1
|
Das J, Busia-Bourdain O, Khan KM, Wolfe AL. IMPlications of IMP2 in RNA Biology and Disease. Int J Mol Sci 2025; 26:2415. [PMID: 40141058 PMCID: PMC11942581 DOI: 10.3390/ijms26062415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Insulin-like growth factor 2 mRNA-binding protein 2 (IMP2) is an RNA-binding protein that positively regulates m6A-modified RNAs involved in critical cellular processes such as metabolism, oncogenesis, and immune function. Here, we elucidate facets of IMP2 biology, including several mechanisms of action on RNA, factors that regulate IMP2 expression, its relevant biological target RNAs, its role in normal development and disease, and its potential as a therapeutic target. IMP2 is a multi-level regulator of metabolism, influencing pathways linked to diabetes, obesity, and adipose function. Through genomic amplification and transcriptional overexpression in cancer cells, IMP2 can drive the initiation and progression of multiple cancer types, and high expression is associated with decreased overall survival of patients with cancer. IMP2 influences normal immune function, inflammation, macrophage polarization, and tumor immune evasion. IMP2 has emerged as a promising therapeutic target, particularly for cancers and metabolic diseases.
Collapse
Affiliation(s)
- Jessica Das
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
| | - Ottavia Busia-Bourdain
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Khizr M. Khan
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- New York Research and Mentoring for Postbaccalaureates (NY-RaMP) Program, Hunter College, New York, NY 10021, USA
| | - Andrew L. Wolfe
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Molecular, Cellular, and Developmental Biology Subprogram of the Biology Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- New York Research and Mentoring for Postbaccalaureates (NY-RaMP) Program, Hunter College, New York, NY 10021, USA
- Biochemistry Ph.D. Program, Graduate Center, City University of New York, New York, NY 10031, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
2
|
Xiao K, Xie C, Zhang Y, Kang M, Wang Y, Li Q, Dong W, Wang H, Wei H, Hu Y, Wang B, Lu R. The value of serum tumor-associated autoantibodies in screening and diagnosis of gastric cancer. Clin Chim Acta 2025; 569:120167. [PMID: 39900126 DOI: 10.1016/j.cca.2025.120167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/09/2025] [Accepted: 01/25/2025] [Indexed: 02/05/2025]
Abstract
OBJECTIVE To investigate the clinical value of serum autoantibodies in the screening and diagnosis of gastric cancer. MATERIALS & METHODS A total of 570 gastric cancer patients and 373 controls were enrolled in this study. Enzyme-linked immunosorbent assay (ELISA) was employed to quantitatively detect autoantibodies in the tested serum, and statistic modeling was conducted to analyze their relationships with various clinical and pathological parameters. RESULTS The results of autoantibody detection in gastric cancer patients were significantly different from those of the control group. A combination of 7 autoantibodies, including CLDN18, CAGE1, CTAG1A, PBRM1, RASSF7, IMMP2L and COPB1, was selected for modeling (AUC = 0.885). The diagnostic specificity was approximately 0.86 when combined 7-TAAs with Helicobacter pylori, while the positive predictive value was increased to 0.94. The abnormal elevation of different TAAs proteins in gastric cancer patients is related to factors such as disease stage, tumor differentiation degree, and invasion depth. CONCLUSION The determination of serum autoantibody panel has clinical value in screening and prediction of gastric cancer, and can be used as an auxiliary index in clinical diagnosis. The combination of 7-TAAs and Helicobacter pylori can effectively improve the screening specificity and positive predictive value. The detection results of different proteins were related to the stage of disease, the degree of tumor differentiation and the depth of invasion.
Collapse
Affiliation(s)
- Kangjia Xiao
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China; Department of Clinical Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road Number Two, Shanghai 200025, China
| | - Chengxuan Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Yi Zhang
- Department of Clinical Laboratory, Shanghai International Medical Center, 4358 Kangxin Road, Shanghai 201318, China
| | - Meihua Kang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China
| | - Qingtian Li
- Department of Clinical Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road Number Two, Shanghai 200025, China
| | - Wenqian Dong
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei 230001, China
| | - Hao Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei 230001, China
| | - Huaxing Wei
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei 230001, China
| | - Yanping Hu
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450003, China
| | - Baolong Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 17 Lujiang Road, Hefei 230001, China.
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
3
|
Shen J, Ding Y. Multifaceted roles of insulin‑like growth factor 2 mRNA binding protein 2 in human cancer (Review). Mol Med Rep 2025; 31:75. [PMID: 39886962 PMCID: PMC11795254 DOI: 10.3892/mmr.2025.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/07/2024] [Indexed: 02/01/2025] Open
Abstract
Insulin‑like growth factor 2 mRNA binding protein 2 (IGF2BP2) is an RNA binding protein that functions as an N6‑methyladenosine reader. It regulates various biological processes in human cancers by affecting the stability and expression of target RNA transcripts, including coding RNAs and non‑coding RNAs (ncRNAs). Numerous studies have shown that IGF2BP2 expression is aberrantly increased in various types of cancer and plays multifaceted roles in the development and progression of human cancers. In the present review, the clinical importance of IGF2BP2 is summarized and its involvement in the regulation of biological processes, including proliferation, metastasis, chemoresistance, metabolism, tumor immunity, stemness and cell death, in human cancers is discussed. The chemical compounds that have been developed as IGF2BP2 inhibitors are also detailed. As ncRNAs are now important potential therapeutic agents for cancer treatment, the microRNAs that have been reported to directly target and inhibit IGF2BP2 expression in cancers are also described. In summary, by reviewing the latest literature, the present study aimed to highlight the clinical importance and physiological functions of IGF2BP2 in human cancer, with a focus on the great potential of IGF2BP2 as a target for inhibitor development. The present review may inspire new ideas for future studies on IGF2BP2, which may serve as a specific therapeutic target in cancer.
Collapse
Affiliation(s)
- Jianan Shen
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
4
|
Yagi M, Nagata K, Sano M, Yanagihara K, Ohashi R, Takei H. Impact of IMP3 Expression on Chemotherapy Response and Prognosis in Triple-Negative Breast Cancer: A Retrospective Cohort Study. J NIPPON MED SCH 2025; 92:44-51. [PMID: 40058835 DOI: 10.1272/jnms.jnms.2025_92-109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025]
Abstract
BACKGROUND Although advances in neoadjuvant chemotherapy (NAC) are improving the rate of pathological complete response (pCR) and outcomes for triple-negative breast cancer (TNBC) patients, the prognosis remains poor. Insulin-like growth factor II mRNA-binding protein 3 (IMP3) expression was recently reported to be associated with chemotherapy resistance and poor prognosis in TNBC. METHODS We evaluated IMP3 expression in 40 female TNBC patients to assess its association with NAC sensitivity and outcome. RESULTS Among the cohort, 11 patients (27.5%) had IMP3-positive TNBC, which was associated with a higher Ki-67 labeling index (p = 0.119), indicating greater malignancy. However, IMP3 positivity showed no significant correlation with NAC resistance or differences in disease-free survival (DFS) as compared with IMP3-negative patients. CONCLUSIONS Patients receiving effective immunotherapy or high-dose chemotherapy achieved pCR regardless of IMP3 status, which suggests that the NAC regimen is more important than IMP3 status for pCR. Even in IMP3-positive TNBC, NAC may improve prognosis by achieving pCR. Thus, while IMP3 might predict poor prognosis, it may not serve as a definitive marker in the context of NAC. Because IMP3 is involved in cancer stem cell (CSC) function, further research is necessary to understand its complex role in CSCs and TNBC.
Collapse
Affiliation(s)
- Mio Yagi
- Department of Breast Surgery and Oncology, Nippon Medical School Tama Nagayama Hospital
| | - Koji Nagata
- Department of Diagnostic Pathology, Nippon Medical School Tama Nagayama Hospital
| | - Megumi Sano
- Department of Breast Surgery and Oncology, Nippon Medical School Tama Nagayama Hospital
| | - Keiko Yanagihara
- Department of Breast Surgery and Oncology, Nippon Medical School Tama Nagayama Hospital
| | - Ryuji Ohashi
- Department of Integrated Diagnostic Pathology, Nippon Medical School
| | - Hiroyuki Takei
- Department of Breast Surgery and Oncology, Nippon Medical School Hospital
| |
Collapse
|
5
|
Kumar S, Chaudhri S. Recent update on IGF-1/IGF-1R signaling axis as a promising therapeutic target for triple-negative breast cancer. Pathol Res Pract 2024; 263:155620. [PMID: 39357179 DOI: 10.1016/j.prp.2024.155620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Insulin-like growth factor 1/Insulin-like growth factor 1-receptor (IGF-1/IGF-1R) pathway is highly breast cancer subtype context-dependent. Triple-negative breast cancer (TNBC) is an aggressive, highly metastatic cancer showing early recurrence and poor prognosis. High expression of IGF-1 and its receptor IGF-1R, their interaction, autophosphorylation, and activation of intracellular signaling cascades have been significantly associated with TNBC pathophysiology. In the last five to seven years, marvelous work has been done to explore the role of IGF-1/IGF-1R axis in TNBC. In the present review, starting from the general introduction to IGF-1/IGF-1R pathway an up-to-date discussion was focused on its role in TNBC pathophysiology. Further we discussed the up/down stream molecular events of IGF-1/IGF-1R axis, clinical relevance of IGF-1 and IGF-1R levels in TNBC patients, anti-TNBC therapy and possible way-out for IGF-1/IGF-1R axis mediate therapy resistance in TNBC. Combination therapy strategy has been researched to overcome direct IGF-1/IGF-1R pathway inhibition mediated therapy resistance and produced promising results in the management of TNBC. The understanding of up/downstream of the IGF-1/IGF-1R axis provide immense focus on the pathway as a therapeutic target. It is expected within the next decade to determine its potentiality, or lack thereof, for TNBC treatment.
Collapse
Affiliation(s)
- Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, Punjab 151401, India.
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Guddha, Bathinda, Punjab 151401, India
| |
Collapse
|
6
|
Chen Z, Zhong X, Xia M, Liu C, Tang W, Liu G, Yi Y, Guo Y, Jiang Q, Zu X, Zhong J. FTO/IGF2BP2-mediated N6 methyladenosine modification in invasion and metastasis of thyroid carcinoma via CDH12. Cell Death Dis 2024; 15:733. [PMID: 39379360 PMCID: PMC11461506 DOI: 10.1038/s41419-024-07097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024]
Abstract
Epigenetic reprogramming plays a critical role in cancer progression of cancer, and N6-methyladenosine (m6A) is the most common RNA modification in eukaryotes. The purpose of this study was to explore the related modification mode of m6A regulator construction and evaluate the invasion and migration of thyroid cancer. Our results showed that m6A levels were significantly increased in papillary thyroid cancer (PTC) and anaplastic thyroid cancer (ATC) samples, which may have been induced by the down-regulation of demethylase fat mass and obesity-associated gene (FTO). Moreover, FTO inhibited PTC and ATC invasion and metastasis through the epithelial-to-mesenchymal transition (EMT) pathway in vivo and in vitro. Mechanistically, an m6A-mRNA epitranscriptomic microarray showed that Cadherin 12 (CDH12) is the key target gene mediated by FTO in an m6A-dependent manner. CDH12 promotes invasion and metastasis through the EMT pathway in thyroid cancer, both in vivo and in vitro. Furthermore, we found that insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) is an important m6A reading protein, that regulates the stability of CDH12 mRNA and mediates EMT progression, thereby promoting the invasion and metastasis of PTC and ATC. Thus, FTO, IGF2BP2 and CDH12 may be effective therapeutic targets for PTC and ATC with significant invasion or distant metastasis. Schematic summary of FTO-IGF2BP2 axis in modulation of CDH12 mRNA m6A and upregulation of CDH12 expression in the invasion and metastasis of thyroid carcinoma.
Collapse
Affiliation(s)
- Zuyao Chen
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Xiaolin Zhong
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Min Xia
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Chang Liu
- Department of Endocrinology and Metabolism, The First People's Hospital of Chenzhou, The First School of Clinical Medicine, University of Southern Medical, Guang Zhou Shi, 510515, China
| | - Weiqiang Tang
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Gaohua Liu
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Yan Yi
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Yinping Guo
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Qingshan Jiang
- Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China
| | - Xuyu Zu
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| | - Jing Zhong
- Clinical Medical Research Center, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
- Institute of Cancer Research, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, China.
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Song J, Cheng X, Zhou C, Huang S, Zhao W, Zong Z, Yang L. Targeting the "tumor microenvironment": RNA-binding proteins in the spotlight in colorectal cancer therapy. Int Immunopharmacol 2024; 131:111876. [PMID: 38493688 DOI: 10.1016/j.intimp.2024.111876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and has the second highest mortality rate among cancers. The development of CRC involves both genetic and epigenetic abnormalities, and recent research has focused on exploring the ex-transcriptome, particularly post-transcriptional modifications. RNA-binding proteins (RBPs) are emerging epigenetic regulators that play crucial roles in post-transcriptional events. Dysregulation of RBPs can result in aberrant expression of downstream target genes, thereby affecting the progression of colorectal tumors and the prognosis of patients. Recent studies have shown that RBPs can influence CRC pathogenesis and progression by regulating various components of the tumor microenvironment (TME). Although previous research on RBPs has primarily focused on their direct regulation of colorectal tumor development, their involvement in the remodeling of the TME has not been systematically reported. This review aims to highlight the significant role of RBPs in the intricate interactions within the CRC tumor microenvironment, including tumor immune microenvironment, inflammatory microenvironment, extracellular matrix, tumor vasculature, and CRC cancer stem cells. We also highlight several compounds under investigation for RBP-TME-based treatment of CRC, including small molecule inhibitors such as antisense oligonucleotides (ASOs), siRNAs, agonists, gene manipulation, and tumor vaccines. The insights gained from this review may lead to the development of RBP-based targeted novel therapeutic strategies aimed at modulating the TME, potentially inhibiting the progression and metastasis of CRC.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; Queen Mary School, Nanchang University, 330006 Nanchang, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China
| | - Jingjing Song
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry of Nanchang University, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry of Nanchang University, China
| | - Chulin Zhou
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Shuo Huang
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wentao Zhao
- The 3rd Clinical Department of China Medical University, 10159 Shenyang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China.
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China.
| |
Collapse
|
8
|
Duan M, Liu H, Xu S, Yang Z, Zhang F, Wang G, Wang Y, Zhao S, Jiang X. IGF2BPs as novel m 6A readers: Diverse roles in regulating cancer cell biological functions, hypoxia adaptation, metabolism, and immunosuppressive tumor microenvironment. Genes Dis 2024; 11:890-920. [PMID: 37692485 PMCID: PMC10491980 DOI: 10.1016/j.gendis.2023.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/24/2023] [Accepted: 06/14/2023] [Indexed: 09/12/2023] Open
Abstract
m6A methylation is the most frequent modification of mRNA in eukaryotes and plays a crucial role in cancer progression by regulating biological functions. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BP) are newly identified m6A 'readers'. They belong to a family of RNA-binding proteins, which bind to the m6A sites on different RNA sequences and stabilize them to promote cancer progression. In this review, we summarize the mechanisms by which different upstream factors regulate IGF2BP in cancer. The current literature analyzed here reveals that the IGF2BP family proteins promote cancer cell proliferation, survival, and chemoresistance, inhibit apoptosis, and are also associated with cancer glycolysis, angiogenesis, and the immune response in the tumor microenvironment. Therefore, with the discovery of their role as 'readers' of m6A and the characteristic re-expression of IGF2BPs in cancers, it is important to elucidate their mechanism of action in the immunosuppressive tumor microenvironment. We also describe in detail the regulatory and interaction network of the IGF2BP family in downstream target RNAs and discuss their potential clinical applications as diagnostic and prognostic markers, as well as recent advances in IGF2BP biology and associated therapeutic value.
Collapse
Affiliation(s)
- Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Haiyang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shasha Xu
- Department of Gastroendoscopy, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| | - Shan Zhao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110002, China
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, China
| |
Collapse
|
9
|
Wang S, Sun H, Chen G, Wu C, Sun B, Lin J, Lin D, Zeng D, Lin B, Huang G, Lu X, Lin H, Liang Y. RNA-binding proteins in breast cancer: Biological implications and therapeutic opportunities. Crit Rev Oncol Hematol 2024; 195:104271. [PMID: 38272151 DOI: 10.1016/j.critrevonc.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
RNA-binding proteins (RBPs) refer to a class of proteins that participate in alternative splicing, RNA stability, polyadenylation, localization and translation of RNAs, thus regulating gene expression in post-transcriptional manner. Dysregulation of RNA-RBP interaction contributes to various diseases, including cancer. In breast cancer, disorders in RBP expression and function influence the biological characteristics of tumor cells. Targeting RBPs has fostered the development of innovative therapies for breast cancer. However, the RBP-related mechanisms in breast cancer are not completely clear. In this review, we summarize the regulatory mechanisms of RBPs and their signaling crosstalk in breast cancer. Specifically, we emphasize the potential of certain RBPs as prognostic factors due to their effects on proliferation, invasion, apoptosis, and therapy resistance of breast cancer cells. Most importantly, we present a comprehensive overview of the latest RBP-related therapeutic strategies and novel therapeutic targets that have proven to be useful in the treatment of breast cancer.
Collapse
Affiliation(s)
- Shimeng Wang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Hexing Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Guanyuan Chen
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Chengyu Wu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Bingmei Sun
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Jiajia Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Danping Lin
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of SUMC, Shantou 515000, China
| | - Baohang Lin
- Department of Thyroid, Breast and Vascular Surgery, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Guan Huang
- Department of Pathology, Longgang District Central Hospital of Shenzhen, Shenzhen 518116, China
| | - Xiaofeng Lu
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| | - Yuanke Liang
- Department of Thyroid and Breast Surgery, Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College (SUMC), 57 Changping Road, Shantou 515041, China.
| |
Collapse
|
10
|
Jing X, Han C, Li Q, Li F, Zhang J, Jiang Q, Zhao F, Guo C, Chen J, Jiang T, Wang X, Chen Y, Huang C. IGF2BP3-EGFR-AKT axis promotes breast cancer MDA-MB-231 cell growth. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119542. [PMID: 37474008 DOI: 10.1016/j.bbamcr.2023.119542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is an emerging prognostic indicator, and its elevated expression correlates with malignancy in a broad spectrum of cancers. However, its regulatory networks have not yet been reported. In this study, we identified the regulatory targets of IGF2BP3 in breast cancer MDA-MB-231 cells using RNA immunoprecipitation sequencing (RIP-seq) and high-throughput RNA-sequencing (RNA-seq). We discovered that these targets were enriched in the inflammatory response, endoplasmic reticulum stress, cell cycle, and cancer-related pathways, providing a new perspective for better understanding the functional mechanisms of IGF2BP3. Moreover, we identified that the epidermal growth factor receptor (EGFR), a downstream target, is regulated by IGF2BP3. IGF2BP3 binds to and protects EGFR mRNA from degradation and facilitates cell proliferation via the EGFR/AKT pathway in MDA-MB-231 cells. In addition, IGF2BP3 expression was robust and could not be altered by stimulation with EGF and anti-EGFR siRNA or EGFR signaling pathway inhibitors (gefitinib, LY294002 and SL-327). These results demonstrate that IGF2BP3, as a stubborn oncogene, promotes triple-negative breast cancer MDA-MB-231 cell proliferation by strengthening the role of the EGFR-AKT axis.
Collapse
Affiliation(s)
- Xintao Jing
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Cong Han
- Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Qian Li
- Department of Gastroenterology, The first Affiliated Hospital of Xi'an Medical University, Xi'an 710077, Shaanxi, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jinyuan Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Qiuyu Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Fei Zhao
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Chen Guo
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jinfeng Chen
- Target Discovery Institute, NDM Research Building, Oxford Ludwig Institute of Cancer Research, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford, OX3 7FZ, UK
| | - Ting Jiang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Xiaofei Wang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yanke Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China.
| | - Chen Huang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Key Laboratory of Environmentally and Genetically Associated Diseases, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
11
|
Yan S, Wang J, Chen H, Zhang D, Imam M. Divergent features of ERβ isoforms in triple negative breast cancer: progress and implications for further research. Front Cell Dev Biol 2023; 11:1240386. [PMID: 37936981 PMCID: PMC10626554 DOI: 10.3389/fcell.2023.1240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Estrogen receptor β (ERβ) was discovered more than 20 years ago. However, the extent and role of ERβ expression in breast cancer remain controversial, especially in the context of triple-negative breast cancer (TNBC). ERβ exists as multiple isoforms, and a series of studies has revealed an inconsistent role of ERβ isoforms in TNBC. Our recent results demonstrated contrasting functions of ERβ1 and ERβ2/β5 in TNBC. Additional research should be conducted to explore the functions of individual ERβ isoforms and develop targeted drugs according to the relevant mechanisms. Consequently, a systematic review of ERβ isoforms is necessary. In this review, we overview the structure of ERβ isoforms and detail what is known about the function of ERβ isoforms in normal mammary tissue and breast cancer. Moreover, this review highlights the divergent features of ERβ isoforms in TNBC. This review also provides insights into the implications of targeting ERβ isoforms for clinical treatment. In conclusion, this review provides a framework delineating the roles and mechanisms of different ERβ isoforms in TNBC and sheds light on future directions for basic and clinical research.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
12
|
Shi Y, Xiong X, Sun Y, Geng Z, Chen X, Cui X, Lv J, Ge L, Jia X, Xu J. IGF2BP2 promotes ovarian cancer growth and metastasis by upregulating CKAP2L protein expression in an m 6 A-dependent manner. FASEB J 2023; 37:e23183. [PMID: 37665628 DOI: 10.1096/fj.202202145rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
Ovarian cancer (OC) is the second leading cause of gynecological cancer-related death in women worldwide. N6-methyladenosine (m6 A) is the most abundant internal modification in eukaryotic RNA. Human insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), an m6 A reader, can enhance mRNA stability and promote translation by recognizing m6 A modifications. Its tumor-promoting effects have been demonstrated in several cancers. However, the roles of m6 A modification and IGF2BP2 in OC remain unclear. Here, by using methylated RNA immunoprecipitation sequencing, we demonstrated that there is widespread dysregulation of m6 A modification in OC tissues. The m6 A modification and the mRNA and protein levels of IGF2BP2 were significantly elevated in OC. Overexpression of IGF2BP2 facilitated OC cell proliferation, migration, and invasion in vitro and accelerated tumor growth and metastasis in vivo. While IGF2BP2-knockdown showed the opposite effect. Mechanistically, we identified cytoskeleton-associated protein 2-like (CKAP2L) as a target of IGF2BP2. IGF2BP2 promoted CKAP2L translation dependent on m6 A modification, rather than affecting mRNA and protein stability. Overexpression of CKAP2L rescued the tumor-suppressive effect of IGF2BP2 knockdown in OC cells. In conclusion, this study revealed the potential role of IGF2BP2 in tumor progression, at least partially via promoting the translation of CKAP2L in an m6 A-dependent manner.
Collapse
Affiliation(s)
- Yaqian Shi
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xueyou Xiong
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Yu Sun
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Zhe Geng
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xiyi Chen
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xin Cui
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Juan Lv
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lili Ge
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xuemei Jia
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Juan Xu
- Department of Gynecology, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
13
|
Zhang X, Shi L, Sun H, Wang Z, Xu F, Wei J, Ding Q. IGF2BP3 mediates the mRNA degradation of NF1 to promote triple-negative breast cancer progression via an m6A-dependent manner. Clin Transl Med 2023; 13:e1427. [PMID: 37743642 PMCID: PMC10518495 DOI: 10.1002/ctm2.1427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is an abundant reversible modification in eukaryotic mRNAs. Emerging evidences indicate that m6A modification plays a vital role in tumourigenesis. As a crucial reader of m6A, IGF2BP3 usually mediates the stabilisation of mRNAs via an m6A-dependent manner. But the underlying mechanism of IGF2BP3 in the tumourigenesis of triple-negative breast cancer (TNBC) is unclear. METHODS TCGA cohorts were analysed for IGF2BP3 expression and IGF2BP3 promoter methylation levels in different breast cancer subtypes. Colony formation, flow cytometry assays and subcutaneous xenograft were performed to identify the phenotype of IGF2BP3 in TNBC. RNA/RNA immunoprecipitation (RIP)/methylated RNA immunoprecipitation (MeRIP) sequencing and luciferase assays were used to certify the target of IGF2BP3 in TNBC cells. RESULTS IGF2BP3 was highly expressed in TNBC cell lines and tissues. TET3-mediated IGF2BP3 promoter hypomethylation led to the upregulation of IGF2BP3. Knocking down IGF2BP3 markedly reduced the proliferation of TNBC in vitro and in vivo. Intersection co-assays revealed that IGF2BP3 decreased neurofibromin 1 (NF1) stabilisation via an m6A-dependent manner. NF1 knockdown could rescue the phenotypes of IGF2BP3 knockdown cells partially. CONCLUSION TET3-mediated IGF2BP3 accelerated the proliferation of TNBC by destabilising NF1 mRNA via an m6A-dependent manner. This suggests that IGF2BP3 could be a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Liang Shi
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Han‐Dong Sun
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Zi‐Wen Wang
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Feng Xu
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| | - Ji‐Fu Wei
- Department of PharmacyJiangsu Cancer HospitalThe Affiliated Cancer Hospital of Nanjing Medical UniversityJiangsu Institute of Cancer ResearchNanjingChina
| | - Qiang Ding
- Jiangsu Breast Disease CenterThe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
| |
Collapse
|
14
|
Feng Y, Zhu S, Liu T, Zhi G, Shao B, Liu J, Li B, Jiang C, Feng Q, Wu P, Wang D. Surmounting Cancer Drug Resistance: New Perspective on RNA-Binding Proteins. Pharmaceuticals (Basel) 2023; 16:1114. [PMID: 37631029 PMCID: PMC10458901 DOI: 10.3390/ph16081114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
RNA-binding proteins (RBPs), being pivotal elements in both physiological and pathological processes, possess the ability to directly impact RNA, thereby exerting a profound influence on cellular life. Furthermore, the dysregulation of RBPs not only induces alterations in the expression levels of genes associated with cancer but also impairs the occurrence of post-transcriptional regulatory mechanisms. Consequently, these circumstances can give rise to aberrations in cellular processes, ultimately resulting in alterations within the proteome. An aberrant proteome can disrupt the equilibrium between oncogenes and tumor suppressor genes, promoting cancer progression. Given their significant role in modulating gene expression and post-transcriptional regulation, directing therapeutic interventions towards RBPs represents a viable strategy for combating drug resistance in cancer treatment. RBPs possess significant potential as diagnostic and prognostic markers for diverse cancer types. Gaining comprehensive insights into the structure and functionality of RBPs, along with delving deeper into the molecular mechanisms underlying RBPs in tumor drug resistance, can enhance cancer treatment strategies and augment the prognostic outcomes for individuals afflicted with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peijie Wu
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| | - Dong Wang
- School of Basic Medical Sciences and State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (Y.F.); (S.Z.); (T.L.); (G.Z.); (B.S.); (J.L.); (B.L.); (C.J.); (Q.F.)
| |
Collapse
|
15
|
Liu X, Chen J, Chen W, Xu Y, Shen Y, Xu X. Targeting IGF2BP3 in Cancer. Int J Mol Sci 2023; 24:ijms24119423. [PMID: 37298373 DOI: 10.3390/ijms24119423] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
RNA-binding proteins (RBPs) can regulate multiple pathways by binding to RNAs, playing a variety of functions, such as localization, stability, and immunity. In recent years, with the development of technology, researchers have discovered that RBPs play a key role in the N6-methyladenosine (m6A) modification process. M6A methylation is the most abundant form of RNA modification in eukaryotes, which is defined as methylation on the sixth N atom of adenine in RNA. Insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is one of the components of m6A binding proteins, which plays an important role in decoding m6A marks and performing various biological functions. IGF2BP3 is abnormally expressed in many human cancers, often associated with poor prognosis. Here, we summarize the physiological role of IGF2BP3 in organisms and describe its role and mechanism in tumors. These data suggest that IGF2BP3 may be a valuable therapeutic target and prognostic marker in the future.
Collapse
Affiliation(s)
- Xin Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiayu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Wenliang Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yangtao Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yang Shen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ximing Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
16
|
Feng Y, Lin Y, Jiang Z, Wu L, Zhang Y, Wu H, Yuan X. Insulin-like growth factor-2 mRNA-binding protein 3 promotes cell migration, invasion, and epithelial-mesenchymal transition of esophageal squamous cell carcinoma cells by targeting zinc finger E-box-binding homeobox 1 mRNA. Mol Carcinog 2023; 62:503-516. [PMID: 36688673 DOI: 10.1002/mc.23502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
The role and mechanism of insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) in the metastasis of esophageal squamous cell carcinoma (ESCC) remain unclear. In this study, IGF2BP3 mRNA and protein expression levels were evaluated in ESCC tissues. Small interfering RNAs (siRNAs), plasmid overexpression, and stable lentivirus transfection were used to manipulate intracellular IGF2BP3 expression levels. The role of IGF2BP3 in ESCC tumorigenesis was investigated in vitro and in vivo. IGF2BP3 target transcripts were detected, and the acetylation effect ratios of the IGF2BP3 promoter region by H3K27ac were determined. IGF2BP3 mRNA expression levels were significantly higher in ESCC tissues than in normal esophageal tissues. Increased IGF2BP3 expression levels were detected in node-negative ESCC tissues and correlated with greater lesion depth in ESCC. Overexpression of IGF2BP3 promoted ESCC development in vitro and in vivo, and IGF2BP3 knockdown caused an opposite effect. IGF2BP3 was found to directly bind to the zinc finger E-box-binding homeobox 1 (Zeb1) mRNA, and the downregulation of IGF2BP3 reduced the stability of Zeb1 mRNA. IGF2BP3 induced epithelial-mesenchymal transition in ESCC cells in a Zeb1-dependent manner. IGF2BP3 was transcriptionally activated in ESCC cell lines via H3K27 acetylation. Our results demonstrate that IGF2BP3 plays a vital role in ESCC cell proliferation, invasion, and metastasis and is a potential therapeutic target for treating ESCC.
Collapse
Affiliation(s)
- Yadong Feng
- Department of Gastroenterology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yanbing Lin
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zhaoyan Jiang
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Lei Wu
- Department of Urology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Youyu Zhang
- Department of Gastroenterology, Qinghai Provincial People's Hospital Affiliated to Qinghai University, Xining, China
| | - Hailu Wu
- Department of Gastroenterology, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiaoqin Yuan
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Wu X, Wang W, Fan S, You L, Li F, Zhang X, Wu H, Tang J, Qi Y, Feng W, Yan L, Ren M. U-shaped association between serum IGF2BP3 and T2DM: A cross-sectional study in Chinese population. J Diabetes 2023; 15:349-361. [PMID: 36891946 PMCID: PMC10101838 DOI: 10.1111/1753-0407.13378] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/03/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
OBJECTIVE To clarify the expression of N6-methyladenosine (m6 A) modulators involved in the pathogenesis of type 2 diabetes mellitus (T2DM). We further explored the association of serum insulin-like growth factor 2 mRNA-binding proteins 3 (IGF2BP3) levels and odds of T2DM in a high-risk population. METHODS The gene expression data set GSE25724 was obtained from the Gene Expression Omnibus, and a cluster heatmap was generated by using the R package ComplexHeatmap. Differential expression analysis for 13 m6 A RNA methylation regulators between nondiabetic controls and T2DM subjects was performed using an unpaired t test. A cross-sectional design, including 393 subjects (131 patients with newly diagnosed T2DM, 131 age- and sex-matched subjects with prediabetes, and 131 healthy controls), was carried out. The associations between serum IGF2BP3 concentrations and T2DM were modeled by restricted cubic spline and logistic regression models. RESULTS Two upregulated (IGF2BP2 and IGF2BP3) and 5 downregulated (methyltransferase-like 3 [METTL3], alkylation repair homolog protein 1 [ALKBH1], YTH domain family 2 [YTHDF2], YTHDF3, and heterogeneous nuclear ribonucleoprotein [HNRNPC]) m6 A-related genes were found in islet samples of T2DM patients. A U-shaped association existed between serum IGF2BP3 levels and odds of T2DM according to cubic natural spline analysis models, after adjustment for body mass index, waist circumference, diastolic blood pressure, total cholesterol, and triglyeride. Multivariate logistic regression showed that progressively higher odds of T2DM were observed when serum IGF2BP3 levels were below 0.62 ng/mL (odds ratio 3.03 [95% confidence interval 1.23-7.47]) in model 4. CONCLUSION Seven significantly altered m6 A RNA methylation genes were identified in T2DM. There was a U-shaped association between serum IGF2BP3 levels and odds of T2DM in the general Chinese adult population. This study provides important evidence for further examination of the role of m6 A RNA methylation, especially serum IGF2BP3 in T2DM risk assessment.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
- Department of EndocrinologyNational Center of Gerontology, Beijing Hospital, Peking University Fifth School of Clinical MedicineBeijingChina
| | - Wei Wang
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Shujin Fan
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Lili You
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Feng Li
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Xiaoyun Zhang
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Hongshi Wu
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Juying Tang
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Yiqin Qi
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Wanting Feng
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Li Yan
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| | - Meng Ren
- Department of EndocrinologySun Yat‐sen Memorial Hospital, Sun Yat‐sen UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
18
|
Mou T, Liang J, Vu TN, Tian M, Gao Y. A Comprehensive Landscape of Imaging Feature-Associated RNA Expression Profiles in Human Breast Tissue. SENSORS (BASEL, SWITZERLAND) 2023; 23:1432. [PMID: 36772473 PMCID: PMC9921444 DOI: 10.3390/s23031432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The expression abundance of transcripts in nondiseased breast tissue varies among individuals. The association study of genotypes and imaging phenotypes may help us to understand this individual variation. Since existing reports mainly focus on tumors or lesion areas, the heterogeneity of pathological image features and their correlations with RNA expression profiles for nondiseased tissue are not clear. The aim of this study is to discover the association between the nucleus features and the transcriptome-wide RNAs. We analyzed both microscopic histology images and RNA-sequencing data of 456 breast tissues from the Genotype-Tissue Expression (GTEx) project and constructed an automatic computational framework. We classified all samples into four clusters based on their nucleus morphological features and discovered feature-specific gene sets. The biological pathway analysis was performed on each gene set. The proposed framework evaluates the morphological characteristics of the cell nucleus quantitatively and identifies the associated genes. We found image features that capture population variation in breast tissue associated with RNA expressions, suggesting that the variation in expression pattern affects population variation in the morphological traits of breast tissue. This study provides a comprehensive transcriptome-wide view of imaging-feature-specific RNA expression for healthy breast tissue. Such a framework could also be used for understanding the connection between RNA expression and morphology in other tissues and organs. Pathway analysis indicated that the gene sets we identified were involved in specific biological processes, such as immune processes.
Collapse
Affiliation(s)
- Tian Mou
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Jianwen Liang
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Trung Nghia Vu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, SE 17177 Stockholm, Sweden
| | - Mu Tian
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518000, China
| | - Yi Gao
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
19
|
Yang J, Qian X, Qiu Q, Xu L, Pan M, Li J, Ren J, Lu B, Qiu T, Chen E, Ying K, Zhang H, Lu Y, Liu P. LCAT1 is an oncogenic LncRNA by stabilizing the IGF2BP2-CDC6 axis. Cell Death Dis 2022; 13:877. [PMID: 36257938 PMCID: PMC9579176 DOI: 10.1038/s41419-022-05316-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022]
Abstract
Long non-coding RNAs (lncRNAs) is known to play vital roles in modulating tumorigenesis. We previously reported that LCAT1, a novel lncRNA, promotes the growth and metastasis of lung cancer cells both in vitro and in vivo. However, the underlying mechanism(s) of LCAT1 as an oncogenic regulator remains elusive. Here, we showed that LCAT1 physically interacts with and stabilizes IGF2BP2, an m6A reader protein, by preventing its degradation via autolysosomes. IGF2BP2 is overexpressed in lung cancer tissues, which is associated with poor survival of non-small cell lung cancer patients, suggesting its oncogenic role. Biologically, IGF2BP2 depletion inhibits growth and survival as well as the migration of lung cancer cells. Mechanistically, the LCAT1/IGF2BP2 complex increased the levels of CDC6, a key cell cycle regulator, by stabilizing its mRNA in an m6A-dependent manner. Like IGF2BP2, CDC6 is also overexpressed in lung cancer tissues with poor patient survival, and CDC6 knockdown has oncogenic inhibitory activity. Taken together, the LCAT1-IGF2BP2-CDC6 axis appears to play a vital role in promoting the growth and migration of lung cancer cells, and is a potential therapeutic target for lung cancer. Importantly, our finding also highlights a previously unknown critical role of LCAT1 in m6A-dependent gene regulation by preventing autolytic degradation of IGF2BP2.
Collapse
Affiliation(s)
- Juze Yang
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Xinyi Qian
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Qiongzi Qiu
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Gynecologic Oncology, Women’s Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China
| | - Lingling Xu
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Meidie Pan
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Jia Li
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Jiayi Ren
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Bingjian Lu
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Gynecologic Oncology, Women’s Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China
| | - Ting Qiu
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Enguo Chen
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Kejing Ying
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China
| | - Honghe Zhang
- grid.13402.340000 0004 1759 700XDepartment of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang China ,grid.13402.340000 0004 1759 700XCancer center, Zhejiang University, Hangzhou, Zhejiang 310013 China
| | - Yan Lu
- grid.13402.340000 0004 1759 700XZhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Department of Gynecologic Oncology, Women’s Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006 China ,grid.13402.340000 0004 1759 700XCancer center, Zhejiang University, Hangzhou, Zhejiang 310013 China
| | - Pengyuan Liu
- grid.13402.340000 0004 1759 700XDepartment of Respiratory Medicine, Sir Run Run Shaw Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016 China ,grid.13402.340000 0004 1759 700XCancer center, Zhejiang University, Hangzhou, Zhejiang 310013 China ,grid.30760.320000 0001 2111 8460Department of Physiology and Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI USA
| |
Collapse
|
20
|
Zhang J, Yang K, Bu J, Yan J, Hu X, Liu K, Gao S, Tang S, Gao L, Chen W. IGF2BP3 promotes progression of gallbladder carcinoma by stabilizing KLK5 mRNA in N6-methyladenosine-dependent binding. Front Oncol 2022; 12:1035871. [PMID: 36313631 PMCID: PMC9606626 DOI: 10.3389/fonc.2022.1035871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Recent studies have reported that IGF2BP3 is linked to the pathogenesis of various malignancies. Since IGF2BP3 is associated with poor outcomes of gallbladder carcinoma (GBC), we aimed to explore the association between its N6-methyladenosine (m6A) RNA methylation and GBC progression. Methods Bioinformatic analysis of GSE136982, GSE104165, and RNA-seq was performed. In vitro and in vivo gain- and loss-of-function assays were done. qPCR, Western blotting, and IHC were conducted in cells or in collected clinical tissue samples. RNA immunoprecipitation, RNA stability measurement, methylated RNA immunoprecipitation, and dual-luciferase reporter assays were performed in this study. Results The expression of IGF2BP3 was higher in GBC tissues than in peritumoral tissues. Functions such as cell proliferation and migration, both in vitro and in vivo, were inhibited by downregulation of IGF2BP3. The analysis of RNA-seq indicated that KLK5 was a downstream target of IGF2BP3. The expression of KLK5 was measured in GBC cells and tumor samples. It was found to be positively correlated with IGF2BP3 level. Upon IGF2BP3 depletion, ectopic expression of KLK5 could rescue cell function in part. Mechanistically, we found that IGF2BP3 directly binds to KLK5 mRNA and regulates its stability in an m6A-dependent manner. As a result, inhibition of KLK5 decreased the expression of PAR2, and deregulated phospho-Akt. Using bioinformatic prediction combined with miRNA microarray analysis, we identified that let-7g-5p is an inhibitor of IGF2BP3, and let-7g-5p expression was negatively correlated with IGF2BP3. Overexpression of let-7g-5p affected the aggressive phenotype of GBC cells by deregulating IGF2BP3, and inhibiting the KLK5/PAR2/AKT axis. Conclusions Our data showed that IGF2BP3 is associated with the aggressive phenotype of GBC. Mechanistically, IGF2BP3 activated the PAR2/AKT axis by stabilizing KLK5 mRNA in an m6A-dependent manner. The loss of let-7g-5p enhanced the expression of IGF2BP3 and improved GBC progression. Thus, IGF2BP3 plays a crucial role in GBC, and the let-7g-5p/IGF2BP3/KLK5/PAR2 axis may be a therapeutic target for GBC.
Collapse
Affiliation(s)
- Junzhe Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Kaini Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junfeng Bu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiayan Yan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiaoqiang Hu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Si Gao
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shuibin Tang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lili Gao
- Department of Pathology, Pudong New Area People’s Hospital, Shanghai, China
- *Correspondence: Wei Chen, ; Lili Gao,
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Biliary Tract Disease, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Chen, ; Lili Gao,
| |
Collapse
|
21
|
Lu X, Zhong J, Liu L, Zhang W, Zhao S, Chen L, Wei Y, Zhang H, Wu J, Chen W, Ge F. The function and regulatory mechanism of RNA-binding proteins in breast cancer and their future clinical treatment prospects. Front Oncol 2022; 12:929037. [PMID: 36052258 PMCID: PMC9424610 DOI: 10.3389/fonc.2022.929037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is the most common female malignancy, but the mechanisms regulating gene expression leading to its development are complex. In recent years, as epigenetic research has intensified, RNA-binding proteins (RBPs) have been identified as a class of posttranscriptional regulators that can participate in regulating gene expression through the regulation of RNA stabilization and degradation, intracellular localization, alternative splicing and alternative polyadenylation, and translational control. RBPs play an important role in the development of normal mammary glands and breast cancer. Functional inactivation or abnormal expression of RBPs may be closely associated with breast cancer development. In this review, we focus on the function and regulatory mechanisms of RBPs in breast cancer, as well as the advantages and challenges of RBPs as potential diagnostic and therapeutic targets in breast cancer, and discuss the potential of RBPs in clinical treatment.
Collapse
Affiliation(s)
- Xingjia Lu
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Jian Zhong
- Department of Reproductive Medicine, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, China
- Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Wenzhu Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Shengdi Zhao
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Liang Chen
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuxian Wei
- Department of Endocrine Breast Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Jingxuan Wu
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- Kunming Medical University, No. 1 School of Clinical Medicine, Kunming, China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Wenlin Chen, ; Fei Ge,
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Wenlin Chen, ; Fei Ge,
| |
Collapse
|
22
|
Ge S, Wang B, Wang Z, He J, Ma X. Common Multiple Primary Cancers Associated With Breast and Gynecologic Cancers and Their Risk Factors, Pathogenesis, Treatment and Prognosis: A Review. Front Oncol 2022; 12:840431. [PMID: 35756608 PMCID: PMC9213651 DOI: 10.3389/fonc.2022.840431] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
The mammary gland is closely related to the female reproductive system in many aspects, affecting the whole gynecological system. Breast cancer (BC) is the most common malignancy in women and associated with considerable negative effects. Due to various factors including co-pathogenic genetic mutations, environment factors, lifestyle, behavioral factors, treatment regimens and in-creased survival of patients with BC, there is an increased probability of developing additional primary gynecologic cancers such as ovarian cancer (OC), endometrial cancer (EC), and cervical cancer (CC). More and more studies have been conducted in recent years. Multiple primary cancers (MPCs), also known as multiple primary malignancies, refers to two or more different primary cancers in the same patient occurring in the same or different organs or tissues. The pathogenesis of multiple primary cancers is complex and has a negative effect on the prognosis and survival of patients. This review discusses the common types of BC-associated MPCs, namely, BC associated with OC, BC associated with EC and BC associated with CC, as well as risk factors, pathogenesis, treatment, and prognosis of MPCs associated with breast and gynecologic cancers. It provides new intervention and treatment ideas for patients with BC-associated MPCs to improve quality of life and prognosis.
Collapse
Affiliation(s)
- Shuwen Ge
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Bo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Zihao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Junjian He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| |
Collapse
|
23
|
Wang C, Kong F, Ma J, Miao J, Su P, Yang H, Li Q, Ma X. IGF2BP3 enhances the mRNA stability of E2F3 by interacting with LINC00958 to promote endometrial carcinoma progression. Cell Death Discov 2022; 8:279. [PMID: 35676262 PMCID: PMC9177600 DOI: 10.1038/s41420-022-01045-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play important regulatory roles in a variety of pathological processes involving cancer. However, the exact molecular mechanisms of lncRNA regulation in endometrial carcinoma (EC) remain poorly defined. The aim of this study was to illustrate the mechanism of LINC00958 in regulating the function of IGF2BP3, an RNA binding protein involved in mRNA stability, and their clinical implications in EC. First, we investigated the clinical role of IGF2BP3 in EC and demonstrated its prognostic value. Loss-of-function and gain-of-function studies showed that IGF2BP3 promoted EC cell proliferation, migration and invasion. Then, we carried out RNA immunoprecipitation sequencing (RIP-seq) analysis, RNA pulldown and immunofluorescence-RNA fluorescence in situ hybridization to identify LINC00958 that interacted with IGF2BP3 in the cytoplasm of EC cells. Rescue experiments indicated that knockdown of LINC00958 partially offset the EC cell progression mediated by IGF2BP3. After that, RNA sequencing was used to screen out the downstream genes of IGF2BP3 and LINC00958. The results revealed that IGF2BP3 upregulated E2F3 expression by interacting with LINC00958. Furthermore, RNA stability assays demonstrated that silencing LINC00958 partially rescued the IGF2BP3-mediated promoting effect on the mRNA stability of E2F3. Collectively, this study suggests that LINC00958, as an oncogene, assists IGF2BP3 in stabilizing E2F3 mRNA and ultimately promotes EC progression, providing a promising therapeutic target for patients with EC.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Jianing Miao
- Medical Research Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Peng Su
- Medical Research Center, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Qing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
- Key Laboratory of Gynecological Oncology of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, Shenyang, Liaoning Province, 110000, PR China.
| |
Collapse
|
24
|
Jo H, Shim K, Jeoung D. Potential of the miR-200 Family as a Target for Developing Anti-Cancer Therapeutics. Int J Mol Sci 2022; 23:ijms23115881. [PMID: 35682560 PMCID: PMC9180509 DOI: 10.3390/ijms23115881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18–24 nucleotides) that play significant roles in cell proliferation, development, invasion, cancer development, cancer progression, and anti-cancer drug resistance. miRNAs target multiple genes and play diverse roles. miRNAs can bind to the 3′UTR of target genes and inhibit translation or promote the degradation of target genes. miR-200 family miRNAs mostly act as tumor suppressors and are commonly decreased in cancer. The miR-200 family has been reported as a valuable diagnostic and prognostic marker. This review discusses the clinical value of the miR-200 family, focusing on the role of the miR-200 family in the development of cancer and anti-cancer drug resistance. This review also provides an overview of the factors that regulate the expression of the miR-200 family, targets of miR-200 family miRNAs, and the mechanism of anti-cancer drug resistance regulated by the miR-200 family.
Collapse
|
25
|
RNA-binding proteins and cancer metastasis. Semin Cancer Biol 2022; 86:748-768. [PMID: 35339667 DOI: 10.1016/j.semcancer.2022.03.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins (RBPs) can regulate gene expression through post-transcriptionally influencing all manner of RNA biology, including alternative splicing (AS), polyadenylation, stability, and translation of mRNAs, as well as microRNAs (miRNAs) and circular RNAs (circRNAs) processing. There is accumulating evidence reinforcing the perception that dysregulation or dysfunction of RBPs can lead to various human diseases, including cancers. RBPs influence diverse cancer-associated cellular phenotypes, such as proliferation, apoptosis, senescence, migration, invasion, and angiogenesis, contributing to the initiation and development of tumors, as well as clinical prognosis. Metastasis is the leading cause of cancer-related recurrence and death. Therefore, it is necessary to elucidate the molecular mechanisms behind tumor metastasis. In fact, a growing body of published research has proved that RBPs play pivotal roles in cancer metastasis. In this review, we will summarize the recent advances for helping us understand the role of RBPs in tumor metastasis, and discuss dysfunctions and dysregulations of RBPs affecting metastasis-associated processes including epithelial-mesenchymal transition (EMT), migration, and invasion of cancer cells. Furthermore, we will discuss emerging RBP-based strategy for the treatment of cancer metastasis.
Collapse
|
26
|
Zhang W, Liu L, Zhao S, Chen L, Wei Y, Chen W, Ge F. Research progress on RNA‑binding proteins in breast cancer (Review). Oncol Lett 2022; 23:121. [PMID: 35261635 PMCID: PMC8867207 DOI: 10.3892/ol.2022.13241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/03/2022] [Indexed: 11/28/2022] Open
Abstract
Breast cancer is the most common malignancy among women, and the abnormal regulation of gene expression serves an important role in its occurrence and development. However, the molecular mechanisms underlying gene expression are highly complex and heterogeneous, and RNA-binding proteins (RBPs) are among the key regulatory factors. RBPs bind targets in an environment-dependent or environment-independent manner to influence mRNA stability and the translation of genes involved in the formation, progression, metastasis and treatment of breast cancer. Due to the growing interest in these regulators, the present review summarizes the most influential studies concerning RBPs associated with breast cancer to elucidate the role of RBPs in breast cancer and to assess how they interact with other key pathways to provide new molecular targets for the diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Wenzhu Zhang
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Linlin Liu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Shengdi Zhao
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Liang Chen
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuxian Wei
- Department of Endocrine Breast Surgery, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wenlin Chen
- Third Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, P.R. China
| | - Fei Ge
- Department of Breast Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
27
|
Yu D, Pan M, Li Y, Lu T, Wang Z, Liu C, Hu G. RNA N6-methyladenosine reader IGF2BP2 promotes lymphatic metastasis and epithelial-mesenchymal transition of head and neck squamous carcinoma cells via stabilizing slug mRNA in an m6A-dependent manner. J Exp Clin Cancer Res 2022; 41:6. [PMID: 34980207 PMCID: PMC8722037 DOI: 10.1186/s13046-021-02212-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022] Open
Abstract
Background Lymph node metastasis is the main cause of poor prognosis of head and neck squamous carcinoma (HNSCC) patients. N6-methyladenosine (m6A) RNA modification is an emerging epigenetic regulatory mechanism for gene expression, and as a novel m6A reader protein, IGF2BP2 has been implicated in tumor progression and metastasis. However, not much is currently known about the functional roles of IGF2BP2 in HNSCC, and whether IGF2BP2 regulates lymphatic metastasis through m6A modification in HNSCC remains to be determined. Methods The expression and overall survival (OS) probability of m6A-related regulators in HNSCC were analyzed with The Cancer Genome Atlas (TCGA) dataset and GEPIA website tool, respectively. The expression levels of IGF2BP2 were measured in HNSCC tissues and normal adjacent tissues. To study the effects of IGF2BP2 on HNSCC cell metastasis in vitro and in vivo, gain- and loss- of function methods were employed. RIP, MeRIP, luciferase reporter and mRNA stability assays were performed to explore the epigenetic mechanism of IGF2BP2 in HNSCC. Results We investigated 20 m6A-related regulators in HNSCC and discovered that only the overexpression of IGF2BP2 was associated with a poor OS probability and an independent prognostic factor for HNSCC patients. Additionally, we demonstrated that IGF2BP2 was overexpressed in HNSCC tissues, and significantly correlated to lymphatic metastasis and poor prognosis. Functional studies have shown that IGF2BP2 promotes both HNSCC cell migration as well as invasion via the epithelial-mesenchymal transition (EMT) process in vitro, and IGF2BP2 knockdown significantly inhibited lymphatic metastasis and lymphangiogenesis in vivo. Mechanistic investigations revealed that Slug, a key EMT-related transcriptional factor, is the direct target of IGF2BP2, and essential for IGF2BP2-regulated EMT and metastasis in HNSCC. Furthermore, we demonstrated that IGF2BP2 recognizes and binds the m6A site in the coding sequence (CDS) region of Slug and promotes its mRNA stability. Conclusions Collectively, our study uncovers the oncogenic role and potential mechanism of IGF2BP2, which serves as a m6A reader, in controlling lymphatic metastasis and EMT in HNSCC, suggesting that IGF2BP2 may act as a therapeutic target and prognostic biomarker for HNSCC patients with metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02212-1.
Collapse
Affiliation(s)
- Dan Yu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yanshi Li
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tao Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhihai Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Chuan Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guohua Hu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
28
|
Wallis N, Oberman F, Shurrush K, Germain N, Greenwald G, Gershon T, Pearl T, Abis G, Singh V, Singh A, Sharma AK, Barr HM, Ramos A, Spiegelman VS, Yisraeli JK. Small molecule inhibitor of Igf2bp1 represses Kras and a pro-oncogenic phenotype in cancer cells. RNA Biol 2021; 19:26-43. [PMID: 34895045 PMCID: PMC8794255 DOI: 10.1080/15476286.2021.2010983] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Igf2bp1 is an oncofetal RNA binding protein whose expression in numerous types of cancers is associated with upregulation of key pro-oncogenic RNAs, poor prognosis, and reduced survival. Importantly, Igf2bp1 synergizes with mutations in Kras to enhance signalling and oncogenic activity, suggesting that molecules inhibiting Igf2bp1 could have therapeutic potential. Here, we isolate a small molecule that interacts with a hydrophobic surface at the boundary of Igf2bp1 KH3 and KH4 domains, and inhibits binding to Kras RNA. In cells, the compound reduces the level of Kras and other Igf2bp1 mRNA targets, lowers Kras protein, and inhibits downstream signalling, wound healing, and growth in soft agar, all in the absence of any toxicity. This work presents an avenue for improving the prognosis of Igf2bp1-expressing tumours in lung, and potentially other, cancer(s).
Collapse
Affiliation(s)
- Nadav Wallis
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Froma Oberman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Khriesto Shurrush
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Nicolas Germain
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Gila Greenwald
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tehila Gershon
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Talia Pearl
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Giancarlo Abis
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Vikash Singh
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Amandeep Singh
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Arun K. Sharma
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA
| | - Haim M. Barr
- The Wohl Drug Discovery Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Andres Ramos
- Division of Biosciences, Institute of Structural and Molecular Biology, University College London, London, UK
| | - Vladimir S. Spiegelman
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Joel K. Yisraeli
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
29
|
Lu S, Han L, Hu X, Sun T, Xu D, Li Y, Chen Q, Yao W, He M, Wang Z, Wu H, Wei M. N6-methyladenosine reader IMP2 stabilizes the ZFAS1/OLA1 axis and activates the Warburg effect: implication in colorectal cancer. J Hematol Oncol 2021; 14:188. [PMID: 34743750 PMCID: PMC8574039 DOI: 10.1186/s13045-021-01204-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Accumulating evidence shows that N6-methyladenine (m6A) modulators contribute to the etiology and progression of colorectal cancer (CRC). However, the exact mechanisms of m6A reader involved in glycolytic metabolism remain vague. This article aimed to crosstalk the m6A reader with glycolytic metabolism and reveal a new mechanism for the progression of CRC. METHODS The relationship between candidate lncRNA and m6A reader was analyzed by bioinformatics, ISH and IHC assays. In vivo and in vitro studies (including MTT, CFA, trans-well, apoptosis, western blot, qRT-PCR and xenograft mouse models) were utilized to explore the biological functions of these indicators. Lactate detection, ATP activity detection and ECAR assays were used to verify the biological function of the downstream target. The bioinformatics, RNA stability, RIP experiments and RNA pull-down assays were used to explore the potential molecular mechanisms. RESULTS We identified that the crosstalk of the m6A reader IMP2 with long-noncoding RNA (lncRNA) ZFAS1 in an m6A modulation-dependent manner, subsequently augmented the recruitment of Obg-like ATPase 1 (OLA1) and adenosine triphosphate (ATP) hydrolysis and glycolysis during CRC proliferation and progression. Specifically, IMP2 and ZFAS1 are significantly overexpressed with elevated m6A levels in CRC cells and paired CRC cohorts (n = 144). These indicators could be independent biomarkers for CRC prognostic prediction. Notably, IMP2 regulated ZFAS1 expression and enhanced CRC cell proliferation, colony formation, and apoptosis inhibition; thus, it was oncogenic. Mechanistically, ZFAS1 is modified at adenosine +843 within the RGGAC/RRACH element in an m6A-dependent manner. Thus, direct interaction between the KH3-4 domain of IMP2 and ZFAS1 where IMP2 serves as a reader for m6A-modified ZFAS1 and promotes the RNA stability of ZFAS1 is critical for CRC development. More importantly, stabilized ZFAS1 recognizes the OBG-type functional domain of OLA1, which facilitated the exposure of ATP-binding sites (NVGKST, 32-37), enhanced its protein activity, and ultimately accelerated ATP hydrolysis and the Warburg effect. CONCLUSIONS Our findings reveal a new cancer-promoting mechanism, that is, the critical modulation network underlying m6A readers stabilizes lncRNAs, and they jointly promote mitochondrial energy metabolism in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Senxu Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China
| | - Li Han
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China
| | - Dongping Xu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China
| | - Yalun Li
- Department of Anorectal Surgery, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Qiuchen Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China.,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, Liaoning Province, People's Republic of China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China.
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, People's Republic of China. .,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation; Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education; China Medical University, Shenyang, 110122, People's Republic of China. .,Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang, Liaoning Province, People's Republic of China.
| |
Collapse
|
30
|
Li J, Gao X, Zhang Z, Lai Y, Lin X, Lin B, Ma M, Liang X, Li X, Lv W, Lin Y, Zhang N. CircCD44 plays oncogenic roles in triple-negative breast cancer by modulating the miR-502-5p/KRAS and IGF2BP2/Myc axes. Mol Cancer 2021; 20:138. [PMID: 34696797 PMCID: PMC8543802 DOI: 10.1186/s12943-021-01444-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Emerging studies have revealed the potent functions of circRNAs in breast cancer tumorigenesis. However, the biogenesis, biofunction and mechanism of circRNAs in triple-negative breast cancer (TNBC) are largely unknown. METHODS High-throughput RNA sequencing was applied to identify dysregulated circRNAs in TNBCs and paired normal tissues. RNA pulldown and luciferase assays were performed to investigate the interaction between circular CD44 (circCD44, also annotated as hsa_circ_0021735) and miR-502-5p. RNA pulldown and RIP assays were used to investigate the interaction between circCD44 and IGF2BP2. Cell viability, colony formation, migration/invasion assays and in vivo tumorigenesis were used to investigate circCD44 biological functions. RESULTS CircCD44 is an uncharacterized circRNA, which is highly expressed in TNBC, and its expression is negatively correlated with the prognosis of TNBC patients. CircCD44 promotes TNBC proliferation, migration, invasion and tumorigenesis at least partially by sponging miR-502-5p and interacting with IGF2BP2. CONCLUSION Our data suggested that overexpressed circCD44 promotes TNBC progression. CircCD44 is potentially a novel diagnostic and therapeutic marker for TNBC patients.
Collapse
Affiliation(s)
- Jie Li
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Xinya Gao
- Department of Neurosurgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Zhanqiang Zhang
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Yuanhui Lai
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Xunxun Lin
- Department of Plastic Surgery, The First Affiliate Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bo Lin
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Maoguang Ma
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Xiaoli Liang
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Xixi Li
- Department of Neurosurgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Weiming Lv
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China
| | - Ying Lin
- Department of Thyroid and Breast Surgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China.
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliate Hospital, Sun Yat-sen University, No 58, Zhongshan 2 Road, Guangzhou, 510080, Guangdong Province, China.
| |
Collapse
|
31
|
Singh DD, Yadav DK. TNBC: Potential Targeting of Multiple Receptors for a Therapeutic Breakthrough, Nanomedicine, and Immunotherapy. Biomedicines 2021; 9:biomedicines9080876. [PMID: 34440080 PMCID: PMC8389539 DOI: 10.3390/biomedicines9080876] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous, recurring cancer associated with a high rate of metastasis, poor prognosis, and lack of therapeutic targets. Although target-based therapeutic options are approved for other cancers, only limited therapeutic options are available for TNBC. Cell signaling and receptor-specific targets are reportedly effective in patients with TNBC under specific clinical conditions. However, most of these cancers are unresponsive, and there is a requirement for more effective treatment modalities. Further, there is a lack of effective biomarkers that can distinguish TNBC from other BC subtypes. ER, PR, and HER2 help identify TNBC and are widely used to identify patients who are most likely to respond to diverse therapeutic strategies. In this review, we discuss the possible treatment options for TNBC based on its inherent subtype receptors and pathways, such as p53 signaling, AKT signaling, cell cycle regulation, DNA damage, and programmed cell death, which play essential roles at multiple stages of TNBC development. We focus on poly-ADP ribose polymerase 1, androgen receptor, vascular endothelial growth factor receptor, and epidermal growth factor receptor as well as the application of nanomedicine and immunotherapy in TNBC and discuss their potential applications in drug development for TNBC.
Collapse
Affiliation(s)
- Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: ; Tel.: +82-32-820-4948
| |
Collapse
|
32
|
RNA-binding protein IMP3 is a novel regulator of MEK1/ERK signaling pathway in the progression of colorectal Cancer through the stabilization of MEKK1 mRNA. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:200. [PMID: 34154626 PMCID: PMC8215736 DOI: 10.1186/s13046-021-01994-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
Background MEK1/ERK signaling pathway plays an important role in most tumor progression, including colorectal cancer (CRC), however, MEK1-targeting therapy has little effective in treating CRC patients, indicating there may be a complex mechanism to activate MEK1/ERK signaling pathway except RAS activated mechanism. Methods To investigate the clinical significance of IMP3, we analyzed its expression levels in publicly available dataset and samples from Fudan University Shanghai Cancer Center. The effects of IMP3 on proliferation, migration, and invasion were determined by in vitro and in vivo experiments. To investigate the role of IMP3 in colon carcinogenesis, conditional IMP3 knockout C57BL/6 mice was generated. The IMP3/MEKK1/MEK/ERK signaling axis in CRC was screened and validated by RNA-sequencing, RNA immunoprecipitation, luciferase reporter and western blot assays. Results We find RNA binding protein IMP3 directly bind to MEKK1 mRNA 3′-UTR, which regulates its stability, promote MEKK1 expression and sequentially activates MEK1/ERK signaling. Functionally, IMP3 promote the malignant biological process of CRC cells via MEKK1/MEK1/ERK signaling pathway both in vitro and in vivo, Moreover, IMP3−/− mice show decreased the expression of MEKK1 as well as colorectal tumors compared with wild-type mice after treatment with azoxymethane/dextran sodium sulfate. Clinically, the expression of IMP3 and MEKK1 are positive correlated, and concomitant IMP3 and MEKK1 protein levels negatively correlate with metastasis in CRC patients. In addition, MEK1 inhibitor in combination with shRNA-IMP3 have a synergistic effect both in vitro and in vivo. Conclusion Our study demonstrates that IMP3 regulates MEKK1 in CRC, thus activating the MEK1/ERK signaling in the progression of colorectal cancer, Furthermore, these results provide new insights into potential applications for combining MEK1 inhibitors with other target therapy such as IMP3 in preclinical trials for CRC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01994-8.
Collapse
|
33
|
Zheng F, Du F, Zhao J, Wang X, Si Y, Jin P, Qian H, Xu B, Yuan P. The emerging role of RNA N6-methyladenosine methylation in breast cancer. Biomark Res 2021; 9:39. [PMID: 34044876 PMCID: PMC8161983 DOI: 10.1186/s40364-021-00295-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
N6-methyladenosine (m6A) modification is the most prevalent internal mRNA modification and is involved in many biological processes in eukaryotes. Accumulating evidence has demonstrated that m6A may play either a promoting or suppressing role in breast cancer, including in tumorigenesis, metastasis and angiogenesis. In this review, we summarize the latest research progress on the biological function and prognostic value of m6A modification in breast cancer, as well as potential related therapeutic strategies.
Collapse
Affiliation(s)
- Fangchao Zheng
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Feng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), The VIPII Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital and Institute, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yiran Si
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Peng Jin
- Department of Surgery, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, Cancer Hospital/Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China. .,Department of VIP Medical Services, National Cancer Centre/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
34
|
Fang R, Ye L, Shi H. Understanding the roles of N 6-methyladenosine writers, readers and erasers in breast cancer. Neoplasia 2021; 23:551-560. [PMID: 34000587 PMCID: PMC8138681 DOI: 10.1016/j.neo.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/08/2021] [Accepted: 04/10/2021] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is believed to be driven by epigenetic regulation of genes implicated in cell proliferation, survival, and differentiation. Recently, aberrant N6-methyladenosine (m6A) decorations turned up as crucial epigenetic regulator for malignant breast cancer, which may serve as new targets for breast cancer treatment. Here we briefly outline the functions of m6A and its regulatory proteins, including m6A “writers,” “readers,” and “erasers” on RNA life fate, recapitulate the latest breakthroughs in understanding m6A modification and its regulatory proteins, and the underlying molecular mechanisms that contribute to the carcinogenesis and the progression of breast cancer, so as to provide potential epigenetic targets for diagnosis, treatment and prognosis in breast cancer.
Collapse
Affiliation(s)
- Runping Fang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China.
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong, China.
| |
Collapse
|
35
|
Zheng F, Du F, Qian H, Zhao J, Wang X, Yue J, Hu N, Si Y, Xu B, Yuan P. Expression and clinical prognostic value of m6A RNA methylation modification in breast cancer. Biomark Res 2021; 9:28. [PMID: 33926554 PMCID: PMC8082898 DOI: 10.1186/s40364-021-00285-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background N6-methyladenosine(m6A) methylation modification affects the tumorigenesis, progression, and metastasis of breast cancer (BC). However, the expression characteristics and prognostic value of m6A modification in BC are still unclear. We aimed to evaluate the relationship between m6A modification and clinicopathological characteristics, and to explore the underlying mechanisms. Methods Three public cohorts and our clinical cohort were included: 1091 BC samples and 113 normal samples from the TCGA database, 1985 BC samples from the METABRIC database, 1764 BC samples from the KM Plotter website, and 134 BC samples of our clinical cohort. We collected date from these cohorts and analyzed the genetic expression, gene-gene interactions, gene mutations, copy number variations (CNVs), and clinicopathological and prognostic features of 28 m6A RNA regulators in BC. Results This study demonstrated that some m6A regulators were significantly differenially expressed in BCs and their adjacent tissues, and also different in various molecular types. All 28 studied m6A regulators exhibited interactions. KIAA1429 had the highest mutation frequency. CNVs of m6A regulators were observed in BC patients. The expression of the m6A regulators was differentially associated with survival of BC. Higher CBLL1 expression was associated with a better prognosis in BC than lower CBLL1 expression. Functional analysis showed that CBLL1 was related to the ESR1-related pathway, apoptosis-related pathway, cell cycle pathway and immune-related pathway in BC. Conclusions m6A RNA modification modulated gene expression and thereby affected clinicopathological features and survival outcomes in BC. CBLL1 may be a promising prognostic biomarker for BC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-021-00285-w.
Collapse
Affiliation(s)
- Fangchao Zheng
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Feng Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), The VIPII Gastrointestinal Cancer Division of Medical Department, Peking University Cancer Hospital and Institute, Beijing, 100021, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, Cancer Hospital/Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Xue Wang
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jian Yue
- Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nanlin Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Yiran Si
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China
| | - Peng Yuan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Panjiayuan Nanli, Beijing, 100021, China. .,Department of VIP Medical Services, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
36
|
Liu J, Zhao G, Liu XL, Zhang G, Zhao SQ, Zhang SL, Luo LH, Yin DC, Zhang CY. Progress of non-coding RNAs in triple-negative breast cancer. Life Sci 2021; 272:119238. [PMID: 33600860 DOI: 10.1016/j.lfs.2021.119238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) include miRNA, lncRNA, and circRNA. NcRNAs are involved in multiple biological processes, including chromatin remodeling, signal transduction, post-transcriptional modification, cell autophagy, carbohydrate metabolism, and cell cycle regulation. Triple negative breast cancer (TNBC) is notorious for high invasiveness and metastasis, poor prognosis, and high mortality, and it is the most malignant breast cancer, while the effective targets for TNBC treatment are still lacking. NcRNAs act as oncogenes or suppressor genes, as well as promote or inhibit the occurrence and development of TNBC. Here, we reviewed some important miRNAs, lncRNAs, circRNAs, their target(s) and molecular mechanisms in TNBC. It is benefited to understand the occurrence and development of TNBC, further some ncRNAs might be potential targets for TNBC treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Gang Zhao
- Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Xin-Li Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Shi-Qi Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Shi-Long Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Li-Heng Luo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| |
Collapse
|
37
|
He C, Huang F, Zhang K, Wei J, Hu K, Liang M. Establishment and validation of an RNA binding protein-associated prognostic model for ovarian cancer. J Ovarian Res 2021; 14:27. [PMID: 33550985 PMCID: PMC7869493 DOI: 10.1186/s13048-021-00777-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer (OC) is one of the most common gynecological malignant tumors worldwide, with high mortality and a poor prognosis. As the early symptoms of malignant ovarian tumors are not obvious, the cause of the disease is still unclear, and the patients’ postoperative quality of life of decreases. Therefore, early diagnosis is a problem requiring an urgent solution. Methods We obtained the gene expression profiles of ovarian cancer and normal samples from TCGA and GTEx databases for differential expression analysis. From existing literature reports, we acquired the RNA-binding protein (RBP) list for the human species. Utilizing the online tool Starbase, we analyzed the interaction relationship between RBPs and their target genes and selected the modules of RBP target genes through Cytoscape. Finally, univariate and multivariate Cox regression analyses were used to determine the prognostic RBP signature. Results We obtained 527 differentially expressed RBPs, which were involved in many important cellular events, such as RNA splicing, the cell cycle, and so on. We predicted several target genes of RBPs, constructed the interaction network of RBPs and their target genes, and obtained many modules from the Cytoscape analysis. Functional enrichment of RBP target genes also includes these important biological processes. Through Cox regression analysis, OC prognostic RBPs were identified and a 10-RBP model constructed. Further analysis showed that the model has high accuracy and sensitivity in predicting the 3/5-year survival rate. Conclusions Our study identified differentially expressed RBPs and their target genes in OC, and the results promote our understanding of the molecular mechanism of ovarian cancer. The current study could develop novel biomarkers for the diagnosis, treatment, and prognosis of OC and provide new ideas and prospects for future clinical research. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00777-1.
Collapse
Affiliation(s)
- Chaofan He
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Fuxin Huang
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Kejia Zhang
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China
| | - Jun Wei
- Department of Gastroenterology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, Anhui, People's Republic of China
| | - Ke Hu
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China.
| | - Meng Liang
- School of Life Science, Bengbu Medical College, Bengbu, 233030, Anhui, People's Republic of China.
| |
Collapse
|
38
|
Kang D, Lee Y, Lee JS. RNA-Binding Proteins in Cancer: Functional and Therapeutic Perspectives. Cancers (Basel) 2020; 12:cancers12092699. [PMID: 32967226 PMCID: PMC7563379 DOI: 10.3390/cancers12092699] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary RNA-binding proteins (RBPs) play central roles in regulating posttranscriptional expression of genes. Many of them are known to be deregulated in a wide variety of cancers. Dysregulated RBPs influence the expression levels of target RNAs related to cancer phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and EMT/invasion/metastasis. Thus, understanding the molecular functions of RBPs and their roles in cancer-related phenotypes can lead to improved therapeutic strategies. Abstract RNA-binding proteins (RBPs) crucially regulate gene expression through post-transcriptional regulation, such as by modulating microRNA (miRNA) processing and the alternative splicing, alternative polyadenylation, subcellular localization, stability, and translation of RNAs. More than 1500 RBPs have been identified to date, and many of them are known to be deregulated in cancer. Alterations in the expression and localization of RBPs can influence the expression levels of oncogenes, tumor-suppressor genes, and genome stability-related genes. RBP-mediated gene regulation can lead to diverse cancer-related cellular phenotypes, such as proliferation, apoptosis, angiogenesis, senescence, and epithelial-mesenchymal transition (EMT)/invasion/metastasis. This regulation can also be associated with cancer prognosis. Thus, RBPs can be potential targets for the development of therapeutics for the cancer treatment. In this review, we describe the molecular functions of RBPs, their roles in cancer-related cellular phenotypes, and various approaches that may be used to target RBPs for cancer treatment.
Collapse
Affiliation(s)
- Donghee Kang
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
| | - Yerim Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
| | - Jae-Seon Lee
- Medical Research Center, College of Medicine, Inha University, Incheon 22212, Korea; (D.K.); (Y.L.)
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Korea
- Program in Biomedical Science & Engineering, Inha University Graduate School, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9832
| |
Collapse
|
39
|
Zhang X, Wang D, Liu B, Jin X, Wang X, Pan J, Tu W, Shao Y. IMP3 accelerates the progression of prostate cancer through inhibiting PTEN expression in a SMURF1-dependent way. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:190. [PMID: 32938489 PMCID: PMC7493339 DOI: 10.1186/s13046-020-01657-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/28/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Insulin-like growth factor 2 (IGF2) messenger RNA binding protein 3 (IMP3) has been testified to be overexpressed in prostate cancer and strongly related to patients' poor prognosis. However, the functions of IMP3 and the underlying mechanisms in prostate cancer still remain unknown. Therefore, the current study was carried out to reveal the role and molecular mechanism of IMP3 in prostate cancer progression. METHODS The expression levels of IMP3 in prostate cancer tissues and cells were detected by immunohistochemistry (IHC), western blotting and RT-PCR. CCK-8, clone formation, flow cytometry and in vivo tumor formation assays were used to determine cell growth, clone formation apoptosis and tumorigenesis, respectively. The effect of IMP3 on the expression levels of the key proteins in PI3K/AKT/mTOR signaling pathway, including PIP2, PIP3, p-AKT, AKT, p-mTOR, mTOR, PTEN and BAD activation of was determined by western blotting. IP (Immunoprecipitation) assay was used to evaluate the effects of IMP3 and SMURF1 (SMAD specific E3 ubiquitin protein ligase 1) on the ubiquitination of PTEN protein. RESULTS IMP3 expression level was significantly increased in prostate cancer tissues and cell lines (LNCap, PC3 and DU145) as compared with the paracancerous normal tissues and cells (RWPE-1), respectively. High expression of IMP3 apparently promoted cell viability, tumorigenesis and inhibited cell apoptosis in prostate cancer LNCap, DU145 and PC3 cell lines. In mechanism, IMP3 upregulation significantly increased the phosphorylation levels of AKT and mTOR, and elevated PIP3 expression level, while induced significant reductions in the expression levels of BAD, PTEN and PIP2. And, IMP3 overexpression increased SMURF1 expression, which facilitated PTEN ubiquitination. In addition, SMURF1 overexpression enhanced prostate cancer cell viability and inhibited cell apoptosis. Silence of SMURF1 rescued the enhancements in cell proliferation and tumorigenesis and the inhibition in cell apoptosis rates induced by IMP3 in prostate cancer DU145 and LNCap cells. CONCLUSION This study reveals that IMP3 is overdressed in prostate cancer, which accelerates the progression of prostate cancer through activating PI3K/AKT/mTOR signaling pathway via increasing SMURF1-mediated PTEN ubiquitination.
Collapse
Affiliation(s)
- Xiang Zhang
- grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, 2nd Ruijin Road, Shanghai, 200025 PR China ,grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, No. 999, Xiwang Road, Shanghai, 201801 China
| | - Dawei Wang
- grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, 2nd Ruijin Road, Shanghai, 200025 PR China ,grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, No. 999, Xiwang Road, Shanghai, 201801 China
| | - Boke Liu
- grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, 2nd Ruijin Road, Shanghai, 200025 PR China ,grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, No. 999, Xiwang Road, Shanghai, 201801 China
| | - Xingwei Jin
- grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, 2nd Ruijin Road, Shanghai, 200025 PR China ,grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, No. 999, Xiwang Road, Shanghai, 201801 China
| | - Xianjin Wang
- grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, 2nd Ruijin Road, Shanghai, 200025 PR China ,grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, No. 999, Xiwang Road, Shanghai, 201801 China
| | - Junwei Pan
- grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, 2nd Ruijin Road, Shanghai, 200025 PR China ,grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, No. 999, Xiwang Road, Shanghai, 201801 China
| | - Weichao Tu
- grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, 2nd Ruijin Road, Shanghai, 200025 PR China ,grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, No. 999, Xiwang Road, Shanghai, 201801 China
| | - Yuan Shao
- grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No. 197, 2nd Ruijin Road, Shanghai, 200025 PR China ,grid.16821.3c0000 0004 0368 8293Department of Urology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, No. 999, Xiwang Road, Shanghai, 201801 China
| |
Collapse
|
40
|
Thuault S, Mamelonet C, Salameh J, Ostacolo K, Chanez B, Salaün D, Baudelet E, Audebert S, Camoin L, Badache A. A proximity-labeling proteomic approach to investigate invadopodia molecular landscape in breast cancer cells. Sci Rep 2020; 10:6787. [PMID: 32321993 PMCID: PMC7176661 DOI: 10.1038/s41598-020-63926-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/06/2020] [Indexed: 12/27/2022] Open
Abstract
Metastatic progression is the leading cause of mortality in breast cancer. Invasive tumor cells develop invadopodia to travel through basement membranes and the interstitial matrix. Substantial efforts have been made to characterize invadopodia molecular composition. However, their full molecular identity is still missing due to the difficulty in isolating them. To fill this gap, we developed a non-hypothesis driven proteomic approach based on the BioID proximity biotinylation technology, using the invadopodia-specific protein Tks5α fused to the promiscuous biotin ligase BirA* as bait. In invasive breast cancer cells, Tks5α fusion concentrated to invadopodia and selectively biotinylated invadopodia components, in contrast to a fusion which lacked the membrane-targeting PX domain (Tks5β). Biotinylated proteins were isolated by affinity capture and identified by mass spectrometry. We identified known invadopodia components, revealing the pertinence of our strategy. Furthermore, we observed that Tks5 newly identified close neighbors belonged to a biologically relevant network centered on actin cytoskeleton organization. Analysis of Tks5β interactome demonstrated that some partners bound Tks5 before its recruitment to invadopodia. Thus, the present strategy allowed us to identify novel Tks5 partners that were not identified by traditional approaches and could help get a more comprehensive picture of invadopodia molecular landscape.
Collapse
Affiliation(s)
- Sylvie Thuault
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.
| | - Claire Mamelonet
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| | - Joëlle Salameh
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.,INSERM UMR-S 1193, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Kevin Ostacolo
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.,Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Brice Chanez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.,Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France
| | - Danièle Salaün
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| | - Emilie Baudelet
- CRCM, Marseille Proteomics, Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Stéphane Audebert
- CRCM, Marseille Proteomics, Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Luc Camoin
- CRCM, Marseille Proteomics, Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| |
Collapse
|
41
|
Wang PF, Wang X, Liu M, Zeng Z, Lin C, Xu W, Ma W, Wang J, Xiang Q, Johnston RN, Liu H, Liu SL. The Oncogenic Functions of Insulin-like Growth Factor 2 mRNA-Binding Protein 3 in Human Carcinomas. Curr Pharm Des 2020; 26:3939-3954. [PMID: 32282295 DOI: 10.2174/1381612826666200413080936] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
IGF2BP3 (also known as IMP3, KOC), a member of the insulin-like growth factor mRNA-binding protein family (IMPs), has been a research target in recent studies of promoting embryo development and exacerbating cancer. IGF2BP3 is ubiquitously expressed in early embryogenesis stages but limited in postembryonic stages, which is important in many physiological aspects such as stem cell renewal, morphological development and metabolism. A large number of studies show that IGF2BP3 interacts with many kinds of non-coding RNAs and proteins to promote cancer cell proliferation and metastasis and inhibit cancer cell apoptosis. As IGF2BP3 is highly expressed in advanced cancers and associated with poor overall survival rates of patients, it may be a potential molecular marker in cancer diagnosis for the detection of cancerous tissues and an indicator of cancer stages. Therefore, anti-IGF2BP3 drugs or monoclonal antibodies are expected as new therapeutic methods in cancer treatment. This review summarizes recent findings among IGF2BP3, RNA and proteins in cancer processes, with a focus on its cancer-promoting mechanisms and potential application as a new biomarker for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Peng-Fei Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyu Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Min Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zheng Zeng
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wenwen Xu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wenqing Ma
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiali Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Qian Xiang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N1N4, Canada
| | - Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
42
|
Mancarella C, Scotlandi K. IGF2BP3 From Physiology to Cancer: Novel Discoveries, Unsolved Issues, and Future Perspectives. Front Cell Dev Biol 2020; 7:363. [PMID: 32010687 PMCID: PMC6974587 DOI: 10.3389/fcell.2019.00363] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
RNA network control is a key aspect of proper cellular homeostasis. In this context, RNA-binding proteins (RBPs) play a major role as regulators of the RNA life cycle due to their capability to bind to RNA sequences and precisely direct nuclear export, translation/degradation rates, and the intracellular localization of their target transcripts. Alterations in RBP expression or functions result in aberrant RNA translation and may drive the emergence and progression of several pathological conditions, including cancer. Among the RBPs, insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) is of particular interest in tumorigenesis and tumor progression. This review highlights the molecular mechanisms underlying the oncogenic functions of IGF2BP3, summarizes the therapeutic potential related to its inhibition and notes the fundamental issues that remain unanswered. To fully exploit IGF2BP3 for tumor diagnosis and therapy, it is crucial to dissect the mechanisms governing IGF2BP3 re-expression and to elucidate the complex interactions between IGF2BP3 and its target mRNAs as normal cells become tumor cells.
Collapse
Affiliation(s)
- Caterina Mancarella
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
43
|
Xing M, Li P, Wang X, Li J, Shi J, Qin J, Zhang X, Ma Y, Francia G, Zhang JY. Overexpression of p62/IMP2 can Promote Cell Migration in Hepatocellular Carcinoma via Activation of the Wnt/β-Catenin Pathway. Cancers (Basel) 2019; 12:cancers12010007. [PMID: 31861402 PMCID: PMC7017416 DOI: 10.3390/cancers12010007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
p62/IMP2 is an oncofetal protein that was first reported as a tumor-associated antigen in hepatocellular carcinoma (HCC). In our previous studies, we demonstrated a high frequency of p62/IMP2 autoantibodies appearing in various types of cancer. Therefore, we hypothesize that p62/IMP2 plays an important role in the progression of HCC, although the mechanism remains to be explored. In this study, we evaluated the expression of p62/IMP2 protein both in human tissues and liver cancer cell lines by immunohistochemistry and western blotting analysis and found that p62/IMP2 protein is overexpressed in human HCC tissue in comparison to normal human liver tissue. To explore the role that p62/IMP2 plays in HCC, p62/IMP2 was knocked out in two p62/IMP2-positive liver cancer cell lines (SNU449 and HepG2). Due to the low expression level of p62/IMP2 in SNU449, we overexpressed p62/IMP2 in this cell line. We subsequently demonstrated that high expression of p62/IMP2 in both cell lines can promote cell migration and invasion abilities in vitro by activating the Wnt/β-catenin pathway. We also used the Wnt/β-catenin pathway inhibitor, XAV 939, and a phosphoproteome assay to confirm our findings. Conclusion: Our results suggest that p62/IMP2 is an essential regulator of Wnt signaling pathways and plays an important role in HCC progression and metastasis.
Collapse
Affiliation(s)
- Mengtao Xing
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Pei Li
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Xiao Wang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Henan Medical and Pharmaceutical Institute, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jitian Li
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Jianxiang Shi
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Henan Medical and Pharmaceutical Institute, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiejie Qin
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Xiaojun Zhang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Yangcheng Ma
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Giulio Francia
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Correspondence: (G.F.); (J.-Y.Z.)
| | - Jian-Ying Zhang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Correspondence: (G.F.); (J.-Y.Z.)
| |
Collapse
|
44
|
Holly JMP, Biernacka K, Perks CM. The Neglected Insulin: IGF-II, a Metabolic Regulator with Implications for Diabetes, Obesity, and Cancer. Cells 2019; 8:cells8101207. [PMID: 31590432 PMCID: PMC6829378 DOI: 10.3390/cells8101207] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
When originally discovered, one of the initial observations was that, when all of the insulin peptide was depleted from serum, the vast majority of the insulin activity remained and this was due to a single additional peptide, IGF-II. The IGF-II gene is adjacent to the insulin gene, which is a result of gene duplication, but has evolved to be considerably more complicated. It was one of the first genes recognised to be imprinted and expressed in a parent-of-origin specific manner. The gene codes for IGF-II mRNA, but, in addition, also codes for antisense RNA, long non-coding RNA, and several micro RNA. Recent evidence suggests that each of these have important independent roles in metabolic regulation. It has also become clear that an alternatively spliced form of the insulin receptor may be the principle IGF-II receptor. These recent discoveries have important implications for metabolic disorders and also for cancer, for which there is renewed acknowledgement of the importance of metabolic reprogramming.
Collapse
Affiliation(s)
- Jeff M P Holly
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK.
| | - Kalina Biernacka
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| | - Claire M Perks
- Department of Translational Health Science, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol, BS10 5NB, UK
| |
Collapse
|
45
|
Visser NCM, van der Putten LJM, van Egerschot A, Van de Vijver KK, Santacana M, Bronsert P, Hirschfeld M, Colas E, Gil-Moreno A, Garcia A, Mancebo G, Alameda F, Krakstad C, Tangen IL, Huvila J, Schrauwen S, Koskas M, Walker F, Weinberger V, Minar L, Hausnerova J, Snijders MPLM, van den Berg-van Erp S, Matias-Guiu X, Trovik J, Amant F, Massuger LFAG, Bulten J, Pijnenborg JMA. Addition of IMP3 to L1CAM for discrimination between low- and high-grade endometrial carcinomas: a European Network for Individualised Treatment of Endometrial Cancer collaboration study. Hum Pathol 2019; 89:90-98. [PMID: 31054899 DOI: 10.1016/j.humpath.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
Discrimination between low- and high-grade endometrial carcinomas (ECs) is clinically relevant but can be challenging for pathologists, with moderate interobserver agreement. Insulin-like growth factor-II mRNA-binding protein 3 (IMP3) is an oncofoetal protein that is associated with nonendometrioid endometrial carcinomas but has been limited studied in endometrioid carcinomas. The aim of this study is to investigate the diagnostic and prognostic value of IMP3 in the discrimination between low- and high-grade ECs and its added value to L1CAM. IMP3 and L1CAM expression was assessed in tumors from 378 patients treated for EC at 1 of 9 participating European Network for Individualised Treatment of Endometrial Cancer centers. IMP3 was expressed in 24.6% of the tumors. In general, IMP3 was more homogeneously expressed than L1CAM. IMP3 expression was significantly associated with advanced stage, nonendometrioid histology, grade 3 tumors, deep myometrial invasion, lymphovascular space invasion, distant recurrences, overall mortality, and disease-related mortality. Simultaneous absence of IMP3 and L1CAM expression showed the highest accuracy for identifying low-grade carcinomas (area under the curve 0.766), whereas simultaneous expression of IMP3 and L1CAM was strongly associated with high-grade carcinomas (odds ratio 19.7; 95% confidence interval 9.2-42.2). Even within endometrioid carcinomas, this combination remained superior to IMP3 and L1CAM alone (odds ratio 8.6; 95% confidence interval 3.4-21.9). In conclusion, IMP3 has good diagnostic value and together with L1CAM represents the optimal combination of diagnostic markers for discrimination between low- and high-grade ECs compared to IMP3 and L1CAM alone. Because of the homogenous expression of IMP3, this marker might be valuable in preoperative biopsies when compared to the more patchy L1CAM expression.
Collapse
Affiliation(s)
- Nicole C M Visser
- Department of Pathology, Radboud University Medical Centre, 6500HB, Nijmegen, the Netherlands; Radboud Institute for Molecular Life Sciences, 6500HB, Nijmegen, the Netherlands.
| | - Louis J M van der Putten
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, 6500HB, Nijmegen, the Netherlands
| | - Alex van Egerschot
- Department of Pathology, Radboud University Medical Centre, 6500HB, Nijmegen, the Netherlands
| | | | - Maria Santacana
- Department of Pathology and Molecular Genetics and Oncological Pathology Group, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, CIBERONC, 25198, Lleida, Spain
| | - Peter Bronsert
- Institute for Surgical Pathology, Medical Centre-University of Freiburg, 79085, Freiburg, Germany; Comprehensive Cancer Centre Freiburg, Medical Centre-University of Freiburg, 79106, Freiburg, Germany; Faculty of Medicine, University of Freiburg, 79085, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynaecology, University Medical Centre Freiburg, 79106, Freiburg, Germany; German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), 69120, Heidelberg, Germany
| | - Eva Colas
- Biomedical Research Group in Gynaecology, Vall Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, CIBERONC, 08193, Barcelona, Spain
| | - Antonio Gil-Moreno
- Biomedical Research Group in Gynaecology, Vall Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, CIBERONC, 08193, Barcelona, Spain; Gynecological Department, Vall Hebron University Hospital, CIBERONC, 8035, Barcelona, Spain
| | - Angel Garcia
- Pathology Department, Vall Hebron University Hospital, 8035, Barcelona, Spain
| | - Gemma Mancebo
- Department of Obstetrics and Gynaecology, Hospital del Mar, 8003, Barcelona, Spain
| | - Francesc Alameda
- Department of Pathology, Hospital del Mar, 8003, Barcelona, Spain
| | - Camilla Krakstad
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, 5021, Bergen, Norway; Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Ingvild L Tangen
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, 5021, Bergen, Norway; Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Jutta Huvila
- Department of Pathology, University of Turku, 20500, Turku, Finland
| | - Stefanie Schrauwen
- Division of Gynaecologic Oncology, Department of Obstetrics and Gynaecology, University Hospital Gasthuisberg, 3000, Leuven, Belgium
| | - Martin Koskas
- Obstetrics and Gynaecology Department, Bichat-Claude Bernard Hospital, 75877, Paris, France
| | - Francine Walker
- Pathology Department, Bichat-Claude Bernard Hospital, 75877, Paris, France
| | - Vit Weinberger
- Department of Obstetrics and Gynaecology, University Hospital Brno, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lubos Minar
- Department of Obstetrics and Gynaecology, University Hospital Brno, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jitka Hausnerova
- Department of Pathology, University Hospital Brno, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Marc P L M Snijders
- Department of Obstetrics and Gynaecology, Canisius-Wilhelmina Hospital, 6500, GS, Nijmegen, the Netherlands
| | | | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Oncological Pathology Group, Hospital Universitari Arnau de Vilanova, University of Lleida, IRBLLEIDA, CIBERONC, 25198, Lleida, Spain
| | - Jone Trovik
- Department of Obstetrics and Gynaecology, Haukeland University Hospital, 5021, Bergen, Norway; Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Frédéric Amant
- Division of Gynaecologic Oncology, Department of Obstetrics and Gynaecology, University Hospital Gasthuisberg, 3000, Leuven, Belgium; Department of Gynaecologic Oncology, Centre Gynaecologic Oncology Amsterdam (CGOA), Netherlands Cancer Institute and Amsterdam University Medical Centres, Academic Medical Centre, 1105, AZ, Amsterdam, the Netherlands
| | - Leon F A G Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, 6500HB, Nijmegen, the Netherlands
| | - Johan Bulten
- Department of Pathology, Radboud University Medical Centre, 6500HB, Nijmegen, the Netherlands
| | - Johanna M A Pijnenborg
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, 6500HB, Nijmegen, the Netherlands
| |
Collapse
|
46
|
VICKZ1 enhances tumor progression and metastasis in lung adenocarcinomas in mice. Oncogene 2019; 38:4169-4181. [PMID: 30700831 DOI: 10.1038/s41388-019-0715-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 12/18/2018] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
The VICKZ (Igf2bp) family of RNA binding proteins regulate RNA function at many levels, including intracellular RNA localization, RNA stability, and translational control. One or more of the three VICKZ paralogs are upregulated in many different types of cancers. Here, we show how VICKZ1 enhances, and dominant negative VICKZ1 inhibits, cell migration, growth in soft agar, and wound healing in a mouse lung adenocarcinoma cell line containing a constitutively active, mutant Kras. Similarly, modulation of VICKZ1 activity promotes or inhibits metastases upon implantation of these cells into syngeneic mice. To test these effects in a genetic model system, we generated a mouse with an inducible VICKZ1 transgene and found that isolated overexpression of VICKZ1 in the lungs had no noticeable effect on morphology. Although directed overexpression of mutant Kras in the lungs led to the formation of small adenomas, concurrent overexpression of VICKZ1 remarkably accelerated tumor growth and formation of pulmonary adenocarcinomas. VICKZ1-containing ribonucleoprotein complexes are highly enriched in Kras mRNA in lung adenocarcinoma cells, and Kras signaling is enhanced in these cells by overexpression of VICKZ1. Analysis of lung carcinoma patients reveals that elevated VICKZ1 expression correlates with lower overall survival; this reduction is dramatically enhanced in those patients bearing a mutant Kras gene. Our study reveals that RNA binding proteins of the VICKZ family can synergize with Kras to influence signaling and oncogenic activity.
Collapse
|