molecular tools particularly piRNA-823 and ALU-based cfDNA into clinical practice, potentially enhancing the management strategies for CRC patients and improving their outcomes.
Collapse
Affiliation(s)
- Mohammad Taghizadeh-Teymorloei
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht St., Tabriz, 5166614756, East Azerbaijan, Iran
| | - Vahid Jafarlou
- Cancer Institute of Imam Khomeini Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Somaieh Matin
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Roosta
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sima Mansouri-Derakhshani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Abbas Ali Hosseinpour Feizi
- Hematology-Oncology Research Center, Tabriz University of Medical Sciences, Tabriz Children's Hospital, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht St., Tabriz, 5166614756, East Azerbaijan, Iran.
| |
Collapse
|
2
|
Ghazi B, Harmak Z, Rghioui M, Kone AS, El Ghanmi A, Badou A. Decoding the secret of extracellular vesicles in the immune tumor microenvironment of the glioblastoma: on the border of kingdoms. Front Immunol 2024; 15:1423232. [PMID: 39267734 PMCID: PMC11390556 DOI: 10.3389/fimmu.2024.1423232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Zakia Harmak
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mounir Rghioui
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdou-Samad Kone
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Adil El Ghanmi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdallah Badou
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
| |
Collapse
|
3
|
Abril AG, Quintela-Baluja M, Villa TG, Calo-Mata P, Barros-Velázquez J, Carrera M. Proteomic Characterization of Virulence Factors and Related Proteins in Enterococcus Strains from Dairy and Fermented Food Products. Int J Mol Sci 2022; 23:ijms231810971. [PMID: 36142880 PMCID: PMC9503237 DOI: 10.3390/ijms231810971] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023] Open
Abstract
Enterococcus species are Gram-positive bacteria that are normal gastrointestinal tract inhabitants that play a beneficial role in the dairy and meat industry. However, Enterococcus species are also the causative agents of health care-associated infections that can be found in dairy and fermented food products. Enterococcal infections are led by strains of Enterococcus faecalis and Enterococcus faecium, which are often resistant to antibiotics and biofilm formation. Enterococci virulence factors attach to host cells and are also involved in immune evasion. LC-MS/MS-based methods offer several advantages compared with other approaches because one can directly identify microbial peptides without the necessity of inferring conclusions based on other approaches such as genomics tools. The present study describes the use of liquid chromatography−electrospray ionization tandem mass spectrometry (LC−ESI−MS/MS) to perform a global shotgun proteomics characterization for opportunistic pathogenic Enterococcus from different dairy and fermented food products. This method allowed the identification of a total of 1403 nonredundant peptides, representing 1327 proteins. Furthermore, 310 of those peptides corresponded to proteins playing a direct role as virulence factors for Enterococcus pathogenicity. Virulence factors, antibiotic sensitivity, and proper identification of the enterococcal strain are required to propose an effective therapy. Data are available via ProteomeXchange with identifier PXD036435. Label-free quantification (LFQ) demonstrated that the majority of the high-abundance proteins corresponded to E. faecalis species. Therefore, the global proteomic repository obtained here can be the basis for further research into pathogenic Enterococcus species, thus facilitating the development of novel therapeutics.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain
| | - Marcos Quintela-Baluja
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Tomás G. Villa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain
| | - Pilar Calo-Mata
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Jorge Barros-Velázquez
- Department of Analytical Chemistry, Nutrition and Food Science, Food Technology Division, School of Veterinary Sciences, University of Santiago de Compostela, Campus Lugo, 27002 Lugo, Spain
| | - Mónica Carrera
- Department of Food Technology, Spanish National Research Council (CSIC), Marine Research Institute (IIM), 36208 Vigo, Spain
- Correspondence:
| |
Collapse
|
4
|
Zhou W, Zheng Y, Shang J, Wang H, Wang Y, Lu H, Wang X, Sui M. Intestinal microecology in mice bearing diethylnitrosamine-induced primary hepatocellular carcinoma. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:438-453. [PMID: 37202098 PMCID: PMC10265007 DOI: 10.3724/zdxbyxb-2022-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/30/2022] [Indexed: 05/20/2023]
Abstract
OBJECTIVE To explore the characteristics of intestinal microecology in hepatocellular carcinoma (HCC) model mice. METHODS C57BL/6 male mice aged 2 weeks were divided into normal control group and HCC model group. Mice in HCC model group were exposed to a single intraperitoneal injection of diethylnitrosamine (DEN) 2 weeks after birth; the surviving mice were intraperitoneally injected with 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), once every 2 weeks for 8 times starting from the 4 th week after birth. Mice in each group were randomly selected and sacrificed at 10 th, 18 th and 32 nd weeks after birth, respectively, the liver tissue samples were obtained for histopathological examination. At the 32 nd week, all mice in both groups were sacrificed and the feces samples were collected under sterile conditions right before the sacrifice. The feces samples were sequenced for the V3-V4 hypervariable regions of the 16S rRNA gene, and the species abundance, flora diversity and phenotype, as well as flora correlation and functional prediction were analyzed. RESULTS Alpha diversity analysis showed that all Good's coverage reached the maximum value of 1.00, and the differences in the Observed features, Chao1 index, Shannon index and Simpson index of the intestinal flora of mice between normal control group and HCC model group were all statistically significant (all P<0.05). Beta diversity analysis showed that PCoA based on weighted or unweighted Unifrac distances all yielded R>0, confirming that the intra-group differences of the samples were less than the inter-group differences; the trend of separation between the two groups was significant ( P<0.05). Bacteroidetes, Firmicutes, Actinobacteria and Patescibacteria were the dominant taxa at the phylum level in both normal control group and HCC model group. However, compared with normal control group, the abundance of Bacteroidetes in HCC model group was significantly decreased ( P<0.01), while the abundance of Patescibacteria was significantly increased ( P<0.05). Moreover, the dominant taxa at the genus level in normal control group mainly included Muribaculaceae_unclassified, Paramuribaculum, Muribaculum, Lachnospiraceae_NK4A 136 group, Olsenella. The dominant taxa at the genus level in HCC model group mainly included Akkermansia, Dubosiella, Muribaculaceae_unclassified, Lachnospiraceae_NK4A 136 group, Coriobacteriaceae_UCG-002. There were 30 genera with statistically significant differences in relative abundance at the genus level between the two groups (all P<0.05). LEfSe analysis of the intestinal flora of mice in the two groups revealed a total of 14 multi-level differential taxa (all P<0.05, LDA score>4.0), which were mainly enriched in Bacteroidetes. The enrichment of 10 differential taxa including Bacteroidetes, Bacteroidia, Bacteroidales, Muribaculaceae, etc. were found in normal control group, and the enrichment of 4 differential taxa including Dubosiella, Peptostreptococus, etc. were found in HCC model group. There were both positive and negative correlations between the dominant intestinal genera in normal control group (|rho|>0.5, P<0.05), while the correlations of the dominant intestinal genera in HCC model group, being less complex than that in normal control group, were all positive. The relative abundance of gram positive and mobile element containing in the intestinal flora of mice in HCC model group was significantly up-regulated compared with normal control group (both P<0.05), while that of gram negative ( P<0.05) and pathogenic potential ( P<0.05) was significantly down-regulated. The metabolic pathways of the intestinal flora in the two groups were significantly different. For instance, 18 metabolic pathways were enriched in normal control group (all P<0.005), including those related to energy metabolism, cell division, nucleotide metabolism, etc., while 12 metabolic pathways were enriched in HCC model group (all P<0.005), including those related to energy metabolism, amino acid metabolism, carbohydrate metabolism, etc. Conclusions: The amount of intestinal flora in DEN-induced primary HCC model mice decreased, and the composition, correlation, phenotype and function of the intestinal flora in mice were significantly altered. Bacteroidetes at the phylum level, as well as several microbial taxa at the genus level such as Muribaculaceae_unclassified, Muribaculum, Peptostreptococus and Dubosiella could be closely associated with DEN-induced primary HCC in mice.
Collapse
Affiliation(s)
- Wenbin Zhou
- 1. Qingdao Medical College, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Yue Zheng
- 2. School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- 3. Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- 4. Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Jia Shang
- 2. School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- 3. Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- 4. Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Haiyang Wang
- 2. School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- 3. Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- 4. Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Yisha Wang
- 2. School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- 3. Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- 4. Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Huan Lu
- 2. School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- 3. Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- 4. Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Xiaoxi Wang
- 5. Department of Pathology, the First Affiliated Hospital, Zhejiang University School Medicine, Hangzhou 310003, China
| | - Meihua Sui
- 2. School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
- 3. Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- 4. Zhejiang University Cancer Center, Hangzhou 310058, China
| |
Collapse
|
5
|
Ghanam J, Chetty VK, Barthel L, Reinhardt D, Hoyer PF, Thakur BK. DNA in extracellular vesicles: from evolution to its current application in health and disease. Cell Biosci 2022; 12:37. [PMID: 35346363 PMCID: PMC8961894 DOI: 10.1186/s13578-022-00771-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicle (EV) secretion is a highly conserved evolutionary trait in all organisms in the three domains of life. The packaging and release of EVs appears to be a bulk-flow process which takes place mainly under extreme conditions. EVs participate in horizontal gene transfer, which supports the survival of prokaryotic and eukaryotic microbes. In higher eukaryotes, almost all cells secrete a heterogeneous population of EVs loaded with various biomolecules. EV secretion is typically higher in cancer microenvironments, promoting tumor progression and metastasis. EVs are now recognized as additional mediators of autocrine and paracrine communication in health and disease. In this context, proteins and RNAs have been studied the most, but extracellular vesicle DNA (EV-DNA) has started to gain in importance in the last few years. In this review, we summarize new findings related to the loading mechanism(s), localization, and post-shedding function of EV-DNA. We also discuss the feasibility of using EV-DNA as a biomarker when performing a liquid biopsy, at the same time emphasizing the lack of data from clinical trials in this regard. Finally, we outline the potential of EV-DNA uptake and its interaction with the host genome as a promising tool for understanding the mechanisms of cancer evolution. Protecting DNA in membrane vesicles seems to be a conserved phenomenon for the horizontal genetic flux between prokaryotes and lower eukaryotes. Capturing and analyzing this vesicular DNA enables quick and non-invasive monitoring of natural ecosystems. Cancer-derived extracellular vesicles containing DNA open up novel directions in cell-to-cell communication and therefore disease monitoring. Complex and fluctuating conditions of the tumor microenvironment, mimicking natural ecosystems, could favor EV-DNA release, mediating tumor multi-clonal evolution and providing survival benefits.
Collapse
Affiliation(s)
- Jamal Ghanam
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Venkatesh Kumar Chetty
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Peter-Friedrich Hoyer
- Department of Pediatrics II, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Department of Pediatrics III, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany.
| |
Collapse
|
6
|
You L, Zhou J, Xin Z, Hauck JS, Na F, Tang J, Zhou X, Lei Z, Ying B. Novel directions of precision oncology: circulating microbial DNA emerging in cancer-microbiome areas. PRECISION CLINICAL MEDICINE 2022; 5:pbac005. [PMID: 35692444 PMCID: PMC9026200 DOI: 10.1093/pcmedi/pbac005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Microbiome research has extended into the cancer area in the past decades. Microbes can affect oncogenesis, progression, and treatment response through various mechanisms, including direct regulation and indirect impacts. Microbiota-associated detection methods and agents have been developed to facilitate cancer diagnosis and therapy. Additionally, the cancer microbiome has recently been redefined. The identification of intra-tumoral microbes and cancer-related circulating microbial DNA (cmDNA) has promoted novel research in the cancer-microbiome area. In this review, we define the human system of commensal microbes and the cancer microbiome from a brand-new perspective and emphasize the potential value of cmDNA as a promising biomarker in cancer liquid biopsy. We outline all existing studies on the relationship between cmDNA and cancer and the outlook for potential preclinical and clinical applications of cmDNA in cancer precision medicine, as well as critical problems to be overcome in this burgeoning field.
Collapse
Affiliation(s)
- Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - J Spencer Hauck
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Feifei Na
- Department of Thoracic Cancer, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Tang
- Department of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000,China
| | - Xiaohan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zichen Lei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Abril AG, Carrera M, Böhme K, Barros-Velázquez J, Calo-Mata P, Sánchez-Pérez A, Villa TG. Proteomic Characterization of Antibiotic Resistance in Listeria and Production of Antimicrobial and Virulence Factors. Int J Mol Sci 2021; 22:8141. [PMID: 34360905 PMCID: PMC8348566 DOI: 10.3390/ijms22158141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Some Listeria species are important human and animal pathogens that can be found in contaminated food and produce a variety of virulence factors involved in their pathogenicity. Listeria strains exhibiting multidrug resistance are known to be progressively increasing and that is why continuous monitoring is needed. Effective therapy against pathogenic Listeria requires identification of the bacterial strain involved, as well as determining its virulence factors, such as antibiotic resistance and sensitivity. The present study describes the use of liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) to do a global shotgun proteomics characterization for pathogenic Listeria species. This method allowed the identification of a total of 2990 non-redundant peptides, representing 2727 proteins. Furthermore, 395 of the peptides correspond to proteins that play a direct role in Listeria pathogenicity; they were identified as virulence factors, toxins and anti-toxins, or associated with either antibiotics (involved in antibiotic-related compounds production or resistance) or resistance to toxic substances. The proteomic repository obtained here can be the base for further research into pathogenic Listeria species and facilitate the development of novel therapeutics for these pathogens.
Collapse
Affiliation(s)
- Ana G. Abril
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Mónica Carrera
- Marine Research Institute (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - Karola Böhme
- Agroalimentary Technological Center of Lugo, Montirón 154, 27002 Lugo, Spain;
| | - Jorge Barros-Velázquez
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Pilar Calo-Mata
- Departamento de Química Analítica, Nutrición y Bromatología, Área de Tecnología de los Alimentos, Facultad de Veterinaria, Campus Lugo, Universidad de Santiago de Compostela, 27002 Santiago de Compostela, Spain; (J.B.-V.); (P.C.-M.)
| | - Angeles Sánchez-Pérez
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, NSW 2006, Australia;
| | - Tomás G. Villa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Campus Sur 15782, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| |
Collapse
|
8
|
Chen Y, Xu Y, Zhong H, Yuan H, Liang F, Liu J, Tang W. Extracellular vesicles in Inter-Kingdom communication in gastrointestinal cancer. Am J Cancer Res 2021; 11:1087-1103. [PMID: 33948347 PMCID: PMC8085842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/13/2021] [Indexed: 06/12/2023] Open
Abstract
The production and secretion of extracellular vesicles (EVs) are common features of cells (including various normal cells, neoplastic cell lines as well as bacteria) that span all domains of life. Tumor-derived exosomes are enriched with kinds of tumorigenesis mediators which are derived from the cytoplasm of cancer cells and fully reflect the tumor conditions. Indeed, the major topics and challenges on current oncological research are the identification of tumorigenic and metastatic molecules in tumor-cell-derived exosomes as well as elucidating the pathways that guarantee these components to be included in exosomes. The bacterial EVs have also been implicated in the pathogenesis of gastrointestinal (GI) tumors and chronic inflammatory diseases; however, the possible function of outer membrane vesicles (OMVs) in tumorigenesis remains largely underestimated. We suggest that EVs from both eukaryotic cells and different microbes in GI tract act as regulators of intracellular and cross-species communication, thus particularly facilitate tumor cell survival and multi-drug resistance. Therefore, our review introduces comprehensive knowledge on the promising role of EVs (mainly exosomes and OMVs) production of GI cancer development and gut microbiome, as well as its roles in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Yi Chen
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yansong Xu
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| | - Huage Zhong
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hao Yuan
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Fangfang Liang
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi, P. R. China
| | - Junjie Liu
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Ultrasound, Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Division of Colorectal & Anal Surgery Guangxi Medical University Cancer HospitalNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
- Guangxi Clinical Research Center for Colorectal CancerNanning 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
9
|
Boto L, Pineda M, Pineda R. Potential impacts of horizontal gene transfer on human health and physiology and how anthropogenic activity can affect it. FEBS J 2019; 286:3959-3967. [PMID: 31495055 DOI: 10.1111/febs.15054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
Horizontal gene transfer (HGT) is widespread among prokaryotes driving their evolution. In this paper, we review the potential impact in humans of the HGT between prokaryotes living in close association with humans in two scenarios: horizontal transfer in human microbiomes and transfer between microbes living in human managed environments. Although our vision is focused on the possible impact of these transfers in the propagation of antibiotic resistance genes or pathogenicity determinants, we also discuss possible human physiological adaptations via gene transfer between resident and occasional bacteria in the human microbiome.
Collapse
Affiliation(s)
- Luis Boto
- Departamento DE Biodiversidad y Biologia Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Manuel Pineda
- Grupo Fisiologia Molecular y Biotecnologia de Plantas, Universidad dE Cordoba, Spain
| | - Rafael Pineda
- Instituto Maimonides de Investigacion Biomedica de Cordoba, Spain.,Departamento de Biologia Celular, Fisiologia e Inmunologia, Universidad de Cordoba, Spain
| |
Collapse
|
10
|
Minarovits J, Niller HH. Truncated oncoproteins of retroviruses and hepatitis B virus: A lesson in contrasts. INFECTION GENETICS AND EVOLUTION 2019; 73:342-357. [DOI: 10.1016/j.meegid.2019.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
|
11
|
Microbes involving in carcinogenesis; growing state of the art. Microb Pathog 2018; 125:1-6. [PMID: 30172904 DOI: 10.1016/j.micpath.2018.08.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Lateral gene transfer (LGT) has been demonstrated as a transfer process of novel genes between different species. LGT proceedings are occurring between microbes and plants, as well as between microbes and animals. New evidence demonstrates that bacterial insertional mutagenesis may occur in cancer cells. Due to the important role of genetic changes in the increase of cell proliferation and cancer development, we reviewed the effects of microbial-animal LGT in human oncogenesis. In addition, viral DNA can induce cancer development by random insertion into cancer-related genes or by inducing translocations. In conclusion, growing evidence shows the contribution of the microbial genome in cancer and autoimmune disease.
Collapse
|
12
|
Baheti S, Tang X, O'Brien DR, Chia N, Roberts LR, Nelson H, Boughey JC, Wang L, Goetz MP, Kocher JPA, Kalari KR. HGT-ID: an efficient and sensitive workflow to detect human-viral insertion sites using next-generation sequencing data. BMC Bioinformatics 2018; 19:271. [PMID: 30016933 PMCID: PMC6050683 DOI: 10.1186/s12859-018-2260-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
Background Transfer of genetic material from microbes or viruses into the host genome is known as horizontal gene transfer (HGT). The integration of viruses into the human genome is associated with multiple cancers, and these can now be detected using next-generation sequencing methods such as whole genome sequencing and RNA-sequencing. Results We designed a novel computational workflow, HGT-ID, to identify the integration of viruses into the human genome using the sequencing data. The HGT-ID workflow primarily follows a four-step procedure: i) pre-processing of unaligned reads, ii) virus detection using subtraction approach, iii) identification of virus integration site using discordant and soft-clipped reads and iv) HGT candidates prioritization through a scoring function. Annotation and visualization of the events, as well as primer design for experimental validation, are also provided in the final report. We evaluated the tool performance with the well-understood cervical cancer samples. The HGT-ID workflow accurately detected known human papillomavirus (HPV) integration sites with high sensitivity and specificity compared to previous HGT methods. We applied HGT-ID to The Cancer Genome Atlas (TCGA) whole-genome sequencing data (WGS) from liver tumor-normal pairs. Multiple hepatitis B virus (HBV) integration sites were identified in TCGA liver samples and confirmed by HGT-ID using the RNA-Seq data from the matched liver pairs. This shows the applicability of the method in both the data types and cross-validation of the HGT events in liver samples. We also processed 220 breast tumor WGS data through the workflow; however, there were no HGT events detected in those samples. Conclusions HGT-ID is a novel computational workflow to detect the integration of viruses in the human genome using the sequencing data. It is fast and accurate with functions such as prioritization, annotation, visualization and primer design for future validation of HGTs. The HGT-ID workflow is released under the MIT License and available at http://kalarikrlab.org/Software/HGT-ID.html.
Collapse
Affiliation(s)
- Saurabh Baheti
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Xiaojia Tang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nicholas Chia
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Heidi Nelson
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Matthew P Goetz
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA.,Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre A Kocher
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Krishna R Kalari
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Barteneva NS, Baiken Y, Fasler-Kan E, Alibek K, Wang S, Maltsev N, Ponomarev ED, Sautbayeva Z, Kauanova S, Moore A, Beglinger C, Vorobjev IA. Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of Kingdoms. Biochim Biophys Acta Rev Cancer 2017; 1868:372-393. [DOI: 10.1016/j.bbcan.2017.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/16/2022]
|
14
|
Robinson KM, Crabtree J, Mattick JSA, Anderson KE, Dunning Hotopp JC. Distinguishing potential bacteria-tumor associations from contamination in a secondary data analysis of public cancer genome sequence data. MICROBIOME 2017; 5:9. [PMID: 28118849 PMCID: PMC5264480 DOI: 10.1186/s40168-016-0224-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/15/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND A variety of bacteria are known to influence carcinogenesis. Therefore, we sought to investigate if publicly available whole genome and whole transcriptome sequencing data generated by large public cancer genome efforts, like The Cancer Genome Atlas (TCGA), could be used to identify bacteria associated with cancer. The Burrows-Wheeler aligner (BWA) was used to align a subset of Illumina paired-end sequencing data from TCGA to the human reference genome and all complete bacterial genomes in the RefSeq database in an effort to identify bacterial read pairs from the microbiome. RESULTS Through careful consideration of all of the bacterial taxa present in the cancer types investigated, their relative abundance, and batch effects, we were able to identify some read pairs from certain taxa as likely resulting from contamination. In particular, the presence of Mycobacterium tuberculosis complex in the ovarian serous cystadenocarcinoma (OV) and glioblastoma multiforme (GBM) samples was correlated with the sequencing center of the samples. Additionally, there was a correlation between the presence of Ralstonia spp. and two specific plates of acute myeloid leukemia (AML) samples. At the end, associations remained between Pseudomonas-like and Acinetobacter-like read pairs in AML, and Pseudomonas-like read pairs in stomach adenocarcinoma (STAD) that could not be explained through batch effects or systematic contamination as seen in other samples. CONCLUSIONS This approach suggests that it is possible to identify bacteria that may be present in human tumor samples from public genome sequencing data that can be examined further experimentally. More weight should be given to this approach in the future when bacterial associations with diseases are suspected.
Collapse
MESH Headings
- Acinetobacter/genetics
- Bacteria/genetics
- Bacteria/isolation & purification
- Base Sequence
- Carcinoma/classification
- Carcinoma/genetics
- Carcinoma/microbiology
- Carcinoma, Ovarian Epithelial
- Chromosome Mapping
- Cystadenocarcinoma, Serous/genetics
- Cystadenocarcinoma, Serous/microbiology
- Databases, Genetic
- Genome, Bacterial
- Genome, Human
- Glioblastoma/genetics
- Glioblastoma/microbiology
- High-Throughput Nucleotide Sequencing
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/microbiology
- Microbiota
- Mycobacterium tuberculosis/genetics
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/microbiology
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/microbiology
- Pseudomonas/genetics
Collapse
Affiliation(s)
- Kelly M. Robinson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - John S. A. Mattick
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Kathleen E. Anderson
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD USA
| |
Collapse
|
15
|
Lazzaroni F, Del Giacco L, Biasci D, Turrini M, Prosperi L, Brusamolino R, Cairoli R, Beghini A. Intronless WNT10B-short variant underlies new recurrent allele-specific rearrangement in acute myeloid leukaemia. Sci Rep 2016; 6:37201. [PMID: 27853307 PMCID: PMC5112549 DOI: 10.1038/srep37201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
Defects in the control of Wnt signaling have emerged as a recurrent mechanism involved in cancer pathogenesis and acute myeloid leukaemia (AML), including the hematopoietic regeneration-associated WNT10B in AC133bright leukaemia cells, although the existence of a specific mechanism remains unproven. We have obtained evidences for a recurrent rearrangement, which involved the WNT10B locus (WNT10BR) within intron 1 (IVS1) and flanked at the 5' by non-human sequences whose origin remains to be elucidated; it also expressed a transcript variant (WNT10BIVS1) which was mainly detected in a cohort of patients with intermediate/unfavorable risk AML. We also identified in two separate cases, affected by AML and breast cancer respectively, a genomic transposable short form of human WNT10B (ht-WNT10B). The intronless ht-WNT10B resembles a long non-coding RNA (lncRNA), which suggests its involvement in a non-random microhomology-mediated recombination generating the rearranged WNT10BR. Furthermore, our studies supports an autocrine activation primed by the formation of WNT10B-FZD4/5 complexes in the breast cancer MCF7 cells that express the WNT10BIVS1. Chemical interference of WNT-ligands production by the porcupine inhibitor IWP-2 achieved a dose-dependent suppression of the WNT10B-FZD4/5 interactions. These results present the first evidence for a recurrent rearrangement promoted by a mobile ht-WNT10B oncogene, as a relevant mechanism for Wnt involvement in human cancer.
Collapse
Affiliation(s)
| | - Luca Del Giacco
- Department of Biosciences, University of Milan, Milan, Italy
| | - Daniele Biasci
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Mauro Turrini
- Department of Internal Medicine, Valduce Hospital, Como, Italy
| | - Laura Prosperi
- Department of Biosciences, University of Milan, Milan, Italy
| | | | - Roberto Cairoli
- Department of Oncology, Hematology Unit, Niguarda Hospital, Milan, Italy
| | | |
Collapse
|
16
|
Abstract
Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen), Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium), or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs), the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.
Collapse
|