1
|
Ijaz Z, Kahramangil D, Gera K, Sahin I. Durable pembrolizumab response in metastatic MSS ARID1A-mutant undifferentiated carcinoma of the esophagus. J Chemother 2025; 37:284-289. [PMID: 38752926 DOI: 10.1080/1120009x.2024.2352986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/27/2024] [Accepted: 05/04/2024] [Indexed: 04/19/2025]
Abstract
In 2021, the FDA approved the combination of pembrolizumab with platinum and fluoropyrimidine-based chemotherapy for advanced esophageal and gastroesophageal junction (GEJ) cancers, regardless of the PD-L1 score. Pembrolizumab alone may benefit MSI-H gastroesophageal adenocarcinomas, but most patients with pMMR/MSS types require it in combination with standard chemotherapy. The NCCN recognizes the predictive value of PD-L1 CPS and recommends pembrolizumab plus chemotherapy for PD-L1 CPS ≥10. Undifferentiated carcinoma of the esophagus, a rare esophageal cancer subtype with a poor prognosis, still lacks a well-defined optimal treatment. We report a case of an 87-year-old female with advanced, pMMR/MSS, HER2-negative, ARID1A-mutant, undifferentiated carcinoma of the esophagus with a PD-L1 CPS of 20, who has shown a durable ongoing response to pembrolizumab monotherapy for 2 years now. The case highlights a favorable response, possibly attributed to the high CPS score combined with the ARID1A mutation, as recent research suggests that ARID1A mutations may increase immunotherapy susceptibility.
Collapse
Affiliation(s)
- Zohaib Ijaz
- Department of Medicine, University of FL College of Medicine, Gainesville, FL, USA
| | - Doga Kahramangil
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Kriti Gera
- Department of Medicine, University of FL College of Medicine, Gainesville, FL, USA
| | - Ilyas Sahin
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| |
Collapse
|
2
|
Watson PM, DeVaux CA, Freeman KW. Loss of ARID1A leads to a cold tumor phenotype via suppression of IFNγ signaling. Sci Rep 2025; 15:8716. [PMID: 40082458 PMCID: PMC11906763 DOI: 10.1038/s41598-025-91688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
The collapse of inflammatory signaling that recruits cytotoxic immune cells to the tumor microenvironment contributes to the immunologically cold tumor phenotype in neuroblastoma (NB) and is a barrier to NB immunotherapy. Multiple studies have reported that MYCN amplification, a trait of high-risk NB, correlates with a loss of inflammatory signaling; but MYCN also correlates with 1p36 deletions in NB where the SWI/SNF chromatin remodeling complex subunit ARID1A (1p36.11) is located. ARID1A is known to support inflammatory signaling in adult cancers but its role in NB inflammatory signaling is unexplored. We find MYCN overexpression causes a stronger inflammatory response to interferon-gamma (IFNγ). ARID1A knockdown causes a weaker inflammatory response and reduces IFNγ induced gene signatures for the transcription factor interferon response factor 1 (IRF1). We found ARID1A is a functional interactor of IRF1 by co-immunoprecipitation studies, and ARID1A silencing causes loss of activating chromatin marks at the IRF1 target gene CXCL10. We model that IRF1 uses ARID1A containing SWI/SNF to promote CXCL10 in response to IFNγ. Our work clarifies that the loss of ARID1A, which tightly associates with MYCN amplification, causes reduced inflammatory signaling. This work finds that ARID1A is a critical regulator of inflammatory signaling in NB and provides rationale for testing immune therapies in MYCN amplified NB that are effective in adult ARID1A mutated cancers.
Collapse
Affiliation(s)
- Pamela M Watson
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chelsea A DeVaux
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kevin W Freeman
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA.
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
3
|
Li J, Fu Y, Zhang H, Ma H. Molecular and pathological landscape of the AT-rich interaction domain 1A (ARID1A) mutation in hepatocellular carcinoma. Pathol Res Pract 2024; 266:155763. [PMID: 39706068 DOI: 10.1016/j.prp.2024.155763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with complex etiological factors and a diverse genetic landscape. Among the critical genetic mutations in HCC, the AT-rich interaction domain 1 A (ARID1A) gene, a key component of the SWI/SNF chromatin remodeling complex, stands out due to its significant role in both tumor suppression and oncogenesis. This review comprehensively examines the molecular and pathological impacts of ARID1A mutations in HCC. ARID1A mutations, which occur in approximately 7.9 % of HCC cases, predominantly involve truncating mutations leading to loss of function. These mutations are associated with various aggressive cancer features, including larger tumor size, higher rates of metastasis, and poor prognosis. The dual role of ARID1A in HCC is context-dependent, acting as a tumor suppressor by regulating cell cycle control, DNA damage repair, and gene expression, while also displaying oncogenic properties in specific contexts by promoting early tumorigenesis through oxidative stress pathways. Understanding the molecular mechanisms of ARID1A, including its interactions with key cellular pathways such as PI3K/AKT/mTOR, β-catenin, and PD-L1, provides insights into its complex role in HCC pathogenesis. Furthermore, ARID1A's impact on cancer stem cell maintenance, metabolic reprogramming, and immune evasion underscores its potential as a therapeutic target. This review highlights the need for context-specific therapeutic strategies targeting ARID1A, which could lead to more effective treatments for HCC, addressing both its tumor-suppressive and oncogenic activities.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China.
| | - Yuxia Fu
- Department of Ultrasound, Dianjiang People's Hospital of Chongqing, Chongqing, China
| | - Hongchuan Zhang
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China
| | - Hong Ma
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|
4
|
Yu S, Chen M, Zhu X, Chen C, Liang J, Wang H, Lu J, Ding Y, Kong M, Teng L, Zhou D. The combination of exon sequencing and metabolomics to establish a molecular typing system for gastric cancer. Heliyon 2024; 10:e34317. [PMID: 39170180 PMCID: PMC11336309 DOI: 10.1016/j.heliyon.2024.e34317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Background Gastric cancer (GC) is one of the most common malignant tumors in the world. It has become increasingly difficult to meet the needs of precision therapy using the existing molecular typing system. Therefore, developing a more effective molecular typing system for GC is urgent. Methods In this study, 100 Chinese GC patients were included. Whole-exome sequencing (WES) and metabolomics analysis were performed to reveal the characteristics of genomic and metabolic changes. Results In WES, nonsynonymous mutations accounted for the majority. Based on metabolomics, GC has been divided into three subtypes with distinct metabolic features. Importantly, we ultimately divided GC into four subtypes with different metabolic characteristics, genomic alterations, and clinical prognoses by incorporating biomics analysis. Conclusions Integrating biological features, we constructed a novel molecular system for GC that was closely related to genetics and metabolism, providing new insights for further understanding the heterogeneity and formulating precise treatment strategies.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ming Chen
- Department of Surgical Oncology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Xiaohua Zhu
- Department of Medical Oncology, Shaoxing People's Hospital, Shaoxing, 312000, China
| | - Cheng Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinxiao Liang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
5
|
Zou H, Liu C, Ruan Y, Fang L, Wu T, Han S, Dang T, Meng H, Zhang Y. Colorectal medullary carcinoma: a pathological subtype with intense immune response and potential to benefit from immune checkpoint inhibitors. Expert Rev Clin Immunol 2024; 20:997-1008. [PMID: 38459764 DOI: 10.1080/1744666x.2024.2328746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Different pathological types of colorectal cancer have distinguished immune landscape, and the efficacy of immunotherapy will be completely different. Colorectal medullary carcinoma, accounting for 2.2-3.2%, is characterized by massive lymphocyte infiltration. However, the attention to the immune characteristics of colorectal medullary carcinoma is insufficient. AREA COVERED We searched the literature about colorectal medullary carcinoma on PubMed through November 2023to investigate the hallmarks of colorectal medullary carcinoma's immune landscape, compare medullary carcinoma originating from different organs and provide theoretical evidence for precise treatment, including applying immunotherapy and BRAF inhibitors. EXPERT OPINION Colorectal medullary carcinoma is a pathological subtype with intense immune response, with six immune characteristics and has the potential to benefit from immunotherapy. Mismatch repair deficiency, ARID1A missing and BRAF V600E mutation often occurs. IFN-γ pathway is activated and PD-L1 expression is increased. Abundant lymphocyte infiltration performs tumor killing function. In addition, BRAF mutation plays an important role in the occurrence and development, and we can consider the combination of BRAF inhibitors and immunotherapy in patients with BRAF mutant. The exploration of colorectal medullary carcinoma will arouse researchers' attention to the correlation between pathological subtypes and immune response, and promote the process of precise immunotherapy.
Collapse
Affiliation(s)
- Haoyi Zou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Fang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University in Shandong, Qingdao, China
| | - Tong Wu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Tianjiao Dang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
6
|
Onoprienko A, Hofstetter G, Muellauer L, Dorittke T, Polterauer S, Grimm C, Bartl T. Prognostic role of transcription factor ARID1A in patients with endometrial cancer of no specific molecular profile (NSMP) subtype. Int J Gynecol Cancer 2024; 34:840-846. [PMID: 38508586 DOI: 10.1136/ijgc-2023-005111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
OBJECTIVE As more than 50% of newly diagnosed endometrial cancers remain classified as 'no specific molecular subtype' (NSMP) due to a lack of established biomarkers to further improve molecular subtyping, this study aims to evaluate the prognostic value of ARID1A in endometrial cancers of NSMP subtype. METHODS Prospectively collected molecular profiling data of all consecutive patients with endometrial cancer who underwent primary surgery at our department between August 2017 and June 2022 and for whom both molecular profiling and clinical follow-up data were available were retrospectively evaluated. Tumor specimens were evaluated by combined mismatch repair protein immunohistochemistry and targeted next-generation hotspot sequencing. ARID1A mutational status, as defined by full-length gene sequencing, was matched with risk of recurrence, progression-free and disease-specific survival within the NSMP cohort. RESULTS A total of 127 patients with endometrial cancer were included. Among 72 patients with tumors of NSMP subtype (56.7%), ARID1A mutations were identified in 24 cases (33.3%). ARID1A mutations were significantly associated with a higher risk of recurrence (37.5% vs 12.5%, OR 4.20, 95% CI 1.28 to 13.80, p=0.018) and impaired progression-free survival (HR 3.96, 95% CI 1.41 to 11.15, p=0.009), but not with disease-specific survival. The results for both risk of recurrence (OR 3.70, 95% CI 1.04 to 13.13, p=0.043) and progression-free survival (HR 3.19, 95% CI 1.10 to 9.25, p=0.033) were confirmed in multivariable analysis compared with advanced tumor stage International Federation of Gynecology and Obstetrics (2009) (FIGO ≥III) and impaired Eastern Clinical Oncology Group performance status (ECOG ≥1). CONCLUSION ARID1A appears to identify patients with endometrial cancer of NSMP subtypes with a higher risk of recurrence and could be used as a future prognostic biomarker. After clinical validation, ARID1A assessment could help to further sub-classify selected endometrial cancers and improve personalized treatment strategies.
Collapse
Affiliation(s)
- Arina Onoprienko
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Gerda Hofstetter
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Tim Dorittke
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Stephan Polterauer
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Christoph Grimm
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
| | - Thomas Bartl
- Department of Obstetrics and Gynecology, Division of General Gynecology and Gynecologic Oncology, Medical University of Vienna, Vienna, Austria
- Translational Gynecology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Yamashita H, Nakayama K, Kanno K, Ishibashi T, Ishikawa M, Iida K, Razia S, Kiyono T, Kyo S. Evaluation of ARID1A as a Potential Biomarker for Predicting Response to Immune Checkpoint Inhibitors in Patients with Endometrial Cancer. Cancers (Basel) 2024; 16:1999. [PMID: 38893118 PMCID: PMC11171230 DOI: 10.3390/cancers16111999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND AT-rich interaction domain 1A (ARID1A) has been proposed as a new biomarker for predicting response to immune checkpoint inhibitors (ICIs). The predictive value of ARID1A for predicting ICI effectiveness has not been reported for endometrial cancer. Therefore, we investigated whether ARID1A negativity predicts ICI effectiveness for endometrial cancer treatment. METHODS We evaluated ARID1A expression, tumor-infiltrating lymphocytes (CD8+), and immune checkpoint molecules (PD-L1/PD-1) by immunostaining endometrial samples from patients with endometrial cancer. Samples in which any of the four mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2) were determined to be negative via immunostaining were excluded. In the ARID1A-negative group, microsatellite instability (MSI) status was confirmed via MSI analysis. RESULTS Of the 102 samples investigated, 25 (24.5%) were ARID1A-negative. CD8 and PD-1 expression did not differ significantly between the ARID1A-negative group and the ARID1A-positive group; however, the ARID1A-negative group showed significantly lower PD-L1 expression. Only three samples (14.2%) in the ARID1A-negative group showed high MSI. Sanger sequencing detected three cases of pathological mutation in the MSH2-binding regions. We also established an ARID1A-knockout human ovarian endometriotic epithelial cell line (HMOsisEC7 ARID1A KO), which remained microsatellite-stable after passage. CONCLUSION ARID1A negativity is not suitable as a biomarker for ICI effectiveness in treating endometrial cancer.
Collapse
Affiliation(s)
- Hitomi Yamashita
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan; (H.Y.); (K.K.); (M.I.); (K.I.)
| | - Kentaro Nakayama
- Department of Obstetrics and Gynecology, Nagoya City University East Medical Centre, Nagoya 464-8547, Japan;
| | - Kosuke Kanno
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan; (H.Y.); (K.K.); (M.I.); (K.I.)
| | - Tomoka Ishibashi
- Department of Obstetrics and Gynecology, Nagoya City University East Medical Centre, Nagoya 464-8547, Japan;
| | - Masako Ishikawa
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan; (H.Y.); (K.K.); (M.I.); (K.I.)
| | - Kouji Iida
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan; (H.Y.); (K.K.); (M.I.); (K.I.)
| | - Sultana Razia
- Department of Legal Medicine, Shimane University School of Medicine, Izumo 693-8501, Japan;
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center, Kashiwa 277-8577, Japan;
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan; (H.Y.); (K.K.); (M.I.); (K.I.)
| |
Collapse
|
8
|
Yamashita K, Sewastjanow-Silva M, Yoshimura K, Rogers JE, Rosa Vicentini E, Pool Pizzi M, Fan Y, Zou G, Li JJ, Blum Murphy M, Gan Q, Waters RE, Wang L, Ajani JA. SMARCA4 Mutations in Gastroesophageal Adenocarcinoma: An Observational Study via a Next-Generation Sequencing Panel. Cancers (Basel) 2024; 16:1300. [PMID: 38610978 PMCID: PMC11010836 DOI: 10.3390/cancers16071300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND The clinical impact of SMARCA4 mutations (SMARCA4ms) in gastroesophageal adenocarcinoma (GEA) remains underexplored. This study aimed to examine the association of SMARCA4ms with clinical outcomes and co-occurrence with other gene mutations identified through a next-generation sequencing (NGS) panel in GEA patients. METHODS A total of 256 patients with metastatic or recurrent GEA who underwent NGS panel profiling at the MD Anderson Cancer Center between 2016 and 2022 were included. Comparative analyses were performed to assess clinical outcomes related to SMARCA4ms. The frequency and types of SMARCA4ms and their co-occurrence with other gene mutations were also examined. RESULTS SMARCA4ms were identified in 19 patients (7.4%). These SMARCA4ms were significantly associated with non-signet ring cell subtype (p = 0.044) and PD-L1 positive expression (p = 0.046). No difference in survival between the SMARCA4m and SMARCA4-normal group was observed (p = 0.84). There were significant associations between SMARCA4ms and FANCA, IGF1R, KRAS, FANCL, and PTEN alterations. Notably, 15 of the 19 SMARCA4m cases involved SNV missense mutations, with frequent co-occurrences noted with TP53, KRAS, ARID1A, and ERBB2 mutations. CONCLUSIONS These results serve as the first comprehensive examination of the relationship between SMARCA4ms and clinical outcomes in GEA.
Collapse
Affiliation(s)
- Kohei Yamashita
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Matheus Sewastjanow-Silva
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Katsuhiro Yoshimura
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Jane E. Rogers
- Department of Pharmacy Clinical Programs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ernesto Rosa Vicentini
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Melissa Pool Pizzi
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Yibo Fan
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Gengyi Zou
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Jenny J. Li
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Mariela Blum Murphy
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| | - Qiong Gan
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.G.); (R.E.W.)
| | - Rebecca E. Waters
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Q.G.); (R.E.W.)
| | - Linghua Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Jaffer A. Ajani
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (K.Y.); (M.S.-S.); (K.Y.); (E.R.V.); (M.P.P.); (Y.F.); (G.Z.); (J.J.L.); (M.B.M.)
| |
Collapse
|
9
|
Zhang X, Zhang Y, Zhang Q, Lu M, Chen Y, Zhang X, Zhang P. Role of AT-rich interaction domain 1A in gastric cancer immunotherapy: Preclinical and clinical perspectives. J Cell Mol Med 2024; 28:e18063. [PMID: 38041544 PMCID: PMC10902580 DOI: 10.1111/jcmm.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
The application of immune checkpoint inhibitor (ICI) using monoclonal antibodies has brought about a profound transformation in the clinical outcomes for patients grappling with advanced gastric cancer (GC). Nonetheless, despite these achievements, the quest for effective functional biomarkers for ICI therapy remains constrained. Recent research endeavours have shed light on the critical involvement of modified epigenetic regulators in the pathogenesis of gastric tumorigenesis, thus providing a glimpse into potential biomarkers. Among these regulatory factors, AT-rich interaction domain 1A (ARID1A), a pivotal constituent of the switch/sucrose non-fermentable (SWI/SNF) complex, has emerged as a promising candidate. Investigations have unveiled the pivotal role of ARID1A in bridging the gap between genome instability and the reconfiguration of the tumour immune microenvironment, culminating in an enhanced response to ICI within the landscape of gastric cancer treatment. This all-encompassing review aims to dissect the potential of ARID1A as a valuable biomarker for immunotherapeutic approaches in gastric cancer, drawing from insights garnered from both preclinical experimentation and clinical observations.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Youzhi Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of PharmacyHubei University of Science and TechnologyXianningChina
| | - Qiaoyun Zhang
- School of PharmacyHubei University of Science and TechnologyXianningChina
| | - Mengyao Lu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an Second People's Hospitalthe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuaianChina
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
10
|
Hein KZ, Stephen B, Fu S. Therapeutic Role of Synthetic Lethality in ARID1A-Deficient Malignancies. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:41-52. [PMID: 38327752 PMCID: PMC10846636 DOI: 10.36401/jipo-22-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/28/2023] [Accepted: 09/21/2023] [Indexed: 02/09/2024]
Abstract
AT-rich interaction domain 1A (ARID1A), a mammalian switch/sucrose nonfermenting complex subunit, modulates several cellular processes by regulating chromatin accessibility. It is encoded by ARID1A, an immunosuppressive gene frequently disrupted in a many tumors, affecting the proliferation, migration, and invasion of cancer cells. Targeting molecular pathways and epigenetic regulation associated with ARID1A loss, such as inhibiting the PI3K/AKT pathway or modulating Wnt/β-catenin signaling, may help suppress tumor growth and progression. Developing epigenetic drugs like histone deacetylase or DNA methyltransferase inhibitors could restore normal chromatin structure and function in cells with ARID1A loss. As ARID1A deficiency correlates with enhanced tumor mutability, microsatellite instability, high tumor mutation burden, increased programmed death-ligand 1 expression, and T-lymphocyte infiltration, ARID1A-deficient cells can be a potential therapeutic target for immune checkpoint inhibitors that warrants further exploration. In this review, we discuss the role of ARID1A in carcinogenesis, its crosstalk with other signaling pathways, and strategies to make ARID1A-deficient cells a potential therapeutic target for patients with cancer.
Collapse
Affiliation(s)
- Kyaw Z. Hein
- Department of Internal Medicine, HCA Florida Westside Hospital, Plantation, FL, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
11
|
Yang Y, Wu SF, Bao W. Molecular subtypes of endometrial cancer: Implications for adjuvant treatment strategies. Int J Gynaecol Obstet 2024; 164:436-459. [PMID: 37525501 DOI: 10.1002/ijgo.14969] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND When determining adjuvant treatment for endometrial cancer, the decision typically relies on factors such as cancer stage, histologic grade, subtype, and a few histopathologic markers. The Cancer Genome Atlas revealed molecular subtyping of endometrial cancer, which can provide more accurate prognostic information and guide personalized treatment plans. OBJECTIVE To summarize the expression and molecular basis of the main biomarkers of endometrial cancer. SEARCH STRATEGY PubMed was searched from January 2000 to March 2023. SELECTION CRITERIA Studies evaluating molecular subtypes of endometrial cancer and implications for adjuvant treatment strategies. DATA COLLECTION AND ANALYSIS Three authors independently performed a comprehensive literature search, collected and extracted data, and assessed the methodological quality of the included studies. MAIN RESULTS We summarized the molecular subtyping of endometrial cancer, including mismatch repair deficient, high microsatellite instability, polymerase epsilon (POLE) exonuclease domain mutated, TP53 gene mutation, and non-specific molecular spectrum. We also summarized planned and ongoing clinical trials and common therapy methods in endometrial cancer. POLE mutated endometrial cancer consistently exhibits favorable patient outcomes, regardless of adjuvant therapy. Genomic similarities between p53 abnormality endometrial cancer and high-grade serous ovarian cancer suggested possible overlapping treatment strategies. High levels of immune checkpoint molecules, such as programmed cell death 1 and programmed cell death 1 ligand 1 can counterbalance mismatch repair deficient endometrial cancer immune phenotype. Hormonal treatment is an appealing option for high-risk non-specific molecular spectrum endometrial cancers, which are typically endometrioid and hormone receptor positive. Combining clinical and pathologic characteristics to guide treatment decisions for patients, including concurrent radiochemotherapy, chemotherapy, inhibitor therapy, endocrine therapy, and immunotherapy, might improve the management of endometrial cancer and provide more effective treatment options for patients. CONCLUSIONS We have characterized the molecular subtypes of endometrial cancer and discuss their value in terms of a patient-tailored therapy in order to prevent significant under- or overtreatment.
Collapse
Affiliation(s)
- Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Su Fang Wu
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Wei Bao
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
12
|
Li Y, Liu Y, Yang K, Jin L, Yang J, Huang S, Liu Y, Hu B, Liu R, Liu W, Liu A, Zheng Q, Zhang Y. Impact of ARID1A and TP53 mutations in pediatric refractory or relapsed mature B-Cell lymphoma treated with CAR-T cell therapy. Cancer Cell Int 2023; 23:281. [PMID: 37981695 PMCID: PMC10657579 DOI: 10.1186/s12935-023-03122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has been used to treat pediatric refractory or relapsed mature B-cell non-Hodgkin lymphoma (r/r MB-NHL) with significantly improved outcomes, but a proportion of patients display no response or experience relapse after treatment. To investigate whether tumor-intrinsic somatic genetic alterations have an impact on CAR-T cell treatment, the genetic features and treatment outcomes of 89 children with MB-NHL were analyzed. METHODS 89 pediatric patients treated at multiple clinical centers of the China Net Childhood Lymphoma (CNCL) were included in this study. Targeted next-generation sequencing for a panel of lymphoma-related genes was performed on tumor samples. Survival rates and relapse by genetic features and clinical factors were analyzed. Survival curves were calculated using a log-rank (Mantel-Cox) test. The Wilcox sum-rank test and Fisher's exact test were applied to test for group differences. RESULTS A total of 89 driver genes with somatic mutations were identified. The most frequently mutated genes were TP53 (66%), ID3 (55%), and ARID1A (31%). The incidence of ARID1A mutation and co-mutation of TP53 and ARID1A was high in patients with r/r MB-NHL (P = 0.006; P = 0.018, respectively). CAR-T cell treatment significantly improved survival in r/r MB-NHL patients (P = 0.00081), but patients with ARID1A or ARID1A and TP53 co-mutation had poor survival compared to those without such mutations. CONCLUSION These results indicate that children with MB-NHL harboring ARID1A or TP53 and ARID1A co-mutation are insensitive to initial conventional chemotherapy and subsequent CAR-T cell treatment. Examination of ARID1A and TP53 mutation status at baseline might have prognostic value, and risk-adapted or more effective therapies should be considered for patients with these high-risk genetic alterations.
Collapse
Affiliation(s)
- Yang Li
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Yang Liu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Keyan Yang
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Ling Jin
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jing Yang
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Shuang Huang
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Ying Liu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Bo Hu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Rong Liu
- Department of Hematology/Oncology, Capital institute of pediatric, Beijing, China
| | - Wei Liu
- Department of Hematology/Oncology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ansheng Liu
- Department of Hematology/Oncology, Xian Children's Hospital, Xi'An, China
| | - Qinlong Zheng
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Yonghong Zhang
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China.
| |
Collapse
|
13
|
Cucchiara F, Crucitta S, Petrini I, de Miguel Perez D, Ruglioni M, Pardini E, Rolfo C, Danesi R, Del Re M. Gene-network analysis predicts clinical response to immunotherapy in patients affected by NSCLC. Lung Cancer 2023; 183:107308. [PMID: 37473500 DOI: 10.1016/j.lungcan.2023.107308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
OBJECTIVES Predictive biomarkers of response to immune checkpoint inhibitors (ICIs) have been extensively studied in non-small cell lung cancer (NSCLC) with controversial results. Recently, gene-network analysis emerged as a new tool to address tumor biology and behavior, representing a potential tool to evaluate response to therapies. METHODS Clinical data and genetic profiles of 644 advanced NSCLCs were retrieved from cBioPortal and the Cancer Genome Atlas (TCGA); 243 ICI-treated NSCLCs were used to identify an immunotherapy response signatures via mutated gene network analysis and K-means unsupervised clustering. Signatures predictive values were tested in an external dataset of 242 cases and assessed versus a control group of 159 NSCLCs treated with standard chemotherapy. RESULTS At least two mutations in the coding sequence of genes belonging to the chromatin remodelling pathway (A signature), and/or at least two mutations of genes involved in cell-to-cell signalling pathways (B signature), showed positive prediction in ICI-treated advanced NSCLC. Signatures performed best when combined for patients undergoing first-line immunotherapy, and for those receiving combined ICIs. CONCLUSIONS Alterations in genes related to chromatin remodelling complexes and cell-to-cell crosstalk may force dysfunctional immune evasion, explaining susceptibility to immunotherapy. Therefore, exploring mutated gene networks could be valuable for determining essential biological interactions, contributing to treatment personalization.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Cardiothoracic and Vascular Department, University of Pisa, Pisa, Italy; Unit of General Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Diego de Miguel Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Martina Ruglioni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Pardini
- Unit of General Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
14
|
Yu ZC, Li T, Tully E, Huang P, Chen CN, Oberdoerffer P, Gaillard S, Shih IM, Wang TL. Temozolomide Sensitizes ARID1A-Mutated Cancers to PARP Inhibitors. Cancer Res 2023; 83:2750-2762. [PMID: 37306706 PMCID: PMC10527942 DOI: 10.1158/0008-5472.can-22-3646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/02/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
ARID1A is a subunit of SWI/SNF chromatin remodeling complexes and is mutated in many types of human cancers, especially those derived from endometrial epithelium, including ovarian and uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). Loss-of-function mutations in ARID1A alter epigenetic regulation of transcription, cell-cycle checkpoint control, and DNA damage repair. We report here that mammalian cells with ARID1A deficiency harbor accumulated DNA base lesions and increased abasic (AP) sites, products of glycosylase in the first step of base excision repair (BER). ARID1A mutations also delayed recruitment kinetics of BER long-patch repair effectors. Although ARID1A-deficient tumors were not sensitive to monotherapy with DNA-methylating temozolomide (TMZ), the combination of TMZ with PARP inhibitors (PARPi) potently elicited double-strand DNA breaks, replication stress, and replication fork instability in ARID1A-deficient cells. The TMZ and PARPi combination also significantly delayed in vivo growth of ovarian tumor xenografts carrying ARID1A mutations and induced apoptosis and replication stress in xenograft tumors. Together, these findings identified a synthetic lethal strategy to enhance the response of ARID1A-mutated cancers to PARP inhibition, which warrants further experimental exploration and clinical trial validation. SIGNIFICANCE The combination of temozolomide and PARP inhibitor exploits the specific DNA damage repair status of ARID1A-inactivated ovarian cancers to suppress tumor growth.
Collapse
Affiliation(s)
- Zheng-Cheng Yu
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Tianhe Li
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Ellen Tully
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Peng Huang
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Chih-Ning Chen
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Philipp Oberdoerffer
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Stephanie Gaillard
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Ie-Ming Shih
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Tian-Li Wang
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| |
Collapse
|
15
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
16
|
Liu R, Niu Y, Liu C, Zhang X, Zhang J, Shi M, Zou W, Gu B, Zhu H, Wang D, Yuan H, Li W, Zhao D, Zheng Q, Liu R, Chen W, Ma T, Zhang Y. Association of KMT2C/D loss-of-function variants with response to immune checkpoint blockades in colorectal cancer. Cancer Sci 2023; 114:1229-1239. [PMID: 36601880 PMCID: PMC10067420 DOI: 10.1111/cas.15716] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 01/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become important treatment strategies, yet responses vary among patients and predictive biomarkers are urgently needed. Mutations in KMT2C and KMT2D lead to increased levels of genomic instability. Therefore, we aimed to examine whether KMT2C/D mutations might be a predictor of immunotherapeutic efficacy. Here, we investigated the associations of KMT2C/D loss-of-function (LOF) variants with tumor mutation burden (TMB), MSI-H, PD-L1 expression, the levels of tumor-infiltrating leukocytes (TILs), and clinical response to ICIs. It was found that KMT2C/D LOF variants were associated with higher TMB. Compared with the non-LOF group, the proportion of patients with MSI-H tumors was larger in the LOF group. PD-L1 expression was higher in the LOF group only for colorectal cancer in both the Chinese and The Cancer Genome Atlas cohorts. Importantly, KMT2C/D LOF variants were associated with decreased regulatory T cells and increased levels of CD8+ T cells, activated NK cells, M1 macrophages, and M2 macrophages in colorectal cancer. However, there was no significant association between KMT2C/D LOF and TILs levels in other cancer types. Consistently, the results showed that KMT2C/D LOF variants were associated with prolonged overall survival only in colorectal cancer (p = 0.0485). We also presented that patients with KMT2C/D LOF mutations exhibited a better clinical response to anti-PD-1 therapy in a Chinese colorectal cancer cohort (p = 0.002). Taken together, these results suggested that KMT2C/D LOF variants could be a useful predictor for ICIs efficacy in colorectal cancer. In addition, the predictive value of KMT2C/D LOF variants was consistent with their association with TILs levels.
Collapse
Affiliation(s)
- Ruiqi Liu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yanling Niu
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Zhang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Jinku Zhang
- Department of Pathology, Baoding First Central Hospital, Key Laboratory of Molecular Pathology and Early Diagnosis of Tumor in Hebei Province, Baoding, China
| | - Min Shi
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Wenbo Zou
- Department of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Binbin Gu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
| | - Honglin Zhu
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Danhua Wang
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Hongling Yuan
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Wei Li
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Dandan Zhao
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Qiaosong Zheng
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Rong Liu
- Department of Hepatopancreatobiliary Surgery, The First Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Weiping Chen
- Department of Colorectal Surgery, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Tonghui Ma
- Department of Translational Medicine, Genetron Health (Beijing) Technology, Co. Ltd., Beijing, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
17
|
Liu C, Xiao H, Cui L, Fang L, Han S, Ruan Y, Zhao W, Zhang Y. Epigenetic-related gene mutations serve as potential biomarkers for immune checkpoint inhibitors in microsatellite-stable colorectal cancer. Front Immunol 2022; 13:1039631. [PMID: 36479108 PMCID: PMC9720302 DOI: 10.3389/fimmu.2022.1039631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Background Combination therapy with immune checkpoint inhibitors (ICIs) may benefit approximately 10-20% of microsatellite-stable colorectal cancer (MSS-CRC) patients. However, there is a lack of optimal biomarkers. This study aims to understand the predictive value of epigenetic-related gene mutations in ICIs therapy in MSS-CRC patients. Methods We analyzed DNA sequences and gene expression profiles from The Cancer Genome Atlas (TCGA) to examine their immunological features. The Harbin Medical University Cancer Hospital (HMUCH) clinical cohort of MSS-CRC patients was used to validate the efficacy of ICIs in patients with epigenetic-related gene mutations (Epigenetic_Mut). Results In TCGA, 18.35% of MSS-CRC patients (78/425) had epigenetic-related gene mutations. The Epigenetic_Mut group had a higher tumor mutation burden (TMB) and frameshift mutation (FS_mut) rates. In all MSS-CRC samples, Epigenetic_Mut was elevated in the immune subtype (CMS1) and had a strong correlation with immunological features. Epigenetic_Mut was also associated with favorable clinical outcomes in MSS-CRC patients receiving anti-PD-1-based therapy from the HMUCH cohort. Using immunohistochemistry and flow cytometry, we demonstrated that Epigenetic_Mut samples were associated with increased anti-tumor immune cells both in tumor tissues and peripheral blood. Conclusion MSS-CRC patients with epigenetic regulation impairment exhibit an immunologically active environment and may be more susceptible to treatment strategies based on ICIs.
Collapse
Affiliation(s)
- Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huiting Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Luying Cui
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lin Fang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuling Han
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenyuan Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Clinical Research Center for Colorectal Cancer in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin Medical University Cancer Hospital, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
18
|
Identification and Validation of a Novel Multiomics Signature for Prognosis and Immunotherapy Response of Endometrial Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:8998493. [PMID: 36281289 PMCID: PMC9587907 DOI: 10.1155/2022/8998493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/31/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Purpose Cancer development and immune escape involve DNA methylation, copy number variation, and other molecular events. However, there are remarkably few studies integrating multiomics genetic profiles into endometrial cancer (EC). This study aimed to develop a multiomics signature for the prognosis and immunotherapy response of endometrial carcinoma. Methods The gene expression, somatic mutation, copy number alteration, and DNA methylation data of EC were analyzed from the UCSC Xena database. Then, a multiomics signature was constructed by a machine learning model, with the ROC curve comparing its prognostic power with traditional clinical features. Two computational strategies were utilized to estimate the signature's performance in predicting immunotherapy response in EC. Further validation focused on the most frequently mutant molecule, ARID1A, in the signature. The association of ARID1A with survival, MSI (Microsatellite-instability), immune checkpoints, TIL (tumor-infiltrating lymphocyte), and downstream immune pathways was explored. Results The signature consisted of 22 multiomics molecules, showing excellent prognostic performance in predicting the overall survival of patients with EC (AUC = 0.788). After stratifying patients into a high and low-risk group according to the signature's median value, low-risk patients displayed a greater possibility of respond to immunotherapy. Further validation on ARID1A suggested it could induce immune checkpoints upregulation, promote interferon response pathway, and interact with Treg (regulatory T cell) to facilitate immune activation in EC. Conclusion A novel multiomics prognostic signature of EC was identified and validated in this study, which could guide clinical management of EC and benefit personalized immunotherapy.
Collapse
|
19
|
Mandal J, Mandal P, Wang TL, Shih IM. Treating ARID1A mutated cancers by harnessing synthetic lethality and DNA damage response. J Biomed Sci 2022; 29:71. [PMID: 36123603 PMCID: PMC9484255 DOI: 10.1186/s12929-022-00856-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Chromatin remodeling is an essential cellular process for organizing chromatin structure into either open or close configuration at specific chromatin locations by orchestrating and modifying histone complexes. This task is responsible for fundamental cell physiology including transcription, DNA replication, methylation, and damage repair. Aberrations in this activity have emerged as epigenomic mechanisms in cancer development that increase tumor clonal fitness and adaptability amidst various selection pressures. Inactivating mutations in AT-rich interaction domain 1A (ARID1A), a gene encoding a large nuclear protein member belonging to the SWI/SNF chromatin remodeling complex, result in its loss of expression. ARID1A is the most commonly mutated chromatin remodeler gene, exhibiting the highest mutation frequency in endometrium-related uterine and ovarian carcinomas. As a tumor suppressor gene, ARID1A is essential for regulating cell cycle, facilitating DNA damage repair, and controlling expression of genes that are essential for maintaining cellular differentiation and homeostasis in non-transformed cells. Thus, ARID1A deficiency due to somatic mutations propels tumor progression and dissemination. The recent success of PARP inhibitors in treating homologous recombination DNA repair-deficient tumors has engendered keen interest in developing synthetic lethality-based therapeutic strategies for ARID1A-mutated neoplasms. In this review, we summarize recent advances in understanding the biology of ARID1A in cancer development, with special emphasis on its roles in DNA damage repair. We also discuss strategies to harness synthetic lethal mechanisms for future therapeutics against ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
20
|
The Prognostic Value of AT-Rich Interaction Domain (ARID) Family Members in Patients with Hepatocellular Carcinoma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1150390. [PMID: 36034939 PMCID: PMC9410793 DOI: 10.1155/2022/1150390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022]
Abstract
Objective Hepatocellular carcinoma (HCC) is one of the most lethal malignancies with a poor prognosis. The AT-rich interaction domain (ARID) family plays an essential regulatory role in the pathogenesis and progression of cancers. This study aims to evaluate the prognostic value and clinical significance of human ARID family genes in HCC. Methods ONCOMINE and The Cancer Genome Atlas (TCGA) databases were employed to retrieve ARIDs expression profile and clinicopathological information of HCC. Kaplan–Meier plotter and MethSurv were applied to the survival analysis of patients with HCC. CBioPortal was used to analyze genetic mutations of ARIDs. Gene Expression Profiling Interactive Analysis (GEPIA) and Metascape were used to perform hub gene identification and functional enrichment. Results Expression levels of 11 ARIDs were upregulated in HCC, and 2 ARIDs were downregulated. Also, 4 ARIDs and 5 ARIDs were correlated with pathologic stages and histologic grades, respectively. Furthermore, higher expression of ARID1A, ARID1B, ARID2, ARID3A, ARID3B, ARID5B, KDM5A, KDM5B, KDM5C, and JARID2 was remarkably correlated with worse overall survival of patients with HCC, and the high ARID3C/KDM5D expression was related to longer overall survival. Multivariate Cox analysis indicated that ARID3A, KDM5C, and KDM5D were independent risk factors for HCC prognosis. Moreover, ARIDs mutations and 127 CpGs methylation in all ARIDs were observed to be significantly associated with the prognosis of HCC patients. Besides, our data showed that ARIDs could regulate tumor-related pathways and distinct immune cells in the HCC microenvironment. Conclusions ARIDs present the potential prognostic value for HCC. Our findings suggest that ARID3A, KDM5C, and KDM5D may be the prognostic biomarkers for patients with HCC.
Collapse
|
21
|
Garg V, Jayaraj AS, Kumar L. Novel approaches for treatment of endometrial carcinoma. Curr Probl Cancer 2022; 46:100895. [PMID: 35986972 DOI: 10.1016/j.currproblcancer.2022.100895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/03/2022]
Abstract
Endometrial cancer (EC) is common malignancy in women and its incidence is slowly on the rise. Accurate surgical staging, with aggressive cytoreduction when indicated, remains the most critical step in the treatment. Careful pathological evaluation and/or molecular risk stratification guides for proper systemic adjuvant radiotherapy ± chemotherapy. Recurrent and metastatic EC has dismal prognosis and palliative therapies (chemotherapy, hormonal therapy or radiation) forms the backbone of treatment. There is an unmet need of newer therapies to improve survival in such cases. A number of tyrosine kinase inhibitors are currently under evaluation. Recent data on therapeutic targeting of HER2 positive serous EC is exciting. Data on check point inhibitors particularly based on biomarker select population has raised hope for potentially effective treatment for women with high risk endometrial cancer .
Collapse
Affiliation(s)
- Vikas Garg
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Aarthi S Jayaraj
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Lalit Kumar
- Department of Medical Oncology and Gynaecology, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
22
|
Conde M, Frew IJ. Therapeutic significance of ARID1A mutation in bladder cancer. Neoplasia 2022; 31:100814. [PMID: 35750014 PMCID: PMC9234250 DOI: 10.1016/j.neo.2022.100814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Bladder cancer (BC) develops from the tissues of the urinary bladder and is responsible for nearly 200,000 deaths annually. This review aims to integrate knowledge of recently discovered functions of the chromatin remodelling tumour suppressor protein ARID1A in bladder urothelial carcinoma with a focus on highlighting potential new avenues for the development of personalised therapies for ARID1A mutant bladder tumours. ARID1A is a component of the SWI/SNF chromatin remodelling complex and functions to control many important biological processes such as transcriptional regulation, DNA damage repair (DDR), cell cycle control, regulation of the tumour microenvironment and anti-cancer immunity. ARID1A mutation is emerging as a truncal driver mutation that underlies the development of a sub-set of urothelial carcinomas, in cooperation with other driver mutations, to cause dysregulation of a number of key cellular processes. These processes represent tumour drivers but also represent potentially attractive therapeutic targets.
Collapse
Affiliation(s)
- Marina Conde
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Centre - University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Ian J Frew
- Department of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Faculty of Medicine, Medical Centre - University of Freiburg, Freiburg, Baden-Württemberg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany; Signalling Research Centre BIOSS, University of Freiburg, Freiburg, Baden-Württemberg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Baden-Württemberg, Germany.
| |
Collapse
|
23
|
Wang J, Ma X, Ma Z, Ma Y, Wang J, Cao B. Research Progress of Biomarkers for Immune Checkpoint Inhibitors on Digestive System Cancers. Front Immunol 2022; 13:810539. [PMID: 35493526 PMCID: PMC9043345 DOI: 10.3389/fimmu.2022.810539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Immunotherapy represented by immune checkpoint inhibitors has gradually entered a new era of precision medicine. In view of the limited clinical benefits of immunotherapy in patients with digestive system cancers, as well as the side-effects and high treatment costs, development of biomarkers to predict the efficacy of immune therapy is a key imperative. In this article, we review the available evidence of the value of microsatellite mismatch repair, tumor mutation burden, specific mutated genes or pathways, PD-L1 expression, immune-related adverse reactions, blood biomarkers, and patient-related biomarkers in predicting the efficacy of immunotherapy against digestive system cancers. Establishment of dynamic personalized prediction models based on multiple biomarkers is a promising area for future research.
Collapse
Affiliation(s)
- Jingting Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Ma
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhongjun Ma
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yan Ma
- Department of Comprehensive Medicine, Beijing Shijingshan Hospital, Beijing, China
| | - Jing Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bangwei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Yu X, Xu J, Xu D, Bi X, Wang H, Lu Y, Cao M, Wang W, Xu Z, Zheng D, Chen L, Zhang X, Zheng S, Li K. Comprehensive Analysis of the Carcinogenic Process, Tumor Microenvironment, and Drug Response in HPV-Positive Cancers. Front Oncol 2022; 12:842060. [PMID: 35392231 PMCID: PMC8980807 DOI: 10.3389/fonc.2022.842060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
Human papillomavirus (HPV) is a common virus, and about 5% of all cancers worldwide is caused by persistent high-risk HPV infections. Here, we reported a comprehensive analysis of the molecular features for HPV-related cancer types using TCGA (The Cancer Genome Atlas) data with HPV status. We found that the HPV-positive cancer patients had a unique oncogenic process, tumor microenvironment, and drug response compared with HPV-negative patients. In addition, HPV improved overall survival for the four cancer types, namely, cervical squamous cell carcinoma (CESC), head and neck squamous cell carcinoma (HNSC), stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC). The stronger activity of cell-cycle pathways and lower driver gene mutation rates were observed in HPV-positive patients, which implied the different carcinogenic processes between HPV-positive and HPV-negative groups. The increased activities of immune cells and differences in metabolic pathways helped explain the heterogeneity of prognosis between the two groups. Furthermore, we constructed HPV prediction models for different cancers by the virus infection score (VIS) which was linearly correlated with HPV load and found that VIS was associated with drug response. Altogether, our study reveals that HPV-positive cancer patients have unique molecular characteristics which help the development of precision medicine in HPV-positive cancers.
Collapse
Affiliation(s)
- Xiaorong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiankai Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Yanda Lu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Meng Cao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wenxiang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Zhizhou Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Dehua Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Liyang Chen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Xiaodian Zhang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shaojiang Zheng
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering and Cancer Institute of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
25
|
Bai Y, Xie T, Wang Z, Tong S, Zhao X, Zhao F, Cai J, Wei X, Peng Z, Shen L. Efficacy and predictive biomarkers of immunotherapy in Epstein-Barr virus-associated gastric cancer. J Immunother Cancer 2022; 10:jitc-2021-004080. [PMID: 35241494 PMCID: PMC8896035 DOI: 10.1136/jitc-2021-004080] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Background Epstein-Barr virus (EBV)-associated gastric cancer (GC) (EBVaGC) is a distinct molecular subtype of GC with a favorable prognosis. However, the exact effects and potential mechanisms of EBV infection on immune checkpoint blockade (ICB) efficacy in GC remain to be clarified. Additionally, EBV-encoded RNA (EBER) in situ hybridization (ISH), the traditional method to detect EBV, could cause false-positive/false-negative results and not allow for characterizing other molecular biomarkers recommended by standard treatment guidelines for GC. Herein, we sought to investigate the efficacy and potential biomarkers of ICB in EBVaGC identified by next-generation sequencing (NGS). Design An NGS-based algorithm for detecting EBV was established and validated using two independent GC cohorts (124 in the training cohort and 76 in the validation cohort). The value of EBV infection for predicting ICB efficacy was evaluated among 95 patients with advanced or metastatic GC receiving ICB. The molecular predictive biomarkers for ICB efficacy were identified to improve the prediction accuracy of ICB efficacy in 22 patients with EBVaGC. Results Compared with orthogonal assay (EBER-ISH) results, the NGS-based algorithm achieved high performance with a sensitivity of 95.7% (22/23) and a specificity of 100% (53/53). EBV status was identified as an independent predictive factor for overall survival and progression-free survival in patients with DNA mismatch repair proficient (pMMR) GC following ICB. Moreover, the patients with EBV+/pMMR and EBV−/MMR deficient (dMMR) had comparable and favorable survival following ICB. Twenty-two patients with EBV+/pMMR achieved an objective response rate of 54.5% (12/22) on immunotherapy. Patients with EBVaGC with a high cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) level were less responsive to anti-programmed death-1/ligand 1 (PD-1/L1) monotherapy, and the combination of anti-CTLA-4 plus anti-PD-1/L1 checkpoint blockade benefited patients with EBVaGC more than anti-PD-1/L1 monotherapy with a trend close to significance (p=0.074). There were nearly significant differences in tumor mutational burden (TMB) level and SMARCA4 mutation frequency between the ICB response and non-response group. Conclusions We developed an efficient NGS-based EBV detection strategy, and this strategy-identified EBV infection was as effective as dMMR in predicting ICB efficacy in GC. Additionally, we identified CTLA-4, TMB, and SMARCA4 mutation as potential predictive biomarkers of ICB efficacy in EBVaGC, which might better inform ICB treatment for EBVaGC.
Collapse
Affiliation(s)
- Yuezong Bai
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tong Xie
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhenghang Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuang Tong
- Medical Affairs, 3D Medicines, Inc, Shanghai, China
| | | | - Feilong Zhao
- Medical Affairs, 3D Medicines, Inc, Shanghai, China
| | - Jinping Cai
- Medical Affairs, 3D Medicines, Inc, Shanghai, China
| | - Xiaofan Wei
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
26
|
Cattolico C, Bailey P, Barry ST. Modulation of Type I Interferon Responses to Influence Tumor-Immune Cross Talk in PDAC. Front Cell Dev Biol 2022; 10:816517. [PMID: 35273962 PMCID: PMC8902310 DOI: 10.3389/fcell.2022.816517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of many cancer types. However, pancreatic ductal adenocarcinomas (PDACs) exhibit poor responses to immune checkpoint inhibitors with immunotherapy-based trials not generating convincing clinical activity. PDAC tumors often have low infiltration of tumor CD8+ T cells and a highly immunosuppressive microenvironment. These features classify PDAC as immunologically "cold." However, the presence of tumor T cells is a favorable prognostic feature in PDAC. Intrinsic tumor cell properties govern interactions with the immune system. Alterations in tumor DNA such as genomic instability, high tumor mutation burden, and/or defects in DNA damage repair are associated with responses to both immunotherapy and chemotherapy. Cytotoxic or metabolic stress produced by radiation and/or chemotherapy can act as potent immune triggers and prime immune responses. Damage- or stress-mediated activation of nucleic acid-sensing pathways triggers type I interferon (IFN-I) responses that activate innate immune cells and natural killer cells, promote maturation of dendritic cells, and stimulate adaptive immunity. While PDAC exhibits intrinsic features that have the potential to engage immune cells, particularly following chemotherapy, these immune-sensing mechanisms are ineffective. Understanding where defects in innate immune triggers render the PDAC tumor-immune interface less effective, or how T-cell function is suppressed will help develop more effective treatments and harness the immune system for durable outcomes. This review will focus on the pivotal role played by IFN-I in promoting tumor cell-immune cell cross talk in PDAC. We will discuss how PDAC tumor cells bypass IFN-I signaling pathways and explore how these pathways can be co-opted or re-engaged to enhance the therapeutic outcome.
Collapse
Affiliation(s)
- Carlotta Cattolico
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peter Bailey
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Surgery, University of Heidelberg, Heidelberg, Germany
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, Germany
| | - Simon T. Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
27
|
Nan L, Wang C, Wang J, Zhang S, Bo X, Wang Y, Liu H. ARID1A Downregulation Predicts High PD-L1 Expression and Worse Clinical Outcome in Patients With Gallbladder Cancer. Front Oncol 2022; 12:787897. [PMID: 35198440 PMCID: PMC8858979 DOI: 10.3389/fonc.2022.787897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
BackgroundRecent studies have confirmed that AT-rich interactive domain-containing protein 1A (ARID1A) plays a critical role in tumorigenesis, but its role in gallbladder cancer (GBC) remains unclear.MethodsIn total, 224 patients from Zhongshan Hospital were recruited for this retrospective study. The clinicopathological and baseline characteristics of the patients were collected. Bioinformatics analysis was performed to reveal variations in genes and signaling pathways, and ARID1A and PD-L1 expression and the number of PD1+ tumor-infiltrating lymphocytes (TILs) were measured by immunohistochemical staining.ResultsARID1A expression was negatively correlated with overall survival in patients with GBC, and multivariate analysis identified ARID1A as an independent prognostic factor for overall survival. A heatmap and gene set enrichment analysis suggested that cytotoxic T lymphocyte signatures and immune-related signaling pathways were downregulated in ARID1A low tumors. Subsequent immunohistochemical staining confirmed that ARID1A expression was negatively correlated with PD-L1 expression and PD1+ TILs in the tumor microenvironment. The Kaplan–Meier analysis suggested that high ARID1A expression combined with low PD-L1 expression or low PD1+ TIL counts is associated with the best prognosis in patients with GBC.ConclusionARID1A inactivation can lead to a worse prognosis in patients with GBC, potentially by mediating immune evasion through the PD1/PD-L1 pathway.
Collapse
Affiliation(s)
- Lingxi Nan
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Diseases Institute, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
| | - Changcheng Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Diseases Institute, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
| | - Jie Wang
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shulong Zhang
- Biliary Tract Diseases Institute, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Department of General Surgery, Xuhui District Central Hospital, Shanghai, China
| | - Xiaobo Bo
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Diseases Institute, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- *Correspondence: Yueqi Wang, ; Xiaobo Bo, ; Houbao Liu,
| | - Yueqi Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Yueqi Wang, ; Xiaobo Bo, ; Houbao Liu,
| | - Houbao Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Biliary Tract Diseases Institute, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, Shanghai, China
- Department of General Surgery, Xuhui District Central Hospital, Shanghai, China
- *Correspondence: Yueqi Wang, ; Xiaobo Bo, ; Houbao Liu,
| |
Collapse
|
28
|
Peerapen P, Sueksakit K, Boonmark W, Yoodee S, Thongboonkerd V. ARID1A knockdown enhances carcinogenesis features and aggressiveness of Caco-2 colon cancer cells: An in vitro cellular mechanism study. J Cancer 2022; 13:373-384. [PMID: 35069887 PMCID: PMC8771531 DOI: 10.7150/jca.65511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/30/2021] [Indexed: 01/05/2023] Open
Abstract
Loss of ARID1A, a tumor suppressor gene, is associated with the higher grade of colorectal cancer (CRC). However, molecular and cellular mechanisms underlying the progression and aggressiveness of CRC induced by the loss of ARID1A remain poorly understood. Herein, we evaluated cellular mechanisms underlying the effects of ARID1A knockdown on the carcinogenesis features and aggressiveness of CRC cells. A human CRC cell line (Caco-2) was transfected with small interfering RNA (siRNA) specific to ARID1A (siARID1A) or scrambled (non-specific) siRNA (siControl). Cell death, proliferation, senescence, chemoresistance and invasion were then evaluated. In addition, formation of polyploid giant cancer cells (PGCCs), self-aggregation (multicellular spheroid) and secretion of an angiogenic factor, vascular endothelial growth factor (VEGF), were examined. The results showed that ARID1A knockdown led to significant decreases in cell death and senescence. On the other hand, ARID1A knockdown enhanced cell proliferation, chemoresistance and invasion. The siARID1A-transfected cells also had greater number of PGCCs and larger spheroid size and secreted greater level of VEGF compared with the siControl-transfected cells. These data, at least in part, explain the cellular mechanisms of ARID1A deficiency in carcinogenesis and aggressiveness features of CRC.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
29
|
Wang Z, Zeng T, Li Y, Zhang D, Yuan Z, Huang M, Yang Y, Zhou W. PD-1 Inhibitors Plus Capecitabine as Maintenance Therapy for Advanced Intrahepatic Cholangiocarcinoma: A Case Report and Review of Literature. Front Immunol 2022; 12:799822. [PMID: 35003124 PMCID: PMC8739978 DOI: 10.3389/fimmu.2021.799822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer with a poor prognosis. Recently, an immunotherapy strategy represented by programmed cell death 1 (PD-1) inhibitors has been applied to the systemic treatment of advanced iCCA. However, immunotherapy combined with chemotherapy as first-line maintenance therapy was rarely reported. Our report presented an advanced iCCA patient who had a dramatic response to the PD-1 inhibitor sintilimab combined with gemcitabine plus cisplatin as the first-line therapy and sintilimab combined with capecitabine as maintenance therapy, yielding an ongoing progression-free survival of 16 months.
Collapse
Affiliation(s)
- Zhihong Wang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Tianmei Zeng
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong Li
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ding Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Zhengang Yuan
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Mengli Huang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Yuan Yang
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Weiping Zhou
- Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
30
|
Xie C, Yuan X, Chen SH, Liu ZY, Lu DL, Xu F, Chen ZQ, Zhong XM. Successful response to camrelizumab in metastatic bladder cancer: A case report. World J Clin Cases 2022; 10:254-259. [PMID: 35071525 PMCID: PMC8727277 DOI: 10.12998/wjcc.v10.i1.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There has been no report to use camrelizumab with chemotherapy for advanced bladder cancer patients with positive programmed death-ligand 1 (PD-L1) expression and high tumor mutational burden (TMB). More effective predictors of bladder cancer immunotherapy have yet to be explored, and the combination of multiple factors may be more predictive than a single factor.
CASE SUMMARY We report the case of a 74-year-old male patient with recurrent metastatic bladder cancer, which demonstrated positive PD-L1 expression and high TMB. The immune checkpoint inhibitor camrelizumab was administered to the patient in combination with gemcitabine and cisplatin. The patient achieved a partial response with a progression-free survival of 11 mo.
CONCLUSION This is the first report to use camrelizumab with chemotherapy for advanced bladder cancer patients with positive PD-L1 expression and high TMB.
Collapse
Affiliation(s)
- Chen Xie
- Department of Radiotherapy, Jiangxi Provincial Tumour Hospital, Nanchang 330029, Jiangxi Province, China
- Department of Radiotherapy , The Affiliated Cancer Hospital of Nanchang University, Nanchang 330029, Jiangxi Province, China
| | - Xia Yuan
- Department of Radiotherapy, Jiangxi Provincial Tumour Hospital, Nanchang 330029, Jiangxi Province, China
- Department of Radiotherapy , The Affiliated Cancer Hospital of Nanchang University, Nanchang 330029, Jiangxi Province, China
| | - Shu-Hui Chen
- Department of Radiotherapy, Jiangxi Provincial Tumour Hospital, Nanchang 330029, Jiangxi Province, China
- Department of Radiotherapy , The Affiliated Cancer Hospital of Nanchang University, Nanchang 330029, Jiangxi Province, China
| | - Zhi-Yong Liu
- Department of Radiotherapy, Jiangxi Provincial Tumour Hospital, Nanchang 330029, Jiangxi Province, China
- Department of Radiotherapy , The Affiliated Cancer Hospital of Nanchang University, Nanchang 330029, Jiangxi Province, China
| | - Di-La Lu
- Department of Radiotherapy, Jiangxi Provincial Tumour Hospital, Nanchang 330029, Jiangxi Province, China
- Department of Radiotherapy , The Affiliated Cancer Hospital of Nanchang University, Nanchang 330029, Jiangxi Province, China
| | - Feng Xu
- Faculty of Medicine, Burning Rock Biotech, Guangzhou 510300, Guangdong Province, China
| | - Zhi-Qiu Chen
- Faculty of Medicine, Burning Rock Biotech, Guangzhou 510300, Guangdong Province, China
| | - Xiao-Ming Zhong
- Department of Radiotherapy, Jiangxi Provincial Tumour Hospital, Nanchang 330029, Jiangxi Province, China
- Department of Radiotherapy , The Affiliated Cancer Hospital of Nanchang University, Nanchang 330029, Jiangxi Province, China
| |
Collapse
|
31
|
Methionine and leucine induce ARID1A degradation to promote mTOR expression and milk synthesis in mammary epithelial cells. J Nutr Biochem 2021; 101:108924. [PMID: 34843932 DOI: 10.1016/j.jnutbio.2021.108924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/26/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Amino acids can activate mTOR to promote milk synthesis in mammary epithelial cells (MECs), but the underlying molecular mechanism is still largely unknown. The objective is to investigate the regulatory mechanism of amino acids (Met and Leu) in stimulating mRNA expression of mTOR in MECs. We found that the protein abundance of AT-rich interaction domain 1A (ARID1A) was poorly expressed in mouse mammary gland tissues of lactating period. ARID1A knockdown and gene activation experiments detected whether ARID1A negatively regulated milk protein and fat synthesis in bovine MECs, cell proliferation and the expression and activation of mTOR. ChIP-PCR detected that ARID1A, H3K27ac, H3K27me3 and H3K4me3 all bound to the mTOR promoter at -548∼-793 nt. Knockdown or gene activation of ARID1A enhanced or weakened the binding of H3K27ac on the mTOR promoter, respectively. The stimulation of Met and Leu on mTOR expression and phosphorylation were eliminated by ARID1A gene activation. Furthermore, Met and Leu decreased the protein level of ARID1A through ubiquitination and proteasomal degradation. TRIM21 bound to ARID1A, and TRIM21 knockdown blocked the stimulation of Met and Leu on ARID1A degradation. In summary, these data reveal that ARID1A blocks Met and Leu signaling to mTOR gene transcription through inhibiting H3K27ac deposition on its promoter, and Met and Leu decrease ARID1A protein level through TRIM21-mediated ubiquitination and proteasomal degradation. Our findings uncover that Met and Leu promote mTOR expression for milk synthesis through the TRIM21-ARID1A signaling pathway, providing a novel theoretical basis for the application of amino acids in milk production.
Collapse
|
32
|
Cao W, Ma X, Fischer JV, Sun C, Kong B, Zhang Q. Immunotherapy in endometrial cancer: rationale, practice and perspectives. Biomark Res 2021; 9:49. [PMID: 34134781 PMCID: PMC8207707 DOI: 10.1186/s40364-021-00301-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy has attracted more and more attention nowadays, and multiple clinical trials have confirmed its effect in a variety of solid tumors. Immune checkpoint inhibitors (ICIs), cancer vaccines, adoptive cell transfer (ACT), and lymphocyte-promoting cytokines are the main immunotherapy methods. Endometrial cancer (EC) is one of the most frequent tumors in women and the prognosis of recurrent or metastatic EC is poor. Since molecular classification has been applied to EC, immunotherapy for different EC subtypes (especially POLE and MSI-H) has gradually attracted attention. In this review, we focus on the expression and molecular basis of the main biomarkers in the immunotherapy of EC firstly, as well as their clinical application significance and limitations. Blocking tumor immune checkpoints is one of the most effective strategies for cancer treatment in recent years, and has now become the focus in the field of tumor research and treatment. We summarized clinical date of planned and ongoing clinical trials and introduced other common immunotherapy methods in EC, such as cancer vaccine and ACT. Hormone aberrations, metabolic syndrome (MetS) and p53 mutant and that affect the immunotherapy of endometrial cancer will also be discussed in this review.
Collapse
Affiliation(s)
- Wenyu Cao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Xinyue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Jean Victoria Fischer
- Department of Pathology, Northwestern Medicine, Gynecologic Pathology Fellow, Chicago, Illinois, USA
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China.,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Ji'nan, Shandong, 250012, P.R. China. .,Gynecology Oncology Key Laboratory, Qilu Hospital, Shandong University, Ji'nan, Shandong, 250012, P.R. China.
| |
Collapse
|
33
|
Zhang L, Wang Y, Li Z, Lin D, Liu Y, Zhou L, Wang D, Wu A, Li Z. Clinicopathological features of tumor mutation burden, Epstein-Barr virus infection, microsatellite instability and PD-L1 status in Chinese patients with gastric cancer. Diagn Pathol 2021; 16:38. [PMID: 33933102 PMCID: PMC8088709 DOI: 10.1186/s13000-021-01099-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/15/2021] [Indexed: 01/10/2023] Open
Abstract
Objectives Gastric cancer (GC) is the 4th most common type of cancer worldwide. Different GC subtypes have unique molecular features that may have different therapeutic methods. The aim of the present study was to investigate Epstein-Barr virus (EBV) infection, microsatellite instability (MSI) status, the expression of programmed death-ligand 1 (PD-L1) and gene mutations in GC patients. Methods The data of 2504 GC patients, who underwent curative gastrectomy with lymphadenectomy at Peking University Cancer Hospital between 2013 and 2018, were reviewed. We analyzed the clinicopathological factors associated with the immunohistochemistry (IHC) profiles of these patients, and genetic alterations were analyzed using next generation sequencing (NGS). Results Mismatch repair-deficient (d-MMR) GC patients were found to have a higher probability of expressing PD-L1 (p = 0.000, PD-L1 cutoff value = 1%). In addition, 4 and 6.9% of the 2504 gastric cancer patients were EBV-positive and d-MMR, respectively. The number of MLH1/PMS2-negative cases was 126 (6%), and the number of MSH2/MSH6-negative cases was 14 (0.9%). d-MMR status was associated with a intestinal group (p = 0.012), but not with tumor differentiation. Furthermore, MSI and d-MMR GC status (detected by NGS and IHC, respectively) were consistently high, and the rate of MSI was higher in patients with d-MMR GC. A number of genes associated with DNA damage repair were detected in GC patients with MSI, including POLE, ETV6, BRCA and RNF43. In patients with a high tumor mutation burden, the most significantly mutated genes were LRP1B (79.07%), ARID1A (74.42%), RNF43 (69.77%), ZFHX3 (65.12%), TP53 (58.14%), GANS (51.16%), BRCA2 (51.16%), PIK3CA (51.16%), NOTCH1 (51.16%), SMARCA4 (48.84%), ATR (46.51%), POLE (41.86%) and ATM (39.53%). Conclusions Using IHC and NGS, MSI status, protein expression, tumor mutation burden (TMB) and genetic alterations were identified in patients with GC, which provides a theoretical basis for the future clinical treatment of GC.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Yinkui Wang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Dongmei Lin
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Yiqiang Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China.,Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Linxin Zhou
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China
| | - Dongliang Wang
- ChosenMed, Beijing Economic-Technological Development Area, Beijing, 100176, People's Republic of China
| | - Aiwen Wu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China.
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital, No.52 Fucheng Road Haidian District, Beijing, 100142, People's Republic of China.
| |
Collapse
|
34
|
Harada G, Amano MT, Antonacio FF, Behar MH, Nabuco-de-Araujo PHX, Buchpiguel CA, Junior GDC. Dramatic Response to Pembrolizumab Monotherapy in a Patient With ARID1A-Mutant Lung Adenocarcinoma: Case Report. Clin Lung Cancer 2021; 22:e708-e711. [PMID: 33658161 DOI: 10.1016/j.cllc.2021.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022]
Abstract
Immunotherapy based on immune checkpoint inhibitors (ICIs) either alone or in combination with platinum-based chemotherapy has dramatically changed the therapeutic scenario in non-small cell lung cancer. However, only a subset of patients derives clinical benefits. Although programmed death-ligand 1 (PD-L1) and tumor mutational burden (TMB) are known to be prognostic and demonstrated utility in selecting patients for immunotherapy response, they are imperfect biomarkers. Recent evidence demonstrates that AT-rich interaction domain 1A (ARID1A) deficiency is associated with high antitumor immunity, mismatch repair and TMB, and thus may potentially contribute as a predictive biomarker for ICIs. We herein describe a 60-year-old woman, former smoker, who was diagnosed with lung adenocarcinoma metastatic to the left adrenal gland, with a PD-L1 expression of 60%. Next-generation sequencing test revealed an ARID1A mutation (F2141fs*59, variant allele frequency = 22.5%), TMB of 92 mut/Mb and stable microsatellite status. Given the high PD-L1 expression, elevated TMB, and ARID1A mutation, the patient started on first-line treatment with pembrolizumab monotherapy, and, 5 months after initiating treatment, presented an expressive reduction of lung lesion and a complete response of the adrenal gland. This case illustrates a dramatic response to ICI monotherapy in a lung cancer patient with ARID1A mutation. Predictive biomarkers for immune checkpoint blockade are of the utmost importance to select the patients who truly benefit from immunotherapy. The combination of biomarkers may be the most effective strategy to improve outcomes with ICIs, and ARID1A status should definitely be taken into account when present.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlos Alberto Buchpiguel
- Hospital do Coração - HCOR, São Paulo, Brazil; Department of Radiology and Oncology - Sao Paulo University School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
35
|
Loss of ARID1A expression is associated with poor prognosis in non-small cell lung cancer. Pathol Res Pract 2020; 216:153156. [PMID: 32823232 DOI: 10.1016/j.prp.2020.153156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/19/2022]
Abstract
Adenine-thymine-rich inactive domain-containing protein 1A (ARID1A) is a large subunit of the switch-sucrose nonfermenting (SWI-SNF) complex. ARID1A is considered to be a tumor suppressor in various cancers. We investigated the clinicopathological significance including prognosis of ARID1A expression in non-small cell lung cancer (NSCLC). ARID1A expression was studied by tissue microarray immunohistochemical analysis of 171 surgically resected NSCLC specimens including adenocarcinoma (ADC) and squamous cell carcinoma (SCC) on tissue microarray. Semiquantitative immunohistochemical score was obtained by multiplying the intensity and percentage scores. The overall score was further simplified by dichotomizing into either negative (score < 4) or positive (score ≥ 4) for each patient. The ARID1A-negative group revealed significantly higher correlations with male sex (p = 0.020), larger tumor size (p = 0.007), SCC than with ADC (p = 0.023) and smoking (p = 0.001). Univariate survival analysis showed that the ARID1A-negative group had a significantly shorter cancer specific survival than the ARID1A-positive group (p = 0.018). Multivariate survival analysis showed that ARID1A negativity (p = 0.022) were independent prognostic factors related with shorter cancer specific survival for NSCLC. In conclusion, Loss of ARID1A expression is a potential molecular marker to predictive of poor prognosis of NSCLC.
Collapse
|