1
|
Tahghighi A, Seyedhashemi E, Mohammadi J, Moradi A, Esmaeili A, Pornour M, Jafarifar K, Ganji SM. Epigenetic marvels: exploring the landscape of colorectal cancer treatment through cutting-edge epigenetic-based drug strategies. Clin Epigenetics 2025; 17:34. [PMID: 39987205 PMCID: PMC11847397 DOI: 10.1186/s13148-025-01844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Epigenetics is currently considered the investigation of inheritable changes in gene expression that do not rely on DNA sequence alteration. Significant epigenetic procedures are involved, such as DNA methylations, histone modifications, and non-coding RNA actions. It is confirmed through several investigations that epigenetic changes are associated with the formation, development, and metastasis of various cancers, such as colorectal cancer (CRC). The difference between epigenetic changes and genetic mutations is that the former could be reversed or prevented; therefore, cancer treatment and prevention could be achieved by restoring abnormal epigenetic events within the neoplastic cells. These treatments, consequently, cause the anti-tumour effects augmentation, drug resistance reduction, and host immune response stimulation. In this article, we begin our survey by exploring basic epigenetic mechanisms to understand epigenetic tools and strategies for treating colorectal cancer in monotherapy and combination with chemotherapy or immunotherapy.
Collapse
Affiliation(s)
- Azar Tahghighi
- Medicinal Chemistry Laboratory, Clinical Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Effat Seyedhashemi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Javad Mohammadi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Arash Moradi
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Aria Esmaeili
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA
| | - Kimia Jafarifar
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Shahla Mohammad Ganji
- Department of Molecular Medicine, Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-E Pajoohesh, Km 15, P.O. Box 14965/161, Tehran, Iran.
| |
Collapse
|
2
|
Markowitsch SD, Pham T, Rutz J, Chun FKH, Haferkamp A, Tsaur I, Juengel E, Ries N, Thomas A, Blaheta RA. Growth of Renal Cancer Cell Lines Is Strongly Inhibited by Synergistic Activity of Low-Dosed Amygdalin and Sulforaphane. Nutrients 2024; 16:3750. [PMID: 39519581 PMCID: PMC11547972 DOI: 10.3390/nu16213750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Plant derived isolated compounds or extracts enjoy great popularity among cancer patients, although knowledge about their mode of action is unclear. The present study investigated whether the combination of two herbal drugs, the cyanogenic diglucoside amygdalin and the isothiocyanate sulforaphane (SFN), influences growth and proliferation of renal cell carcinoma (RCC) cell lines. Methods: A498, Caki-1, and KTCTL-26 cells were exposed to low-dosed amygdalin (1 or 5 mg/mL), or SFN (5 µM) or to combined SFN-amygdalin. Tumor growth and proliferation were analyzed by MTT, BrdU incorporation, and clone formation assays. Cell cycle phases and cell cycle-regulating proteins were analyzed by flow cytometry and Western blotting, respectively. The effectiveness of the amygdalin-SFN combination was determined using the Bliss independence model. Results: 1 mg/mL amygdalin or 5 µM SFN, given separately, did not suppress RCC cell growth, and 5 mg/mL amygdalin only slightly diminished A498 (but not Caki-1 and KTCTL-26) cell growth. However, already 1 mg/mL amygdalin potently inhibited growth of all tumor cell lines when combined with SFN. Accordingly, 1 mg/mL amygdalin suppressed BrdU incorporation only when given together with SFN. Clonogenic growth was also drastically reduced by the drug combination, whereas only minor effects were seen under single drug treatment. Superior efficacy of co-treatment, compared to monodrug exposure, was also seen for cell cycling, with an enhanced G0/G1 and diminished G2/M phase in A498 cells. Cell cycle regulating proteins were altered differently, depending on the applied drug schedule (single versus dual application) and the RCC cell line, excepting phosphorylated Akt which was considerably diminished in all three cell lines with maximum effects induced by the drug combination. The Bliss independence analysis verified synergistic interactions between amygdalin and SFN. Conclusions: These results point to synergistic effects of amygdalin and SFN on RCC cell growth and clone formation and Akt might be a relevant target protein. The combined use of low-dosed amygdalin and SFN could, therefore, be beneficial as a complementary option to treat RCC. To evaluate clinical feasibility, the in vitro protocol must be applied to an in vivo model.
Collapse
Affiliation(s)
- Sascha D. Markowitsch
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Thao Pham
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (T.P.); (F.K.-H.C.)
| | - Jochen Rutz
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany; (T.P.); (F.K.-H.C.)
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Nathalie Ries
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| | - Roman A. Blaheta
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany; (S.D.M.); (J.R.); (A.H.); (I.T.); (E.J.); (N.R.); (A.T.)
| |
Collapse
|
3
|
Bakrim S, Aboulaghras S, Aanniz T, Benali T, El Omari N, El-Shazly M, Lee LH, Mustafa SK, Sahib N, Rebezov M, Ali Shariati M, Lorenzo JM, Bouyahya A. Effects of Mediterranean diets and nutrigenomics on cardiovascular health. Crit Rev Food Sci Nutr 2024; 64:7589-7608. [PMID: 36908235 DOI: 10.1080/10408398.2023.2187622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The field of nutrigenomics studies the interaction between nutrition and genetics, and how certain dietary patterns can impact gene expression and overall health. The Mediterranean diet (MedDiet), characterized by a high intake of fruits, vegetables, whole grains, and healthy fats, has been linked to better cardiovascular health (CVH) outcomes. This review summarizes the current state of research on the effects of nutrigenomics and MedDiet on cardiovascular health. Results suggest that MedDiet, through its impact on gene expression, can positively influence CVH markers such as blood pressure, lipid profile, and inflammation. However, more research is needed to fully understand the complex interactions between genetics, nutrition, and CVH, and to determine the optimal dietary patterns for individualized care. The aim of this scientific review is to evaluate the current evidence on the effects of nutrigenomics and MedDiet on cardiovascular health. The review summarizes the available studies that have investigated the relationship between nutrition, genetics, and cardiovascular health, and explores the mechanisms by which certain dietary patterns can impact CVH outcomes. The review focuses on the effects of MedDiet, a dietary pattern that is rich in whole foods and healthy fats, and its potential to positively influence CVH through its impact on gene expression. The review highlights the limitations of current research and the need for further studies to fully understand the complex interplay between nutrition, genetics, and cardiovascular health.
Collapse
Affiliation(s)
- Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, Morocco
| | - Sara Aboulaghras
- Physiology and Physiopathology Team, Faculty of Sciences, Genomic of Human Pathologies Research, Mohammed V University, Rabat, Morocco
| | - Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, Morocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, The German University in Cairo, Cairo, Egypt
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Nargis Sahib
- Laboratoire d'Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Mohammed Premier University, Oujda, Morocco
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow, Russian Federation
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food Industry, Semey Branch of the Institute, Almaty, Republic of Kazakhstan
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
4
|
Zhou S, Liu J, Wan A, Zhang Y, Qi X. Epigenetic regulation of diverse cell death modalities in cancer: a focus on pyroptosis, ferroptosis, cuproptosis, and disulfidptosis. J Hematol Oncol 2024; 17:22. [PMID: 38654314 PMCID: PMC11040947 DOI: 10.1186/s13045-024-01545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 04/25/2024] Open
Abstract
Tumor is a local tissue hyperplasia resulted from cancerous transformation of normal cells under the action of various physical, chemical and biological factors. The exploration of tumorigenesis mechanism is crucial for early prevention and treatment of tumors. Epigenetic modification is a common and important modification in cells, including DNA methylation, histone modification, non-coding RNA modification and m6A modification. The normal mode of cell death is programmed by cell death-related genes; however, recent researches have revealed some new modes of cell death, including pyroptosis, ferroptosis, cuproptosis and disulfidptosis. Epigenetic regulation of various cell deaths is mainly involved in the regulation of key cell death proteins and affects cell death by up-regulating or down-regulating the expression levels of key proteins. This study aims to investigate the mechanism of epigenetic modifications regulating pyroptosis, ferroptosis, cuproptosis and disulfidptosis of tumor cells, explore possible triggering factors in tumor development from a microscopic point of view, and provide potential targets for tumor therapy and new perspective for the development of antitumor drugs or combination therapies.
Collapse
Affiliation(s)
- Shimeng Zhou
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Junlan Liu
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Andi Wan
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China.
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, China.
- Key Laboratory of Chongqing Health Commission for Minimally Invasive and Precise Diagnosis, Chongqing, China.
| |
Collapse
|
5
|
Shih YL, Hsu SY, Lai KC, Chueh FS, Huang YL, Kuo CL, Chen YL, Chen CJ, Peng SF, Huang WW, Lu HF. Allyl isothiocyanate induces DNA damage and inhibits DNA repair-associated proteins in a human gastric cancer cells in vitro. ENVIRONMENTAL TOXICOLOGY 2024; 39:1303-1314. [PMID: 37966020 DOI: 10.1002/tox.24020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 11/16/2023]
Abstract
Allyl isothiocyanate (AITC) is abundant in cruciferous vegetables and it present pharmacological activity including anticancer activity in many types of human cancer cells in vitro and in vivo. Currently, no available information to show AITC affecting DNA damage and repair-associated protein expression in human gastric cancer cells. Therefore, in the present studies, we investigated AITC-induced cytotoxic effects on human gastric cancer in AGS and SNU-1 cells whether or not via the induction of DNA damage and affected DNA damage and repair associated poteins expressions in vitro. Cell viability and morphological changes were assayed by flow cytometer and phase contrast microscopy, respectively, the results indicated AITC induced cell morphological changes and decreased total viable cells in AGS and SNU-1 cells in a dose-dependently. AITC induced DNA condensation and damage in a dose-dependently which based on the cell nuclei was stained by 4', 6-diamidino-2-phenylindole present in AGS and SNU-1 cells. DNA damage and repair associated proteins expression in AGS and SNU-1 cells were measured by Western blotting. The results indicated AITC decreased nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase-1 (HO-1), glutathione, and catalase, but increased superoxide dismutase (SOD (Cu/Zn)), and nitric oxide synthase (iNOS) in AGS cells, however, in SNU-1 cells are increased HO-1. AITC increased DNA-dependent protein kinase (DNA-PK), phosphorylation of gamma H2A histone family member X on Ser139 (γH2AXpSer139 ), and heat shock protein 90 (HSP90) in AGS cells. AITC increased DNA-PK, mediator of DNA damage checkpoint protein 1 (MDC1), γH2AXpSer139 , topoisomerase II alpha (TOPIIα), topoisomerase II beta (TOPIIβ), HSP90, and heat shock protein 70 (HSP70) in SNU-1 cells. AITC increased p53, p53pSer15 , and p21 but decreased murine double minute 2 (MDM2)pSer166 and O6 -methylguanine-DNA methyltransferase (MGMT) in AGS cells; however, it has a similar effect of AITC except increased ataxia telangiectasia and Rad3 -related protein (ATR)pSer428 , checkpoint kinase 1 (CHK1), and checkpoint kinase 2 (CHK2) in SNU-1 cells. Apparently, both cell responses to AITC are different, nonetheless, all of these observations suggest that AITC inhibits the growth of gastric cancer cells may through induction off DNA damage in vitro.
Collapse
Affiliation(s)
- Yung-Luen Shih
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Sheng-Yao Hsu
- Department of Ophthalmology, An Nan Hospital, China Medical University, Tainan, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yuan-Li Huang
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu, Taiwan
| | - Chiung-Ju Chen
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Hsu-Fen Lu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Laboratory Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
6
|
Bahiraii S, Brenner M, Weckwerth W, Heiss EH. Sulforaphane impedes mitochondrial reprogramming and histone acetylation in polarizing M1 (LPS) macrophages. Free Radic Biol Med 2024; 213:443-456. [PMID: 38301976 DOI: 10.1016/j.freeradbiomed.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 02/03/2024]
Abstract
M1 (LPS) macrophages are characterized by a high expression of pro-inflammatory mediators, and distinct metabolic features that comprise increased glycolysis, a broken TCA cycle, or impaired OXPHOS with augmented mitochondrial ROS production. This study investigated whether the phytochemical sulforaphane (Sfn) influences mitochondrial reprogramming during M1 polarization, as well as to what extent this can contribute to Sfn-mediated inhibition of M1 marker expression in murine macrophages. The use of extracellular flux-, metabolite-, and immunoblot analyses as well as fluorescent dyes indicative for mitochondrial morphology, membrane potential or superoxide production, demonstrated that M1 (LPS/Sfn) macrophages maintain an unbroken TCA cycle, higher OXPHOS rate, boosted fusion dynamics, lower membrane potential, and less superoxide production in their mitochondria when compared to control M1 (LPS) cells. Sustained OXPHOS and TCA activity but not the concomitantly observed high dependency on fatty acids as fuel appeared necessary for M1 (LPS/Sfn) macrophages to reduce expression of nos2, il1β, il6 and tnfα. M1 (LPS/Sfn) macrophages also displayed lower nucleo/cytosolic acetyl-CoA levels in association with lower global and site-specific histone acetylation at selected pro-inflammatory gene promoters than M1 (LPS), evident in colorimetric coupled enzyme assays, immunoblot and ChIP-qPCR analyses, respectively. Supplementation with acetate or citrate was able to rescue both histone acetylation and mRNA expression of the investigated M1 marker genes in Sfn-treated cells. Overall, Sfn preserves mitochondrial functionality and restricts indispensable nuclear acetyl-CoA for histone acetylation and M1 marker expression in LPS-stimulated macrophages.
Collapse
Affiliation(s)
- Sheyda Bahiraii
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria; ViennaDoctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Vienna, Austria
| | - Martin Brenner
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria; ViennaDoctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Vienna, Austria; Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria; Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology (FEE), University of Vienna, Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
7
|
Wahi A, Jain P, Sinhari A, Jadhav HR. Progress in discovery and development of natural inhibitors of histone deacetylases (HDACs) as anti-cancer agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:675-702. [PMID: 37615708 DOI: 10.1007/s00210-023-02674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023]
Abstract
The study of epigenetic translational modifications had drawn great interest for the last few decades. These processes play a vital role in many diseases and cancer is one of them. Histone acetyltransferase (HAT) and histone deacetylases (HDACs) are key enzymes involved in the acetylation and deacetylation of histones and ultimately in post-translational modifications. Cancer frequently exhibits epigenetic changes, particularly disruption in the expression and activity of HDACs. It includes the capacity to regulate proliferative signalling, circumvent growth inhibitors, escape cell death, enable replicative immortality, promote angiogenesis, stimulate invasion and metastasis, prevent immunological destruction, and genomic instability. The majority of tumours develop and spread as a result of HDAC dysregulation. As a result, HDAC inhibitors (HDACis) were developed, and they today stand as a very promising therapeutic approach. One of the most well-known and efficient therapies for practically all cancer types is chemotherapy. However, the efficiency and safety of treatment are constrained by higher toxicity. The same has been observed with the synthetic HDACi. Natural products, owing to many advantages over synthetic compounds for cancer treatment have always been a choice for therapy. Hence, naturally available molecules are of particular interest for HDAC inhibition and HDAC has drawn the attention of the research fraternity due to their potential to offer a diverse array of chemical structures and bioactive compounds. This diversity opens up new avenues for exploring less toxic HDAC inhibitors to reduce side effects associated with conventional synthetic inhibitors. The review presents comprehensive details on natural product HDACi, their mechanism of action and their biological effects. Moreover, this review provides a brief discussion on the structure activity relationship of selected natural HDAC inhibitors and their analogues which can guide future research to discover selective, more potent HDACi with minimal toxicity.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, DPSRU, New Delhi, 110017, India.
| | - Apurba Sinhari
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar, Pilani, Rajasthan, 333031, India
| |
Collapse
|
8
|
Yang H, Hur G, Lee TK, Kim JE, Kim JH, Kim JR, Kim J, Park JHY, Lee KW. Sulforaphane Mitigates High-Fat Diet-Induced Obesity by Enhancing Mitochondrial Biogenesis in Skeletal Muscle via the HDAC8-PGC1α Axis. Mol Nutr Food Res 2023; 67:e2300149. [PMID: 37775334 DOI: 10.1002/mnfr.202300149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/13/2023] [Indexed: 10/01/2023]
Abstract
SCOPE Histone deacetylases (HDACs) play a crucial role in the transcriptional regulation of various genes which can contribute to metabolic disorders. Although sulforaphane (SFN), a natural HDAC inhibitor, has been reported to alleviate obesity in humans and mice, the specific mechanisms and how HDACs contribute to SFN's anti-obesity effects remain unclear. METHODS AND RESULTS Oral administration of SFN in mice fed high-fat diet increases peroxisome proliferator activating receptor γ coactivator (PGC1α)-induced mitochondrial biogenesis in skeletal muscle. Among HDACs, SFN specifically inhibits HDAC8 activity. SFN enhances mitochondrial DNA and adenosine triphosphate (ATP) production in C2C12 myotubes, similar to the action of PCI34051, a synthetic HDAC8-specific inhibitor. These effects are mediated by increased expression of PGC1α via upregulation of cAMP response element binding (CREB, Ser133 ) phosphorylation and p53 (Lys379 ) acetylation. These SFN-induced effects are not observed in cells with a genetic deletion of HDAC8, suggesting the existence of a regulatory loop between HDAC8 and PGC1α in SFN's action. CONCLUSION SFN prevents obesity-related metabolic dysregulation by enhancing mitochondrial biogenesis and function via targeting the HDAC8-PGCα axis. These results suggest SFN as a beneficial anti-obesity agent providing new insight into the role of HDAC8 in the PGC1α-mediated mitochondrial biogenesis, which may be a novel and promising drug target for metabolic diseases.
Collapse
Affiliation(s)
- Hee Yang
- Department of Food and Nutrition, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, South Korea
| | - Gihyun Hur
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Kyung Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jong-Eun Kim
- Department of Food Science and Technology, Korea National University of Transportation, Jeungpyeong, Republic of Korea
| | - Jong Hun Kim
- Department of Food Science and Biotechnology, Sungshin University, Seoul, 01133, Republic of Korea
- Basic Science Research Institute, Sungshin University, Seoul, 01133, Republic of Korea
| | - Jong Rhan Kim
- R&D Evaluation Center, Korea Institute of Science and Technology Evaluation and Planning, 1339 Eumseong-gun, Chungcheongbuk-do, Republic of Korea
| | - Jiyoung Kim
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| | | | - Ki Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX Institute, Seoul National University, Seoul, 08826, South Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
9
|
Zhang YQ, Shi CX, Zhang DM, Zhang LY, Wang LW, Gong ZJ. Sulforaphane, an NRF2 agonist, alleviates ferroptosis in acute liver failure by regulating HDAC6 activity. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:464-473. [PMID: 37620223 DOI: 10.1016/j.joim.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/01/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVE Acute liver failure (ALF) is characterized by severe liver dysfunction, rapid progression and high mortality and is difficult to treat. Studies have found that sulforaphane (SFN), a nuclear factor E2-related factor 2 (NRF2) agonist, has anti-inflammatory, antioxidant and anticancer effects, and has certain protective effects on neurodegenerative diseases, cancer and liver fibrosis. This paper aimed to explore the protective effect of SFN in ALF and it possible mechanisms of action. METHODS Lipopolysaccharide and D-galactosamine were used to induce liver injury in vitro and in vivo. NRF2 agonist SFN and histone deacetylase 6 (HDAC6) inhibitor ACY1215 were used to observe the protective effect and possible mechanisms of SFN in ALF, respectively. Cell viability, lactate dehydrogenase (LDH), Fe2+, glutathione (GSH) and malondialdehyde (MDA) were detected. The expression of HDAC6, NRF2, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long-chain family member 4 (ACSL4) and solute carrier family 7 member 11 (SLC7A11) were detected by Western blotting and immunofluorescence. RESULTS Our results show that NRF2 was activated by SFN. LDH, Fe2+, MDA and ACSL4 were downregulated, while GSH, GPX4 and SLC7A11 were upregulated by SFN in vitro and in vivo, indicating the inhibitory effect of SFN on ferroptosis. Additionally, HDAC6 expression was decreased in the SFN group, indicating that SFN could downregulate the expression of HDAC6 in ALF. After using the HDAC6 inhibitor, ACY1215, SFN further reduced HDAC6 expression and inhibited ferroptosis, indicating that SFN may inhibit ferroptosis by regulating HDAC6 activity. CONCLUSION SFN has a protective effect on ALF, and the mechanism may include reduction of ferroptosis through the regulation of HDAC6. Please cite this article as: Zhang YQ, Shi CX, Zhang DM, Zhang LY, Wang LW, Gong ZJ. Sulforaphane, an NRF2 agonist, alleviates ferroptosis in acute liver failure by regulating HDAC6 activity. J Integr Med. 2023; 21(5): 464-473.
Collapse
Affiliation(s)
- Yan-Qiong Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chun-Xia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Dan-Mei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lu-Yi Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zuo-Jiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
10
|
Gasmi A, Gasmi Benahmed A, Shanaida M, Chirumbolo S, Menzel A, Anzar W, Arshad M, Cruz-Martins N, Lysiuk R, Beley N, Oliinyk P, Shanaida V, Denys A, Peana M, Bjørklund G. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit Rev Food Sci Nutr 2023; 64:8054-8072. [PMID: 37129118 DOI: 10.1080/10408398.2023.2195493] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The use of natural bioactive constituents from various food sources for anticancer purposes has become increasingly popular worldwide. Broccoli (Brassica oleracea var. italica) is on the top of the consumed vegetables by the masses. Its raw matrix contains a plethora of phytochemicals, such as glucosinolates and phenolic compounds, along with rich amounts of vitamins, and minerals. Consumption of broccoli-derived phytochemicals provides strong antioxidant effects, particularly due to its sulforaphane content, while modulating numerous molecules involved in cell cycle regulation, control of apoptosis, and tuning enzyme activity. Thus, the inclusion of broccoli in the daily diet lowers the susceptibility to developing cancers. Numerous studies have underlined the undisputable role of broccoli in the diet as a chemopreventive raw food, owing to the content in sulforaphane, an isothiocyanate produced as a result of hydrolysis of precursor glucosinolates called glucoraphanin. This review will provide evidence supporting the specific role of fresh florets and sprouts of broccoli and its key bioactive constituents in the prevention and treatment of different cancers; a number of studies carried out in the in vitro and in vivo conditions as well as clinical trials were analyzed.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
- International Congress of Nutritional Sciences, Casablanca, Morocco
- Société Marocaine de Micronutrition et de Nutrigénétique Appliquée, Casablanca, Morocco
| | | | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific Secretary, Verona, Italy
| | | | - Wajiha Anzar
- Dow University of Health Sciences, Karachi, Pakistan
| | - Mehreen Arshad
- National University of Sciences and Technology, Islamabad, Pakistan
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, Gandra PRD, Portugal
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Volodymyr Shanaida
- Design of Machine Tools, Instruments and Machines Department, Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
| | | | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
11
|
Xie H, Rutz J, Maxeiner S, Grein T, Thomas A, Juengel E, Chun FKH, Cinatl J, Haferkamp A, Tsaur I, Blaheta RA. Plant-Derived Sulforaphane Suppresses Growth and Proliferation of Drug-Sensitive and Drug-Resistant Bladder Cancer Cell Lines In Vitro. Cancers (Basel) 2022; 14:cancers14194682. [PMID: 36230603 PMCID: PMC9564120 DOI: 10.3390/cancers14194682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The natural compound sulforaphane is highly popular among tumor patients, since it is suggested to prevent oncogenesis and cancer progression. However, knowledge about its precise mode of action, particularly when drug resistance has been established, remains poor. The present study demonstrates the proliferation-blocking effects of SFN on a panel of drug-resistant bladder cancer cell lines. Abstract Combined cisplatin–gemcitabine (GC) application is standard for treating muscle-invasive bladder cancer. However, since rapid resistance to treatment often develops, many patients turn to supplements in the form of plant-based compounds. Sulforaphane (SFN), derived from cruciferous vegetables, is one such compound, and the present study was designed to investigate its influence on growth and proliferation in a panel of drug-sensitive bladder cancer cell lines, as well as their gemcitabine- and cisplatin-resistant counterparts. Chemo-sensitive and -resistant RT4, RT112, T24, and TCCSUP cell lines were exposed to SFN in different concentrations, and tumor growth, proliferation, and clone formation were evaluated, in addition to apoptosis and cell cycle progression. Means of action were investigated by assaying cell-cycle-regulating proteins and the mechanistic target of rapamycin (mTOR)/AKT signaling cascade. SFN significantly inhibited growth, proliferation, and clone formation in all four tumor cell lines. Cells were arrested in the G2/M and/or S phase, and alteration of the CDK–cyclin axis was closely associated with cell growth inhibition. The AKT/mTOR signaling pathway was deactivated in three of the cell lines. Acetylation of histone H3 was up-regulated. SFN, therefore, does exert tumor-suppressive properties in cisplatin- and gemcitabine-resistant bladder cancer cells and could be beneficial in optimizing bladder cancer therapy.
Collapse
Affiliation(s)
- Hui Xie
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jochen Rutz
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Sebastian Maxeiner
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Timothy Grein
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Anita Thomas
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Eva Juengel
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Felix K.-H. Chun
- Department of Urology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital, Goethe-University, 60596 Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
| | - Roman A. Blaheta
- Department of Urology and Pediatric Urology, University Medical Center Mainz, 55131 Mainz, Germany
- Correspondence:
| |
Collapse
|
12
|
Allyl-, Butyl- and Phenylethyl-Isothiocyanate Modulate Akt–mTOR and Cyclin–CDK Signaling in Gemcitabine- and Cisplatin-Resistant Bladder Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms231910996. [PMID: 36232303 PMCID: PMC9570347 DOI: 10.3390/ijms231910996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Combined cisplatin–gemcitabine treatment causes rapid resistance development in patients with advanced urothelial carcinoma. The present study investigated the potential of the natural isothiocyanates (ITCs) allyl-isothiocyanate (AITC), butyl-isothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC) to suppress growth and proliferation of gemcitabine- and cisplatin-resistant bladder cancer cells lines. Sensitive and gemcitabine- and cisplatin-resistant RT112, T24, and TCCSUP cells were treated with the ITCs, and tumor cell growth, proliferation, and clone formation were evaluated. Apoptosis induction and cell cycle progression were investigated as well. The molecular mode of action was investigated by evaluating cell cycle-regulating proteins (cyclin-dependent kinases (CDKs) and cyclins A and B) and the mechanistic target of the rapamycin (mTOR)-AKT signaling pathway. The ITCs significantly inhibited growth, proliferation and clone formation of all tumor cell lines (sensitive and resistant). Cells were arrested in the G2/M phase, independent of the type of resistance. Alterations of both the CDK–cyclin axis and the Akt–mTOR signaling pathway were observed in AITC-treated T24 cells with minor effects on apoptosis induction. In contrast, AITC de-activated Akt–mTOR signaling and induced apoptosis in RT112 cells, with only minor effects on CDK expression. It is concluded that AITC, BITC, and PEITC exert tumor-suppressive properties on cisplatin- and gemcitabine-resistant bladder cancer cells, whereby the molecular action may differ among the cell lines. The integration of these ITCs into the gemcitabine-/cisplatin-based treatment regimen might optimize bladder cancer therapy.
Collapse
|
13
|
Fanta CC, Tlusty KJ, Pauley SE, Johnson AL, Benjamin GA, Yseth TK, Bunde MM, Pierce PT, Wang S, Vitiello PF, Mays JR. Synthesis and Evaluation of Functionalized Aryl and Biaryl Isothiocyanates Against Human MCF-7 Cells. ChemMedChem 2022; 17:e202200250. [PMID: 35588002 DOI: 10.1002/cmdc.202200250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/18/2022] [Indexed: 11/11/2022]
Abstract
Organic isothiocyanates (ITCs) are a class of anticancer agents which naturally result from the enzymatic degradation of glucosinolates produced by Brassica vegetables. Previous studies have demonstrated that the structure of an ITC impacts its potency and mode(s) of anticancer properties, opening the way to preparation and evaluation of synthetic, non-natural ITC analogues. This study describes the preparation of a library of 79 non-natural ITC analogues intended to probe further structure-activity relationships for aryl ITCs and second-generation, functionalized biaryl ITC variants. ITC candidates were subjected to bifurcated evaluation of antiproliferative and antioxidant response element (ARE)-induction capacity against human MCF-7 cells. The results of this study led to the identification of (1) several key structure-activity relationships and (2) lead ITCs demonstrating potent antiproliferative properties.
Collapse
Affiliation(s)
- Claire C Fanta
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Sarah E Pauley
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | | | - Taylor K Yseth
- Augustana University, Chemistry & Biochemistry, UNITED STATES
| | | | - Paul T Pierce
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Shirley Wang
- The University of Oklahoma Health Sciences Center, Pediatrics, UNITED STATES
| | - Peter F Vitiello
- The University of Oklahoma Health Sciences Center, Pediatrics; Physiology; Biochemistry & Molecular Biology, UNITED STATES
| | - Jared R Mays
- Augustana University, Chemistry & Biochemistry, 2001 S. Summit Ave., 57197, Sioux Falls, UNITED STATES
| |
Collapse
|
14
|
Yang M, Luo Q, Chen X, Chen F. Bitter melon derived extracellular vesicles enhance the therapeutic effects and reduce the drug resistance of 5-fluorouracil on oral squamous cell carcinoma. J Nanobiotechnology 2021; 19:259. [PMID: 34454534 PMCID: PMC8400897 DOI: 10.1186/s12951-021-00995-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/12/2021] [Indexed: 02/06/2023] Open
Abstract
Background Plant-derived extracellular vesicles (PDEVs) have been exploited for cancer treatment with several benefits. Bitter melon is cultivated as a vegetable and folk medicine with anticancer and anti-inflammatory activities. 5-Fluorouracil (5-FU) is widely used for cancer treatment. However, 5-FU-mediated NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammation activation induced the resistance of oral squamous cell carcinoma (OSCC) cells to 5-FU. In this study, we explored the potential of bitter melon-derived extracellular vesicles (BMEVs) for enhancing the therapeutic efficacy and reduce the resistance of OSCC to 5-FU. Results Herein, we demonstrate that bitter melon derived extracellular vesicles (BMEVs), in addition to their antitumor activity against OSCC have intrinsic anti-inflammatory functions. BMEVs induced S phase cell cycle arrest and apoptosis. Apoptosis induction was dependent on reactive oxygen species (ROS) production and JUN protein upregulation, since pretreatment with N-acetyl cysteine or catechin hydrate could prevent apoptosis and JUN accumulation, respectively. Surprisingly, BMEVs significantly downregulated NLRP3 expression, although ROS plays a central role in NLRP3 activation. We further assessed the underlying molecular mechanism and proposed that the RNAs of BMEVs, at least in part, mediate anti-inflammatory bioactivity. In our previous studies, NLRP3 activation contributed to the resistance of OSCC cells to 5-FU. Our data clearly indicate that BMEVs could exert a remarkable synergistic therapeutic effect of 5-FU against OSCC both in vitro and in vivo. Most notably, NLRP3 downregulation reduced the resistance of OSCC to 5-FU. Conclusions Together, our findings demonstrate a novel approach to enhance the therapeutic efficacy and reduce the drug resistance of cancer cells to chemotherapeutic agents, which provides proof-of-concept evidence for the future development of PDEVs-enhanced therapy. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00995-1.
Collapse
Affiliation(s)
- Meng Yang
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Qingqiong Luo
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xu Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Fuxiang Chen
- Department of Clinical Immunology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, People's Republic of China. .,Faculty of Medical Laboratory Science, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
15
|
Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma. Int J Mol Sci 2021; 22:ijms22115938. [PMID: 34073079 PMCID: PMC8197880 DOI: 10.3390/ijms22115938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane (SFN) is a natural glucosinolate found in cruciferous vegetables that acts as a chemopreventive agent, but its mechanism of action is not clear. Due to antioxidative mechanisms being thought central in preventing cancer progression, SFN could play a role in oxidative processes. Since redox imbalance with increased levels of reactive oxygen species (ROS) is involved in the initiation and progression of bladder cancer, this mechanism might be involved when chemoresistance occurs. This review summarizes current understanding regarding the influence of SFN on ROS and ROS-related pathways and appraises a possible role of SFN in bladder cancer treatment.
Collapse
|
16
|
Nagaraju GP, Kasa P, Dariya B, Surepalli N, Peela S, Ahmad S. Epigenetics and therapeutic targets in gastrointestinal malignancies. Drug Discov Today 2021; 26:2303-2314. [PMID: 33895313 DOI: 10.1016/j.drudis.2021.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) malignancies account for substantial mortality and morbidity worldwide. They are generally promoted by dysregulated signal transduction and epigenetic pathways, which are controlled by specific enzymes. Recent studies demonstrated that histone deacetylases (HDACs) together with DNA methyltransferases (DNMTs) have crucial roles in the signal transduction/epigenetic pathways in GI regulation. In this review, we discuss various enzyme targets and their functional mechanisms responsible for the regulatory processes of GI malignancies. We also discuss the epigenetic therapeutic targets that are mainly facilitated by DNMT and HDAC inhibitors, which have functional consequences and clinical outcomes for GI malignancies.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology & Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30332, USA
| | - Prameswari Kasa
- Dr L.V. Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad 500004, India
| | - Begum Dariya
- Department of Biosciences and Biotechnology, Banasthali University, Banasthali 304022, Rajasthan, India
| | | | - Sujatha Peela
- Department of Biotechnology, Dr B.R. Ambedkar University, Srikakulam 532410, AP, India
| | - Sarfraz Ahmad
- AdventHealth Cancer Institute, FSU and UCF Colleges of Medicine, Orlando, FL 32804, USA.
| |
Collapse
|
17
|
Ullah MF, Usmani S, Shah A, Abuduhier FM. Dietary molecules and experimental evidence of epigenetic influence in cancer chemoprevention: An insight. Semin Cancer Biol 2020; 83:319-334. [PMID: 33152485 DOI: 10.1016/j.semcancer.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | - Faisel M Abuduhier
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
18
|
Science and Healthy Meals in the World: Nutritional Epigenomics and Nutrigenetics of the Mediterranean Diet. Nutrients 2020; 12:nu12061748. [PMID: 32545252 PMCID: PMC7353392 DOI: 10.3390/nu12061748] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The Mediterranean Diet (MD), UNESCO Intangible Cultural Heritage of Humanity, has become a scientific topic of high interest due to its health benefits. The aim of this review is to pick up selected studies that report nutrigenomic or nutrigenetic data and recapitulate some of the biochemical/genomic/genetic aspects involved in the positive health effects of the MD. These include (i) the antioxidative potential of its constituents with protective effects against several diseases; (ii) the epigenetic and epigenomic effects exerted by food components, such as Indacaxanthin, Sulforaphane, and 3-Hydroxytyrosol among others, and their involvement in the modulation of miRNA expression; (iii) the existence of predisposing or protective human genotypes due to allelic diversities and the impact of the MD on disease risk. A part of the review is dedicated to the nutrigenomic effects of the main cooking methods used in the MD and also to a comparative analysis of the nutrigenomic properties of the MD and other diet regimens and non-MD-related aliments. Taking all the data into account, the traditional MD emerges as a diet with a high antioxidant and nutrigenomic modulation power, which is an example of the “Environment-Livings-Environment” relationship and an excellent patchwork of interconnected biological actions working toward human health.
Collapse
|
19
|
Chronic Sulforaphane Administration Inhibits Resistance to the mTOR-Inhibitor Everolimus in Bladder Cancer Cells. Int J Mol Sci 2020; 21:ijms21114026. [PMID: 32512849 PMCID: PMC7312500 DOI: 10.3390/ijms21114026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive bladder cancer growth is associated with abnormal activation of the mammalian target of the rapamycin (mTOR) pathway, but treatment with an mTOR inhibitor has not been as effective as expected. Rather, resistance develops under chronic drug use, prompting many patients to lower their relapse risk by turning to natural, plant-derived products. The present study was designed to evaluate whether the natural compound, sulforaphane (SFN), combined with the mTOR inhibitor everolimus, could block the growth and proliferation of bladder cancer cells in the short- and long-term. The bladder cancer cell lines RT112, UMUC3, and TCCSUP were exposed short- (24 h) or long-term (8 weeks) to everolimus (0.5 nM) or SFN (2.5 µM) alone or in combination. Cell growth, proliferation, apoptosis, cell cycle progression, and cell cycle regulating proteins were evaluated. siRNA blockade was used to investigate the functional impact of the proteins. Short-term application of SFN and/or everolimus resulted in significant tumor growth suppression, with additive inhibition on clonogenic tumor growth. Long-term everolimus treatment resulted in resistance development characterized by continued growth, and was associated with elevated Akt-mTOR signaling and cyclin-dependent kinase (CDK)1 phosphorylation and down-regulation of p19 and p27. In contrast, SFN alone or SFN+everolimus reduced cell growth and proliferation. Akt and Rictor signaling remained low, and p19 and p27 expressions were high under combined drug treatment. Long-term exposure to SFN+everolimus also induced acetylation of the H3 and H4 histones. Phosphorylation of CDK1 was diminished, whereby down-regulation of CDK1 and its binding partner, Cyclin B, inhibited tumor growth. In conclusion, the addition of SFN to the long-term everolimus application inhibits resistance development in bladder cancer cells in vitro. Therefore, sulforaphane may hold potential for treating bladder carcinoma in patients with resistance to an mTOR inhibitor.
Collapse
|
20
|
Immunotherapy in Bladder Cancer: Current Methods and Future Perspectives. Cancers (Basel) 2020; 12:cancers12051181. [PMID: 32392774 PMCID: PMC7281703 DOI: 10.3390/cancers12051181] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer is one of the most significant genitourinary cancer, causing high morbidity and mortality in a great number of patients. Over the years, various treatment methods for this type of cancer have been developed. The most common is the highly efficient method using Bacillus Calmette-Guerin, giving a successful effect in a high percentage of patients. However, due to the genetic instability of bladder cancer, together with individual needs of patients, the search for different therapy methods is ongoing. Immune checkpoints are cell surface molecules influencing the immune response and decreasing the strength of the immune response. Among those checkpoints, the PD-1 (programmed cell death protein-1)/PD-L1 (programmed cell death protein ligand 1) inhibitors aim at blocking those molecules, which results in T cell activation, and in bladder cancer the use of Atezolizumab, Avelumab, Durvalumab, Nivolumab, and Pembrolizumab has been described. The inhibition of another pivotal immune checkpoint, CTLA-4 (cytotoxic T cell antigen), may result in the mobilization of the immune system against bladder cancer and, among anti-CTLA-4 antibodies, the use of Ipilimumab and Tremelimumab has been discussed. Moreover, several different approaches to successful bladder cancer treatment exists, such as the use of ganciclovir and mTOR (mammalian target of rapamycin) kinase inhibitors, IL-12 (interleukin-12) and COX-2 (cyclooxygenase-2). The use of gene therapies and the disruption of different signaling pathways are currently being investigated. Research suggests that the combination of several methods increases treatment efficiency and the positive outcome in individual.
Collapse
|
21
|
Patnaik S, Anupriya. Drugs Targeting Epigenetic Modifications and Plausible Therapeutic Strategies Against Colorectal Cancer. Front Pharmacol 2019; 10:588. [PMID: 31244652 PMCID: PMC6563763 DOI: 10.3389/fphar.2019.00588] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
Genetic variations along with epigenetic modifications of DNA are involved in colorectal cancer (CRC) development and progression. CRC is the fourth leading cause of cancer-related deaths worldwide. Initiation and progression of CRC is the cumulation of a variety of genetic and epigenetic changes in colonic epithelial cells. Colorectal carcinogenesis is associated with epigenetic aberrations including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. Recently, epigenetic modifications have been identified like association of hypermethylated gene Claudin11 (CLDN11) with metastasis and prognosis of poor survival of CRC. DNA methylation of genes CMTM3, SSTR2, MDF1, NDRG4 and TGFB2 are potential epigenetic biomarkers for the early detection of CRC. Tumor suppressor candidate 3 (TUSC3) mRNA expression is silenced by promoter methylation, which promotes epidermal growth factor receptor (EGFR) signaling and rescues the CRC cells from apoptosis and hence leading to poor survival rate. Previous scientific evidences strongly suggest epigenetic modifications that contribute to anticancer drug resistance. Recent research studies emphasize development of drugs targeting histone deacetylases (HDACs) and DNA methyltransferase inhibitors as an emerging anticancer strategy. This review covers potential epigenetic modification targeting chemotherapeutic drugs and probable implementation for the treatment of CRC, which offers a strong rationale to explore therapeutic strategies and provides a basis to develop potent antitumor drugs.
Collapse
|