1
|
Colangelo T, Mazzarelli F, Cuttano R, Dama E, Melocchi V, Afanga MK, Perrone RM, Graziano P, Bianchi F. Unveiling the origin and functions of diagnostic circulating microRNAs in lung cancer. Br J Cancer 2025; 132:947-956. [PMID: 40185877 DOI: 10.1038/s41416-025-02982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/28/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Circulating microRNAs (c-miRs) were shown to be effective biomarkers for lung cancer early detection. However, the understanding of c-miRs origin and their biological functions still remains elusive. METHODS We analysed miRNA expression in a large panel of lung cancer (LC) and hematopoietic cell lines (N = 252; CCLE database) coupled with c-miR profile of a large cohort of serum samples (N = 975), from high-risk subjects underwent annual LD-CT for 5 years. Furthermore, we examined intracellular and extracellular miR-29a-3p/223-3p expression profile in lung adenocarcinoma (LUAD) tissues, in matched serum samples and in LC and stromal cell lines. Lastly, through the modulation of expression of selected c-miRs by using mimic (OE) or antisense microRNA (KD), we explored their impact on lung cancer transcriptome and cancer and immune phenotypes. RESULTS Here, we investigated the origin of an extensively validated 13 c-miRs signature diagnostics for asymptomatic lung cancer (LC) in high-risk subjects (smokers, >20 packs/y; >50 y old). Overall, we found a mixed origin of these c-miRs, originating both from tumour cells and the tumour microenvironment (TME). Intriguingly, we revealed that circulating miR-29a-3p and miR-223-3p are abundantly released from LC epithelial cells and immune cells, respectively. In particular, we found that miR-223-3p triggered several lung cancer related phenotypes such as invasion, migration and tumour-promoting inflammation. CONCLUSIONS Our study highlights a mixed tumour epithelial and stroma-associated origin of LC c-miRs with new evidences on the multifaceted role of miR-223-3p in LC pathogenesis and immune modulation.
Collapse
Affiliation(s)
- Tommaso Colangelo
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesco Mazzarelli
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Roberto Cuttano
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Elisa Dama
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Valentina Melocchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Miriam Kuku Afanga
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Rosa Maria Perrone
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Paolo Graziano
- Unit of Pathology, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Roma, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|
2
|
Xian W, Chen Y, Yu S, Ye Z, Zhang Y, Yao D. Ubiquitination and ALL: Identifying FBXO8 as a prognostic biomarker and therapeutic target. Front Immunol 2025; 16:1554231. [PMID: 40375984 PMCID: PMC12078231 DOI: 10.3389/fimmu.2025.1554231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/02/2025] [Indexed: 05/18/2025] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is a hematological malignancy with high survival rates in children; however, certain high-risk subtypes pose significant challenges due to poor prognosis and frequent relapse. Ubiquitination, a post-translational modification critical for protein regulation, has been implicated in various cancer processes, yet its role in ALL remains poorly understood. Methods Using the TARGET database, we identified molecular subtypes of ALL through consensus clustering based on ubiquitination-related genes (URGs). A nine-gene prognostic model was constructed using LASSO and Cox regression analyses. The immunological landscape variations between high- and low-risk groups were assessed using immune cell infiltration analysis and functional enrichment studies. FBXO8 was further explored through functional experiments in vitro and in vivo. Results Four ALL subtypes with distinct survival outcomes were identified, with Cluster D representing the high-risk group. Patients were divided into high- and low-risk groups using the nine-gene predictive model, and FBXO8 was found to be a significant protective factor. According to immune landscape analysis, high-risk groups had an immunosuppressive microenvironment that was correlated with FBXO8 expression and marked by an increase in regulatory T cells and M2 macrophage infiltration. In vitro functional assays, FBXO8 knockdown notably enhanced cell proliferation and suppressed apoptosis in ALL cells. In FBXO8-knockdown mouse models, in vivo investigations demonstrated increased tumor growth, reduced apoptosis, and diminished survival rates. Conclusion This work identifies FBXO8 as a crucial therapeutic target and prognostic biomarker for ALL. Knockdown of FBXO8 led to the suppression of apoptosis and increased tumor growth, suggesting potential therapeutic applications. These results highlight the need for more investigation into ubiquitination-related pathways and offer important new insights into high-risk ALL.
Collapse
Affiliation(s)
- Wei Xian
- Department of Pediatric Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinting Chen
- Department of Hematology, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shuiqing Yu
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhitao Ye
- Department of Pediatric Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Nephrology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Zhang
- Department of Pediatric, Zhujiang Hospital, Southern Medical University, Guangdong, Guangzhou, China
| | - Danlin Yao
- Department of Pediatric Allergy, Immunology and Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Zeng X, Cao J, Xu J, Zhou Z, Long C, Zhou Y, Tang J. SKP1-CUL1-F-box: Key molecular targets affecting disease progression. FASEB J 2025; 39:e70326. [PMID: 39812503 PMCID: PMC11734646 DOI: 10.1096/fj.202402816rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The correct synthesis and degradation of proteins are vital for numerous biological processes in the human body, with protein degradation primarily facilitated by the ubiquitin-proteasome system. The SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase, a member of the Cullin-RING E3 ubiquitin ligase (CRL) family, plays a crucial role in mediating protein ubiquitination and subsequent 26S proteasome degradation during normal cellular metabolism. Notably, SCF is intricately linked to the pathogenesis of various diseases, including malignant tumors. This paper provides a comprehensive overview of the functional characteristics of SCF complexes, encompassing their assembly, disassembly, and regulatory factors. Furthermore, we discuss the diverse effects of SCF on crucial cellular processes such as cell cycle progression, DNA replication, oxidative stress response, cell proliferation, apoptosis, cell differentiation, maintenance of stem cell characteristics, tissue development, circadian rhythm regulation, and immune response modulation. Additionally, we summarize the associations between SCF and the onset, progression, and prognosis of malignant tumors. By synthesizing current knowledge, this review aims to offer a novel perspective for a holistic and systematic understanding of SCF complexes and their multifaceted functions in cellular physiology and disease pathogenesis.
Collapse
Affiliation(s)
- Xiangrong Zeng
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Juan Xu
- Department of Critical Care MedicinThe Affiliated Cancer Hospital of Xiangya School of Medicine Central South University, Hunan Cancer HospitalChangshaHunanChina
| | - Zihua Zhou
- Department of OncologyLoudi Central HospitalLoudiChina
| | - Chen Long
- Department of General SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South UniversityChangshaHunanChina
| | - Jingqiong Tang
- Department of GeriatricsThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
4
|
Luo Z, Wu X, Xie J, Tang H, Chen J, Ye D, Dou S, Chen S. Diagnostic and prognostic potential of FBXO8 expression in kidney renal clear cell carcinoma and its regulation of renal adenocarcinoma cells. Cancer Genet 2025; 290-291:6-15. [PMID: 39647237 DOI: 10.1016/j.cancergen.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024]
Abstract
BACKGROUND The F-box protein 8 Gene (FBXO8) has been shown to suppress invasion and metastasis in various cancer types. Recurrence and drug resistance pose significant challenges in renal cell carcinoma (RCC). Identifying novel biomarkers is crucial for addressing these issues. METHODS Data on RNA sequencing and patient survival for KIRC was obtained from The Cancer Genome Atlas (TCGA), UALCAN, and Gene Expression Omnibus (GEO) databases. We confirmed FBXO8 gene expression and its impact on survival. Clinical characteristics were classified, and FBXO8 expression differences among various categories were observed. We conducted biofunctional predictions and analyzed the tumor microenvironment (TME), immune cell infiltration, and immune checkpoints in relation to FBXO8 expression. FBXO8 was overexpressed using a plasmid, and we assessed Kidney renal clear cell carcinoma (KIRC) cell proliferation, migration, and apoptosis through CCK8, wound healing tests, and western blot analysis. RESULTS Our findings revealed decreased FBXO8 expression in KIRC, with patients exhibiting low FBXO8 expression experiencing shorter survival times. The low expression group showed elevated TME immune and estimate scores. Biofunctional analyses indicated that FBXO8 expression was notably linked to drug metabolism cytochrome P450, nutrition disease, receptor-ligand activity, and neuroactive ligand-receptor interaction. Furthermore, we discovered significant correlations between FBXO8 expression and immune cell infiltration, as well as checkpoints such as CD274. Overexpression (OE) of FBXO8 led to a marked reduction in cell proliferation and migration, along with increased apoptosis, as evidenced by apoptosis-related protein expression. CONCLUSION This study demonstrates that FBXO8 serves as a biomarker for KIRC and plays a role in regulating cell proliferation, migration, and apoptosis.
Collapse
Affiliation(s)
- Zhouan Luo
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China
| | - Xiaoping Wu
- Department of Geriatrics, Zhanjiang Central Hospital, Guangdong Medical University, China
| | - Juanxia Xie
- Department of Rehabilitation Medicine, Zhanjiang Central Hospital, Guangdong Medical University, China
| | - Hao Tang
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China
| | - Jingqi Chen
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China
| | - Dongcai Ye
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China
| | - Shangwen Dou
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China
| | - Songning Chen
- Department of Urology, Zhanjiang Central Hospital, Guangdong Medical University, No.236, Yuanzhu Road, Zhanjiang, Guangdong, 524045, China.
| |
Collapse
|
5
|
Li M, Chen X, Qu P, Shao Z, Shi L, Quan H, Zhao X, Xu J, Shi L, Chen S, Zheng J, Pan ZQ, Bai J. FBXO22 inhibits colitis and colorectal carcinogenesis by regulating the degradation of the S2448-phosphorylated form of mTOR. Proc Natl Acad Sci U S A 2024; 121:e2402035121. [PMID: 39485803 PMCID: PMC11551398 DOI: 10.1073/pnas.2402035121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a considerable threat to human health with a significant risk for colorectal cancer (CRC). However, currently, both the molecular pathogenesis and therapeutic treatment of IBD remain limited. In this report, using both systemic and intestinal epithelium-specific gene knockout mouse models, we demonstrate that FBXO22, a substrate receptor within the SKP1-Cullin 1-F-box family of E3 ubiquitin ligases, plays an inhibitory role in the Azoxymethane/Dextran Sodium Sulfate-induced colorectal inflammatory responses and CRC. FBXO22 targets the serine 2448-phosphorylated form of mammalian mechanistic target of rapamycin (pS2448-mTOR) for ubiquitin-dependent degradation. This proteolytic targeting effect is established based on multiple lines of evidence including the results of colon tissue immunoblots, analysis of cultured cells with altered abundance of FBXO22 by depletion or overexpression, comparison of protein decay rate, effects on mTOR substrates S6K1 and 4E-BP1, analysis of protein-protein interactions, phosphor-peptide binding and competition, as well as reconstituted and cellular ubiquitination. Finally, we have shown that mTOR inhibitor rapamycin (RAPA) was able to alleviate the effects of fbxo22 deletion on colorectal inflammatory response and CRC. These RAPA effects are correlated with the ability of RAPA to inhibit pS2448-mTOR, pS6K1, and p4E-BP1. Collectively, our data support a suppressive role for FBXO22 in colorectal inflammation signaling and CRC initiation by targeting pS2448-mTOR for degradation.
Collapse
Affiliation(s)
- Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Xuan Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Pengfei Qu
- Department of Gastroenterology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Zhiying Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Lei Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Haoyu Quan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Xue Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Jian Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Luling Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Silu Chen
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing211166, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, New York, NY10029-6574
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu221002, China
| |
Collapse
|
6
|
Liu F, Chen J, Li K, Li H, Zhu Y, Zhai Y, Lu B, Fan Y, Liu Z, Chen X, Jia X, Dong Z, Liu K. Ubiquitination and deubiquitination in cancer: from mechanisms to novel therapeutic approaches. Mol Cancer 2024; 23:148. [PMID: 39048965 PMCID: PMC11270804 DOI: 10.1186/s12943-024-02046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitination, a pivotal posttranslational modification of proteins, plays a fundamental role in regulating protein stability. The dysregulation of ubiquitinating and deubiquitinating enzymes is a common feature in various cancers, underscoring the imperative to investigate ubiquitin ligases and deubiquitinases (DUBs) for insights into oncogenic processes and the development of therapeutic interventions. In this review, we discuss the contributions of the ubiquitin-proteasome system (UPS) in all hallmarks of cancer and progress in drug discovery. We delve into the multiple functions of the UPS in oncology, including its regulation of multiple cancer-associated pathways, its role in metabolic reprogramming, its engagement with tumor immune responses, its function in phenotypic plasticity and polymorphic microbiomes, and other essential cellular functions. Furthermore, we provide a comprehensive overview of novel anticancer strategies that leverage the UPS, including the development and application of proteolysis targeting chimeras (PROTACs) and molecular glues.
Collapse
Affiliation(s)
- Fangfang Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jingyu Chen
- Department of Pediatric Medicine, School of Third Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Kai Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Haochen Li
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yiyi Zhu
- Department of Clinical Medicine, School of First Clinical Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yubo Zhai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Bingbing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yanle Fan
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Ziyue Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Xiaojie Chen
- School of Basic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xuechao Jia
- Henan International Joint Laboratory of TCM Syndrome and Prescription in Signaling, Traditional Chinese Medicine (Zhong Jing) School, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Zigang Dong
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| | - Kangdong Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
7
|
Khan AJ, Man S, Abbas M, Liu S, Zhang F. FBXO8 is a novel prognostic biomarker in different molecular subtypes of breast cancer and suppresses breast cancer progression by targeting c-MYC. Biochim Biophys Acta Gen Subj 2024; 1868:130577. [PMID: 38301858 DOI: 10.1016/j.bbagen.2024.130577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
F-box only protein 8 (FBXO8) is a recently identified member of the F-box proteins, showcasing its novelty in this protein family. Extensive research has established FBXO8's role as a tumor suppressor in various cancers, including hepatocellular carcinoma, and colorectal cancer, Nevertheless, its functional, mechanistic, and prognostic roles in primary and metastatic breast cancer, particularly in different molecular subtypes of breast cancer, various stages, as well as its potential implications in immunotherapy, tumor microenvironment, and prognostic survival among breast cancer patients, remain unexplored. In this article, we employed a multi-dimensional investigation leveraging TCGA, TIMER, TISIDB, STRING, MEXPRESS, UALCAN, and cBioPortal databases to explore the underlying suppression mechanism of FBXO8 in breast cancer. FBXO8 negatively correlates with MYC, NOTCH, WNT and inflammatory signaling pathways in breast tumor microenvironment. Furthermore we conducted RT-PCR, western blot, cell proliferation, cell migration, and mRNA target gene RT-PCR analyses to elucidate the role of FBXO8 in breast cancer progression. Mechanistically, PTEN and FBXW7 expression were down-regulated and MYC, IL10, IL6, NOTCH1, WNT6 mRNA expressions were up-regulated in FBXO8 knockdown cell lines. c-MYC silenced cells showed an increase in FBXO8 protein level, which suggests a negative feedback loop between FBXO8 and c-MYC to control breast cancer metastasis. These findings illuminate the novel role of FBXO8 as a prognostic and therapeutic target across different molecular subtypes of breast cancer. Finally, through the utilization of virtual screening and Molecular Dynamics simulations, we successfully identified two FDA-approved medications, Ledipasvir and Paritaprevir, that demonstrated robust binding capabilities and interactions with FBXO8.
Collapse
Affiliation(s)
- Abdul Jamil Khan
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Shad Man
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Manzar Abbas
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot 011517, China
| | - Shihao Liu
- Department of Informatics and Computer Engineering, Simon Kuznets Kharkiv National University of Economics, Nauky аve., 9-А, Kharkiv 61166, Ukraine
| | - Feng Zhang
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| |
Collapse
|
8
|
Wang Y, Engel T, Teng X. Post-translational regulation of the mTORC1 pathway: A switch that regulates metabolism-related gene expression. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195005. [PMID: 38242428 DOI: 10.1016/j.bbagrm.2024.195005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a kinase complex that plays a crucial role in coordinating cell growth in response to various signals, including amino acids, growth factors, oxygen, and ATP. Activation of mTORC1 promotes cell growth and anabolism, while its suppression leads to catabolism and inhibition of cell growth, enabling cells to withstand nutrient scarcity and stress. Dysregulation of mTORC1 activity is associated with numerous diseases, such as cancer, metabolic disorders, and neurodegenerative conditions. This review focuses on how post-translational modifications, particularly phosphorylation and ubiquitination, modulate mTORC1 signaling pathway and their consequential implications for pathogenesis. Understanding the impact of phosphorylation and ubiquitination on the mTORC1 signaling pathway provides valuable insights into the regulation of cellular growth and potential therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Yitao Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Xinchen Teng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
9
|
Bao H, Peng Z, Cheng X, Jian C, Li X, Shi Y, Zhu W, Hu Y, Jiang M, Song J, Fang F, Chen J, Shu X. GABA induced by sleep deprivation promotes the proliferation and migration of colon tumors through miR-223-3p endogenous pathway and exosome pathway. J Exp Clin Cancer Res 2023; 42:344. [PMID: 38105184 PMCID: PMC10726571 DOI: 10.1186/s13046-023-02921-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Research has indicated that long-term sleep deprivation can lead to immune dysfunction and participate in the occurance and progression of tumors. However, the relationship between sleep deprivation and colon cancer remains unclear. This study explored the specific mechanism through which sleep deprivation promotes the proliferation and migration of colon cancer, with a focus on the neurotransmitter GABA. METHODS Chronic sleep deprivation mice model were used to investigate the effect of sleep disorder on tumors. We detected neurotransmitter levels in the peripheral blood of mice using ELISA. CCK-8 assay, colony formation assay, wound healing assay, and transwell assay were performed to investigate the effect of GABA on colon cancer cells, while immunofluorescence showed the distribution of macrophages in lung metastatic tissues. We isolated exosomes from a GABA-induced culture medium to explore the effects of GABA-induced colon cancer cells on macrophages. Gain- and loss-of-function experiments, luciferase report analysis, immunohistochemistry, and cytokine detection were performed to reveal the crosstalk between colon cancer cells and macrophages. RESULTS Sleep deprivation promote peripheral blood GABA level and colon cancer cell proliferation and migration. Immunofluorescence analysis revealed that GABA-induced colon cancer metastasis is associated with enhanced recruitment of macrophages in the lungs. The co-culture results showed that GABA intensified M2 polarization of macrophage induced by colon cancer cells. This effect is due to the activation of the macrophage MAPK pathway by tumor-derived exosomal miR-223-3p. Furthermore, M2-like macrophages promote tumor proliferation and migration by secreting IL-17. We also identified an endogenous miR-223-3p downregulation of the E3 ligase CBLB, which enhances the stability of cMYC protein and augments colon cancer cells proliferation and migration ability. Notably, cMYC acts as a transcription factor and can also regulate the expression of miR-223-3p. CONCLUSION Our results suggest that sleep deprivation can promote the expression of miR-223-3p in colon cancer cells through GABA, leading to downregulation of the E3 ligase CBLB and inhibition of cMYC ubiquitination. Simultaneously, extracellular miR-223-3p promotes M2-like macrophage polarization, which leads to the secretion of IL-17, further enhancing the proliferation and migration of colon cancer cells.
Collapse
Affiliation(s)
- Haijun Bao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Zuojie Peng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Xukai Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Chenxing Jian
- Department of Colorectal Surgery, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China
| | - Xianguo Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Yongping Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Wenzhong Zhu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Yuan Hu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Mi Jiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Jia Song
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Feifei Fang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China
| | - Jinhuang Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No,1277, Hubei, 430022, Wuhan, China.
| | - Xiaogang Shu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, , Jiefang Road No,1277, Hubei, 430022, Wuhan, China.
| |
Collapse
|
10
|
Bukavina L, Bensalah K, Bray F, Carlo M, Challacombe B, Karam JA, Kassouf W, Mitchell T, Montironi R, O'Brien T, Panebianco V, Scelo G, Shuch B, van Poppel H, Blosser CD, Psutka SP. Epidemiology of Renal Cell Carcinoma: 2022 Update. Eur Urol 2022; 82:529-542. [PMID: 36100483 DOI: 10.1016/j.eururo.2022.08.019] [Citation(s) in RCA: 319] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
CONTEXT International variations in the rates of kidney cancer (KC) are considerable. An understanding of the risk factors for KC development is necessary to generate opportunities to reduce its incidence through prevention and surveillance. OBJECTIVE To retrieve and summarize global incidence and mortality rates of KC and risk factors associated with its development, and to describe known familial syndromes and genetic alterations that represent biologic risk factors. EVIDENCE ACQUISITION A systematic review was conducted via Medline (PubMed) and Scopus to include meta-analyses, reviews, and original studies regarding renal cell carcinoma, epidemiology, and risk factors. EVIDENCE SYNTHESIS Our narrative review provides a detailed analysis of KC incidence and mortality, with significant variations across time, geography, and sex. In particular, while KC incidence has continued to increase, mortality models have leveled off. Among the many risk factors, hypertension, obesity, and smoking are the most well established. The emergence of new genetic data coupled with observational data allows for integrated management and surveillance strategies for KC care. CONCLUSIONS KC incidence and mortality rates vary significantly by geography, sex, and age. Associations of the development of KC with modifiable and fixed risk factors such as obesity, hypertension, smoking, and chronic kidney disease (CKD)/end-stage kidney disease (ESKD) are well described. Recent advances in the genetic characterization of these cancers have led to a better understanding of the germline and somatic mutations that predispose patients to KC development, with potential for identification of therapeutic targets that may improve outcomes for these at-risk patients. PATIENT SUMMARY We reviewed evidence on the occurrence of kidney cancer (KC) around the world. Currently, the main avoidable causes are smoking, obesity, and high blood pressure. Although other risk factors also contribute, prevention and treatment of these three factors provide the best opportunities to reduce the risk of developing KC at present.
Collapse
Affiliation(s)
- Laura Bukavina
- Division of Urologic Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA; University Hospitals Cleveland Medical Center, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Karim Bensalah
- Department of Urology, University of Rennes, Rennes, France
| | - Freddie Bray
- Cancer Surveillance Section, International Agency for Research on Cancer, Lyon, France
| | - Maria Carlo
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ben Challacombe
- Department of Urology, Guy's and St. Thomas Hospitals, London, UK
| | - Jose A Karam
- Departments of Urology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wassim Kassouf
- Division of Adult Urology, McGill University, Montreal, Canada
| | - Thomas Mitchell
- Department of Urology, Wellcome Sanger Institute, Cambridge, UK
| | - Rodolfo Montironi
- Molecular Medicine and Cell Therapy Foundation, Polytechnic University of the Marche Region, Ancona, Italy
| | - Tim O'Brien
- Department of Urology, Guy's and St. Thomas Hospitals, London, UK
| | | | | | - Brian Shuch
- Department of Urology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Hein van Poppel
- Department of Urology, Catholic University of Leuven, Leuven, Belgium
| | - Christopher D Blosser
- Department of Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Sarah P Psutka
- Department of Medicine, University of Washington and Seattle Children's Hospital, Seattle, WA, USA.
| |
Collapse
|
11
|
Oryani MA, Tavasoli A, Ghalavand MA, Ashtiani RZ, Rezaee A, Mahmoudi R, Golvari H, Owrangi S, Soleymani-Goloujeh M. Epigenetics and its therapeutic potential in colorectal cancer. Epigenomics 2022; 14:683-697. [PMID: 35473313 DOI: 10.2217/epi-2022-0067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It is estimated that colorectal cancer (CRC) is the leading cause of cancer-related death around the globe. 'Epigenetics' refers to changes in the chromosome rather than the DNA sequence, which may be transmitted down to daughter cells. Epigenetics is an essential part of controlling the development and variation of a single cell. ncRNAs have a role in epigenetic regulation in CRC, which will be discussed in this review in the context of DNA methylation and histone modifications. A greater survival rate for CRC patients might be achieved by addressing epigenetic mediators, as the authors show. In this review, they aim to thoroughly examine the role of epigenetics in the prognosis, diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Tavasoli
- Department of Biotechnology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Amin Ghalavand
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Alisam Rezaee
- Faculty of Medical Sciences & Technologies, Science & Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Hossein Golvari
- School of Nursing & Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soroor Owrangi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Mehdi Soleymani-Goloujeh
- Department of Stem Cells & Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Lu S, Ding X, Wang Y, Hu X, Sun T, Wei M, Wang X, Wu H. The Relationship Between the Network of Non-coding RNAs-Molecular Targets and N6-Methyladenosine Modification in Colorectal Cancer. Front Cell Dev Biol 2021; 9:772542. [PMID: 34938735 PMCID: PMC8685436 DOI: 10.3389/fcell.2021.772542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Recent accumulating researches implicate that non-coding RNAs (ncRNAs) including microRNA (miRNA), circular RNA (circRNA), and long non-coding RNA (lncRNAs) play crucial roles in colorectal cancer (CRC) initiation and development. Notably, N6-methyladenosine (m6A) methylation, the critical posttranscriptional modulators, exerts various functions in ncRNA metabolism such as stability and degradation. However, the interaction regulation network among ncRNAs and the interplay with m6A-related regulators has not been well documented, particularly in CRC. Here, we summarize the interaction networks and sub-networks of ncRNAs in CRC based on a data-driven approach from the publications (IF > 6) in the last quinquennium (2016–2021). Further, we extend the regulatory pattern between the core m6A regulators and m6A-related ncRNAs in the context of CRC metastasis and progression. Thus, our review will highlight the clinical potential of ncRNAs and m6A modifiers as promising biomarkers and therapeutic targets for improving the diagnostic precision and treatment of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Xiangyu Ding
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Yuanhe Wang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China.,Shenyang Kangwei Medical Laboratory Analysis Co. Ltd., Liaoning, China
| | - Xiaobin Wang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
13
|
Yang Y, Xiang P, Chen Q, Luo Y, Wang H, Li H, Yang L, Hu C, Zhang J, Li Y, Xia H, Chen Z, Yang J. The imbalance of PGD2-DPs pathway is involved in the type 2 diabetes brain injury by regulating autophagy. Int J Biol Sci 2021; 17:3993-4004. [PMID: 34671214 PMCID: PMC8495389 DOI: 10.7150/ijbs.60149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Prostaglandin D2 (PGD2) is the most abundant prostaglandin in the brain, but its involvement in brain damage caused by type 2 diabetes (T2D) has not been reported. In the present study, we found that increased PGD2 content is related to the inhibition of autophagy, which aggravates brain damage in T2D, and may be involved in the imbalanced expression of the corresponding PGD2 receptors DP1 and DP2. We demonstrated that DP2 inhibited autophagy and promotedT2D-induced brain damage by activating the PI3K/AKT/mTOR pathway, whereas DP1enhanced autophagy and amelioratedT2D brain damage by activating the cAMP/PKA pathway. In a T2D rat model, DP1 expression was decreased, and DP2 expression was increased; therefore, the imbalance in PGD2-DPs may be involved in T2D brain damage through the regulation of autophagy. However, there have been no reports on whether PKA can directly inhibit mTOR. The PKA catalytic subunit (PKA-C) has three subtypes (α, β and γ), and γ is not expressed in the brain. Subsequently, we suggested that PKA could directly interact with mTOR through PKA-C(α) and PKA-C(β). Our results suggest that the imbalance in PGD2-DPs is related to changes in autophagy levels in T2D brain damage, and PGD2 is involved in T2D brain damage by promoting autophagy via DP1-PKA/mTOR and inhibiting autophagy via DP2-PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China.,Department of Pharmacology, Chongqing Health Center for Women and Children Chongqing 400016, China
| | - Pu Xiang
- Department of pharmacy,Dianjiang People's Hospital of Chongqing, Dianjiang, Chongqing 408300, China
| | - Qi Chen
- Pharmacy department of GuiZhou Provincial People,s Hospital, Guiyang 550000, China
| | - Ying Luo
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hong Wang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Huan Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Lu Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Congli Hu
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Jiahua Zhang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Yuke Li
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Hui Xia
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Zhihao Chen
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, the Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing 400016, China
| |
Collapse
|
14
|
Ganner A, Gehrke C, Klein M, Thegtmeier L, Matulenski T, Wingendorf L, Wang L, Pilz F, Greidl L, Meid L, Kotsis F, Walz G, Frew IJ, Neumann-Haefelin E. VHL suppresses RAPTOR and inhibits mTORC1 signaling in clear cell renal cell carcinoma. Sci Rep 2021; 11:14827. [PMID: 34290272 PMCID: PMC8295262 DOI: 10.1038/s41598-021-94132-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/25/2021] [Indexed: 01/08/2023] Open
Abstract
Inactivation of the tumor suppressor von Hippel-Lindau (VHL) gene is a key event in hereditary and sporadic clear cell renal cell carcinomas (ccRCC). The mechanistic target of rapamycin (mTOR) signaling pathway is a fundamental regulator of cell growth and proliferation, and hyperactivation of mTOR signaling is a common finding in VHL-dependent ccRCC. Deregulation of mTOR signaling correlates with tumor progression and poor outcome in patients with ccRCC. Here, we report that the regulatory-associated protein of mTOR (RAPTOR) is strikingly repressed by VHL. VHL interacts with RAPTOR and increases RAPTOR degradation by ubiquitination, thereby inhibiting mTORC1 signaling. Consistent with hyperactivation of mTORC1 signaling in VHL-deficient ccRCC, we observed that loss of vhl-1 function in C. elegans increased mTORC1 activity, supporting an evolutionary conserved mechanism. Our work reveals important new mechanistic insight into deregulation of mTORC1 signaling in ccRCC and links VHL directly to the control of RAPTOR/mTORC1. This may represent a novel mechanism whereby loss of VHL affects organ integrity and tumor behavior.
Collapse
Affiliation(s)
- Athina Ganner
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina Gehrke
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marinella Klein
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lena Thegtmeier
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja Matulenski
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Wingendorf
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lu Wang
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felicitas Pilz
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lars Greidl
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Meid
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Fruzsina Kotsis
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerd Walz
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ian J Frew
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elke Neumann-Haefelin
- Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Tang L, Ji M, Liang X, Chen D, Liu A, Yang G, Shi L, Fu Z, Shao C. Downregulated F-Box/LRR-Repeat Protein 7 Facilitates Pancreatic Cancer Metastasis by Regulating Snail1 for Proteasomal Degradation. Front Genet 2021; 12:650090. [PMID: 34249081 PMCID: PMC8264591 DOI: 10.3389/fgene.2021.650090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer (PCa) is one of the most aggressive lethal malignancies, and cancer metastasis is the major cause of PCa-associated death. F-box/LRR-repeat protein 7 (FBXL7) regulates cancer metastasis and the chemosensitivity of human pancreatic cancer. However, the clinical significance and biological role of FBXL7 in PCa have been rarely studied. In this study, we found that the expression of FBXL7 was down-regulated in PCa tissues compared with tumor-adjacent tissues, and the low expression of FBXL7 was positively associated with cancer metastasis. Functionally, overexpression of FBXL7 attenuated PANC1 cell invasion, whereas FBXL7 silencing promoted BxPC-3 cell invasion. Forced expression of FBXL7 upregulated the expression of epithelial markers (e.g., E-cadherin) and repressed the expression of mesenchymal markers (e.g., N-cadherin and Vimentin), indicating that FBXL7 negatively regulated the epithelial-mesenchymal transition (EMT) of PCa cells. Furthermore, we identified that FBXL7 repressed the expression of Snail1, a crucial transcription factor of EMT. Mechanistically, FBXL7 bound to Snail1 and promoted its ubiquitination and proteasomal degradation. In vivo studies demonstrated that FBXL7 inhibition promotes PCa metastasis. Taken together, our findings demonstrate that FBXL7 knockdown could efficiently enhance PCa metastasis by regulating Snail1-dependent EMT.
Collapse
Affiliation(s)
- Liang Tang
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Meng Ji
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xing Liang
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Danlei Chen
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Anan Liu
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Guang Yang
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ligang Shi
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiping Fu
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Chenghao Shao
- Department of Pancreatic-Biliary Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
MEF2A transcriptionally upregulates the expression of ZEB2 and CTNNB1 in colorectal cancer to promote tumor progression. Oncogene 2021; 40:3364-3377. [PMID: 33863999 PMCID: PMC8116210 DOI: 10.1038/s41388-021-01774-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023]
Abstract
Colorectal cancer (CRC) is one of the leading cancers worldwide, accounting for high morbidity and mortality. The mechanisms governing tumor growth and metastasis in CRC require detailed investigation. The results of the present study indicated that the transcription factor (TF) myocyte enhancer factor 2A (MEF2A) plays a dual role in promoting proliferation and metastasis of CRC by inducing the epithelial-mesenchymal transition (EMT) and activation of WNT/β-catenin signaling. Aberrant expression of MEF2A in CRC clinical specimens was significantly associated with poor prognosis and metastasis. Functionally, MEF2A directly binds to the promoter region to initiate the transcription of ZEB2 and CTNNB1. Simultaneous activation of the expression of EMT-related TFs and Wnt/β-catenin signaling by MEF2A overexpression induced the EMT and increased the frequency of tumor formation and metastasis. The present study identified a new critical oncogene involved in the growth and metastasis of CRC, providing a potential novel therapeutic target for CRC intervention.
Collapse
|
17
|
Huang X, Zhu X, Yu Y, Zhu W, Jin L, Zhang X, Li S, Zou P, Xie C, Cui R. Dissecting miRNA signature in colorectal cancer progression and metastasis. Cancer Lett 2020; 501:66-82. [PMID: 33385486 DOI: 10.1016/j.canlet.2020.12.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is the third most common cancer and leading cause of cancer related deaths worldwide. Despite recent advancements in surgical and molecular targeted therapies that improved the therapeutic efficacy in CRC, the 5 years survival rate of CRC patients still remains frustratingly poor. Accumulated evidences indicate that microRNAs (miRNAs) play a crucial role in the progression and metastasis of CRC. Dysregulated miRNAs are closely associated with cancerous phenotypes (e.g. enhanced proliferative and invasive ability, evasion of apoptosis, cell cycle aberration, and promotion of angiogenesis) by regulating their target genes. In this review, we provide an updated overview of tumor suppressive and oncogenic miRNAs, circulatory miRNAs, and the possible causes of dysregulated miRNAs in CRC. In addition, we discuss the important functions of miRNAs in drug resistance of CRC.
Collapse
Affiliation(s)
- Xiangjie Huang
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xinping Zhu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yun Yu
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wangyu Zhu
- Affiliated Zhoushan Hospital, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Libo Jin
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Xiaodong Zhang
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shaotang Li
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Peng Zou
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China
| | - Congying Xie
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ri Cui
- Cancer and Anticancer Drug Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, 325035, China; Wenzhou University-Wenzhou Medical University Collaborative Innovation Center of Biomedical, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
18
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
19
|
Balahura LR, Selaru A, Dinescu S, Costache M. Inflammation and Inflammasomes: Pros and Cons in Tumorigenesis. J Immunol Res 2020; 2020:2549763. [PMID: 33015196 PMCID: PMC7520695 DOI: 10.1155/2020/2549763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 12/17/2022] Open
Abstract
Over the past decade, it has been well established that tumorigenesis is affected by chronic inflammation. During this event, proinflammatory cytokines are produced by numerous types of cells, such as fibroblasts, endothelial cells, macrophages, and tumor cells, and are able to promote the initiation, progression, and metastasis of different types of cancer. When persistent inflammation occurs, activation of inflammasome complexes is initiated, leading to its assembly and further activation of caspase, production of proinflammatory cytokines, and pyroptosis induction. The function of this multiprotein complex is not only to reassure inflammation and to promote cell death, through caspase activity, but also has been identified to have significant contributions during tumorigenesis and cancer development. So far, many efforts have been made in order to extend the knowledge of inflammasome implications and how its components could be targeted as therapeutic agents. Additionally, microRNAs (miRNAs), evolutionary conserved noncoding molecules, have emerged as pivotal players during numerous biological events by regulating gene and protein expression. Therefore, dysregulations of miRNA expressions have been correlated with inflammation during tumor development. In this review, we aim to highlight the dual role of inflammasomes and proinflammatory cytokines during carcinogenesis paired with the distinguished effects of miRNAs upon inflammation cascades during tumor growth and progression.
Collapse
Affiliation(s)
- Liliana R Balahura
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences "Victor Babes", Bucharest 050096, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Aida Selaru
- Department of Immunology, National Institute for Research and Development in Biomedical Pathology and Biomedical Sciences "Victor Babes", Bucharest 050096, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
- The Research Institute of the University of Bucharest, Bucharest 050663, Romania
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
- The Research Institute of the University of Bucharest, Bucharest 050663, Romania
| |
Collapse
|
20
|
Zhu X, Wang F, Wu X, Li Z, Wang Z, Ren X, Zhou Y, Song F, Liang Y, Zeng Z, Liao W, Ding Y, Liao W, Liang L. FBX8 promotes metastatic dormancy of colorectal cancer in liver. Cell Death Dis 2020; 11:622. [PMID: 32796813 PMCID: PMC7427987 DOI: 10.1038/s41419-020-02870-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
Patients with colorectal cancer (CRC) often develop malignant regrowth of metastatic dormant tumor cells in liver years after primary treatment. FBX8 is involved in suppressing tumor metastasis. Short-term chemotherapy experiments and liver metastasis mice model of orthotopic injection into the cecum were performed to construct the dormant models. GST-pull-down assay, Co-IP and immunofluorescence were used to confirm the bindings among FBX8 and its substrates. FBX8 upregulated the expression of epithelial and stemness markers, while downregulated the expression of mesenchymal and proliferative markers associated with tumor cell dormancy. FBX8 promoted the maintenance of metastatic dormancy of CRC cells. Mechanistically, FBX8 directly bound to HIF-1α, CDK4 and C-myc through its Sec7 domain and led to the ubiquitin degradation of these proteins, thereby inhibiting cell cycle progression, proliferation, angiogenesis, and metastasis. Clinically, FBX8 expression was negatively correlated with the HIF-1α, CDK4, and c-Myc in CRC tissues. Our study reveals a novel mechanism of FBX8 in regulating tumor metastatic dormancy in liver and provides new strategies for the treatment of CRC metastasis.
Collapse
Affiliation(s)
- Xiaohui Zhu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Feifei Wang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Xuehui Wu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhou Li
- The First Clinical Medical Department, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhizhi Wang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiaoli Ren
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Yangshu Zhou
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Fuyao Song
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Yunshi Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Zhicheng Zeng
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangzhou, 510515, Guangdong Province, People's Republic of China. .,Guangdong Province Key Laboratory of Molecular Tumor Pathology, 510515, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
21
|
Kwon Y, Kim M, Kim Y, Jung HS, Jeoung D. Exosomal MicroRNAs as Mediators of Cellular Interactions Between Cancer Cells and Macrophages. Front Immunol 2020; 11:1167. [PMID: 32595638 PMCID: PMC7300210 DOI: 10.3389/fimmu.2020.01167] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor microenvironment consists of cancer cells and various stromal cells such as endothelial cells, cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), neutrophils, macrophages, and other innate and adaptive immune cells. Of these innate immune cells, macrophages are an extremely heterogeneous population, and display both pro-inflammatory and anti-inflammatory functions. While M1 macrophages (classically activated macrophages) display anti-tumoral and pro-inflammatory functions, M2 macrophages display pro-tumoral and anti-inflammatory functions. Cellular interactions and molecular factors in the tumor microenvironment affect the polarization of macrophages. We review molecules and immune cells that influence the polarization status of macrophages. Tumor-associated macrophages (TAMs) generally express M2 phenotype, and mediate many processes that include tumor initiation, angiogenesis, and metastasis. A high number of TAMs has been associated with the poor prognosis of cancers. MicroRNAs (miRNAs) have been known to regulate cellular interactions that involve cancer cells and macrophages. Tumor-derived exosomes play critical roles in inducing the M1 or M2-like polarization of macrophages. The roles of exosomal miRNAs from tumor cells in the polarization of macrophages are also discussed and the targets of these miRNAs are presented. We review the effects of exosomal miRNAs from TAMs on cancer cell invasion, growth, and anti-cancer drug resistance. The relevance of exosomal microRNAs (miRNAs) as targets for the development of anti-cancer drugs is discussed. We review recent progress in the development of miRNA therapeutics aimed at elevating or decreasing levels of miRNAs.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Misun Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
22
|
Kim SY, Kim HJ, Kim HJ, Kim CH. Non-Thermal Plasma Induces Antileukemic Effect Through mTOR Ubiquitination. Cells 2020; 9:cells9030595. [PMID: 32131492 PMCID: PMC7140413 DOI: 10.3390/cells9030595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/24/2020] [Accepted: 02/28/2020] [Indexed: 12/20/2022] Open
Abstract
Non-thermal plasma (NTP) has been studied as a novel therapeutic tool for cancer that does not damage healthy cells. In this study, we show that NTP-treated solutions (NTS) can induce death in various leukemia cells through mechanistic target of rapamycin (mTOR) ubiquitination. Previously, we manufactured and demonstrated the efficacy of NTS in solid cancers. NTS did not exhibit any deleterious side effects, such as acute death or weight loss in nude mice. In the present study, NTS induced cell death in myeloid leukemia cells, including acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). We found that mTOR was downregulated in NTS-treated cells via the ubiquitin-proteasome system (UPS). We also identified ‘really interesting new gene’ finger protein 126 (RNF126) as a novel binding protein for mTOR through protein arrays and determined the role of E3 ligase in NTS-induced mTOR ubiquitination. NTS-derived reactive oxygen species (ROS) affected RNF126 expression and lysosomal dysfunction. These findings suggest that NTS has potential antileukemic effects through RNF126-mediated mTOR ubiquitination with no deleterious side effects. Thus, NTS may represent a new therapeutic method for chemotherapy-resistant leukemia.
Collapse
Affiliation(s)
- Sun-Yong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
| | - Hyo Jeong Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Haeng Jun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Korea; (S.-Y.K.); (H.J.K.); (H.J.K.)
- Oncoprotein Modification and Regulation Research Center, Ajou University, Suwon 16499, Korea
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: ; Tel.: +82-31-219-5269
| |
Collapse
|
23
|
Nakagawa T, Nakayama K, Nakayama KI. Knockout Mouse Models Provide Insight into the Biological Functions of CRL1 Components. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:147-171. [PMID: 31898227 DOI: 10.1007/978-981-15-1025-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CRL1 complex, also known as the SCF complex, is a ubiquitin ligase that in mammals consists of an adaptor protein (SKP1), a scaffold protein (CUL1), a RING finger protein (RBX1, also known as ROC1), and one of about 70 F-box proteins. Given that the F-box proteins determine the substrate specificity of the CRL1 complex, the variety of these proteins allows the generation of a large number of ubiquitin ligases that promote the degradation or regulate the function of many substrate proteins and thereby control numerous key cellular processes. The physiological and pathological functions of these many CRL1 ubiquitin ligases have been studied by the generation and characterization of knockout mouse models that lack specific CRL1 components. In this chapter, we provide a comprehensive overview of these mouse models and discuss the role of each CRL1 component in mouse physiology and pathology.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Japan.
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
24
|
Lin M, Xu Y, Gao Y, Pan C, Zhu X, Wang ZW. Regulation of F-box proteins by noncoding RNAs in human cancers. Cancer Lett 2019; 466:61-70. [DOI: 10.1016/j.canlet.2019.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022]
|
25
|
Jiang Y, Su S, Zhang Y, Qian J, Liu P. Control of mTOR signaling by ubiquitin. Oncogene 2019; 38:3989-4001. [PMID: 30705402 PMCID: PMC6621562 DOI: 10.1038/s41388-019-0713-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/10/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
The evolutionarily conserved mTOR signaling pathway plays essential roles in cell growth, proliferation, metabolism and responses to cellular stresses. Hyperactivation of the mTOR signaling is observed in virtually all solid tumors and has been an attractive drug target. In addition to changes at genetic levels, aberrant activation of the mTOR signaling is also a result from dysregulated posttranslational modifications on key pathway members, such as phosphorylation that has been extensively studied. Emerging evidence also supports a critical role for ubiquitin-mediated modifications in dynamically regulating the mTOR signaling pathway, while a comprehensive review for relevant studies is missing. In this review, we will summarize characterized ubiquitination events on major mTOR signaling components, their modifying E3 ubiquitin ligases, deubiquitinases and corresponding pathophysiological functions. We will also reveal methodologies that have been used to identify E3 ligases or DUBs to facilitate the search for yet-to-be discovered ubiquitin-mediated regulatory mechanisms in mTOR signaling. We hope that our review and perspectives provide rationales and strategies to target ubiquitination for inhibiting mTOR signaling to treat human diseases.
Collapse
Affiliation(s)
- Yao Jiang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Siyuan Su
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yanqiong Zhang
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiayi Qian
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
26
|
Tezcan G, Martynova EV, Gilazieva ZE, McIntyre A, Rizvanov AA, Khaiboullina SF. MicroRNA Post-transcriptional Regulation of the NLRP3 Inflammasome in Immunopathologies. Front Pharmacol 2019; 10:451. [PMID: 31118894 PMCID: PMC6504709 DOI: 10.3389/fphar.2019.00451] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammation has a crucial role in protection against various pathogens. The inflammasome is an intracellular multiprotein signaling complex that is linked to pathogen sensing and initiation of the inflammatory response in physiological and pathological conditions. The most characterized inflammasome is the NLRP3 inflammasome, which is a known sensor of cell stress and is tightly regulated in resting cells. However, altered regulation of the NLRP3 inflammasome is found in several pathological conditions, including autoimmune disease and cancer. NLRP3 expression was shown to be post-transcriptionally regulated and multiple miRNA have been implicated in post-transcriptional regulation of the inflammasome. Therefore, in recent years, miRNA based post-transcriptional control of NLRP3 has become a focus of much research, especially as a potential therapeutic approach. In this review, we provide a summary of the recent investigations on the role of miRNA in the post-transcriptional control of the NLRP3 inflammasome, a key regulator of pro-inflammatory IL-1β and IL-18 cytokine production. Current approaches to targeting the inflammasome product were shown to be an effective treatment for diseases linked to NLRP3 overexpression. Although utilizing NLRP3 targeting miRNAs was shown to be a successful therapeutic approach in several animal models, their therapeutic application in patients remains to be determined.
Collapse
Affiliation(s)
- Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Zarema E. Gilazieva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Alan McIntyre
- Centre for Cancer Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
27
|
Vymetalkova V, Vodicka P, Vodenkova S, Alonso S, Schneider-Stock R. DNA methylation and chromatin modifiers in colorectal cancer. Mol Aspects Med 2019; 69:73-92. [PMID: 31028771 DOI: 10.1016/j.mam.2019.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/15/2022]
Abstract
Colorectal carcinogenesis is a multistep process involving the accumulation of genetic alterations over time that ultimately leads to disease progression and metastasis. Binding of transcription factors to gene promoter regions alone cannot explain the complex regulation pattern of gene expression during this process. It is the chromatin structure that allows for a high grade of regulatory flexibility for gene expression. Posttranslational modifications on histone proteins such as acetylation, methylation, or phosphorylation determine the accessibility of transcription factors to DNA. DNA methylation, a chemical modification of DNA that modulates chromatin structure and gene transcription acts in concert with these chromatin conformation alterations. Another epigenetic mechanism regulating gene expression is represented by small non-coding RNAs. Only very recently epigenetic alterations have been included in molecular subtype classification of colorectal cancer (CRC). In this chapter, we will provide examples of the different epigenetic players, focus on their role for epithelial-mesenchymal transition and metastatic processes and discuss their prognostic value in CRC.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Pavel Vodicka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00, Pilsen, Czech Republic
| | - Sona Vodenkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00 Prague, Czech Republic; Institute of Biology and Medical Genetics, 1st Medical Faculty, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Sergio Alonso
- Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute, (IGTP-PMPPC), Campus Can Ruti, 08916, Badalona, Barcelona, Spain
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital of Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsstrasse 22, 91054, Erlangen, Germany.
| |
Collapse
|
28
|
FBX8 degrades GSTP1 through ubiquitination to suppress colorectal cancer progression. Cell Death Dis 2019; 10:351. [PMID: 31024008 PMCID: PMC6484082 DOI: 10.1038/s41419-019-1588-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/25/2018] [Accepted: 01/18/2019] [Indexed: 12/19/2022]
Abstract
F-box only protein 8 (FBX8), as a critical component of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases, has been associated with several malignancies through interacting with a member of proteins. However, the substrates of FBX8 for destruction in the progression of colorectal carcinoma (CRC) need to be explored. Here, we show that loss of FBX8 accelerates chemical-induced colon tumorigenesis. FBX8 directly targets GSTP1 for ubiquitin-mediated proteasome degradation in CRC. GSTP1 promotes the proliferation, invasion, and metastasis of CRC cells. Furthermore, GSTP1 is upregulated in CRC tissue samples and predicts poor prognosis of CRC patients. The inactivation of FBX8 negatively correlated with increased levels and stability of GSTP1 in clinical CRC tissues and FBX8 knockout transgenic mice. These findings identify a novel ubiquitination pathway as FBX8-GSTP1 axis that regulates the progression of CRC, which might be a potential prognostic biomarker for CRC patients.
Collapse
|
29
|
Ragusa M, Barbagallo C, Cirnigliaro M, Battaglia R, Brex D, Caponnetto A, Barbagallo D, Di Pietro C, Purrello M. Asymmetric RNA Distribution among Cells and Their Secreted Exosomes: Biomedical Meaning and Considerations on Diagnostic Applications. Front Mol Biosci 2017; 4:66. [PMID: 29046875 PMCID: PMC5632685 DOI: 10.3389/fmolb.2017.00066] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/20/2017] [Indexed: 12/17/2022] Open
Abstract
Over the past few years, exosomes and their RNA cargo have been extensively studied because of the fascinating biological roles they play in cell-to-cell communication, including the signal exchange among cancer, stromal, and immune cells, leading to modifications of tumor microenvironment. RNAs, especially miRNAs, stored within exosomes, seem to be among the main determinants of such signaling: their sorting into exosomes appears to be cell-specific and related to cellular physiopathology. Accordingly, the identification of exosomal miRNAs in body fluids from pathological patients has become one of the most promising activity in the field of biomarker discovery. Several analyses on the qualitative and quantitative distribution of RNAs between cells and their secreted exosomes have given rise to questions on whether and how accurately exosomal RNAs would represent the transcriptomic snapshot of the physiological and pathological status of secreting cells. Although the exact molecular mechanisms of sorting remain quite elusive, many papers have reported an evident asymmetric quantitative distribution of RNAs between source cells and their exosomes. This phenomenon could depend both on passive and active sorting mechanisms related to: (a) RNA turnover; (b) maintaining the cytoplasmic miRNA:target equilibrium; (c) removal of RNAs not critical or even detrimental for normal or diseased cells. These observations represent very critical issues in the exploitation of exosomal miRNAs as cancer biomarkers. In this review, we will discuss how much the exosomal and corresponding donor cell transcriptomes match each other, to better understand the actual reliability of exosomal RNA molecules as pathological biomarkers reflecting a diseased status of the cells.
Collapse
Affiliation(s)
- Marco Ragusa
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy.,IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Italy
| | - Cristina Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Matilde Cirnigliaro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Rosalia Battaglia
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Duilia Brex
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Angela Caponnetto
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Davide Barbagallo
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Cinzia Di Pietro
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Michele Purrello
- BioMolecular, Genome and Complex Systems BioMedicine Unit, Section of Biology and Genetics G Sichel, Department of BioMedical Sciences and Biotechnology, University of Catania, Catania, Italy
| |
Collapse
|
30
|
Miwa T, Kanda M, Koike M, Iwata N, Tanaka H, Umeda S, Tanaka C, Kobayashi D, Hayashi M, Yamada S, Fujii T, Fujiwara M, Kodera Y. Identification of NCCRP1 as an epigenetically regulated tumor suppressor and biomarker for malignant phenotypes of squamous cell carcinoma of the esophagus. Oncol Lett 2017; 14:4822-4828. [PMID: 29085486 DOI: 10.3892/ol.2017.6753] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/04/2017] [Indexed: 12/21/2022] Open
Abstract
The poor prognosis and increasing incidence of esophageal squamous cell carcinoma (ESCC) highlight the need for identification of novel ESCC-associated molecular events to improve the diagnosis, and treatment of this disease. Non-specific cytotoxic cell receptor protein 1 (NCCRP1) was reported to be abundantly expressed in human squamous epithelium and to be involved in cell proliferation; however, the role of NCCRP1 in ESCC remains unclear. To elucidate the oncological roles of NCCRP1 in ESCC, NCCRP1 expression, DNA methylation, and copy numbers were analyzed in ESCC cell lines. Nine ESCC cell lines demonstrated different NCCRP1 mRNA expression levels and all exhibited hypermethylation of the NCCRP1 promoter, but no copy number loss. Additionally, NCCRP1 expression was determined in 213 surgically resected esophageal tissue samples. NCCRP1 mRNA expression levels were reduced in ESCC tissues compared with corresponding non-cancerous adjacent tissues in 204 (95.8%) patients. Patients in the low NCCRP1 expression group tended to have a higher recurrence rate and a shorter overall survival time compared with those in the high NCCRP1 expression group. Additionally, multivariate analysis revealed that low NCCRP1 expression was an independent prognostic factor (hazard ratio, 1.75; 95% confidence interval, 1.08-2.87; P=0.022). The findings of the current study indicate that NCCRP1 acts as a putative tumor suppressor that is inactivated through promoter hypermethylation, and serves as a promising biomarker to predict postoperative prognosis in ESCC.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masahiko Koike
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Naoki Iwata
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Haruyoshi Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shinichi Umeda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Chie Tanaka
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Daisuke Kobayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Masamichi Hayashi
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Suguru Yamada
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tsutomu Fujii
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Michitaka Fujiwara
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yasuhiro Kodera
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
31
|
Nagy ZB, Wichmann B, Kalmár A, Galamb O, Barták BK, Spisák S, Tulassay Z, Molnár B. Colorectal adenoma and carcinoma specific miRNA profiles in biopsy and their expression in plasma specimens. Clin Epigenetics 2017; 9:22. [PMID: 28289479 PMCID: PMC5310023 DOI: 10.1186/s13148-016-0305-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MiRNA expression markers are well characterized in colorectal cancer (CRC), but less is known about miRNA expression profiles in colorectal adenomas. Genome-wide miRNA and mRNA expression analyses were conducted through the colorectal adenoma dysplasia sequence. Furthermore, analysis of the expression levels of miRNAs in matched plasma samples was performed, focusing on biomarker candidates; miRNA and mRNA expression analyses were performed on colorectal biopsies and plasma samples (20 normals; 11 tubular and 9 tubulovillous adenomas; 20 colorectal carcinomas) by miRNA 3.0 and Human Transcriptome Array (Affymetrix) and validated by RT-qPCR. Microarray data were analyzed using Expression Console and mRNA targets were predicted using miRWALK 2.0. RESULTS Based on microarray analysis, 447 miRNAs were expressed in tissue and 320 in plasma. Twelve were upregulated (miR-31, 8-fold p < 0.001) and 11 were downregulated (miR-10b 3-fold p < 0.001) in neoplastic lesions compared to normal group. Eleven miRNAs showed altered expression between adenoma subtypes (miR-183 2.8-fold change, p < 0.007). Expression level of 24 miRNAs differed between adenoma and CRC groups (including miR-196a, 3.5-fold). Three miRNAs (miR-31, miR-4506, miR-452*) were differentially expressed in adenoma compared to normal both in tissue and plasma samples. miRNA expression data were confirmed by RT-PCR both in plasma and matched tissue samples. CONCLUSIONS MiRNAs showed characteristic expression changes during CRC development in tissue. miRNAs were also presented in plasma and positively correlated with matched tissue expression levels. The identified miRNA expression changes could be verified RT-PCR methods facilitating routine application.
Collapse
Affiliation(s)
- Zsófia Brigitta Nagy
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - Barnabás Wichmann
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alexandra Kalmár
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Barbara Kinga Barták
- Molecular Gastroenterology Laboratory, 2nd Department of Internal Medicine, Semmelweis University, Szentkirályi Str. 46, Budapest, 1088 Hungary
| | - Sándor Spisák
- Current Address: Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA USA
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|