1
|
Chaudhary P, Singha B, Abdel-Hafiz HA, Velegraki M, Sundi D, Satturwar S, Parwani AV, Grivennikov SI, You S, Goodridge HS, Ma Q, Chang Y, Ma A, Zheng B, Theodorescu D, Li Z, Li X. Sex differences in bladder cancer: understanding biological and clinical implications. Biol Sex Differ 2025; 16:31. [PMID: 40361239 PMCID: PMC12070554 DOI: 10.1186/s13293-025-00715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Bladder cancer (BC) remains a significant global health concern, with substantial sex and racial disparities in incidence, progression, and outcomes. BC is the sixth most common cancer among males and the seventeenth most common among females worldwide. Over 90% of BC cases are urothelial carcinoma (UC) with high degrees of pathological heterogeneity. Molecular subtyping of BC has also revealed distinct luminal, basal, and neuroendocrine subtypes, each with unique genetic and immune signatures. Emerging research uncovers the biasing effects of the sex hormones with androgens increasing BC risk through both tumor cell intrinsic and extrinsic mechanisms. The sex chromosomes, including both the X and Y chromosomes, also contribute to the sex differences in BC. The effect of sex chromosome is both independent from and synergistic with the effects of sex hormones. Loss of the Y chromosome is frequently observed in BC patients, while an extra copy of the X chromosome confers better protection against BC in females than in males. Advent of advanced technologies such as multiomics and artificial intelligence will likely further improve the understanding of sex differences in BC, which may ultimately lead to personalized preventative and treatment strategies depending on the biological sex of patients. This review delves into the impacts of biology of sex on BC, emphasizing the importance of further research into sex-specific biology to improve cancer prevention and care.
Collapse
Affiliation(s)
- Prakash Chaudhary
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Biplab Singha
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hany A Abdel-Hafiz
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maria Velegraki
- Pelotonia Institute for Immuno‑Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University, Comprehensive Cancer Center Board of Governors, Columbus, OH, USA
| | - Swati Satturwar
- Department of Pathology, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Anil V Parwani
- Department of Pathology, Wexner Medical Center at The Ohio State University, Columbus, OH, 43210, USA
| | - Sergei I Grivennikov
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sungyong You
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Helen S Goodridge
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yuzhou Chang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Bin Zheng
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zihai Li
- Pelotonia Institute for Immuno‑Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Xue Li
- Department of Medicine and Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
2
|
El Saftawy E, Aboulhoda BE, Alghamdi MA, Abd Elkhalek MA, AlHariry NS. Heterogeneity of modulatory immune microenvironment in bladder cancer. Tissue Cell 2025; 93:102679. [PMID: 39700733 DOI: 10.1016/j.tice.2024.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. The intra-tumor heterogeneity of the UBC microenvironment explains the variances in response to therapy among patients. Tumor immune microenvironment (TIME) is based on the balance between anti-tumor and pro-tumorigenic immunity that eventually determines the tumor fate. This review addresses the recent insights of the cytokines, immune checkpoints, receptors, enzymes, proteins, RNAs, cancer stem cells (CSCs), tissue-resident cells, growth factors, epithelial-mesenchymal transition, microbiological cofactor, and paracrine action of cancer cells that mutually cross-talk within the TIME. In-depth balance and alteration of these factors influence the TIME and the overall tumor progression. This, in turn, highlights the prospects of the new era of manipulating these co-factors for improving the diagnosis, prognosis, and treatment of UBC. CONCLUSION: The heterogenic architecture of the TIME orchestrates the fate of the tumor. Nevertheless, recognizing the mutual cross-talk between these key players seems useful in prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt.
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Centre for Medical and Heath Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry& Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt; Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
3
|
Tung MC, Chang GM, Dai WC, Hsu CH, Chang HC, Yang WT, Ho YJ, Lu CH, Chen YH, Chang CC. Cryptotanshinone Suppresses the STAT3/BCL-2 Pathway to Provoke Human Bladder Urothelial Carcinoma Cell Death. ENVIRONMENTAL TOXICOLOGY 2025; 40:624-635. [PMID: 39601353 DOI: 10.1002/tox.24446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Bladder cancer is one of the most common human malignancies worldwide. Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is crucial to driving malignant progression and predicting poor prognosis of multiple human cancers, including bladder cancer, making STAT3 a promising target of cancer therapeutics. Cryptotanshinone (CTS) is an anticancer ingredient of Danshen ( Salvia miltiorrhiza ), a top-graded Chinese medicinal herb. However, whether CTS targets STAT3 to exert its cytotoxic effect on human bladder cancer remains unknown. Herein, we demonstrated that CTS is cytotoxic to multiple human urinary bladder transitional cell carcinoma (TCC) cell lines while sparing normal human urothelial cells. CTS provoked apoptosis-dependent bladder TCC cytotoxicity, as apoptosis blockage by z-VAD-fmk markedly rescued the clonogenicity of CTS-treated cells. Besides, CTS was found to suppress constitutive and interleukin 6-inducible activation of STAT3, evidenced by the downregulation of STAT3 tyrosine 705 phosphorylation and BCL2, a recognized STAT3 transcriptional target. Notably, ectopic expression of a dominant-active STAT3 mutant (STAT3-C) or BCL-2 alleviated CTS-induced apoptosis and clonogenicity inhibition, thus confirming STAT3 blockade as a pivotal mechanism of CTS's cytotoxic action on bladder TCC cells. Lastly, immunoblotting revealed that CTS lowered the levels of active JAK2, an upstream kinase that mediates STAT3 tyrosine 705 phosphorylation. Altogether, we conclude that the blockade of the JAK2/STAT3/BCL-2 antiapoptotic signaling axis is a vital mechanism whereby CTS provokes bladder cancer cytotoxicity. The current evidence implicates CTS's potential to be translated into a bladder cancer therapeutic agent.
Collapse
Affiliation(s)
- Min-Che Tung
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Ge-Man Chang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wen-Chyi Dai
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
| | - Chen-Hsuan Hsu
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Hsiang-Chun Chang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Ting Yang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yann-Jen Ho
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Hsin Chen
- Department of Nephrology, Taichung Tzu Chi Hospital, Buddhist Tzu chi Medical Foundation, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualein, Taiwan
- Department of Artificial Intelligence and Data Science, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Che Chang
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Master Program in Precision Health, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
4
|
Aires I, Parada B, Ferreira R, Oliveira PA. Recent animal models of bladder cancer and their application in drug discovery: an update of the literature. Expert Opin Drug Discov 2025:1-21. [PMID: 39954010 DOI: 10.1080/17460441.2025.2465373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 12/29/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION Bladder cancer presents a significant health problem worldwide, with environmental and genetic factors contributing to its incidence. Histologically, it can be classified as carcinoma in situ, non-muscle invasive and muscle-invasive carcinoma, each one with distinct genetic alterations impacting prognosis and response to therapy. While traditional transurethral resection is commonly performed in carcinoma in situ and non-muscle invasive carcinoma, it often fails to prevent recurrence or progression to more aggressive phenotypes, leading to the frequent need for additional treatment such as intravesical chemotherapy or immunotherapy. Despite the advances made in recent years, treatment options for bladder cancer are still lacking due to the complex nature of this disease. So, animal models may hold potential for addressing these limitations, because they not only allow the study of disease progression but also the evaluation of therapies and the investigation of drug repositioning. AREAS COVERED This review discusses the use of animal models over the past decade, highlighting key discoveries and discussing advantages and disadvantages for new drug discovery. EXPERT OPINION Over the past decade animal models have been employed to evaluate new mechanisms underlying the responses to standard therapies, aiming to optimize bladder cancer treatment. The authors propose that molecular engineering techniques and AI may hold promise for the future development of more precise and effective targeted therapies in bladder cancer.
Collapse
Affiliation(s)
- Inês Aires
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Belmiro Parada
- Coimbra Institute for Clinical and Biomedical, University of Coimbra, Coimbra, Portugal
| | - Rita Ferreira
- Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Paula A Oliveira
- Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| |
Collapse
|
5
|
Dai WC, Chen TH, Peng TC, He YC, Hsu CY, Chang CC. Blockade of the STAT3/BCL-xL Axis Leads to the Cytotoxic and Cisplatin-Sensitizing Effects of Fucoxanthin, a Marine-Derived Carotenoid, on Human Bladder Urothelial Carcinoma Cells. Mar Drugs 2025; 23:54. [PMID: 39997178 PMCID: PMC11857094 DOI: 10.3390/md23020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/26/2025] Open
Abstract
Bladder cancer is a globally prevalent urological malignancy, with transitional carcinoma (TCC) representing the majority of cases. Cisplatin is the primary drug for metastatic bladder cancer chemotherapy; however, its application is limited by nephrotoxicity and resistance. Signal Transducer and Activator of Transcription 3 (STAT3) is an oncogenic transcription factor often overactivated in various cancers, making it an appealing drug target. Fucoxanthin, a marine carotenoid, has significant anticancer properties. This study explored Fucoxanthin's cytotoxic effects and its potential to potentiate the efficacy of Cisplatin, along with the mechanisms underlying these effects, on human bladder TCC cells. We demonstrated that Fucoxanthin is cytotoxic to bladder TCC cells by inducing apoptosis, evidenced by z-VAD-fmk-mediated annulment of Fucoxanthin's cytotoxicity. Furthermore, Fucoxanthin reduced the levels of inherent or interleukin-6-induced tyrosine 705-phosphorylated STAT3 accompanied by downregulating BCL-xL, a well-established STAT3 target. Notably, ectopic expression of STAT3-C, a dominant-active STAT3 mutant, or BCL-xL thwarted Fucoxanthin's proapoptotic and cytotoxic actions. Moreover, Fucoxanthin at subtoxic dosages enhanced the susceptibility to Cisplatin-induced apoptosis of bladder TCC cells initially resistant to Cisplatin. Remarkably, this Cisplatin-sensitizing effect of Fucoxanthin was abrogated when cells ectopically expressed STAT3-C or BCL-xL. Overall, for the first time, we proved that the proapoptotic, cytotoxic, and Cisplatin-sensitizing effects of Fucoxanthin on human bladder TCC cells are attributed to the blockade of the STAT3/BCL-xL axis. Our findings highlight that targeting the STAT3/BCL-xL axis is a promising strategy to eliminate bladder TCC cells and facilitate Cisplatin sensitization, and further support the potential of incorporating Fucoxanthin into Cisplatin-based chemotherapy for treating bladder cancer.
Collapse
Affiliation(s)
- Wen-Chyi Dai
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Tzu-Hsuan Chen
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan;
| | - Tzu-Ching Peng
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (T.-C.P.); (Y.-C.H.)
| | - Yung-Ching He
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (T.-C.P.); (Y.-C.H.)
| | - Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 435403, Taiwan
- Department of Rehabilitation, Jenteh Junior College of Medicine, Nursing and Management, Miaoli 356006, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Biotechnology Industrial Innovation and Management, National Chung Hsing University, Taichung 402202, Taiwan;
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan;
- Graduate Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan; (T.-C.P.); (Y.-C.H.)
- Master Program in Precision Health, Doctoral Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
6
|
Yan H, Sasaki T, Gon Y, Nishiyama K, Kanki H, Mochizuki H. Driver gene KRAS aggravates cancer-associated stroke outcomes. Thromb Res 2024; 233:55-68. [PMID: 38029547 DOI: 10.1016/j.thromres.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The incidence of cancer-associated stroke has increased with the prolonged survival times of cancer patients. Recent genetic studies have led to progress in cancer therapeutics, but relationships between oncogenic mutations and stroke remain elusive. Here, we focused on the driver gene KRAS, which is the predominant RAS isoform mutated in multiple cancer types, in cancer associated stroke study. KRASG13D/- and parental human colorectal carcinoma HCT116 cells were inoculated into mice that were then subjected to a photochemically-induced thrombosis model to establish ischemic stroke. We found that cancer inoculation exacerbated neurological deficits after stroke. Moreover, mice inoculated with KRASG13D/- cells showed worse neurological deficits after stroke compared with mice inoculated with parental cells. Stroke promoted tumor growth, and the KRASG13D/- allele enhanced this growth. Brain RNA sequencing analysis and serum ELISA showed that chemokines and cytokines mediating pro-inflammatory responses were upregulated in mice inoculated with KRASG13D/- cells compared with those inoculated with parental cells. STAT3 phosphorylation was promoted following ischemic stroke in the KRASG13D/- group compared with in the parental group, and STAT3 inhibition significantly ameliorated stroke outcomes by mitigating microglia/macrophage polarization. Finally, we compared the prognosis and mortality of colorectal cancer patients with or without stroke onset between 1 January 2007 and 31 December 2020 using a hospital-based cancer registry and found that colorectal cancer patients with stroke onset within 3 months after cancer diagnosis had a worse prognosis. Our work suggests an interplay between KRAS and ischemic stroke that may offer insight into future treatments for cancer-associated stroke.
Collapse
Affiliation(s)
- Haomin Yan
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan; Department of Neurotherapeutics, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Yasufumi Gon
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Savoji AB, Kaheni Y, Rezaei P, Farkhondeh T, Pourhanifeh MH, Samarghandian S. Therapeutic Effects of Berberine against Urological Cancers: Biological Potentials Based on Cellular Mechanisms. Curr Mol Med 2024; 24:1282-1290. [PMID: 37933211 DOI: 10.2174/0115665240263630231009050436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 11/08/2023]
Abstract
BACKGROUND Urological cancers, encompassing prostate, kidney, and bladder cancers, pose significant global health challenges. Current treatment modalities, including chemotherapy, radiotherapy, and surgery, individually or in combination, have limitations in efficacy and are associated with notable morbidity and mortality. METHODS This review explores alternative therapeutic avenues, emphasizing the exploration of natural compounds, with a specific focus on berberine. Berberine's potential as a treatment for urological cancers is investigated through an extensive examination of cellular and molecular mechanisms. RESULTS The comprehensive analysis reveals promising anticancer properties associated with berberine, substantiated by a wealth of experimental studies. The agent's impact on urological cancers is discussed, highlighting notable findings related to its efficacy and safety profile. CONCLUSIONS Given the high mortality rates and potential side effects associated with current standard treatments for urological cancers, the exploration of alternative, effective, and safer options is imperative. This review underscores berberine's therapeutic potential, shedding light on its anticancer effects and encouraging further research in the pursuit of enhanced treatment strategies.
Collapse
Affiliation(s)
- Ali Bozorg Savoji
- Student Research Committee, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Yasamin Kaheni
- Student Research Committee, Islamic Azad University, Mashhad Medical Branch, Mashhad, Iran
| | - Pouria Rezaei
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
8
|
Peng Z, Zhuang J, Shen B. The role of microbiota in tumorigenesis, progression and treatment of bladder cancer. MICROBIOME RESEARCH REPORTS 2023; 3:5. [PMID: 38455086 PMCID: PMC10917617 DOI: 10.20517/mrr.2023.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 03/09/2024]
Abstract
For decades, the urinary system was regarded as a sterile environment due to the absence of any bacterial growth in clinical standard urine cultures from healthy individuals. However, a diverse array of microbes colonizes the urinary system in small quantities, exhibiting a variable compositional signature influenced by differences in sex, age, and pathological state. Increasing pieces of evidence suggest microbiota exists in tumor tissue and plays a crucial role in tumor microenvironment based on research in multiple cancer models. Current studies about microbiota and bladder cancer have preliminarily characterized the bladder cancer-related microbiota, but how the microbiota influences the biological behavior of bladder cancer remains unclarified. This review summarizes the characteristics of microbiota in bladder cancer, aims to propose possible mechanisms that microbiota acts in tumorigenesis and progression of bladder cancer based on advances in gut microbiota, and discusses the potential clinical application of microbiota in bladder cancer.
Collapse
Affiliation(s)
| | | | - Bing Shen
- Correspondence to: Prof. Bing Shen, Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, NO. 85 Wu Jin Road, Hongkou District, Shanghai 200080, China. E-mail:
| |
Collapse
|
9
|
Hsu CY, Yang WT, Lin JH, Lu CH, Hu KC, Lan TH, Chang CC. Sertindole, an Antipsychotic Drug, Curbs the STAT3/BCL-xL Axis to Elicit Human Bladder Cancer Cell Apoptosis In Vitro. Int J Mol Sci 2023; 24:11852. [PMID: 37511611 PMCID: PMC10380261 DOI: 10.3390/ijms241411852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/16/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Bladder cancer is the leading urinary tract malignancy. Epidemiological evidence has linked lower cancer incidence in schizophrenia patients to long-term medication, highlighting the anticancer potential of antipsychotics. Sertindole is an atypical antipsychotic agent with reported anticancer action on breast and gastric cancers. Yet, sertindole's effect on bladder cancer remains unaddressed. We herein present the first evidence of sertindole's antiproliferative effect and mechanisms of action on human bladder cancer cells. Sertindole was cytotoxic against bladder cancer cells while less cytotoxic to normal urothelial cells. Apoptosis was a primary cause of sertindole's cytotoxicity, as the pan-caspase inhibitor z-VAD-fmk rescued cells from sertindole-induced killing. Mechanistically, sertindole inhibited the activation of signal transducer and activator of transcription 3 (STAT3), an oncogenic driver of bladder cancer, as sertindole lowered the levels of tyrosine 705-phosphorylated STAT3 along with that of STAT3's target gene BCL-xL. Notably, ectopic expression of the dominant-active STAT3 mutant impaired sertindole-induced apoptosis in addition to restoring BCL-xL expression. Moreover, bladder cancer cells overexpressing BCL-xL were refractory to sertindole's proapoptotic action, arguing that sertindole represses STAT3 to downregulate BCL-xL, culminating in the induction of apoptosis. Overall, the current study indicated sertindole exerts bladder cancer cytotoxicity by provoking apoptosis through targeted inhibition of the antiapoptotic STAT3/BCL-xL signaling axis. These findings implicate the potential to repurpose sertindole as a therapeutic strategy for bladder cancer.
Collapse
Affiliation(s)
- Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung 435403, Taiwan
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
| | - Wei-Ting Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Ju-Hwa Lin
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Chien-Hsing Lu
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Kai-Cheng Hu
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Tsuo-Hung Lan
- Tsaotun Psychiatric Center, Ministry of Health and Welfare, Nantou 542019, Taiwan
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Center for Neuropsychiatric Research, National Health Research Institute, Miaoli 350401, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Che Chang
- Doctoral Program in Translational Medicine, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Graduate Institute of Biomedical Sciences, Rong Hsing Translational Medicine Research Center, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
10
|
Kuo MY, Yang WT, Ho YJ, Chang GM, Chang HH, Hsu CY, Chang CC, Chen YH. Hispolon Methyl Ether, a Hispolon Analog, Suppresses the SRC/STAT3/Survivin Signaling Axis to Induce Cytotoxicity in Human Urinary Bladder Transitional Carcinoma Cell Lines. Int J Mol Sci 2022; 24:ijms24010138. [PMID: 36613579 PMCID: PMC9820424 DOI: 10.3390/ijms24010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer is a leading human malignancy worldwide. Signal transducer and activator of transcription (STAT) 3 is an oncogenic transcription factor commonly hyperactivated in most human cancers, including bladder cancer. Notably, preclinical evidence has validated STAT3 blockade as a promising therapeutic strategy for bladder cancer. Hispolon Methyl Ether (HME) is a structural analog of hispolon, an anticancer component of the medicinal mushroom Phellinus linteus. Thus far, HME's anticancer activity and mechanisms remain largely unknown. We herein report HME was cytotoxic, more potent than cisplatin, and proapoptotic to various human bladder transitional carcinoma cell lines. Of note, HME blocked STAT3 activation, evidenced by HME-elicited reduction in tyrosine 705-phosphorylated STAT3 levels constitutively expressed or induced by interleukin-6. Significantly, HME-induced cytotoxicity was abrogated in cells expressing a dominant-active STAT3 mutant (STAT3-C), confirming STAT3 blockage as a pivotal mechanism of HME's cytotoxic action. We further revealed that survivin was downregulated by HME, while its levels were rescued in STAT3-C-expressing cells. Moreover, survivin overexpression abolished HME-induced cytotoxicity, illustrating survivin as a central downstream mediator of STAT3 targeted by HME. Lastly, HME was shown to lower tyrosine 416-phosphorylated SRC levels, suggesting that HME inhibits STAT3 by repressing the activation of SRC, a STAT3 upstream kinase. In conclusion, we present the first evidence of HME's anti-bladder cancer effect, likely proceeding by evoking apoptosis through suppression of the antiapoptotic SRC/STAT3/survivin signaling axis.
Collapse
Affiliation(s)
- Min-Yung Kuo
- Pediatric Surgery Division, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 402202, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Wei-Ting Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Yann-Jen Ho
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Ge-Man Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Hsiung-Hao Chang
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chao-Yu Hsu
- Division of Urology, Department of Surgery, Tungs’ Taichung MetroHarbor Hospital, Taichung 402202, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402202, Taiwan
| | - Chia-Che Chang
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402202, Taiwan
- Ph.D. Program in Translational Medicine, Rong Hsing Research Center for Translational Medicine, The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung 402202, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 404327, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- Correspondence: or (C.-C.C.); or (Y.-H.C.)
| | - Yi-Hsin Chen
- Department of Nephrology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427213, Taiwan
- School of Medicine, Tzu Chi University, Hualein 970374, Taiwan
- Correspondence: or (C.-C.C.); or (Y.-H.C.)
| |
Collapse
|
11
|
Li X, Peng X, Zhang C, Bai X, Li Y, Chen G, Guo H, He W, Zhou X, Gou X. Bladder Cancer-Derived Small Extracellular Vesicles Promote Tumor Angiogenesis by Inducing HBP-Related Metabolic Reprogramming and SerRS O-GlcNAcylation in Endothelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202993. [PMID: 36045101 PMCID: PMC9596856 DOI: 10.1002/advs.202202993] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
A malformed tumour vascular network provokes the nutrient-deprived tumour microenvironment (TME), which conversely activates endothelial cell (EC) functions and stimulates neovascularization. Emerging evidence suggests that the flexible metabolic adaptability of tumour cells helps to establish a metabolic symbiosis among various cell subpopulations in the fluctuating TME. In this study, the authors propose a novel metabolic link between bladder cancer (BCa) cells and ECs in the nutrient-scarce TME, in which BCa-secreted glutamine-fructose-6-phosphate aminotransferase 1 (GFAT1) via small extracellular vesicles (sEVs) reprograms glucose metabolism by increasing hexosamine biosynthesis pathway flux in ECs and thus enhances O-GlcNAcylation. Moreover, seryl-tRNA synthetase (SerRS) O-GlcNAcylation at serine 101 in ECs promotes its degradation by ubiquitination and impeded importin α5-mediated nuclear translocation. Intranuclear SerRS attenuates vascular endothelial growth factor transcription by competitively binding to the GC-rich region of the proximal promotor. Additionally, GFAT1 knockout in tumour cells blocks SerRS O-GlcNAcylation in ECs and attenuates angiogenesis both in vitro and in vivo. However, administration of GFAT1-overexpressing BCa cells-derived sEVs increase the angiogenetic activity in the ECs of GFAT1-knockout mice. In summary, this study suggests that inhibiting sEV-mediated GFAT1 secretion from BCa cells and targeting SerRS O-GlcNAcylation in ECs may serve as novel strategies for BCa antiangiogenetic therapy.
Collapse
Affiliation(s)
- Xinyuan Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Centre for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiang Peng
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Chunlin Zhang
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xuesong Bai
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yang Li
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Guo Chen
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Huixia Guo
- Centre for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Weiyang He
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiang Zhou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
- Chongqing Key Laboratory of Molecular Oncology and EpigeneticsThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xin Gou
- Department of UrologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
12
|
Madureira AC. Programmed Cell Death-Ligand-1 expression in Bladder Schistosomal Squamous Cell Carcinoma – There’s room for Immune Checkpoint Blockage? Front Immunol 2022; 13:955000. [PMID: 36148227 PMCID: PMC9486959 DOI: 10.3389/fimmu.2022.955000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Schistosoma haematobium, the causative agent of urogenital schistosomiasis, is a carcinogen type 1 since 1994. It is strongly associated with bladder squamous-cell carcinoma in endemic regions, where it accounts for 53-69% of bladder-carcinoma cases. This histological subtype is associated with chronic inflammation being more aggressive and resistant to conventional chemo and radiotherapy. Immune-Checkpoint-Blockage (ICB) therapies targeting the Programmed-Cell-Death-Protein-1(PD-1)/Programmed-Cell-Death-Ligand-1(PD-L1) axis showed considerable success in treating advanced bladder urothelial carcinoma. PD-L1 is induced by inflammatory stimuli and expressed in immune and tumor cells. The binding of PD-L1 with PD-1 modulates immune response leading to T-cell exhaustion. PD-L1 presents in several isoforms and its expression is dynamic and can serve as a companion marker for patients’ eligibility, allowing the identification of positive tumors that are more likely to respond to ICB therapy. The high PD-L1 expression in bladder-urothelial-carcinoma and squamous-cell carcinoma may affect further ICB-therapy application and outcomes. In general, divergent histologies are ineligible for therapy. These treatments are expensive and prone to auto-immune side effects and resistance. Thus, biomarkers capable of predicting therapy response are needed. Also, the PD-L1 expression assessment still needs refinement. Studies focused on squamous cell differentiation associated with S. haematobium remain scarce. Furthermore, in low and middle-income-regions, where schistosomiasis is endemic, SCC biomarkers are needed. This mini-review provides an overview of the current literature regarding PD-L1 expression in bladder-squamous-cell-carcinoma and schistosomiasis. It aims to pinpoint future directions, controversies, challenges, and the importance of PD-L1 as a biomarker for diagnosis, disease aggressiveness, and ICB-therapy prognosis in bladder-schistosomal-squamous-cell carcinoma.
Collapse
|
13
|
Martin A, Woolbright BL, Umar S, Ingersoll MA, Taylor JA. Bladder cancer, inflammageing and microbiomes. Nat Rev Urol 2022; 19:495-509. [PMID: 35798831 DOI: 10.1038/s41585-022-00611-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 02/08/2023]
Abstract
Ageing is correlated with elevated bladder cancer incidence, morbidity and mortality. Advanced age is also associated with elevated markers of chronic inflammation and perturbations in gut and urinary tract microbiota. One reason for the increased incidence and mortality of bladder cancer in the elderly might be that age-associated changes in multiple microbiomes induce systemic metabolic changes that contribute to immune dysregulation with potentially tumorigenic effects. The gut and urinary microbiomes could be dysregulated in bladder cancer, although the effect of these changes is poorly understood. Each of these domains - the immune system, gut microbiome and urinary microbiome - might also influence the response of patients with bladder cancer to treatment. Improved understanding of age-related alterations to the immune system and gut and urinary microbiomes could provide possible insight into the risk of bladder cancer development and progression in the elderly. In patients with bladder cancer, improved understanding of microbiota might also provide potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Austin Martin
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| | - Molly A Ingersoll
- Université Paris Cité, Institut Cochin, INSERM U1016, Paris, France.,Mucosal Inflammation and Immunity group, Department of Immunology, Institut Pasteur, Paris, France
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
14
|
Mohammad Mirzaei N, Tatarova Z, Hao W, Changizi N, Asadpoure A, Zervantonakis IK, Hu Y, Chang YH, Shahriyari L. A PDE Model of Breast Tumor Progression in MMTV-PyMT Mice. J Pers Med 2022; 12:807. [PMID: 35629230 PMCID: PMC9145520 DOI: 10.3390/jpm12050807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
The evolution of breast tumors greatly depends on the interaction network among different cell types, including immune cells and cancer cells in the tumor. This study takes advantage of newly collected rich spatio-temporal mouse data to develop a data-driven mathematical model of breast tumors that considers cells' location and key interactions in the tumor. The results show that cancer cells have a minor presence in the area with the most overall immune cells, and the number of activated immune cells in the tumor is depleted over time when there is no influx of immune cells. Interestingly, in the case of the influx of immune cells, the highest concentrations of both T cells and cancer cells are in the boundary of the tumor, as we use the Robin boundary condition to model the influx of immune cells. In other words, the influx of immune cells causes a dominant outward advection for cancer cells. We also investigate the effect of cells' diffusion and immune cells' influx rates in the dynamics of cells in the tumor micro-environment. Sensitivity analyses indicate that cancer cells and adipocytes' diffusion rates are the most sensitive parameters, followed by influx and diffusion rates of cytotoxic T cells, implying that targeting them is a possible treatment strategy for breast cancer.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (N.M.M.); (Y.H.)
| | - Zuzana Tatarova
- Department of Radiology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Wenrui Hao
- Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Navid Changizi
- Department of Civil and Environmental Engineering, University of Massachusetts, Dartmouth, MA 02747, USA; (N.C.); (A.A.)
| | - Alireza Asadpoure
- Department of Civil and Environmental Engineering, University of Massachusetts, Dartmouth, MA 02747, USA; (N.C.); (A.A.)
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15219, USA;
| | - Yu Hu
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (N.M.M.); (Y.H.)
| | - Young Hwan Chang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (N.M.M.); (Y.H.)
| |
Collapse
|
15
|
Mohammad Mirzaei N, Changizi N, Asadpoure A, Su S, Sofia D, Tatarova Z, Zervantonakis IK, Chang YH, Shahriyari L. Investigating key cell types and molecules dynamics in PyMT mice model of breast cancer through a mathematical model. PLoS Comput Biol 2022; 18:e1009953. [PMID: 35294447 PMCID: PMC8959189 DOI: 10.1371/journal.pcbi.1009953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/28/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
The most common kind of cancer among women is breast cancer. Understanding the tumor microenvironment and the interactions between individual cells and cytokines assists us in arriving at more effective treatments. Here, we develop a data-driven mathematical model to investigate the dynamics of key cell types and cytokines involved in breast cancer development. We use time-course gene expression profiles of a mouse model to estimate the relative abundance of cells and cytokines. We then employ a least-squares optimization method to evaluate the model's parameters based on the mice data. The resulting dynamics of the cells and cytokines obtained from the optimal set of parameters exhibit a decent agreement between the data and predictions. We perform a sensitivity analysis to identify the crucial parameters of the model and then perform a local bifurcation on them. The results reveal a strong connection between adipocytes, IL6, and the cancer population, suggesting them as potential targets for therapies.
Collapse
Affiliation(s)
- Navid Mohammad Mirzaei
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Navid Changizi
- Department of Civil and Environmental Engineering, University of Massachusetts, Dartmouth, Massachusetts, United States of America
| | - Alireza Asadpoure
- Department of Civil and Environmental Engineering, University of Massachusetts, Dartmouth, Massachusetts, United States of America
| | - Sumeyye Su
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Dilruba Sofia
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| | - Zuzana Tatarova
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ioannis K. Zervantonakis
- Department of Bioengineering, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Young Hwan Chang
- Department of Biomedical Engineering and OHSU Center for Spatial Systems Biomedicine (OCSSB), Oregon Health and Science University, Portland, Oregon, United States of America
| | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, Massachusetts, United States of America
| |
Collapse
|
16
|
Yang F, Liu X, He J, Xian S, Yang P, Mai Z, Li M, Liu Y, Zhang X. Occludin facilitates tumour angiogenesis in bladder cancer by regulating IL8/STAT3 through STAT4. J Cell Mol Med 2022; 26:2363-2376. [PMID: 35224833 PMCID: PMC8995457 DOI: 10.1111/jcmm.17257] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/10/2023] Open
Abstract
Bladder cancer (BLCA) is a common genitourinary cancer in patients, and tumour angiogenesis is indispensable for its occurrence and development. However, the indepth mechanism of tumour angiogenesis in BLCA remains elusive. According to recent studies, the tight junction protein family member occludin (OCLN) is expressed at high levels in BLCA tissues and correlates with a poor prognosis. Downregulation of OCLN inhibits tumour angiogenesis in BLCA cells and murine xenografts, whereas OCLN overexpression exerts the opposite effect. Mechanistically, the RT‐qPCR analysis and Western blotting results showed that OCLN increased interleukin‐8 (IL8) and p‐signal transducer and activator of transcription 3 (STAT3) levels to promote BLCA angiogenesis. RNA sequencing analysis and dual‐luciferase reporter assays indicated that OCLN regulated IL8 transcriptional activity via the transcription factor STAT4. In summary, our results provide new perspectives on OCLN, as this protein participates in the development of BLCA angiogenesis by activating the IL8/STAT3 pathway via STAT4 and may serve as a novel and unique therapeutic target.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pathology The Fifth Affiliated Hospital of Sun Yat‐Sen University Zhuhai China
| | - Xue‐Qi Liu
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐Sen University Sun Yat‐Sen University Shenzhen China
| | - Jian‐Zhong He
- Department of Pathology The Fifth Affiliated Hospital of Sun Yat‐Sen University Zhuhai China
| | - Shi‐Ping Xian
- Department of Pathology The Fifth Affiliated Hospital of Sun Yat‐Sen University Zhuhai China
| | - Peng‐Fei Yang
- Department of Pathology The Fifth Affiliated Hospital of Sun Yat‐Sen University Zhuhai China
| | - Zhi‐Ying Mai
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐Sen University Sun Yat‐Sen University Shenzhen China
| | - Miao Li
- Department of Hematology The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital Shenzhen China
| | - Ye Liu
- Department of Pathology The Fifth Affiliated Hospital of Sun Yat‐Sen University Zhuhai China
| | - Xing‐Ding Zhang
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat‐Sen University Sun Yat‐Sen University Shenzhen China
| |
Collapse
|
17
|
Taniyama D, Sakamoto N, Takashima T, Takeda M, Pham QT, Ukai S, Maruyama R, Harada K, Babasaki T, Sekino Y, Hayashi T, Sentani K, Pommier Y, Murai J, Yasui W. Prognostic impact of Schlafen 11 in bladder cancer patients treated with platinum-based chemotherapy. Cancer Sci 2021; 113:784-795. [PMID: 34808009 PMCID: PMC8819307 DOI: 10.1111/cas.15207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
The utility of Schlafen 11 (SLFN11) expression as a predictive biomarker for platinum‐based chemotherapy has been established for cancers from different histologies. However, the therapeutic relevance of SLFN11 in bladder cancer (BC) is unknown. Here, we examined the clinicopathologic significance of SLFN11 expression across 120 BC cases by immunohistochemistry. We divided the cases into two cohorts, one including 50 patients who received adjuvant or neoadjuvant platinum‐based chemotherapy, and the other including 70 BC patients treated by surgical resection without chemotherapy. In the cohort of 50 BC cases treated with platinum‐based chemotherapy, the SLFN11‐positive group (n = 25) showed significantly better overall survival than the SLFN11‐negative group (n = 25, P = .012). Schlafen 11 expression correlated significantly with the expression of luminal subtype marker GATA3. Multivariate analyses identified SLFN11 expression as an independent prognostic predictor (odds ratio, 0.32; 95% confidence interval, 0.11‐0.91; P = .033). Conversely, in the cohort of 70 BC cases not receiving platinum‐based chemotherapy, the SLFN11‐positive group (n = 29) showed significantly worse overall survival than the SLFN11‐negative group (n = 41, P = .034). In vitro analyses using multiple BC cell lines confirmed that SLFN11 KO rendered cells resistant to cisplatin. The epigenetic modifying drugs 5‐azacytidine and entinostat restored SLFN11 expression and resensitized cells to cisplatin and carboplatin in SLFN11‐negative BC cell lines. We conclude that SLFN11 is a predictive biomarker for BC patients who undergo platinum‐based chemotherapy and that the combination of epigenetic modifiers could rescue refractory BC patients to platinum derivatives by reactivating SLFN11 expression.
Collapse
Affiliation(s)
- Daiki Taniyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tsuyoshi Takashima
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masahiko Takeda
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Quoc Thang Pham
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shoichi Ukai
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ryota Maruyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kenji Harada
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Babasaki
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
18
|
Liu J, Zheng Z, Zhang W, Wan M, Ma W, Wang R, Yan Y, Guo Y, Zhang J, Li W, Yao X. Dysregulation of tumor microenvironment promotes malignant progression and predicts risk of metastasis in bladder cancer. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1438. [PMID: 34733990 PMCID: PMC8506754 DOI: 10.21037/atm-21-4023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/02/2021] [Indexed: 11/12/2022]
Abstract
Background The tumor microenvironment (TME) is not only a key factor in the malignant progression of cancer but also plays an indispensable role in tumor immunotherapy. As an important regulatory factor in the TME, long non-coding RNAs (incRNA) are important for the development of bladder cancer. The purpose of this study was to explore the molecular mechanism of malignant progression of bladder cancer (BCa) from the perspective of immunology, establish a reliable signature, and evaluate its effect on prognosis, metastasis, and the effectiveness of immunotherapy. Methods The TME was assessed by single-sample gene set enrichment analysis (ssGSEA) in 373 patients with muscle invasive bladder cancer (MIBC) in The Cancer Genome Atlas (TCGA). Combining RNA sequence data from 49 BCa patients in our center, we established TME-related prognostic signatures (TMERPS) based on TME-related immune prognosis genes using weighted gene correlation network analysis, selection operator Cox analysis, minimum absolute shrinkage, and survival analysis. Real-Time Quantitative PCR was used for expression level analysis of related genes. Functional enrichment analysis and nomograms were used to explore the potential impact of TMERPS on the immune system, prognosis, and metastasis. Results The ssGSEA proved to be an accurate assessment of immune levels in BCa samples. TMERPS was established based on six TME-associated prognostic lncRNAs and was shown to be closely associated with prognosis, metastasis, and immune levels, and to have a significant stratifying effect on the therapeutic efficacy of immune checkpoint inhibitors. Finally, three TMERPS-based nomograms were shown to be effective in predicting prognosis, lymph node metastasis, and distant metastasis in BCa patients. Conclusions TMERPS can stratify BCa patients into different risk groups with different prognoses, immunotherapy sensitivity, and risk of metastasis. TMERPS-based nomograms can effectively predict prognosis and metastasis in BCa patients.
Collapse
Affiliation(s)
- Ji Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Zongtai Zheng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Moxi Wan
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Wenchao Ma
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Ruiliang Wang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Yadong Guo
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Junfeng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Wei Li
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.,Institute of Urinary Oncology, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
19
|
Na L, Wang Z, Bai Y, Sun Y, Dong D, Wang W, Zhao C. WNT7B represses epithelial-mesenchymal transition and stem-like properties in bladder urothelial carcinoma. Biochim Biophys Acta Mol Basis Dis 2021; 1868:166271. [PMID: 34562599 DOI: 10.1016/j.bbadis.2021.166271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/01/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Recurrence and metastasis are the major problems of bladder urothelial carcinoma, which mainly attribute to tumor cell stemness, epithelial-mesenchymal transition (EMT) and chemoresistance. METHODS TCGA database was interrogated for gene mRNA expression in bladder urothelial carcinoma samples. CCLE database was interrogated for gene mRNA expression in bladder cancer cell lines. The correlation between two genes was analyzed by Pearson statistics. 37 human bladder urothelial carcinoma specimens were adopted for immunohistochemistry. Bladder cancer cells RT4, J82, and UM-UC-3 were used to carry out loss and gain of function studies. Kaplan-Meier method was performed to analyze the overall survival. FINDINGS WNT7B is downregulated in high-grade bladder urothelial carcinomas. Low WNT7B expression is associated with unfavorable prognosis. Loss and gain of function studies showed that WNT7B inhibits bladder urothelial carcinoma cell EMT, stem-like properties and chemoresistance. FZD5, a specific receptor for WNT7B, mediates WNT7B signaling. ELF3 is a downstream component of WNT7B signaling, which transcriptionally modulates NOTCH1, a tumor suppressor in bladder urothelial carcinoma. INTERPRETATION These data demonstrate that WNT7B/FZD5-ELF3-NOTCH1 signaling functions as a tumor-suppressing pathway in bladder urothelial carcinoma.
Collapse
Affiliation(s)
- Lei Na
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuo Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yu Bai
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China; Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Sun
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Dan Dong
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Sionov RV. Leveling Up the Controversial Role of Neutrophils in Cancer: When the Complexity Becomes Entangled. Cells 2021; 10:cells10092486. [PMID: 34572138 PMCID: PMC8465406 DOI: 10.3390/cells10092486] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the most abundant immune cell in the circulation of human and act as gatekeepers to discard foreign elements that have entered the body. They are essential in initiating immune responses for eliminating invaders, such as microorganisms and alien particles, as well as to act as immune surveyors of cancer cells, especially during the initial stages of carcinogenesis and for eliminating single metastatic cells in the circulation and in the premetastatic organs. Since neutrophils can secrete a whole range of factors stored in their many granules as well as produce reactive oxygen and nitrogen species upon stimulation, neutrophils may directly or indirectly affect carcinogenesis in both the positive and negative directions. An intricate crosstalk between tumor cells, neutrophils, other immune cells and stromal cells in the microenvironment modulates neutrophil function resulting in both anti- and pro-tumor activities. Both the anti-tumor and pro-tumor activities require chemoattraction towards the tumor cells, neutrophil activation and ROS production. Divergence is seen in other neutrophil properties, including differential secretory repertoire and membrane receptor display. Many of the direct effects of neutrophils on tumor growth and metastases are dependent on tight neutrophil–tumor cell interactions. Among them, the neutrophil Mac-1 interaction with tumor ICAM-1 and the neutrophil L-selectin interaction with tumor-cell sialomucins were found to be involved in the neutrophil-mediated capturing of circulating tumor cells resulting in increased metastatic seeding. On the other hand, the anti-tumor function of neutrophils was found to rely on the interaction between tumor-surface-expressed receptor for advanced glycation end products (RAGE) and Cathepsin G expressed on the neutrophil surface. Intriguingly, these two molecules are also involved in the promotion of tumor growth and metastases. RAGE is upregulated during early inflammation-induced carcinogenesis and was found to be important for sustaining tumor growth and homing at metastatic sites. Cathepsin G was found to be essential for neutrophil-supported lung colonization of cancer cells. These data level up the complexity of the dual role of neutrophils in cancer.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Hadassah Medical School, The Hebrew University of Jerusalem, Ein Kerem Campus, P.O.B. 12272, Jerusalem 9112102, Israel
| |
Collapse
|
21
|
Nitschke K, Worst TS, von Rhade SM, Thaqi B, Neuberger M, Wessels F, Weis CA, Porubsky S, Gaiser T, Kriegmair M, von Hardenberg J, Weidenbusch M, Erben P, Nuhn P. High IL-22RA1 gene expression is associated with poor outcome in muscle invasive bladder cancer. Urol Oncol 2021; 39:499.e1-499.e8. [PMID: 34134925 DOI: 10.1016/j.urolonc.2021.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND The cell surface interleukin 22 (IL-22) receptor complex is mainly expressed in epithelial and tissue cells like pancreatitis cells. Recent studies described that IL-22R was overexpressed in malignant diseases and was associated with a poor overall survival (OS). The role of IL-22RA1 gene expression in muscle invasive bladder cancer (MIBC) has not been investigated, yet. OBJECTIVES The aim of this study was to analyze the role of IL-22RA1 gene expression in patients with MIBC. METHODS In a cohort of 114 patients with MIBC who underwent radical cystectomy, IL-22RA1 gene expression was analyzed with qRT-PCR and correlated with clinical parameters. Furthermore, Kaplan-Meier and Cox regression analysis were performed. For validation, an in silico dataset (TCGA 2017, n=407) was reanalyzed. RESULTS IL-22RA1 gene expression was independent of clinicopathological parameters like age (P=0.2681), T stage (P=0.2130), nodal status (P=0.3238) and lymph vascular invasion (LVI, P=0.5860) in patients with MIBC. A high expression of IL-22RA1 was associated with a shorter OS (P=0.0040) and disease-specific survival (P=0.0385). Furthermore, a shorter disease-free survival (DFS) was also associated with a high expression of IL-22RA1 (P=0.0102). In the multivariable analysis, IL-22RA1 expression was an independent prognostic predictors regarding OS (P=0.0096, HR=0.48). In the TCGA cohort, IL-22RA1 expression was independent regarding to OS and DFS. CONCLUSION A high IL-22RA1 gene expression was associated with worse outcome. Furthermore, IL-22RA1 represented an independent predictor regarding OS in our cohort and therefore might be used for risk stratification in patients with MIBC.
Collapse
Affiliation(s)
- Katja Nitschke
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany.
| | - Thomas S Worst
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Sophie Madeleine von Rhade
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Blerta Thaqi
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Manuel Neuberger
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Frederik Wessels
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Cleo-Aron Weis
- Pathologisches Institut, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Stefan Porubsky
- Institut für Pathologie, Universitätsmedizin, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Timo Gaiser
- Pathologisches Institut, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Maximilian Kriegmair
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Jost von Hardenberg
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Marc Weidenbusch
- Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Philipp Erben
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| | - Philipp Nuhn
- Klinik für Urologie und Urochirurgie, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Germany
| |
Collapse
|
22
|
Berberine suppresses bladder cancer cell proliferation by inhibiting JAK1-STAT3 signaling via upregulation of miR-17-5p. Biochem Pharmacol 2021; 188:114575. [PMID: 33887260 DOI: 10.1016/j.bcp.2021.114575] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Hyperactivation of signal transducer and activator of transcription 3 (STAT3) is strongly associated with cancer initiation, progression, metastasis, chemoresistance, and immune evasion; thus, STAT3 has been intensely studied as a therapeutic target for cancer treatment. Berberine (BBR), an active component extracted from Coptis chinensis, has shown anti-tumor effects in multiple tumors. However, its underlying mechanisms have not yet been fully elucidated. In this study, we investigated the effects and the underlying mechanisms of BBR on bladder cancer (BCa) cells. We found that BBR showed significant cytotoxic effects against BCa cell lines both in vivo and in vitro, with much lower cytotoxic effects on the human normal urothelial cell line SV-HUC-1. BBR treatment induced DNA replication defects and cell cycle arrest, resulting in apoptosis or cell senescence, depending on p53 status, in BCa cells. Mechanistically, BBR exerted anti-tumor effects on BCa cells by inhibiting Janus kinase 1 (JAK1)-STAT3 signaling through the upregulation of miR-17-5p, which directly binds to the 3'UTR of JAK1 and STAT3, downregulating their expressions. Collectively, our results demonstrate that BBR exerts anti-tumor effects by perturbing JAK1-STAT3 signaling through the upregulation of miR-17-5p in BCa cells, and that BBR may serve as a potential therapeutic option for BCa treatment.
Collapse
|
23
|
Wang G, Dai Y, Li K, Cheng M, Xiong G, Wang X, Chen S, Chen Z, Chen J, Xu X, Ling RS, Peng L, Chen D. Deficiency of Mettl3 in Bladder Cancer Stem Cells Inhibits Bladder Cancer Progression and Angiogenesis. Front Cell Dev Biol 2021; 9:627706. [PMID: 33681207 PMCID: PMC7930389 DOI: 10.3389/fcell.2021.627706] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
RNA N6-methyladenosine is a key step of posttranscriptional modulation that is involved in governing gene expression. The m6A modification catalyzed by Mettl3 has been widely recognized as a critical epigenetic regulation process for tumorigenic properties in various cancer cell lines, including bladder cancer. However, the in vivo function of Mettl3 in bladder cancer remains largely unknown. In our study, we found that ablation of Mettl3 in bladder urothelial attenuates the oncogenesis and tumor angiogenesis of bladder cancer using transgenic mouse model. In addition, conditional knockout of Mettl3 in K14+ bladder cancer stem cell population leads to inhibition of bladder cancer progression. Coupled with the global transcriptome sequencing and methylated RNA immunoprecipitation sequencing results, we showed that deletion of Mettl3 leads to the suppression of tyrosine kinase endothelial (TEK) and vascular endothelial growth factor A (VEGF-A) through reduced abundance of m6A peaks on a specific region. In addition, the depletion of Mettl3 results in the decrease in both messenger RNA (mRNA) and protein levels of TEK and VEGF-A in vitro. Taken together, Mettl3-mediated m6A modification is required for the activation of TEK–VEGF-A-mediated tumor progression and angiogenesis. Our findings may provide theoretical basis for bladder cancer treatment targeting Mettl3.
Collapse
Affiliation(s)
- Ganping Wang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yarong Dai
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Kang Li
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Maosheng Cheng
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gan Xiong
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Wang
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuang Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianwen Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuyun Xu
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Rong-Song Ling
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Liang Peng
- Department of Oncology, Chinese PLA General Hospital, Beijing, China
| | - Demeng Chen
- Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Mirzaei S, Gholami MH, Mahabady MK, Nabavi N, Zabolian A, Banihashemi SM, Haddadi A, Entezari M, Hushmandi K, Makvandi P, Samarghandian S, Zarrabi A, Ashrafizadeh M, Khan H. Pre-clinical investigation of STAT3 pathway in bladder cancer: Paving the way for clinical translation. Biomed Pharmacother 2020; 133:111077. [PMID: 33378975 DOI: 10.1016/j.biopha.2020.111077] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Effective cancer therapy requires identification of signaling networks and investigating their potential role in proliferation and invasion of cancer cells. Among molecular pathways, signal transducer and activator of transcription 3 (STAT3) has been of importance due to its involvement in promoting proliferation, and invasion of cancer cells, and mediating chemoresistance. In the present review, our aim is to reveal role of STAT3 pathway in bladder cancer (BC), as one of the leading causes of death worldwide. In respect to its tumor-promoting role, STAT3 is able to enhance the growth of BC cells via inhibiting apoptosis and cell cycle arrest. STAT3 also contributes to metastasis of BC cells via upregulating of MMP-2 and MMP-9 as well as genes in the EMT pathway. BC cells obtain chemoresistance via STAT3 overexpression and its inhibition paves the way for increasing efficacy of chemotherapy. Different molecular pathways such as KMT1A, EZH2, DAB2IP and non-coding RNAs including microRNAs and long non-coding RNAs can function as upstream mediators of STAT3 that are discussed in this review article.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- IstitutoItaliano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, OrtaMahalle, ÜniversiteCaddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| |
Collapse
|
25
|
Abstract
Around 3% of new cancer diagnoses and 2% of all cancer deaths every year are caused by urinary bladder cancer (BC). This indicates a great need for intensive studying of BC by using different approaches including indispensable mice models. The most common preclinical mouse model of bladder carcinogenesis relies on the use of a nitrosamine compound, N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN) which causes high-grade, invasive tumors in the urinary bladder. BBN-induced bladder cancer in mice recapitulates the histology and manifests genetic alterations similar to human muscle-invasive bladder cancer. Here we present a detailed protocol for the induction of BC in mice which is based on the administration of 0.05%-0.1% BBN in drinking water. Six-to-eight-week-old mice are treated orally with BBN for 12weeks and tumors are expected 8weeks after the termination of BBN regimen. Histopathologic examination of the lesions should be routinely assessed after hematoxylin and eosin staining by an experienced pathologist and it can vary from urothelial dysplasia to invasive bladder cancer with glandular and squamous divergent differentiation, the incidence of which might depend on the mouse strain, gender, BBN concentration and the timeline of the protocol. Utilizing half of the urinary bladder tissue for the isolation and analysis of RNA, DNA and proteins provides a comprehensive insight into the biology of BC and reduces the number of mice per study. Finally, the successful use of the BC model can facilitate fundamental biomedical discoveries leading to novel diagnostic and therapeutic approaches with clinical benefits.
Collapse
|
26
|
Chen M, Zhang R, Lu L, Du J, Chen C, Ding K, Wei X, Zhang G, Huang Y, Hou J. LncRNA PVT1 accelerates malignant phenotypes of bladder cancer cells by modulating miR-194-5p/BCLAF1 axis as a ceRNA. Aging (Albany NY) 2020; 12:22291-22312. [PMID: 33188158 PMCID: PMC7695393 DOI: 10.18632/aging.202203] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Numerous studies proved that long non-coding RNA (lncRNA) is involved in the progression of multifarious diseases, especially in some carcinomas. As a potential tumor biomarker, plasmacytoma variant translocation 1 gene (PVT1) is involved in the development and progression of multifarious cancers. Nevertheless, the intrinsic and concrete molecular mechanism of PVT1 in bladder cancer still remained unclear, which is also the dilemma faced in many non-coding RNA studies. RESULTS Our research revealed that PVT1 was significantly higher expression in bladder carcinoma specimens and cell lines. Further experiments indicated that knockdown or overexpression of PVT1 restrained or promoted the malignant phenotype and WNT/β-catenin signaling in bladder cancer cells. Meanwhile miR-194-5p was in contrast and miR-194-5p could partially reverse the function of PVT1 in malignant bladder tumor cells. As a microRNA sponge, PVT1 actively promotes the expression of b-cells lymphoma-2-associated transcription factor 1 (BCLAF1) to sponge miR-194-5p and subsequently increases malignant phenotypes of bladder cancer cells. Therefore, it performs a carcinogenic effect and miR-194-5p as the opposite function, and serves as an antioncogene in the bladder carcinomas pathogenesis. CONCLUSION PVT1-miR-194-5p-BCLAF1 axis is involved in the malignant progression and development of bladder carcinomas. Experiments revealed that PVT1 has a significant regulatory effect on bladder cancer (BC) and can be used as a clinical diagnostic marker and a therapeutic molecular marker for patients suffering from BC. METHODS In urothelial bladder carcinoma specimens and cell lines, the relative expression levels of PVT1 and miR-194-5p were detected by quantitative reverse transcription PCR (RT-qPCR). Through experiments such as loss-function and over-expression, the biological effects of PVT1 and miR-194-5p on the proliferation, migration, apoptosis and tumorigenicity were explored in bladder cancer cells. Co-immunoprecipitation, proteomics experiments, dual luciferase reporter gene analysis, western blot and other methods were adopted to investigate the PVT1 potential mechanism in bladder carcinomas.
Collapse
Affiliation(s)
- Mingwei Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
- Department of Urology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
| | - Rongyuan Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Le Lu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Jian Du
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Chunyang Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Keke Ding
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Guangbo Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Jiangsu Key Laboratory of Gastrointestinal Tumor Immunology, Suzhou 215006, Jiangsu Province, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
27
|
Moghadam ER, Ang HL, Asnaf SE, Zabolian A, Saleki H, Yavari M, Esmaeili H, Zarrabi A, Ashrafizadeh M, Kumar AP. Broad-Spectrum Preclinical Antitumor Activity of Chrysin: Current Trends and Future Perspectives. Biomolecules 2020; 10:E1374. [PMID: 32992587 PMCID: PMC7600196 DOI: 10.3390/biom10101374] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological profile of phytochemicals has attracted much attention to their use in disease therapy. Since cancer is a major problem for public health with high mortality and morbidity worldwide, experiments have focused on revealing the anti-tumor activity of natural products. Flavonoids comprise a large family of natural products with different categories. Chrysin is a hydroxylated flavonoid belonging to the flavone category. Chrysin has demonstrated great potential in treating different disorders, due to possessing biological and therapeutic activities, such as antioxidant, anti-inflammatory, hepatoprotective, neuroprotective, etc. Over recent years, the anti-tumor activity of chrysin has been investigated, and in the present review, we provide a mechanistic discussion of the inhibitory effect of chrysin on proliferation and invasion of different cancer cells. Molecular pathways, such as Notch1, microRNAs, signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappaB (NF-κB), PI3K/Akt, MAPK, etc., as targets of chrysin are discussed. The efficiency of chrysin in promoting anti-tumor activity of chemotherapeutic agents and suppressing drug resistance is described. Moreover, poor bioavailability, as one of the drawbacks of chrysin, is improved using various nanocarriers, such as micelles, polymeric nanoparticles, etc. This updated review will provide a direction for further studies in evaluating the anti-tumor activity of chrysin.
Collapse
Affiliation(s)
- Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Hui Li Ang
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, IslamicAzad University, Tehran 165115331, Iran;
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Mohammad Yavari
- Nursing and Midwifery Department, Islamic Azad University, Tehran Medical Sciences Branch, Tehran 1916893813, Iran;
| | - Hossein Esmaeili
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran; (A.Z.); (H.S.); (H.E.)
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Milad Ashrafizadeh
- Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore;
| |
Collapse
|