1
|
Yu S, Wang S, Wang X, Xu X. The axis of tumor-associated macrophages, extracellular matrix proteins, and cancer-associated fibroblasts in oncogenesis. Cancer Cell Int 2024; 24:335. [PMID: 39375726 PMCID: PMC11459962 DOI: 10.1186/s12935-024-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The extracellular matrix (ECM) is a complex, dynamic network of multiple macromolecules that serve as a crucial structural and physical scaffold for neighboring cells. In the tumor microenvironment (TME), ECM proteins play a significant role in mediating cellular communication between cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs). Revealing the ECM modification of the TME necessitates the intricate signaling cascades that transpire among diverse cell populations and ECM proteins. The advent of single-cell sequencing has enabled the identification and refinement of specific cellular subpopulations, which has substantially enhanced our comprehension of the intricate milieu and given us a high-resolution perspective on the diversity of ECM proteins. However, it is essential to integrate single-cell data and establish a coherent framework. In this regard, we present a comprehensive review of the relationships among ECM, TAMs, and CAFs. This encompasses insights into the ECM proteins released by TAMs and CAFs, signaling integration in the TAM-ECM-CAF axis, and the potential applications and limitations of targeted therapies for CAFs. This review serves as a reliable resource for focused therapeutic strategies while highlighting the crucial role of ECM proteins as intermediates in the TME.
Collapse
Affiliation(s)
- Shuhong Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Siyu Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Song Y, Guo JF, Lan PS, Wang M, Du QY. Investigation of the pan-cancer property of FNDC1 and its molecular mechanism to promote lung adenocarcinoma metastasis. Transl Oncol 2024; 44:101953. [PMID: 38593585 PMCID: PMC11024379 DOI: 10.1016/j.tranon.2024.101953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/07/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Fibronectin type III domain containing 1 (FNDC1) has been associated with the metastasis of many tumors, but its function in lung cancer remains uncertain. METHODS FNDC1 expression was analyzed in The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx), evaluate its prognostic value. Gene Set Enrichment Analysis (GSEA) enrichment analysis of differential expression of FNDC1 in lung cancer. The expression of FNDC1 was detected in five types of lung cancer cells, and screened to establish FNDC1 stable knockdown cell strains. To observe the migration and invasion ability of lung cancer cells after FNDC1 knockdown. Finally, we used rhIL-6 to interfere with the stable knockdown of FNDC1 in A549 cells and observed the recovery of migration and invasion. RESULT Our results showed that FNDC1 expression was increased in 21 tumor tissues, including lung cancer, and was associated with poor prognosis in five cancers, including lung adenocarcinoma (LUAD) (P < 0.05). GSEA enrichment analysis showed that FNDC1 was related to the pathways involved the JAK-STAT signaling pathway. Stable knockdown of FNDC1 in A549 and H292 cells resulted in decreased migration and invasion ability of both cells, accompanied by decreased expression of MMP-2 and Snail, and a significant decline in the expression of p-JAK2 and p-STAT3. The suppressive effect of FNDC1 knockdown on lung cancer cell metastasis counteracted by the JAK-STAT agonist rhIL-6 were presented in the nude mouse metastatic tumor model. CONCLUSION FNDC1 is implicated in poor prognosis of a diverse range of malignant tumors, which can promote metastasis and invasion of lung cancer through the JAK2-STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yang Song
- Emergency Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Jun-Feng Guo
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Pei-Shu Lan
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Miao Wang
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China
| | - Quan-Yu Du
- Endocrinology Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610072, PR China.
| |
Collapse
|
3
|
Shukla A, Suresh V, Gupta PC, Sharma M, Saikia UN, Ram J, Luthra-Guptasarma M. A single chain variable fragment antibody (Tn 64) cognate to fibronectin type III repeats promotes corneal wound healing by inhibiting fibrosis. Int Immunopharmacol 2024; 133:112029. [PMID: 38640715 DOI: 10.1016/j.intimp.2024.112029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024]
Abstract
Corneal wound healing requires epithelial reorganization and stromal extracellular matrix (ECM) remodeling, with ECM proteins such as Tenascin C (TnC) regulating and maintaining corneal homeostasis. The N-terminal globular domain and C-terminal fibrinogen-related domains of TnC are separated by epidermal growth factor (EGF)-like repeats, and upto fifteen fibronectin type III domains (Tn fn). Overexpression of Tn fn 1-5 and its splice variants occurs in varied pathologies. We have previously used Tn64 (a single chain variable fragment antibody cognate to Tn fn 1-5) to establish roles of Tn fn 1-5 in fibrotic pathologies such as rheumatoid arthritis and posterior capsular opacification. Here, we show that Tn64 binds to Tn fn repeats 3-5 (which constitute the major site for binding of soluble fibronectin within TnC). Unlike other Tn fn domains, Tn fn 3-5 displays no inhibition of fibronectin matrix assembly. Rather, the Tn fn 3-5 construct is pro-fibrotic and elicits increased expression of fibronectin. We examined corneal epithelial as well as stromal wound healing through Tn64 binding to Tn fn 3-5, using a human corneal epithelial cell (HCEC) line, primary cultures of human corneal fibroblasts (HCFs), and an ex-vivo corneal organ culture model. Tn64 enhanced proliferation and adhesion of corneal epithelial cells, while inhibiting the migration of corneal fibroblasts and myofibroblasts. Tn64 appears to attenuate inflammation through downregulation of TNF-α, prevent corneal fibrosis by limiting fibronectin polymerization, and promote regeneration of corneal epithelia and stroma, suggesting that it could be developed as a therapeutic agent for effective anti-fibrotic corneal wound healing.
Collapse
Affiliation(s)
- Ashu Shukla
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Vyshak Suresh
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Parul Chawla Gupta
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Maryada Sharma
- Department of Otolaryngology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Uma Nahar Saikia
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Jagat Ram
- Department of Ophthalmology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector-12, Chandigarh 160012, India.
| |
Collapse
|
4
|
Katayama T, Takechi M, Murata Y, Chigi Y, Yamaguchi S, Okamura D. Development of a chemically disclosed serum-free medium for mouse pluripotent stem cells. Front Bioeng Biotechnol 2024; 12:1390386. [PMID: 38812912 PMCID: PMC11134454 DOI: 10.3389/fbioe.2024.1390386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Mouse embryonic stem cells (mESCs) have been widely used as a model system to study the basic biology of pluripotency and to develop cell-based therapies. Traditionally, mESCs have been cultured in a medium supplemented with fetal bovine serum (FBS). However, serum with its inconsistent chemical composition has been problematic for reproducibility and for studying the role of specific components. While some serum-free media have been reported, these media contain commercial additives whose detailed components have not been disclosed. Recently, we developed a serum-free medium, DA-X medium, which can maintain a wide variety of adherent cancer lines. In this study, we modified the DA-X medium and established a novel serum-free condition for both naïve mESCs in which all components are chemically defined and disclosed (DA-X-modified medium for robust growth of pluripotent stem cells: DARP medium). The DARP medium fully supports the normal transcriptome and differentiation potential in teratoma and the establishment of mESCs from blastocysts that retain the developmental potential in all three germ layers, including germ cells in chimeric embryos. Utility of chemically defined DA-X medium for primed mouse epiblast stem cells (mEpiSCs) revealed that an optimal amount of cholesterol is required for the robust growth of naïve-state mESCs, but is dispensable for the maintenance of primed-state mEpiSCs. Thus, this study provides reliable and reproducible culture methods to investigate the role of specific components regulating self-renewal and pluripotency in a wide range of pluripotent states.
Collapse
Affiliation(s)
- Tomoka Katayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Marina Takechi
- Stem Cells and Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yamato Murata
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuta Chigi
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Shinpei Yamaguchi
- Stem Cells and Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
5
|
Jalil SMA, Henry JC, Cameron AJM. Targets in the Tumour Matrisome to Promote Cancer Therapy Response. Cancers (Basel) 2024; 16:1847. [PMID: 38791926 PMCID: PMC11119821 DOI: 10.3390/cancers16101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The extracellular matrix (ECM) is composed of complex fibrillar proteins, proteoglycans, and macromolecules, generated by stromal, immune, and cancer cells. The components and organisation of the matrix evolves as tumours progress to invasive disease and metastasis. In many solid tumours, dense fibrotic ECM has been hypothesised to impede therapy response by limiting drug and immune cell access. Interventions to target individual components of the ECM, collectively termed the matrisome, have, however, revealed complex tumour-suppressor, tumour-promoter, and immune-modulatory functions, which have complicated clinical translation. The degree to which distinct components of the matrisome can dictate tumour phenotypes and response to therapy is the subject of intense study. A primary aim is to identify therapeutic opportunities within the matrisome, which might support a better response to existing therapies. Many matrix signatures have been developed which can predict prognosis, immune cell content, and immunotherapy responses. In this review, we will examine key components of the matrisome which have been associated with advanced tumours and therapy resistance. We have primarily focussed here on targeting matrisome components, rather than specific cell types, although several examples are described where cells of origin can dramatically affect tumour roles for matrix components. As we unravel the complex biochemical, biophysical, and intracellular transduction mechanisms associated with the ECM, numerous therapeutic opportunities will be identified to modify tumour progression and therapy response.
Collapse
Affiliation(s)
| | | | - Angus J. M. Cameron
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK; (S.M.A.J.); (J.C.H.)
| |
Collapse
|
6
|
Ma Q, Zhang Y, Liang H, Zhang F, Liu F, Chen S, Hu Y, Jiang L, Hao Y, Li M, Liu Y. EMP3 as a key downstream target of miR-663a regulation interferes with MAPK/ERK signaling pathway to inhibit gallbladder cancer progression. Cancer Lett 2023; 575:216398. [PMID: 37730106 DOI: 10.1016/j.canlet.2023.216398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Gallbladder carcinoma (GBC) is the most common malignancy of the biliary tract, and its molecular pathogenesis remains unclear. Here we explore the functional roles of epithelial membrane protein 3 (EMP3) in GBC progression, which is aberrantly expressed in various types of cancers. The results showed that the expression level of EMP3 was reduced in human GBC tissues compared with non-malignant tissues. Further, the low expression of EMP3 was associated with the poor prognosis of GBC patients by Kaplan-Meier analysis. The ectopic expression of EMP3 inhibited GBC cell proliferation, migration and invasion in vitro and in vivo. Conversely, the depletion of EMP3 promoted GBC cell growth and metastasis. In addition, we found that EMP3 was a target gene of miR-663a, and the downregulation of EMP3 in GBC was attributed to the overexpression of miR-663a. MiR-663a was also shown to be a tumor-promoting factor mediating GBC development. In this study, we demonstrate that downregulation of EMP3 activates MAPK/ERK signaling, which regulates GBC progression. These data reveal the mechanism by which EMP3 inhibits the progression of GBC, suggesting that the miR-663a/EMP3/MAPK/ERK axis may be a new therapeutic target for GBC treatment.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Thyroid Oncology, Shanghai East Hospital Affiliated to Tongji University, School of Medicine, Shanghai 200120, China
| | - Yijian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Haibin Liang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Fatao Liu
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China
| | - Shili Chen
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Yunping Hu
- Institute of Pathology and Southwest Cancer Center, The First Affiliated Hospital, Third Military Medical University, Chongqing 400037,China
| | - Lin Jiang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Yajuan Hao
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai 200127, China.
| |
Collapse
|
7
|
Su MC, Nethi SK, Dhanyamraju PK, Prabha S. Nanomedicine Strategies for Targeting Tumor Stroma. Cancers (Basel) 2023; 15:4145. [PMID: 37627173 PMCID: PMC10452920 DOI: 10.3390/cancers15164145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The tumor stroma, or the microenvironment surrounding solid tumors, can significantly impact the effectiveness of cancer therapies. The tumor microenvironment is characterized by high interstitial pressure, a consequence of leaky vasculature, and dense stroma created by excessive deposition of various macromolecules such as collagen, fibronectin, and hyaluronic acid (HA). In addition, non-cancerous cells such as cancer-associated fibroblasts (CAFs) and the extracellular matrix (ECM) itself can promote tumor growth. In recent years, there has been increased interest in combining standard cancer treatments with stromal-targeting strategies or stromal modulators to improve therapeutic outcomes. Furthermore, the use of nanomedicine, which can improve the delivery and retention of drugs in the tumor, has been proposed to target the stroma. This review focuses on how different stromal components contribute to tumor progression and impede chemotherapeutic delivery. Additionally, this review highlights recent advancements in nanomedicine-based stromal modulation and discusses potential future directions for developing more effective stroma-targeted cancer therapies.
Collapse
Affiliation(s)
- Mei-Chi Su
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Susheel Kumar Nethi
- Nanovaccine Institute, Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Swayam Prabha
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Temple University, Philadelphia, PA 19111, USA
| |
Collapse
|
8
|
Zhu L, Yuhan J, Yu H, Zhang B, Huang K, Zhu L. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid's Microenvironment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207752. [PMID: 36929582 DOI: 10.1002/smll.202207752] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Over the past decade, stem cell- and tumor-derived organoids are the most promising models in developmental biology and disease modeling, respectively. The matrix is one of three main elements in the construction of an organoid and the most important module of its extracellular microenvironment. However, the source of the currently available commercial matrix, Matrigel, limits the application of organoids in clinical medicine. It is worth investigating whether the original decellularized extracellular matrix (dECM) can be exploited as the matrix of organoids and improving organoid construction are very important. In this review, tissue decellularization protocols and the characteristics of decellularization methods, the mechanical support and biological cues of extraccellular matrix (ECM), methods for construction of multifunctional dECM and responsive dECM hydrogel, and the potential applications of functional dECM are summarized. In addition, some expectations are provided for dECM as the matrix of organoids in clinical applications.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
- College of Veterinary Medicine, China Agricultural University, Beijing, 100094, P. R. China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Hao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, P. R. China
| |
Collapse
|
9
|
Cadena IA, Buchanan MR, Harris CG, Jenne MA, Rochefort WE, Nelson D, Fogg KC. Engineering high throughput screening platforms of cervical cancer. J Biomed Mater Res A 2023; 111:747-764. [PMID: 36861788 DOI: 10.1002/jbm.a.37522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
Cervical cancer is the second leading cause of cancer-related death in women under 40 and is one of the few cancers to have an increased incidence rate and decreased survival rate over the last 10 years. One in five patients will have recurrent and/or distant metastatic disease and these patients face a 5-year survival rate of less than 17%. Thus, there is a pressing need to develop new anticancer therapeutics for this underserved patient population. However, the development of new anticancer drugs remains a challenge, as only 7% of novel anticancer drugs are approved for clinical use. To facilitate identification of novel and effective anticancer drugs for cervical cancer, we developed a multilayer multicellular platform of human cervical cancer cell lines and primary human microvascular endothelial cells that interfaces with high throughput drug screening methods to evaluate the anti-metastatic and anti-angiogenic drug efficacy simultaneously. Through the use of design of experiments statistical optimization, we identified the specific concentrations of collagen I, fibrinogen, fibronectin, GelMA, and PEGDA in each hydrogel layer that maximized both cervical cancer invasion and endothelial microvessel length. We then validated the optimized platform and assessed its viscoelastic properties. Finally, using this optimized platform, we conducted a targeted drug screen of four clinically relevant drugs on two cervical cancer cell lines. Overall, this work provides a valuable platform that can be used to screen large compound libraries for mechanistic studies, drug discovery, and precision oncology for cervical cancer patients.
Collapse
Affiliation(s)
- Ines A Cadena
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Mina R Buchanan
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Conor G Harris
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Molly A Jenne
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Willie E Rochefort
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| | - Dylan Nelson
- College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Kaitlin C Fogg
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
10
|
Islam MS, Morshed MR, Babu G, Khan MA. The role of inflammations and EMT in carcinogenesis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2022; 5:100055. [DOI: 10.1016/j.adcanc.2022.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
11
|
Chang JW, Seo ST, Im MA, Won HR, Liu L, Oh C, Jin YL, Piao Y, Kim HJ, Kim JT, Jung SN, Koo BS. Claudin-1 mediates progression by regulating EMT through AMPK/TGF-β signaling in head and neck squamous cell carcinoma. Transl Res 2022; 247:58-78. [PMID: 35462077 DOI: 10.1016/j.trsl.2022.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 03/14/2022] [Accepted: 04/12/2022] [Indexed: 01/14/2023]
Abstract
Claudin-1 (CLDN1), a major component of tight junction complexes in the epithelium, maintains cellular polarity, and plays a critical role in cell-to-cell communication as well as epithelial cell homeostasis. Although the role of CLDN1 has been widely studied in cancer, its role in the progression and the exact regulatory mechanisms, remain controversial. Using next-generation sequencing, we first analyzed the expression profiles of tumor/non-tumor paired tissue in patients with head and neck squamous cell carcinoma (HNSC) from public and local cohorts and found out that CLDN1 is upregulated in tumors compared to normal tissues. Next, its correlation with lymph node metastasis and poor prognosis was validated in the retrospective cohort, which collectively suggests CLDN1 as an oncogene in HNSC. As expected, the knockdown of CLDN1 inhibited invasive phenotypes by downregulating epithelial-to-mesenchymal transition (EMT) in vitro. To ascertain the regulatory mechanism of CLDN1 in HNSC analysis of GO term enrichment, KEGG pathways, and curated gene sets were used. As a result, CLDN1 was negatively associated with AMP-activated protein kinase (AMPK) and positively associated with transforming growth factor-β (TGF-β) signaling. In vitro mechanistic assay showed that CLDN1 inhibited AMPK phosphorylation by regulating AMPK upstream phosphatases, which led to inhibition of Smad2 activity. Intriguingly, the invasive phenotype of cancer cells increased by CLDN1 overexpression was rescued by AMPK activation, indicating a role of the CLDN1/AMPK/TGF-β/EMT cascade in HNSC. Consistently in vivo, CLDN1 suppression significantly inhibited the tumor growth, with elevated AMPK expression, suggesting the novel observation of oncogenic CLDN1-AMPK signaling in HNSC.
Collapse
Affiliation(s)
- Jae Won Chang
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Sung Tae Seo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Mi Ae Im
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Ho-Ryun Won
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Lihua Liu
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Chan Oh
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Yan Li Jin
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Yudan Piao
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Hae Jong Kim
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Jung Tae Kim
- Department of Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Seung-Nam Jung
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University, School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Popova NV, Jücker M. The Functional Role of Extracellular Matrix Proteins in Cancer. Cancers (Basel) 2022; 14:238. [PMID: 35008401 PMCID: PMC8750014 DOI: 10.3390/cancers14010238] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM) is highly dynamic as it is constantly deposited, remodeled and degraded to maintain tissue homeostasis. ECM is a major structural component of the tumor microenvironment, and cancer development and progression require its extensive reorganization. Cancerized ECM is biochemically different in its composition and is stiffer compared to normal ECM. The abnormal ECM affects cancer progression by directly promoting cell proliferation, survival, migration and differentiation. The restructured extracellular matrix and its degradation fragments (matrikines) also modulate the signaling cascades mediated by the interaction with cell-surface receptors, deregulate the stromal cell behavior and lead to emergence of an oncogenic microenvironment. Here, we summarize the current state of understanding how the composition and structure of ECM changes during cancer progression. We also describe the functional role of key proteins, especially tenascin C and fibronectin, and signaling molecules involved in the formation of the tumor microenvironment, as well as the signaling pathways that they activate in cancer cells.
Collapse
Affiliation(s)
- Nadezhda V. Popova
- Laboratory of Receptor Cell Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia;
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| |
Collapse
|
13
|
Li W, Zhang Q, Wang X, Wang H, Zuo W, Xie H, Tang J, Wang M, Zeng Z, Cai W, Tang D, Dai Y. Comparative Proteomic Analysis to Investigate the Pathogenesis of Oral Adenoid Cystic Carcinoma. ACS OMEGA 2021; 6:18623-18634. [PMID: 34337202 PMCID: PMC8319923 DOI: 10.1021/acsomega.1c01270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/07/2021] [Indexed: 05/25/2023]
Abstract
Adenoid cystic carcinoma (ACC) belongs to salivary gland malignancies commonly occurring in an oral cavity with a poor long-term prognosis. The potential biomarkers and cellular functions acting on local recurrences and distant metastases remain to be illustrated. Proteomics is the core content of precision medicine research, which provides accurate information for early detection of cancer, benign and malignant diagnosis, classification and personalized medication, efficacy monitoring, and prognosis judgment. To obtain a comprehensive regulation network and supply clues for the treatment of oral ACC (OACC), we utilized mass spectrometry-based quantitative proteomics to analyze the protein expression profile in paired tumor and adjacent normal tissues. We identified a total of 40,547 specific peptides and 4454 differentially expressed proteins (DEPs), in which HAPLN1 was the most upregulated protein and BPIFB1 was the most downregulated. Then, we annotated the functions and characteristics of DEPs in detail from the aspects of gene ontology, subcellular structural localization, KEGG, and protein domain to thoroughly understand the identified and quantified proteins. Glycosphingolipid biosynthesis and glycosaminoglycan degradation pathways showed the biggest difference according to KEGG analysis. Moreover, we confirmed 20 proteins from the ECM-receptor signaling pathway by a parallel reaction monitoring quantitative detection and 19 proteins were quantified. This study provides useful insights to analyze DEPs in OACC and guide in-depth thinking of the pathogenesis from a proteomics view for anticancer mechanisms and potential biomarkers.
Collapse
Affiliation(s)
- Wen Li
- Carson
International Cancer Centre, Shenzhen University General Hospital
and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, Guangdong 518000, China
- Key
Laboratory of Optoelectronic Devices and Systems, College of Physics
and Optoelectronic Engineering, Shenzhen
University, Shenzhen 518060, China
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Qian Zhang
- Carson
International Cancer Centre, Shenzhen University General Hospital
and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, Guangdong 518000, China
- Key
Laboratory of Optoelectronic Devices and Systems, College of Physics
and Optoelectronic Engineering, Shenzhen
University, Shenzhen 518060, China
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Xiaobin Wang
- Carson
International Cancer Centre, Shenzhen University General Hospital
and Shenzhen University Clinical Medical Academy Centre, Shenzhen University, 1098 Xueyuan Road, Shenzhen, Guangdong 518000, China
- Key
Laboratory of Optoelectronic Devices and Systems, College of Physics
and Optoelectronic Engineering, Shenzhen
University, Shenzhen 518060, China
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Hanlin Wang
- Health
Science Center, School of Medicine, Shenzhen
University, Shenzhen 518060, China
| | - Wenxin Zuo
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Hongliang Xie
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Jianming Tang
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Mengmeng Wang
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Zhipeng Zeng
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Wanxia Cai
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Donge Tang
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| | - Yong Dai
- Clinical
Medical Research Center, Guangdong Provincial Engineering Research
Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering
Research Center of Autoimmune Disease, The Second Clinical Medical
College of Jinan University, The First Affiliated Hospital of Southern
University of Science and Technology, Shenzhen
People’s Hospital, Shenzhen, Guangdong 518020, China
| |
Collapse
|
14
|
Ghura H, Keimer M, von Au A, Hackl N, Klemis V, Nakchbandi IA. Inhibition of fibronectin accumulation suppresses tumor growth. Neoplasia 2021; 23:837-850. [PMID: 34298233 PMCID: PMC8322122 DOI: 10.1016/j.neo.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022] Open
Abstract
Understanding how the extracellular matrix affects cancer development constitutes an emerging research field. Fibronectin and collagen are two intriguing matrix components found in cancer. Large concentrations of fibronectin or collagen type I have been implicated in poor prognosis in patients. In a mouse model, we had shown that genetically decreasing circulating fibronectin resulted in smaller tumors. We therefore aimed to manipulate fibronectin pharmacologically and determine how cancer development is affected. Deletion of fibronectin in human breast cancer cells (MDA-MB-231) using shRNA (knockdown: Kd) improved survival and diminished tumor burden in a model of metastatic lesions and in a model of local growth. Based on these findings, it seemed reasonable to attempt to prevent fibronectin accumulation using a bacterial derived peptide called pUR4. Treatment with this peptide for 10 days in the breast cancer local growth model or for 5 days in a melanoma skin cancer model (B16) was associated with a significant suppression of cancer growth. Treatment aimed at inhibiting collagen type I accumulation without interfering with fibronectin could not affect any changes in vivo. In the absence of fibronectin, diminished cancer progression was due to inhibition of proliferation, even though changes in blood vessels were also detected. Decreased proliferation could be attributed to decreased ERK phosphorylation and diminished YAP expression. In summary, manipulating fibronectin diminishes cancer progression, mostly by suppressing cell proliferation. This suggests that matrix modulation could be used as an adjuvant to conventional therapy as long as a decrease in fibronectin is obtained.
Collapse
Affiliation(s)
- Hiba Ghura
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Marin Keimer
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Anja von Au
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Norman Hackl
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Verena Klemis
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - Inaam A Nakchbandi
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany; Max-Planck Institute for Medical Research, Heidelberg, Germany; Max-Planck Institute for Biochemistry, Martinsried, Germany.
| |
Collapse
|
15
|
Ye J, Qi L, Du Z, Yu L, Chen K, Li R, Feng R, Zhai W. Calreticulin: a potential diagnostic and therapeutic biomarker in gallbladder cancer. Aging (Albany NY) 2021; 13:5607-5620. [PMID: 33591948 PMCID: PMC7950265 DOI: 10.18632/aging.202488] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/24/2020] [Indexed: 01/02/2023]
Abstract
Recent studies suggested that calreticulin (CRT) has an important role in the progression of various types of cancer. Our previous study suggested that CRT was upregulated and acted as an oncogene in hepatocellular carcinoma. However, the role of CRT in gallbladder cancer (GBC) remains unclear. The expression level of CRT was upregulated in GBC tissues in comparison with adjacent non-tumor tissues and chronic cholecystitis tissues. Moreover, CRT expression was found to be correlated with the tumor size. Knockdown of CRT inhibited cell proliferation, induced apoptosis, arrested cell cycle and resulted in decreased resistance to gemcitabine, which was mediated by the inactivation of the PI3K/Akt pathway. Collectively, the present results suggested a potential role of CRT in GBC progression and provided novel insights into the mechanism underlying the CRT-mediated chemosensitivity in GBC cells.
Collapse
Affiliation(s)
- Jianwen Ye
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Lei Qi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhicheng Du
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Long Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Kunlun Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Renfeng Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Ruo Feng
- Department of Histology and Embryology, Medical College of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Wenlong Zhai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
- Key Laboratory of Digestive Organ Transplantation of Henan Province, Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou Key Laboratory of Hepatobiliary and Pancreatic Disease and Organ Transplantation, Zhengzhou 450052, Henan Province, China
| |
Collapse
|
16
|
Mariotti M, Rogowska-Wrzesinska A, Hägglund P, Davies MJ. Cross-linking and modification of fibronectin by peroxynitrous acid: Mapping and quantification of damage provides a new model for domain interactions. J Biol Chem 2021; 296:100360. [PMID: 33539924 PMCID: PMC7950325 DOI: 10.1016/j.jbc.2021.100360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Fibronectin (FN) is an abundant glycoprotein found in plasma and the extracellular matrix (ECM). It is present at high concentrations at sites of tissue damage, where it is exposed to oxidants generated by activated leukocytes, including peroxynitrous acid (ONOOH) formed from nitric oxide (from inducible nitric oxide synthase) and superoxide radicals (from NADPH oxidases and other sources). ONOOH reacts rapidly with the abundant tyrosine and tryptophan residues in ECM proteins, resulting in the formation of 3-nitrotyrosine, di-tyrosine, and 6-nitrotryptophan. We have shown previously that human plasma FN is readily modified by ONOOH, but the extent and location of modifications, and the role of FN structure (compact versus extended) in determining these factors is poorly understood. Here, we provide a detailed LC-MS analysis of ONOOH-induced FN modifications, including the extent of their formation and the sites of intramolecular and intermolecular cross-links, including Tyr-Tyr, Trp-Trp, and Tyr-Trp linkages. The localization of these cross-links to specific domains provides novel data on the interactions between different modules in the compact conformation of plasma FN and allows us to propose a model of its unknown quaternary structure. Interestingly, the pattern of modifications is significantly different to that generated by another inflammatory oxidant, HOCl, in both extent and sites. The characterization and quantification of these modifications offers the possibility of the use of these materials as specific biomarkers of ECM modification and turnover in the many pathologies associated with inflammation-associated fibrosis.
Collapse
Affiliation(s)
- Michele Mariotti
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Per Hägglund
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Michael J Davies
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Migneault F, Hébert MJ. Autophagy, tissue repair, and fibrosis: a delicate balance. Matrix Biol 2021; 100-101:182-196. [PMID: 33454422 DOI: 10.1016/j.matbio.2021.01.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022]
Abstract
Tissue repair and fibrosis, an abnormal form of repair, occur in most human organs in response to injury or inflammation. Fibroblasts play a major role in the normal repair process by differentiating into myofibroblasts that synthesize extracellular matrix (ECM) components and favor tissue remodeling to reestablish normal function and integrity. However, their persistent accumulation at the site of injury is a hallmark of fibrosis. Autophagy is a catabolic process that occurs in eukaryotic cells as a stress response to allow cell survival and maintenance of cellular homeostasis by degrading and recycling intracellular components. Recent advances identify autophagy as an important regulator of myofibroblast differentiation, tissue remodeling, and fibrogenesis. In this mini-review, we provide an overview of the interactions between autophagy, ECM, and fibrosis, and emphasize the molecular mechanisms involved in myofibroblast differentiation. We also describe the emerging concept of secretory autophagy as a new avenue for intercellular communication at the site of tissue injury and repair.
Collapse
Affiliation(s)
- Francis Migneault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC H2X 0A9, Canada; Canadian Donation and Transplantation Research Program, Edmonton, Alberta T6G 2E1, Canada
| | - Marie-Josée Hébert
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC H2X 0A9, Canada; Canadian Donation and Transplantation Research Program, Edmonton, Alberta T6G 2E1, Canada; Département de médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
18
|
Depleting RhoA/Stress Fiber-Organized Fibronectin Matrices on Tumor Cells Non-Autonomously Aggravates Fibroblast-Driven Tumor Cell Growth. Int J Mol Sci 2020; 21:ijms21218272. [PMID: 33158289 PMCID: PMC7663795 DOI: 10.3390/ijms21218272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 01/15/2023] Open
Abstract
Fibronectin (FN) expressed by tumor cells has been known to be tumor suppressive but the pericellular FN (periFN) assembled on circulating tumor cells appears to evidently promote distant metastasis. Whereas the regulation of periFN assembly in suspended cells has currently been under investigation, how it is regulated in adherent tumor cells and the role of periFN in primary tumor growth remain elusive. Techniques of RNAi, plasmid transfections, immunoblotting, fluorescence/immunohistochemistry staining, cell proliferation assays, and primary tumor growth in C57BL6 mice and Fischer 344 rats were employed in this study. We found that endogenously synthesized FN in adherent tumor cells was required for periFN assembly which was aligned by RhoA-organized actin stress fiber (SF). Depleting periFN on adherent tumor cells congruently promoted in vivo tumor growth but surprisingly did not autonomously impact on in vitro tumor cell proliferation and apoptosis, suggestive of a non-autonomous role of periFN in in vivo tumor growth. We showed that the proliferative ability of shFN-expressing tumor cells was higher than shScramble cells did in the presence of fibroblasts. Altogether, these results suggested that depriving RhoA/SF-regulated periFN matrices non-autonomously promotes fibroblast-mediated tumor cell growth.
Collapse
|
19
|
Vanichkitrungruang S, Chuang CY, Hawkins CL, Davies MJ. Myeloperoxidase-derived damage to human plasma fibronectin: Modulation by protein binding and thiocyanate ions (SCN -). Redox Biol 2020; 36:101641. [PMID: 32863239 PMCID: PMC7378696 DOI: 10.1016/j.redox.2020.101641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022] Open
Abstract
Endothelial cell dysfunction is an early event in cardiovascular disease and atherosclerosis. The origin of this dysfunction is unresolved, but accumulating evidence implicates damaging oxidants, including hypochlorous acid (HOCl), a major oxidant produced by myeloperoxidase (MPO), during chronic inflammation. MPO is released extracellularly by activated leukocytes and binds to extracellular molecules including fibronectin, a major matrix glycoprotein involved in endothelial cell binding. We hypothesized that MPO binding might influence the modifications induced on fibronectin, when compared to reagent HOCl, with this including alterations to the extent of damage to protein side-chains, modified structural integrity, changes to functional domains, and impact on naïve human coronary artery endothelial cell (HCAEC) adhesion and metabolic activity. The effect of increasing concentrations of the alternative MPO substrate thiocyanate (SCN-), which might decrease HOCl formation were also examined. Exposure of fibronectin to MPO/H2O2/Cl- is shown to result in damage to the functionally important cell-binding and heparin-binding fragments, gross structural changes to the protein, and altered HCAEC adhesion and activity. Differences were observed between stoichiometric, and above-stoichiometric MPO concentrations consistent with an effect of MPO binding to fibronectin. In contrast, MPO/H2O2/SCN- induced much less marked changes and limited protein damage. Addition of increasing SCN- concentrations to the MPO/H2O2/Cl- system provided protection, with 20 μM of this anion rescuing damage to functionally-important domains, decreasing chemical modification, and maintaining normal HCAEC behavior. Modulating MPO binding to fibronectin, or enhancing SCN- levels at sites of inflammation may therefore limit MPO-mediated damage, and be of therapeutic value.
Collapse
Affiliation(s)
- Siriluck Vanichkitrungruang
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Christine Y Chuang
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Clare L Hawkins
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark
| | - Michael J Davies
- The Heart Research Institute, Newtown, NSW, Australia; Faculty of Medicine, The University of Sydney, NSW, Australia; Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Denmark.
| |
Collapse
|
20
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Efthymiou G, Saint A, Ruff M, Rekad Z, Ciais D, Van Obberghen-Schilling E. Shaping Up the Tumor Microenvironment With Cellular Fibronectin. Front Oncol 2020; 10:641. [PMID: 32426283 PMCID: PMC7203475 DOI: 10.3389/fonc.2020.00641] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022] Open
Abstract
Normal tissue homeostasis and architecture restrain tumor growth. Thus, for a tumor to develop and spread, malignant cells must overcome growth-repressive inputs from surrounding tissue and escape immune surveillance mechanisms that curb cancer progression. This is achieved by promoting the conversion of a physiological microenvironment to a pro-tumoral state and it requires a constant dialog between malignant cells and ostensibly normal cells of adjacent tissue. Pro-tumoral reprogramming of the stroma is accompanied by an upregulation of certain extracellular matrix (ECM) proteins and their cognate receptors. Fibronectin (FN) is one such component of the tumor matrisome. This large multidomain glycoprotein dimer expressed over a wide range of human cancers is assembled by cell-driven forces into a fibrillar array that provides an obligate scaffold for the deposition of other matrix proteins and binding sites for functionalization by soluble factors in the tumor microenvironment. Encoded by a single gene, FN regulates the proliferation, motile behavior and fate of multiple cell types, largely through mechanisms that involve integrin-mediated signaling. These processes are coordinated by distinct isoforms of FN, collectively known as cellular FN (as opposed to circulating plasma FN) that arise through alternative splicing of the FN1 gene. Cellular FN isoforms differ in their solubility, receptor binding ability and spatiotemporal expression, and functions that have yet to be fully defined. FN induction at tumor sites constitutes an important step in the acquisition of biological capabilities required for several cancer hallmarks such as sustaining proliferative signaling, promoting angiogenesis, facilitating invasion and metastasis, modulating growth suppressor activity and regulating anti-tumoral immunity. In this review, we will first provide an overview of ECM reprogramming through tumor-stroma crosstalk, then focus on the role of cellular FN in tumor progression with respect to these hallmarks. Last, we will discuss the impact of dysregulated ECM on clinical efficacy of classical (radio-/chemo-) therapies and emerging treatments that target immune checkpoints and explore how our expanding knowledge of the tumor ECM and the central role of FN can be leveraged for therapeutic benefit.
Collapse
Affiliation(s)
| | - Angélique Saint
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.,Centre Antoine Lacassagne, Nice, France
| | - Michaël Ruff
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | - Zeinab Rekad
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France
| | | | | |
Collapse
|
22
|
Li D, Ni XF, Tang H, Zhang J, Zheng C, Lin J, Wang C, Sun L, Chen B. KRT17 Functions as a Tumor Promoter and Regulates Proliferation, Migration and Invasion in Pancreatic Cancer via mTOR/S6k1 Pathway. Cancer Manag Res 2020; 12:2087-2095. [PMID: 32256116 PMCID: PMC7090205 DOI: 10.2147/cmar.s243129] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022] Open
Abstract
Background Pancreatic cancer (PC) is one of the most well-known malignancies with high mortality, but the underlying mechanism of PC remains unknown. Keratin17 (KRT17) expression has been reported in many malignancies, but its functions in PC are not clear. The aim of our study was to evaluate KRT17 expression and its potential role in PC. Methods The online databases GEPIA and THPA were used to identify KRT17 expression in tissues. Quantitative real-time PCR (qRT-PCR) was used to determine KRT17 expression in cell lines. Ki67 and ROS levels were detected by immunofluorescence assay and a 2ʹ,7ʹ-dichlorodihydrofluorescein diacetate (DCFH-DA) probe. KRT17 downregulation was induced by the small interfering RNA (siRNA) technique. Proliferation function was evaluated by colony formation assay and RTCA. Migration and invasion were evaluated by transwell migration assay. A Western blot assay was used to detect protein levels. Results KRT17 was overexpressed in PC tissues compared to that in normal tissues. The results showed that Ki67 and ROS levels were decreased in pancreatic cancer cells after transfection with siKRT17. After KRT17 downregulation in PC cell lines, cell viability functions, including proliferation, migration and invasion, and mTOR/S6K1 phosphorylation levels were attenuated. Conclusion KRT17 knockdown significantly inhibited proliferation, migration and invasion in pancreatic cancer cells.
Collapse
Affiliation(s)
- Ding Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiao-Feng Ni
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Hengjie Tang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jiecheng Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Chenlei Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Jianhu Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Cheng Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Linxiao Sun
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China.,Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
23
|
Liu YP, Chen WD, Li WN, Zhang M. Overexpression of FNDC1 Relates to Poor Prognosis and Its Knockdown Impairs Cell Invasion and Migration in Gastric Cancer. Technol Cancer Res Treat 2020; 18:1533033819869928. [PMID: 31530096 PMCID: PMC6751529 DOI: 10.1177/1533033819869928] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The distribution and content of fibronectin is closely related to the occurrence and development of tumors. Fibronectin is widely involved in cell migration, adhesion, proliferation, hemostasis, and tissue repair. Fibronectin type III domain containing 1, as a primary component of the structural domain of fibronectin, is closely related to the occurrence of some cancers. However, the molecular mechanism of fibronectin type III domain containing 1 in gastric cancer has not been elaborated. In this study, we analyzed the expression and prognosis of fibronectin type III domain containing 1 by collecting data from Oncomine and GEPIA database. The expression of fibronectin type III domain containing 1 in gastric cancer cells was detected by quantitative real-time polymerase chain reaction in vitro. After knockdown of fibronectin type III domain containing 1 by small interfering RNA, the proliferation, invasion, and migration of AGS (human gastric adenocarcinoma cell line) cells and the function of epithelial–mesenchymal transition were measured by Cell Counting Kit-8, colony formation, transwell, and Western blot. The results showed that fibronectin type III domain containing 1 was highly expressed in gastric cancer tissues and its overexpression was significantly correlated with the prognosis of gastric cancer. In vitro, experiments revealed that knockdown of fibronectin type III domain containing 1 could inhibit the proliferation, migration, and invasion of gastric cancer cells, possibly by changing the epithelial–mesenchymal transition pathway. The findings elaborated the biological role of fibronectin type III domain containing 1 in gastric cancer and potential mechanism of action, possibly providing a new insight for future clinical diagnosis or even molecular therapy.
Collapse
Affiliation(s)
- Yan-Peng Liu
- Department of Internal Medicine, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| | - Wei-Da Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.,Department of Health Section, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Wen-Na Li
- Department of Medical Insurance Office, Jinan Central Hospital, Jinan, Shandong, People's Republic of China
| | - Min Zhang
- Department of Internal Medicine, The Second Hospital of Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
24
|
Baichan P, Naicker P, Devar JWS, Smith M, Candy GP, Nweke E. Targeting gallbladder cancer: a pathway based perspective. Mol Biol Rep 2020; 47:2361-2369. [PMID: 32020429 DOI: 10.1007/s11033-020-05269-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022]
Abstract
Gallbladder cancer (GBC) has a poor prognosis with a 5-year survival rate suggesting the need for more effective treatment strategies. Studying the cross-talk of several pathways involved in crucial cellular and biological processes such as cell growth, proliferation, migration and apoptosis would prove beneficial in identifying key players of GBC progression and targeting them. This review highlights several pathways known to be dysregulated in GBC onset and progression and describes known and potential targets. Within these pathways, there are proteins involved in the signalling cascade, which may be targeted as potential biomarkers and drug targets. Furthermore, the cross-talk of these pathways is investigated in the context of GBC and the implications thereof. A better understanding of the pathways involved in GBC pathogenesis will aid clinicians in the prognosis, diagnosis and treatment of patients. There are significant clinical implications of GBC pathway-based studies as they permit the understanding of onset and progression of the disease.
Collapse
Affiliation(s)
- P Baichan
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa.
| | - P Naicker
- Department of Biosciences, Council for Scientific and Industrial Research, Meiring Naude Rd, Brummeria, Pretoria, South Africa
| | - J W S Devar
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - M Smith
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - G P Candy
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| | - E Nweke
- Department of Surgery, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Republic of South Africa
| |
Collapse
|
25
|
Fibronectin in Cancer: Friend or Foe. Cells 2019; 9:cells9010027. [PMID: 31861892 PMCID: PMC7016990 DOI: 10.3390/cells9010027] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
The role of fibronectin (FN) in tumorigenesis and malignant progression has been highly controversial. Cancerous FN plays a tumor-suppressive role, whereas it is pro-metastatic and associated with poor prognosis. Interestingly, FN matrix deposited in the tumor microenvironments (TMEs) promotes tumor progression but is paradoxically related to a better prognosis. Here, we justify how FN impacts tumor transformation and subsequently metastatic progression. Next, we try to reconcile and rationalize the seemingly conflicting roles of FN in cancer and TMEs. Finally, we propose future perspectives for potential FN-based therapeutic strategies.
Collapse
|
26
|
Valiente-Alandi I, Potter SJ, Salvador AM, Schafer AE, Schips T, Carrillo-Salinas F, Gibson AM, Nieman ML, Perkins C, Sargent MA, Huo J, Lorenz JN, DeFalco T, Molkentin JD, Alcaide P, Blaxall BC. Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure. Circulation 2019; 138:1236-1252. [PMID: 29653926 DOI: 10.1161/circulationaha.118.034609] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fibronectin (FN) polymerization is necessary for collagen matrix deposition and is a key contributor to increased abundance of cardiac myofibroblasts (MFs) after cardiac injury. We hypothesized that interfering with FN polymerization or its genetic ablation in fibroblasts would attenuate MF and fibrosis and improve cardiac function after ischemia/reperfusion (I/R) injury. METHODS Mouse and human MFs were used to assess the impact of the FN polymerization inhibitor (pUR4) in attenuating pathological cellular features such as proliferation, migration, extracellular matrix deposition, and associated mechanisms. To evaluate the therapeutic potential of inhibiting FN polymerization in vivo, wild-type mice received daily intraperitoneal injections of either pUR4 or control peptide (III-11C) immediately after cardiac surgery for 7 consecutive days. Mice were analyzed 7 days after I/R to assess MF markers and inflammatory cell infiltration or 4 weeks after I/R to evaluate long-term effects of FN inhibition on cardiac function and fibrosis. Furthermore, inducible, fibroblast-restricted, FN gene-ablated (Tcf21MerCreMer; Fnflox) mice were used to evaluate cell specificity of FN expression and polymerization in the heart. RESULTS pUR4 administration on activated MFs reduced FN and collagen deposition into the extracellular matrix and attenuated cell proliferation, likely mediated through decreased c-myc signaling. pUR4 also ameliorated fibroblast migration accompanied by increased β1 integrin internalization and reduced levels of phosphorylated focal adhesion kinase protein. In vivo, daily administration of pUR4 for 7 days after I/R significantly reduced MF markers and neutrophil infiltration. This treatment regimen also significantly attenuated myocardial dysfunction, pathological cardiac remodeling, and fibrosis up to 4 weeks after I/R. Last, inducible ablation of FN in fibroblasts after I/R resulted in significant functional cardioprotection with reduced hypertrophy and fibrosis. The addition of pUR4 to the FN-ablated mice did not confer further cardioprotection, suggesting that the salutary effects of inhibiting FN polymerization may be mediated largely through effects on FN secreted from the cardiac fibroblast lineage. CONCLUSIONS Inhibiting FN polymerization or cardiac fibroblast gene expression attenuates pathological properties of MFs in vitro and ameliorates adverse cardiac remodeling and fibrosis in an in vivo model of heart failure. Interfering with FN polymerization may be a new therapeutic strategy for treating cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Iñigo Valiente-Alandi
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Sarah J Potter
- Division of Reproductive Sciences (S.J.P., T.D.), Cincinnati Children's Hospital Medical Center
| | - Ane M Salvador
- Department of Integrative Physiology and Pathobiology, Tufts University Schools of Medicine, Boston, MA (A.M.S., F.C.-S., P.A.)
| | - Allison E Schafer
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Tobias Schips
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Francisco Carrillo-Salinas
- Department of Integrative Physiology and Pathobiology, Tufts University Schools of Medicine, Boston, MA (A.M.S., F.C.-S., P.A.)
| | - Aaron M Gibson
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | | | - Charles Perkins
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Michelle A Sargent
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Jiuzhou Huo
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - John N Lorenz
- Department of Molecular and Cellular Physiology (M.C.N., J.N.L., University of Cincinnati College of Medicine, OH
| | - Tony DeFalco
- Division of Reproductive Sciences (S.J.P., T.D.), Cincinnati Children's Hospital Medical Center
| | - Jeffery D Molkentin
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| | - Pilar Alcaide
- Department of Integrative Physiology and Pathobiology, Tufts University Schools of Medicine, Boston, MA (A.M.S., F.C.-S., P.A.)
| | - Burns C Blaxall
- Department of Pediatrics (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), University of Cincinnati College of Medicine, OH.,Ohio Heart Institute (I.V.-A., A.E.S., T.S., A.M.G., C.P., M.A.S., J.H., J.D.M., B.C.B.), Cincinnati Children's Hospital Medical Center
| |
Collapse
|
27
|
Ma J, Xiao Y, Tian B, Chen S, Zhang B, Wu J, Wu Z, Li X, Tang J, Yang D, Zhou Y, Wang H, Su M, Wang W. Long noncoding RNA lnc-ABCA12-3 promotes cell migration, invasion, and proliferation by regulating fibronectin 1 in esophageal squamous cell carcinoma. J Cell Biochem 2019; 121:1374-1387. [PMID: 31512786 DOI: 10.1002/jcb.29373] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/20/2019] [Indexed: 12/16/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been shown to play important roles in human cancers, including esophageal squamous cell carcinoma (ESCC). We previously demonstrated that a novel lncRNA, lnc-ABCA12-3, was overexpressed in ESCC tissues. However, the exact function of lnc-ABCA12-3 is unknown. In the current study, we aimed to evaluate the expression of lnc-ABCA12-3 in ESCC and to explore the potential mechanism of lnc-ABCA12-3 in cell migration, invasion, and proliferation. We showed that lnc-ABCA12-3 was upregulated in ESCC tumor tissues and cell lines. The increased expression of lnc-ABCA12-3 was positively associated with advanced tumor-node-metastasis stages and poor prognosis. The knockdown of lnc-ABCA12-3 inhibited the cell migration, invasion, and proliferation abilities of KYSE-510 and Eca-109 cells. We also found that fibronectin 1 (FN1) was upregulated in ESCC tumor tissues. The expression of FN1 messenger RNA was positively correlated with the expression of lnc-ABCA12-3 in ESCC tumor tissues. After lnc-ABCA12-3 knockdown, the expression of FN1 was downregulated. In addition, the overexpression of FN1 restored the abilities of cell migration, invasion and proliferation in Eca-109 cells. Further studies indicated that lnc-ABCA12-3 acted as a competing endogenous RNA for miR-200b-3p to regulate FN1 expression. In conclusion, these results suggest that lnc-ABCA12-3 is a novel oncogene in tumorigenesis and that its high expression is related to a poor prognosis for patients with ESCC. lnc-ABCA12-3 promotes cell migration, invasion, and proliferation via the regulation of FN1 in ESCC. Our data suggest that lnc-ABCA12-3 might serve as a potential prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Junliang Ma
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Bo Tian
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shaolin Chen
- Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Baihua Zhang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jie Wu
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhining Wu
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xu Li
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinming Tang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Desong Yang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yong Zhou
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Min Su
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Wenxiang Wang
- The Second Department of Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Resveratrol-mediated inhibition of cyclooxygenase-2 in melanocytes suppresses melanogenesis through extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt signalling. Eur J Pharmacol 2019; 860:172586. [PMID: 31377156 DOI: 10.1016/j.ejphar.2019.172586] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), has been reported to exert a variety of important pharmacological effects including anti-inflammatory, anticancer, and direct inhibition of tyrosinase. This study aimed to examine the expression of melanogenic molecules following down-regulation of cyclooxygenase (COX)-2 expression by resveratrol and the related signal transduction pathways in mouse B16F10 melanoma cells and zebrafish larvae. We report that resveratrol suppressed COX-2 in melanocytes and decreased the expressions of tyrosinase and microphthalmia-associated transcription factor (MITF). Furthermore, inhibition of COX-2 with NS398 enhanced resveratrol-reduced tyrosinase and MITF expression. Resveratrol also induced phosphorylation of extracellular signal-regulated 1/2 (ERK1/2) and phosphoinositide-3 (PI-3)-kinase/Akt. Inhibition of ERK1/2 or PI-3K/Akt by PD98059 and LY294002 restored the decreased tyrosinase activity and MITF expression via resveratrol-mediated down-regulation of COX-2. Additionally, resveratrol inhibited body pigmentation in zebrafish. These results indicated that resveratrol inhibited melanogenesis by down-regulating COX-2 via ERK1/2 and PI-3K/Akt pathways in B16F10 cells.
Collapse
|
29
|
Tang X, Yang Y, Song X, Liu X, Wang X, Huang F, Li Y, Chen F, Wan H. SIX4 acts as a master regulator of oncogenes that promotes tumorigenesis in non-small-cell lung cancer cells. Biochem Biophys Res Commun 2019; 516:851-857. [PMID: 31266633 DOI: 10.1016/j.bbrc.2019.06.114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 01/20/2023]
Abstract
A number of homeobox genes are implicated in the malignancy of various cancers. Here, we investigated the role of the homeobox gene SIX4 in non-small-cell lung cancer (NSCLC). The sine oculis homeobox (SIX4) gene was found to be highly expressed at both mRNA and protein levels in NSCLC tumor tissues as compared with matching normal counterparts. In this study, the SIX4 gene of two human NSCLC cell lines (A549 and PC9) was overexpressed or silenced using the lentiviral system. We evaluated the malignancy-associated phenotype of transfected cells, which demonstrated that exogenous expression of the SIX4 gene greatly enhanced the proliferation, migration, and invasion of NSCLC cells. The opposite was true in the SIX4-silenced cells. Transcriptomic profiling analysis revealed that the SIX4 gene modulated the expression of hundreds of downstream target genes in a cell context-dependent manner. Most notably, the SIX4 gene controls the expression of crucial genes with evidently oncogenic function. We conclude that SIX4 plays an oncogenic role and may be potentially utilized as a diagnostic and therapeutic marker for NSCLC.
Collapse
Affiliation(s)
- Xiaoping Tang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, 646000, China
| | - Yingcheng Yang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, 646000, China
| | - Xueqin Song
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, 646000, China
| | - Xu Liu
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, 646000, China
| | - Xiaoyan Wang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, 646000, China
| | - Fang Huang
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, 646000, China
| | - Yan Li
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, 646000, China
| | - Feng Chen
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, 646000, China
| | - Haisu Wan
- Experimental Medicine Center, The Affiliated Hospital of SouthWest Medical University, Luzhou, 646000, China.
| |
Collapse
|
30
|
An T, Qin S, Sun D, Huang Y, Hu Y, Li S, Zhang H, Li B, Situ B, Lie L, Wu Y, Zheng L. Unique Protein Profiles of Extracellular Vesicles as Diagnostic Biomarkers for Early and Advanced Non‐Small Cell Lung Cancer. Proteomics 2019; 19:e1800160. [DOI: 10.1002/pmic.201800160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 03/10/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Taixue An
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Institute of Antibody EngineeringSchool of Laboratory Medicine and BiotechnologySouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Sihua Qin
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Division of Laboratory MedicineZhujiang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Dehua Sun
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Yiyao Huang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Yanwei Hu
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Shaopeng Li
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Han Zhang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Bo Li
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Linmiao Lie
- Molecular Immunology InstituteSouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Yingsong Wu
- Institute of Antibody EngineeringSchool of Laboratory Medicine and BiotechnologySouthern Medical University Guangzhou 510515 Guangdong P. R. China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical University Guangzhou 510515 Guangdong P. R. China
| |
Collapse
|
31
|
Fei D, Sui G, Lu Y, Tan L, Dongxu Z, Zhang K. The long non-coding RNA-ROR promotes osteosarcoma progression by targeting miR-206. J Cell Mol Med 2019; 23:1865-1872. [PMID: 30565392 PMCID: PMC6378210 DOI: 10.1111/jcmm.14087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/02/2018] [Accepted: 11/22/2018] [Indexed: 01/02/2023] Open
Abstract
The long intergenic non-protein coding RNA regulator of reprogramming (lncRNA-ROR) has been reported to play crucial regulatory roles in the pathogenesis and progression of multiple cancers. However, whether ROR is associated with the initiation and development of osteosarcoma (OS) remains unclear. Here, we found that ROR expression level was significantly up-regulated in OS tissue samples compared to adjacent normal tissues, and the elevated ROR was closely correlated with advanced tumour-node-metastasis (TNM) stage and lymph node metastasis and poor overall survival rate. Functional assays showed that ROR knockdown suppressed the OS cell proliferation, colony formation, migration and invasion in vitro, and retarded tumour growth in vivo. In addition, miR-206 was verified to be a target miRNA of ROR using bioinformatics online program and luciferase report assay. miR-206 inhibition partially rescued the inhibitory effects on OS cells induced by ROR knockdown. In conclusion, these results suggested that ROR function as an oncogene in OS by sponging miR-206 and might be a potential therapeutic target for patients with OS.
Collapse
Affiliation(s)
- Dan Fei
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Guoqing Sui
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Yang Lu
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Long Tan
- Ultrasonographic DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Zhao Dongxu
- Department of Orthopaedic SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunP.R. China
| | - Kewei Zhang
- Department of Thoracic SurgeryThe First Hospital of Jilin UniversityChangchunP.R. China
| |
Collapse
|
32
|
Subbannayya T, Leal-Rojas P, Zhavoronkov A, Ozerov IV, Korzinkin M, Babu N, Radhakrishnan A, Chavan S, Raja R, Pinto SM, Patil AH, Barbhuiya MA, Kumar P, Guerrero-Preston R, Navani S, Tiwari PK, Kumar RV, Prasad TSK, Roa JC, Pandey A, Sidransky D, Gowda H, Izumchenko E, Chatterjee A. PIM1 kinase promotes gallbladder cancer cell proliferation via inhibition of proline-rich Akt substrate of 40 kDa (PRAS40). J Cell Commun Signal 2019; 13:163-177. [PMID: 30666556 DOI: 10.1007/s12079-018-00503-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022] Open
Abstract
Gallbladder cancer (GBC) is a rare malignancy, associated with poor disease prognosis with a 5-year survival of only 20%. This has been attributed to late presentation of the disease, lack of early diagnostic markers and limited efficacy of therapeutic interventions. Elucidation of molecular events in GBC can contribute to better management of the disease by aiding in the identification of therapeutic targets. To identify aberrantly activated signaling events in GBC, tandem mass tag-based quantitative phosphoproteomic analysis of five GBC cell lines was carried out. Proline-rich Akt substrate 40 kDa (PRAS40) was one of the proteins found to be hyperphosphorylated in all the invasive GBC cell lines. Tissue microarray-based immunohistochemical labeling of phospho-PRAS40 (T246) revealed moderate to strong staining in 77% of the primary gallbladder adenocarcinoma cases. Regulation of PRAS40 activity by inhibiting its upstream kinase PIM1 resulted in a significant decrease in cell proliferation, colony forming and invasive ability of GBC cells. Our results support the role of PRAS40 phosphorylation in GBC cell survival and aggressiveness. This study also elucidates phospho-PRAS40 as a clinical marker in GBC and the role of PIM1 as a therapeutic target in GBC.
Collapse
Affiliation(s)
- Tejaswini Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Pamela Leal-Rojas
- Center of Excellence in Translational Medicine (CEMT) &Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco, Chile.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Alex Zhavoronkov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, 21218, USA
| | - Ivan V Ozerov
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, 21218, USA
| | - Mikhail Korzinkin
- Insilico Medicine, Inc., Emerging Technology Centers, Johns Hopkins University at Eastern, Baltimore, MD, 21218, USA
| | - Niraj Babu
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Aneesha Radhakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Sandip Chavan
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Remya Raja
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Arun H Patil
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| | - Mustafa A Barbhuiya
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India
| | - Rafael Guerrero-Preston
- Department of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, 5M05C, Baltimore, MD, 21231, USA
| | | | - Pramod K Tiwari
- Centre for Genomics, Molecular and Human Genetics, Jiwaji University, Gwalior, 474011, India.,School of Studies in Zoology, Jiwaji University, Gwalior, 474011, India
| | - Rekha Vijay Kumar
- Department of Pathology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, 560029, India
| | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.,NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, 560029, India
| | - Juan Carlos Roa
- Department of Pathology, Millenium Institute on Immunology and Immunotherapy (IMII), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - David Sidransky
- Department of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, 5M05C, Baltimore, MD, 21231, USA
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India
| | - Evgeny Izumchenko
- Department of Otolaryngology, Head and Neck Surgery, The Johns Hopkins University School of Medicine, 1550 Orleans Street, CRB II, 5M05C, Baltimore, MD, 21231, USA.
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, 560066, India. .,Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, Karnataka, 575018, India.
| |
Collapse
|
33
|
Ren J, Niu G, Wang X, Song T, Hu Z, Ke C. Overexpression of FNDC1 in Gastric Cancer and its Prognostic Significance. J Cancer 2018; 9:4586-4595. [PMID: 30588242 PMCID: PMC6299387 DOI: 10.7150/jca.27672] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Objectives: The aims of this study were to compare the expression of fibronectin type III domain containing 1 (FNDC1) in gastric cancer (GC) and normal gastric tissue, to explore the prognostic significance of FNDC1 expression in patients with gastric adenocarcinoma, and to analyze FNDC1-related signaling pathways. Methods: The expression level of FNDC1 was initially predicted using the Oncomine and Cancer Genome Atlas databases. A Kaplan-Meier plotter database was mined to examine the clinical prognostic significance of FNDC1 mRNA in patients with GC. Subsequently, immunohistochemistry was used to measure FNDC1 protein expression levels in tissue from 90 cases of GC and paired adjacent normal tissue. Kaplan-Meier univariate and Cox multivariate survival analyses were used to determine the prognostic role of FNDC1 expression. Results: Bioinformatic data indicated that FNDC1 mRNA expression levels were significantly highly expressed in GC compared with normal gastric tissue (all P < 0.05), and patients with GC with high FNDC1 mRNA expression levels had remarkably lower overall survival (all P < 0.01). Immunohistochemical results revealed that expression levels of FNDC1 protein were significantly increased in GC compared with normal gastric tissue (P < 0.001). Additionally, Kaplan-Meier univariate and Cox multivariate survival analyses indicated that increased expression of FNDC1 was an independent predictor of poor prognosis in patients with GC (all P < 0.05). Conclusions: FNDC1 was highly expressed in GC, and high expression of FNDC1 was an independent predictor of poor prognosis in patients with GC. FNDC1 co-expressed genes were largely enriched in extracellular matrix-receptor interactions, which are closely related to tumor metastasis.
Collapse
Affiliation(s)
- Jun Ren
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Gengming Niu
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xin Wang
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Tao Song
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Zhiqing Hu
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chongwei Ke
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Zhong M, Zhang Y, Yuan F, Peng Y, Wu J, Yuan J, Zhu W, Zhang Y. High FNDC1 expression correlates with poor prognosis in gastric cancer. Exp Ther Med 2018; 16:3847-3854. [PMID: 30402143 DOI: 10.3892/etm.2018.6731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer is a common human cancer worldwide. Fibronectin is an important extracellular matrix protein that has been implicated in many cancers and is known to be associated with proliferation and migration. Fibronectin type III domain containing 1 (FNDC1) contains a major component of the structural domain of fibronectin. The objectives of the present study were to measure FNDC1 expression in gastric cancer tissues and evaluate its value as a potential prognostic marker for gastric cancer. FNDC1 protein expression was analyzed by immunohistochemistry in 98 samples of gastric cancer tissue and 25 adjacent normal tissues. The associations between FNDC1 level and various clinicopathological characteristics were assessed, and the correlation between FNDC1 expression levels and prognosis of patients with gastric cancer was analyzed using a Kaplan-Meier analysis. It was demonstrated that FNDC1 expression in gastric cancer tissues and adjacent tissues was significantly different. FNDC1 expression levels were significantly higher in gastric cancer tissues compared with normal gastric tissues (P<0.001). Among the clinicopathological characteristics evaluated, clinical stage (P<0.001), T classification (P<0.001), N classification (P<0.001) and pathological differentiation (P=0.044) were significantly associated with high FNDC1 expression. Higher FNDC1 expression level was significantly correlated with poorer survival. The present findings suggest that FNDC1 expression levels may be a promising prognostic biomarker for gastric cancer.
Collapse
Affiliation(s)
- Muxiao Zhong
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yijie Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Fangfang Yuan
- Department of Intensive Care Unit, General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, P.R. China
| | - Yao Peng
- Department of Gastroenterology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510180, P.R. China
| | - Jingjing Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jiawei Yuan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wei Zhu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yali Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
35
|
Ma Q, Zhang Y, Liang H, Zhang F, Liu F, Chen S, Hu Y, Jiang L, Hao Y, Li M, Liu Y. RETRACTED: EMP3, which is regulated by miR-663a, suppresses gallbladder cancer progression via interference with the MAPK/ERK pathway. Cancer Lett 2018; 430:97-108. [PMID: 29778567 DOI: 10.1016/j.canlet.2018.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/15/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor. Following the publication of the above article, the Editor was notified that images were duplicated in the migration and invasion experiments in Figures 3A, 6C, 7D and 8D: https://pubpeer.com/publications/76E82FD26E33503D7CCAC01C324AFA. The Editor has taken the decision to retract the paper as it is no longer acceptable in its current form
Collapse
Affiliation(s)
- Qiang Ma
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yijian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Haibin Liang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Fei Zhang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Fatao Liu
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Shili Chen
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yunping Hu
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Lin Jiang
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yajuan Hao
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Maolan Li
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
36
|
Li H, Zhang Y, Hai J, Wang J, Zhao B, Du L, Geng X. Knockdown of TRIM31 suppresses proliferation and invasion of gallbladder cancer cells by down-regulating MMP2/9 through the PI3K/Akt signaling pathway. Biomed Pharmacother 2018; 103:1272-1278. [DOI: 10.1016/j.biopha.2018.04.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 02/08/2023] Open
|
37
|
Jahangiri B, Khalaj-Kondori M, Asadollahi E, Sadeghizadeh M. Cancer-associated fibroblasts enhance cell proliferation and metastasis of colorectal cancer SW480 cells by provoking long noncoding RNA UCA1. J Cell Commun Signal 2018; 13:53-64. [PMID: 29948578 DOI: 10.1007/s12079-018-0471-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) have been considered as major players in tumor growth and malignancy. In colorectal cancer (CRC), CAFs are attendance in high affluence and little is known about how they impact tumor progression. An increasing number of studies indicated that dysregulation of human urothelial carcinoma associated 1 (UCA1) is associated with progression of tumor and metastasis in various cancers including CRC. Nonetheless, the possible mechanisms of UCA1 actuation in CRC remain poorly understood. To address this, we elucidated the effects of conditioned medium from SW480 CRC cells/Normal fibroblast co-culture (CAF-CM) on UCA1 expression, and the cell proliferation, EMT, invasion and migration of the treated CRC cell were evaluated in vitro. Our study indicated that CAFs dramatically stimulated cell proliferation and migration of CRC cell. Furthermore, CAFs induced the EMT phenotype in CRC cell, with an associated change in the expression of EMT markers including vimentin, E-cadherin, N-cadherin and metastasis-related genes (MMPs). Moreover, we found an increased percentage of CRC cell in the S and G2/M phase induced by CAFs. Our results revealed that CAFs could induce upregulation of UCA1, leading to upregulation of mTOR. Up-regulation of UCA1/mTOR axis suppressed p27 and miR-143 while the expression of Cyclin-D1 and KRAS were significantly increased compared with control. Furthermore, UCA1 silencing in treated CRC cell suggested that upregulation of UCA1, which was induced by CAFs, regulates the expression of downstream key effectors. Taken together, these results highlight the vital role of cooperation between lncRNA UCA1 and mTOR in proliferation and metastasis which support the hypothesis that CAFs may be a prominent therapeutic target of stroma-based therapy in CRC treatment.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Biological Sciences, Faculty of Natural Science, University of Tabriz, 29 Bahman Blvd, Tabriz, 5166616471, Iran.,Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Khalaj-Kondori
- Department of Biological Sciences, Faculty of Natural Science, University of Tabriz, 29 Bahman Blvd, Tabriz, 5166616471, Iran.
| | - Elahe Asadollahi
- Protein Research Center, Shahid Behshti University, G.C, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
38
|
Dower CM, Wills CA, Frisch SM, Wang HG. Mechanisms and context underlying the role of autophagy in cancer metastasis. Autophagy 2018; 14:1110-1128. [PMID: 29863947 DOI: 10.1080/15548627.2018.1450020] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Macroautophagy/autophagy is a fundamental cellular degradation mechanism that maintains cell homeostasis, regulates cell signaling, and promotes cell survival. Its role in promoting tumor cell survival in stress conditions is well characterized, and makes autophagy an attractive target for cancer therapy. Emerging research indicates that autophagy also influences cancer metastasis, which is the primary cause of cancer-associated mortality. However, data demonstrate that the regulatory role of autophagy in metastasis is multifaceted, and includes both metastasis-suppressing and -promoting functions. The metastasis-suppressing functions of autophagy, in particular, have important implications for autophagy-based treatments, as inhibition of autophagy may increase the risk of metastasis. In this review, we discuss the mechanisms and context underlying the role of autophagy in metastasis, which include autophagy-mediated regulation of focal adhesion dynamics, integrin signaling and trafficking, Rho GTPase-mediated cytoskeleton remodeling, anoikis resistance, extracellular matrix remodeling, epithelial-to-mesenchymal transition signaling, and tumor-stromal cell interactions. Through this, we aim to clarify the context-dependent nature of autophagy-mediated metastasis and provide direction for further research investigating the role of autophagy in cancer metastasis.
Collapse
Affiliation(s)
- Christopher M Dower
- a Department of Pediatrics , Pennsylvania State University College of Medicine , Hershey , PA USA
| | - Carson A Wills
- a Department of Pediatrics , Pennsylvania State University College of Medicine , Hershey , PA USA
| | - Steven M Frisch
- b WVU Cancer Institute, Department of Biochemistry , West Virginia University , Morgantown , WV USA
| | - Hong-Gang Wang
- a Department of Pediatrics , Pennsylvania State University College of Medicine , Hershey , PA USA
| |
Collapse
|
39
|
Winters BR, Vakar-Lopez F, Brown L, Montgomery B, Seiler R, Black PC, Boormans JL, Dall Era M, Davincioni E, Douglas J, Gibb EA, van Rhijn BWG, van der Heijden MS, Hsieh AC, Wright JL, Lam HM. Mechanistic target of rapamycin (MTOR) protein expression in the tumor and its microenvironment correlates with more aggressive pathology at cystectomy. Urol Oncol 2018; 36:342.e7-342.e14. [PMID: 29657089 DOI: 10.1016/j.urolonc.2018.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The mechanistic target of rapamycin (mTOR) has been implicated in driving tumor biology in multiple malignancies, including urothelial carcinoma (UC). We investigate how mTOR and phosphorylated mTOR (pmTOR) protein expression correlate with chemoresponsiveness in the tumor and its microenvironment at final pathologic staging after neoadjuvant chemotherapy (NAC). METHODS A single-institution retrospective analysis was performed on 62 patients with cT2-4Nany UC undergoing NAC followed by radical cystectomy. Diagnostic (transurethral resection specimens, TURBT) and postchemotherapy radical cystectomy specimens were evaluated for mTOR and pmTOR protein expression using immunohistochemistry of the tumor, peritumoral stroma, and normal surrounding stroma. Protein expression levels were compared between clinical and pathologic stage. Whole transcriptome analysis was performed to evaluate mRNA expression relative to mTOR pathway activation. RESULTS Baseline levels of mTOR and pmTOR within TURBT specimens were not associated with clinical stage and response to chemotherapy overall. Nonresponders with advanced pathologic stage at cystectomy (ypT2-4/ypTanyN+) had significantly elevated mTOR tumor staining (P = 0.006) and a sustained mTOR and pmTOR staining in the peritumoral and surrounding normal stroma (NS). Several genes relevant to mTOR activity were found to be up-regulated in the tumors of nonresponders. Remarkably, complete responders at cystectomy (ypT0) had significant decreases in both mTOR and pmTOR protein expression in the peritumoral and normal stroma (P = 0.01-0.03). CONCLUSIONS Our results suggest that mTOR pathway activity is increased in tumor and sustained in its microenvironment in patients with adverse pathologic findings at cystectomy. These findings suggest the relevance of targeting this pathway in bladder cancer.
Collapse
Affiliation(s)
- Brian R Winters
- Department of Urology, University of Washington School of Medicine, Seattle, WA
| | - Funda Vakar-Lopez
- Department of Pathology, University of Washington School of Medicine, Seattle, WA
| | - Lisha Brown
- Department of Urology, University of Washington School of Medicine, Seattle, WA
| | - Bruce Montgomery
- Department of Medicine, University of Washington School of Medicine, Seattle, WA
| | - Roland Seiler
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, University of Bern, Bern, Switzerland
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joost L Boormans
- Department of Urology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marc Dall Era
- Department of Urology, UC Davis Comprehensive Cancer Center, Sacramento, California
| | - Elai Davincioni
- Department of research and development, GenomeDx Biosciences, Inc., Vancouver, British Columbia, Canada
| | - James Douglas
- Department of Urology, University Hospital of Southampton, Hampshire, UK
| | - Ewan A Gibb
- Department of research and development, GenomeDx Biosciences, Inc., Vancouver, British Columbia, Canada
| | - Bas W G van Rhijn
- Department of Surgical Oncology, Division of Urology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Michiel S van der Heijden
- Department of Surgical Oncology, Division of Urology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Andrew C Hsieh
- Department of Medicine, University of Washington School of Medicine, Seattle, WA; Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jonathan L Wright
- Department of Urology, University of Washington School of Medicine, Seattle, WA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Hung-Ming Lam
- Department of Urology, University of Washington School of Medicine, Seattle, WA; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.
| |
Collapse
|
40
|
Wang J, Pan Y, Hu J, Ma Q, Xu Y, Zhang Y, Zhang F, Liu Y. Tea polyphenols induce S phase arrest and apoptosis in gallbladder cancer cells. ACTA ACUST UNITED AC 2018. [PMID: 29513793 PMCID: PMC5856445 DOI: 10.1590/1414-431x20176891] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gallbladder cancer (GBC) is the most common malignancy in the biliary tract. Without effective treatment, its prognosis is notoriously poor. Tea polyphenols (TPs) have many pharmacological and health benefits, including antioxidant, anti-inflammatory, anti-tumor, anti-thrombotic, antibacterial, and vasodilatory properties. However, the anti-cancer effect of TPs in human gallbladder cancer has not yet been determined. Cell viability and colony formation assay were used to investigate the cell growth. Cell cycle and apoptosis were evaluated by flow cytometry analysis. Western blot assay was used to detect the expression of proteins related to cell cycle and apoptosis. Human tumor xenografts were used to examine the effect of TPs on gallbladder cancer cells in vivo. TPs significantly inhibited cell growth of gallbladder cancer cell lines in a dose- and time-dependent manner. Cell cycle progression in GBC cells was blocked at the S phase by TPs. TPs also induced mitochondrial-related apoptosis in GBC cells by upregulating Bax, cleaved caspase-3, and cleaved PARP expressions and downregulating Bcl-2, cyclin A, and Cdk2 expressions. The effects of TPs on GBC were further proven in vivo in a mouse xenograft model. Our study is the first to report that TPs inhibit GBC cell growth and these compounds may have potential as novel therapeutic agents for treating gallbladder cancer.
Collapse
Affiliation(s)
- Jiaqi Wang
- High School Affiliated Fudan University, Shanghai, China
| | - Yixuan Pan
- High School Affiliated Fudan University, Shanghai, China
| | - Jiacheng Hu
- High School Affiliated Fudan University, Shanghai, China
| | - Qiang Ma
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yi Xu
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yijian Zhang
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Fei Zhang
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| | - Yingbin Liu
- Shanghai Research Center of Biliary Tract Disease, Shanghai, China
| |
Collapse
|
41
|
Xu S, Zhan M, Wang J. Epithelial-to-mesenchymal transition in gallbladder cancer: from clinical evidence to cellular regulatory networks. Cell Death Discov 2017; 3:17069. [PMID: 29188076 PMCID: PMC5702855 DOI: 10.1038/cddiscovery.2017.69] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/19/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Gallbladder cancer (GBC), with late diagnosis, rapid disease progression and early metastasis, is a highly aggressive malignant tumor found worldwide. Patients with GBC have poor survival, low curative resection rates and early recurrence. For such a lethal tumor, uncovering the mechanisms and exploring new strategies to prevent tumor progression and metastasis are critically important. Epithelial-to-mesenchymal transition (EMT) has a prominent role in the early steps of tumor progression and metastasis by initiating polarized epithelial cell transition into motile mesenchymal cells. Accumulating evidence suggests that EMT can be modulated by the cooperation of multiple mechanisms affecting common targets. Signaling pathways, transcriptional and post-transcriptional regulation and epigenetic alterations are involved in the stepwise EMT regulatory network in GBC. Loss of epithelial markers, acquisition of mesenchymal markers and dysregulation of EMT-inducing transcription factors (EMT-TFs) have been observed and are associated with the clinicopathology and prognosis of GBC patients. Therefore, EMT may be a detectable and predictable event for predicting GBC progression and metastasis in the clinic. In this review, we will provide an overview of EMT from the clinical evidence to cellular regulatory networks that have been studied thus far in clinical and basic GBC studies.
Collapse
Affiliation(s)
- Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Kim H, Park J, Kim Y, Sohn A, Yeo I, Jong Yu S, Yoon JH, Park T, Kim Y. Serum fibronectin distinguishes the early stages of hepatocellular carcinoma. Sci Rep 2017; 7:9449. [PMID: 28842594 PMCID: PMC5573357 DOI: 10.1038/s41598-017-09691-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 07/19/2017] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death, necessitating the discovery of serum markers for its early detection. In this study, a total of 180 serum samples from liver cirrhosis (LC), hepatocellular carcinoma (HCC) patients and paired samples of HCC patients who recovered (Recovery) were analyzed by multiple reaction monitoring-mass spectrometry (MRM-MS) to verify biomarkers. The three-fold crossvalidation was repeated 100 times in the training and test sets to evaluate statistical significance of 124 candidate proteins. This step resulted in 2 proteins that had an area under the receiver operating curve (AUROC) values ≥0.800 in the training (n = 90) and test sets (n = 90). Specifically, fibronectin (FN1, WCGTTQNYDADQK), distinguished HCC from LC patients, with an AUROC value of 0.926 by logistic regression. A FN1 protein was selected for validation in an independent sample (n = 60) using enzyme-linked immunosorbent assay (ELISA). The combination of alpha-fetoprotein (AFP) and FN1 improved the diagnostic performance and differentiated HCC patients with normal AFP levels. Our study has examined candidate markers for the benign disease state and malignancy and has followed up on the consequent recovery. Thus, improvement in the early detection of HCC by a 2-marker panel (AFP + FN1) might benefit HCC patients.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea.,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea
| | - JiYoung Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea
| | - Yongkang Kim
- Department of Statistics, Seoul National University, Daehak-dong, Seoul, 151-742, Korea
| | - Areum Sohn
- Department of Biomedical Sciences, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea
| | - Injun Yeo
- Department of Biomedical Engineering, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Yongon-Dong, Seoul, 110-799, Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Yongon-Dong, Seoul, 110-799, Korea
| | - Taesung Park
- Department of Statistics, Seoul National University, Daehak-dong, Seoul, 151-742, Korea.
| | - Youngsoo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea. .,Department of Biomedical Engineering, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea. .,Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University College of Medicine, Yongon-Dong, Seoul, 110-799, Korea.
| |
Collapse
|
43
|
Yu Z, Cheng H, Zhu H, Cao M, Lu C, Bao S, Pan Y, Li Y. Salinomycin enhances doxorubicin sensitivity through reversing the epithelial-mesenchymal transition of cholangiocarcinoma cells by regulating ARK5. ACTA ACUST UNITED AC 2017; 50:e6147. [PMID: 28832761 PMCID: PMC5561806 DOI: 10.1590/1414-431x20176147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
Chemotherapy response rates in patients with cholangiocarcinoma remain low, primarily due to the development of drug resistance. Epithelial-mesenchymal transition (EMT) of cancer cells is widely accepted to be important for metastasis and progression, but it has also been linked to the development of chemoresistance. Salinomycin (an antibiotic) has shown some potential as a chemotherapeutic agent as it selectively kills cancer stem cells, and has been hypothesized to block the EMT process. In this study, we investigated whether salinomycin could reverse the chemoresistance of cholangiocarcinoma cells to the chemotherapy drug doxorubicin. We found that combined salinomycin with doxorubicin treatment resulted in a significant decrease in cell viability compared with doxorubicin or salinomycin treatment alone in two cholangiocarcinoma cell lines (RBE and Huh-28). The dosages of both drugs that were required to produce a cytotoxic effect decreased, indicating that these two drugs have a synergistic effect. In terms of mechanism, salinomycin reversed doxorubicin-induced EMT of cholangiocarcinoma cells, as shown morphologically and through the detection of EMT markers. Moreover, we showed that salinomycin treatment downregulated the AMP-activated protein kinase family member 5 (ARK5) expression, which regulates the EMT process of cholangiocarcinoma. Our results indicated that salinomycin reversed the EMT process in cholangiocarcinoma cells by inhibiting ARK5 expression and enhanced the chemosensitivity of cholangiocarcinoma cells to doxorubicin. Therefore, a combined treatment of salinomycin with doxorubicin could be used to enhance doxorubicin sensitivity in patients with cholangiocarcinoma.
Collapse
Affiliation(s)
- Z Yu
- Department of General Surgery, Qingdao Clinic Medical College, Nanjing Medical University, Qingdao, China.,Department of General Surgery, The Second People's Hospital of Lianyungang, Lianyungang, China
| | - H Cheng
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - H Zhu
- Department of Gastroenterology, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - M Cao
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - C Lu
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - S Bao
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Y Pan
- Department of General Surgery, The Afflicted Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Y Li
- Department of General Surgery, Qingdao Clinic Medical College, Nanjing Medical University, Qingdao, China
| |
Collapse
|
44
|
de Sousa Mesquita AP, de Araújo Lopes S, Pernambuco Filho PCA, Nader HB, Lopes CC. Acquisition of anoikis resistance promotes alterations in the Ras/ERK and PI3K/Akt signaling pathways and matrix remodeling in endothelial cells. Apoptosis 2017; 22:1116-1137. [DOI: 10.1007/s10495-017-1392-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Gao F, Xu T, Wang X, Zhong S, Chen S, Zhang M, Zhang X, Shen Y, Wang X, Xu C, Shen Z. CIP2A mediates fibronectin-induced bladder cancer cell proliferation by stabilizing β-catenin. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:70. [PMID: 28521777 PMCID: PMC5437599 DOI: 10.1186/s13046-017-0539-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/10/2017] [Indexed: 12/21/2022]
Abstract
Background Fibronectin (FN) is associated with tumorigenesis and progression in bladder cancer, however, the underlying mechanisms causing this remain largely unknown. Furthermore, cancerous inhibitor of protein phosphatase 2A (CIP2A) has been shown to play important regulatory roles in cancer proliferation. Here, we investigated whether FN regulates CIP2A expression to promote bladder cancer cell proliferation. Methods The correlations of stromal FN with CIP2A and proliferating cell nuclear antigen (PCNA) expression were analyzed in a cohort bladder cancer patients. The roles of FN and CIP2A in regulating bladder cancer cell proliferation were evaluated in cell and animal models. Cycloheximide treatment was used to determine the effects of CIP2A on β-catenin stabilization. The CIP2A-β-catenin interaction was confirmed by immunofluorescence staining and co-immunoprcipitation. Results In this study, we found that stromal FN expression correlated positively with the levels of CIP2A and PCNA in bladder cancer tissues. Meanwhile, in human bladder cancer cell lines (T24 and J82), exogenous FN significantly promoted cell proliferation, however, CIP2A depletion inhibited this process. Furthermore, the interaction between CIP2A and β-catenin enhanced the stabilization of β-catenin, which was involved in FN-induced cell proliferation. In vivo, CIP2A depletion repressed FN-accelerated subcutaneous xenograft growth rates. Conclusions These data reveal that CIP2A is a crucial mediator of FN-induced bladder cancer cell proliferation via enhancing the stabilization of β-catenin. Promisingly, FN and CIP2A could serve as potential therapeutic targets for bladder cancer treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0539-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengbin Gao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Xianjin Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Shan Zhong
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Shanwen Chen
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Minguang Zhang
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Xiaohua Zhang
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Yifan Shen
- Department of Urology, Huashan Hospital, Fudan University, No.12 Middle Urumqi Road, 200040, Shanghai, China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China
| | - Chen Xu
- Shanghai Key Laboratory of Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, No.227 South Chongqing Road, 200025, Shanghai, China
| | - Zhoujun Shen
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, No.197 Ruijin 2nd Road, 200025, Shanghai, China.
| |
Collapse
|
46
|
Singh Y, Pawar VK, Meher JG, Raval K, Kumar A, Shrivastava R, Bhadauria S, Chourasia MK. Targeting tumor associated macrophages (TAMs) via nanocarriers. J Control Release 2017; 254:92-106. [DOI: 10.1016/j.jconrel.2017.03.395] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
47
|
Li Y, Miao L, Yu M, Shi M, Wang Y, Yang J, Xiao Y, Cai H. α1-antitrypsin promotes lung adenocarcinoma metastasis through upregulating fibronectin expression. Int J Oncol 2017; 50:1955-1964. [PMID: 28440399 PMCID: PMC5435335 DOI: 10.3892/ijo.2017.3962] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/29/2017] [Indexed: 01/31/2023] Open
Abstract
α1-antitrypsin (AAT) has been recognized to be associated with lung adenocarcinoma metastasis. However, the mechanisms by which AAT promotes tumor metastasis remain to be investigated. Herein, we first examined AAT expression in a panel of formalin-fixed paraffin-embedded tumor tissues from 88 lung adenocarcinoma patients undergoing curative resection, using immunohistochemical methods. Lung adenocarcinoma patients with high AAT expression showed a significantly shorter overall survival compared to those with low AAT expression by Kaplan-Meier method (P=0.008). High AAT expression was also identified as an independent prognostic factor by Cox regression analysis (adjusted hazard ratio: 2.05; P=0.04). Second, the role of AAT in lung adenocarcinoma cell migration was evaluated in vitro using wound healing and Transwell assays, by transfecting the lentivirus vector with interfering sequence or coding sequence of AAT. The migration property of A549 and SPC-A1 cells was significantly diminished by downregulating AAT expression. Conversely, the migration of both cell lines was significantly increased through upregulating AAT. Furthermore, AAT could increase the expression of fibronectin (FN). FN down-regulation reversed AAT-induced promotion of adenocarcinoma cell migration. Third, a cancer cell/endothelial cell co-culture model was established to investigate the effect of AAT on adenocarcinoma cell adhesion using immunofluorescence examination. The results showed that downregulation of AAT inhibited adhesion between lung adenocarcinoma cells and human umbilical vein endothelial cells whereas upregulation of AAT promoted adhesion, which may attribute to interactions between FN and integrin α5. Finally, AAT also showed the regulation effect on the metastatic behavior of lung adenocarcinoma cells in a mouse model, which may be through regulating FN expression. This study suggested that high AAT expression might be a negative prognostic marker for lung adenocarcinoma. AAT promoted lung adenocarcinoma metastasis, whose functional target may be FN. Our findings provide new insight into the mechanisms of lung adenocarcinoma metastasis.
Collapse
Affiliation(s)
- Yan Li
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Liyun Miao
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Min Yu
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Minke Shi
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yongsheng Wang
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Yonglong Xiao
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Hourong Cai
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
48
|
Mayr C, Ocker M, Ritter M, Pichler M, Neureiter D, Kiesslich T. Biliary tract cancer stem cells - translational options and challenges. World J Gastroenterol 2017; 23:2470-2482. [PMID: 28465631 PMCID: PMC5394510 DOI: 10.3748/wjg.v23.i14.2470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Management of biliary tract cancer remains challenging. Tumors show high recurrence rates and therapeutic resistance, leading to dismal prognosis and short survival. The cancer stem cell model states that a tumor is a heterogeneous conglomerate of cells, in which a certain subpopulation of cells - the cancer stem cells - possesses stem cell properties. Cancer stem cells have high clinical relevance due to their potential contributions to development, progression and aggressiveness as well as recurrence and metastasis of malignant tumors. Consequently, reliable identification of as well as pharmacological intervention with cancer stem cells is an intensively investigated and promising research field. The involvement of cancer stem cells in biliary tract cancer is likely as a number of studies demonstrated their existence and the obvious clinical relevance of several established cancer stem cell markers in biliary tract cancer models and tissues. In the present article, we review and discuss the currently available literature addressing the role of putative cancer stem cells in biliary tract cancer as well as the connection between known contributors of biliary tract tumorigenesis such as oncogenic signaling pathways, micro-RNAs and the tumor microenvironment with cancer stem cells.
Collapse
|
49
|
Song XL, Zhang YJ, Wang XF, Zhang WJ, Wang Z, Zhang F, Zhang YJ, Lu JH, Mei JW, Hu YP, Chen L, Li HF, Ye YY, Liu YB, Gu J. Casticin induces apoptosis and G0/G1 cell cycle arrest in gallbladder cancer cells. Cancer Cell Int 2017; 17:9. [PMID: 28070171 PMCID: PMC5217413 DOI: 10.1186/s12935-016-0377-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/26/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Casticin, the flavonoid extracted from Vitex rotundifolia L, exerts various biological effects, including anti-inflammatory and anti-cancer activity. The aim of this study is to investigate the effects and mechanisms of casticin in human gallbladder cancer cells. METHODS Human NOZ and SGC996 cells were used to perform the experiments. CCK-8 assay and colony formation assay were performed to evaluate cell viability. Cell cycle analyses and annexin V/PI staining assay for apoptosis were measured using flow cytometry. Western blot analysis was used to evaluate the changes in protein expression, and the effect of casticin treatment in vivo was experimented with xenografted tumors. RESULTS In this study, we found that casticin significantly inhibited gallbladder cancer cell proliferation in a dose- and time-dependent manner. Casticin also induced G0/G1 arrest and mitochondrial-related apoptosis by upregulating Bax, cleaved caspase-3, cleaved caspase-9 and cleaved poly ADP-ribose polymerase expression, and by downregulating Bcl-2 expression. Moreover, casticin induced cycle arrest and apoptosis by upregulating p27 and downregulating cyclinD1/cyclin-dependent kinase4 and phosphorylated protein kinase B. In vivo, casticin inhibited tumor growth. CONCLUSION Casticin induces G0/G1 arrest and apoptosis in gallbladder cancer, suggesting that casticin might represent a novel and effective agent against gallbladder cancer.
Collapse
Affiliation(s)
- Xiao-ling Song
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yun-jiao Zhang
- Department of Cardio-Thoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xue-feng Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Wen-jie Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Zheng Wang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Fei Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yi-jian Zhang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jian-hua Lu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jia-wei Mei
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yun-ping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Lei Chen
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Huai-feng Li
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yuan-yuan Ye
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Ying-bin Liu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Jun Gu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Institute of Biliary Tract Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
50
|
Yang SH, Lin HY, Changou CA, Chen CH, Liu YR, Wang J, Jiang X, Luh F, Yen Y. Integrin β3 and LKB1 are independently involved in the inhibition of proliferation by lovastatin in human intrahepatic cholangiocarcinoma. Oncotarget 2016; 7:362-73. [PMID: 26517522 PMCID: PMC4808004 DOI: 10.18632/oncotarget.6238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Human intrahepatic cholangiocarcinomas are one of the most difficult cancers to treat. In our study, Lovastatin, a 3-hydroxy-3-methylglutaryl-coenzyme-CoA (HMG-CoA) reductase inhibitor, demonstrated anticancer properties by inhibiting cancer cell proliferation, cell migration and cell adhesion. Lovastatin inhibited the expressions of transforming growth factor (TGF)-β1, cyclooxygenase (COX)-2, and intercellular adhesion molecule (ICAM)-1. Furthermore, lovastatin inhibited the expressions of integrin β1 and integrin β3 but not integrin αv or integrin β5. While Lovastatin's inhibitory effects on TGFβ1, COX2, and ICAM-1 expression were independently controlled by the tumor suppressor LKB1, integrin β3 expression was not affected. Lovastatin's inhibitory effect on cell adhesion was associated with the decreased expression of integrin β3 and cell surface heterodimer integrin αvβ3. Quantitative real time PCR, fluorescent microscopy, and cell migration assays all confirmed that Lovastatin inhibits integrin αvβ3 downstream signaling including FAK activation, and β-catenin, vimentin, ZO-1, and β-actin. Overall, Lovastatin reduced tumor cell proliferation and migration by modifying the expression of genes involved in cell adhesion and other critical cellular processes. Our study highlights novel anti-cancer properties of Lovastatin and supports further exploration of statins in the context of cholangiocarcinoma therapy.
Collapse
Affiliation(s)
- Sheng-Huei Yang
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan
| | - Chun A Changou
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Integrated Laboratory, Center of Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Core Facility, Taipei Medical University, Taipei, Taiwan
| | - Chun-Han Chen
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yun-Ru Liu
- Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Jinghan Wang
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoqing Jiang
- The First Department of Biliary Surgery, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai, China
| | - Frank Luh
- School of medicine, Taipei Medical University, Taipei, Taiwan.,Sino-American Cancer Foundation, Arcadia, California, United States
| | - Yun Yen
- PhD Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|