1
|
Kandasamy G, Manisekaran R, Arthikala MK. Chitosan nanoplatforms in agriculture for multi-potential applications - Adsorption/removal, sustained release, sensing of pollutants & delivering their alternatives - A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 240:117447. [PMID: 37863167 DOI: 10.1016/j.envres.2023.117447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
An increase in the global population has led to an increment in the food consumption, which has demanded high food production. To meet the production demands, different techniques and technologies are adopted in agriculture the past 70 years, where utilization of the industry-manufactured/synthetic pesticides (SPTCs - e.g., herbicides, insecticides, fungicides, bactericides, nematicides, acaricides, avicides, and so on) is one of them. However, it has been later revealed that the usage of SPTCs has negatively impacted the environment - especially water and soil, and also agricultural products - mainly foods. Though preventive measures are taken by government agencies, still the utilization rate of SPTCs is high, and consequently, their maximum residual limit (MRL) levels in food are above tolerance, which further results in serious health concerns in humans. So, there is an immediate need for decreasing the utilization of the SPTCs by delivering them effectively at reduced levels in agriculture but with the required efficacy. Apart from that, it is mandatory to detect/sense and also to remove them to lessen the environmental pollution, while developing effective alternative techniques/technologies. Among many suitable materials that are developed/idenified, chitosan, a bio-polymer has gained great attention and is comprehensively implemented in all the above-mentioned applications - sensing, delivery and removal, due to their excellent and required properties. Though many works are available, in this work, a special attention is given to chitosan and its derivatives (i.e., chitosan nanoparticles (CNPs))based removal, controlled release and sensing of the SPTCs - specifically herbicides and insecticides. Moreover, the chitosan/CNPs-based protective effects on the in vivo models during/after their exposure to the SPTCs, and the current technologies like clustered regularly interspaced short palindromic repeats (CRISPR) as alternatives for SPTCs are also reviewed.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Department of Biomedical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600062, Tamil Nadu, India.
| | - Ravichandran Manisekaran
- Interdisciplinary Research Laboratory (LII), Nanostructures & Biomaterials, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| | - Manoj-Kumar Arthikala
- Interdisciplinary Research Laboratory (LII), Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores (ENES) Unidad León-Universidad Nacional Autónoma de México (UNAM), León, Guanajuato C.P. 37689, Mexico
| |
Collapse
|
2
|
Borandeh S, Laurén I, Teotia A, Niskanen J, Seppälä J. Dual functional quaternary chitosans with thermoresponsive behavior: structure-activity relationships in antibacterial activity and biocompatibility. J Mater Chem B 2023; 11:11300-11309. [PMID: 37953644 DOI: 10.1039/d3tb02066e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Cationically modified chitosan derivatives exhibit a range of appealing characteristics, with a particular emphasis on their antimicrobial potential across a broad spectrum of biomedical applications. This study aimed to delve deeper into quaternary chitosan (QC) derivatives. Through the synthesis of both homogeneously and heterogeneously dual-quaternized chitosan (DQC), utilizing AETMAC ([2-(acryloyloxy)ethyl]-trimethylammonium chloride) and GTMAC (glycidyl trimethylammonium chloride), a permanent charge was established, spanning a wide pH range. We assessed structural differences, the type of quaternary functional group, molecular weight (Mw), and charge density. Intriguingly, an upper critical solution temperature (UCST) behavior was observed in AETMAC-functionalized QC. To our knowledge, it is a novel discovery in cationically functionalized chitosan. These materials demonstrated excellent antimicrobial efficacy against model test organisms E. coli and P. syringae. Furthermore, we detected concentration-dependent cytotoxicity in NIH-3T3 fibroblasts. Striking a balance between antimicrobial activity and cytotoxicity becomes a crucial factor in application feasibility. AETMAC-functionalized chitosan emerges as the top performer in terms of overall antibacterial effectiveness, possibly owing to factors like molecular weight, charge characteristics, and variations in the quaternary linker. Quaternary chitosan derivatives, with their excellent antibacterial attributes, hold significant promise as antibacterial or sanitizing agents, as well as across a broad spectrum of biomedical and environmental contexts.
Collapse
Affiliation(s)
- Sedigheh Borandeh
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Isabella Laurén
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Arun Teotia
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Jukka Niskanen
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|
3
|
Wang Q, Wang X, Feng Y. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels 2023; 9:gels9050373. [PMID: 37232967 DOI: 10.3390/gels9050373] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Chitosan hydrogels have a wide range of applications in tissue engineering scaffolds, mainly due to the advantages of their chemical and physical properties. This review focuses on the application of chitosan hydrogels in tissue engineering scaffolds for vascular regeneration. We have mainly introduced these following aspects: advantages and progress of chitosan hydrogels in vascular regeneration hydrogels and the modification of chitosan hydrogels to improve the application in vascular regeneration. Finally, this paper discusses the prospects of chitosan hydrogels for vascular regeneration.
Collapse
Affiliation(s)
- Qiulin Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
4
|
Al-Absi MY, Caprifico AE, Calabrese G. Chitosan and Its Structural Modifications for siRNA Delivery. Adv Pharm Bull 2023; 13:275-282. [PMID: 37342385 PMCID: PMC10278227 DOI: 10.34172/apb.2023.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/18/2021] [Accepted: 01/07/2022] [Indexed: 07/30/2023] Open
Abstract
The use of RNA interference mechanism and small interfering RNA (siRNA) in cancer gene therapy is a very promising approach. However, the success of gene silencing is underpinned by the efficient delivery of intact siRNA into the targeted cell. Nowadays, chitosan is one of the most widely studied non-viral vectors for siRNA delivery, since it is a biodegradable, biocompatible and positively charged polymer able to bind to the negatively charged siRNA forming nanoparticles (NPs) that will act as siRNA delivery system. However, chitosan shows several limitations such as low transfection efficiency and low solubility at physiological pH. Therefore, a variety of chemical and non-chemical structural modifications of chitosan were investigated in the attempt to develop a chitosan derivative showing the features of an ideal siRNA carrier. In this review, the most recently proposed chemical modifications of chitosan are outlined. The type of modification, chemical structure, physicochemical properties, siRNA binding affinity and complexation efficiency of the modified chitosan are discussed. Moreover, the resulting NPs characteristics, cellular uptake, serum stability, cytotoxicity and gene transfection efficiency in vitro and/or in vivo are described and compared to the unmodified chitosan. Finally, a critical analysis of a selection of modifications is included, highlighting the most promising ones for this purpose in the future.
Collapse
|
5
|
Khaitov M, Nikonova A, Shilovskiy I, Kozhikhova K, Kofiadi I, Vishnyakova L, Nikolskii A, Gattinger P, Kovchina V, Barvinskaia E, Yumashev K, Smirnov V, Maerle A, Kozlov I, Shatilov A, Timofeeva A, Andreev S, Koloskova O, Kuznetsova N, Vasina D, Nikiforova M, Rybalkin S, Sergeev I, Trofimov D, Martynov A, Berzin I, Gushchin V, Kovalchuk A, Borisevich S, Valenta R, Khaitov R, Skvortsova V. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy 2021; 76:2840-2854. [PMID: 33837568 PMCID: PMC8251148 DOI: 10.1111/all.14850] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
Background First vaccines for prevention of Coronavirus disease 2019 (COVID‐19) are becoming available but there is a huge and unmet need for specific forms of treatment. In this study we aimed to evaluate the anti‐SARS‐CoV‐2 effect of siRNA both in vitro and in vivo. Methods To identify the most effective molecule out of a panel of 15 in silico designed siRNAs, an in vitro screening system based on vectors expressing SARS‐CoV‐2 genes fused with the firefly luciferase reporter gene and SARS‐CoV‐2‐infected cells was used. The most potent siRNA, siR‐7, was modified by Locked nucleic acids (LNAs) to obtain siR‐7‐EM with increased stability and was formulated with the peptide dendrimer KK‐46 for enhancing cellular uptake to allow topical application by inhalation of the final formulation – siR‐7‐EM/KK‐46. Using the Syrian Hamster model for SARS‐CoV‐2 infection the antiviral capacity of siR‐7‐EM/KK‐46 complex was evaluated. Results We identified the siRNA, siR‐7, targeting SARS‐CoV‐2 RNA‐dependent RNA polymerase (RdRp) as the most efficient siRNA inhibiting viral replication in vitro. Moreover, we showed that LNA‐modification and complexation with the designed peptide dendrimer enhanced the antiviral capacity of siR‐7 in vitro. We demonstrated significant reduction of virus titer and lung inflammation in animals exposed to inhalation of siR‐7‐EM/KK‐46 in vivo. Conclusions Thus, we developed a therapeutic strategy for COVID‐19 based on inhalation of a modified siRNA‐peptide dendrimer formulation. The developed medication is intended for inhalation treatment of COVID‐19 patients.
Collapse
Affiliation(s)
| | - Alexandra Nikonova
- NRC Institute of Immunology FMBA Moscow Russia
- Mechnikov Research Institute for Vaccines and Sera Moscow Russia
| | | | | | | | | | | | | | | | | | | | | | | | - Ivan Kozlov
- NRC Institute of Immunology FMBA Moscow Russia
| | | | | | | | | | - Nadezhda Kuznetsova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Daria Vasina
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Maria Nikiforova
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | | | | | | | | | - Igor Berzin
- Federal Medico‐biological Agency of Russia (FMBA Russia) Moscow Russia
| | - Vladimir Gushchin
- Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N. F.Gamaleya” of the Ministry of Health of the Russian Federation Moscow Russia
| | - Aleksey Kovalchuk
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Sergei Borisevich
- 48 Central Research Institute of the Ministry of Defense of the Russian Federation Moscow Russia
| | - Rudolf Valenta
- NRC Institute of Immunology FMBA Moscow Russia
- Medical University of Vienna Vienna Austria
| | | | | |
Collapse
|
6
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer-based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021; 60:13225-13243. [PMID: 32893932 PMCID: PMC8247987 DOI: 10.1002/anie.202010282] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Indexed: 12/16/2022]
Abstract
Over the last 30 years, genetically engineered DNA has been tested as novel vaccination strategy against various diseases, including human immunodeficiency virus (HIV), hepatitis B, several parasites, and cancers. However, the clinical breakthrough of the technique is confined by the low transfection efficacy and immunogenicity of the employed vaccines. Therefore, carrier materials were designed to prevent the rapid degradation and systemic clearance of DNA in the body. In this context, biopolymers are a particularly promising DNA vaccine carrier platform due to their beneficial biochemical and physical characteristics, including biocompatibility, stability, and low toxicity. This article reviews the applications, fabrication, and modification of biopolymers as carrier medium for genetic vaccines.
Collapse
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Luise Fanslau
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| | - Puneet Tyagi
- Dosage Form Design and DevelopmentBioPharmaceuticals DevelopmentR&DAstra ZenecaGaithersburgMD20878USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhillipa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
7
|
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Recent advances in co-delivery nanosystems for synergistic action in cancer treatment. J Mater Chem B 2021; 9:1208-1237. [PMID: 33393582 DOI: 10.1039/d0tb02168g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanocarrier delivery systems have been widely studied to carry unique or dual chemical drugs. The major challenge of chemotherapies is to overcome the multidrug-resistance (MDR) of cells to antineoplastic medicines. In this context, nano-scale technology has allowed researchers to develop biocompatible nano-delivery systems to overcome the limitation of chemical agents. The development of nano-vehicles may also be directed to co-deliver different agents such as drugs and genetic materials. The delivery of nucleic acids targeting specific cells is based on gene therapy principles to replace the defective gene, correct genome errors or knock-down a particular gene. Co-delivery systems are attractive strategies due to the possibility of achieving synergistic therapeutic effects, which are more effective in overcoming the MDR of cancer cells. These combined therapies can provide better outcomes than separate delivery approaches carrying either siRNA, miRNA, pDNA, or drugs. This article reviews the main design features that need to be associated with nano-vehicles to co-deliver drugs, genes, and gene-drug combinations with efficacy. The advantages and disadvantages of co-administration approaches are also overviewed and compared with individual nanocarrier systems. Herein, future trends and perspectives in designing novel nano-scale platforms to co-deliver therapeutic agents are also discussed.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| | - Franciele F Vit
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Sang W Han
- Department of Biophysics, Federal University of São Paulo, Center for Cell and Molecular Therapy, São Paulo, Brazil
| | - Lucimara G de la Torre
- Department of Materials and Bioprocesses Engineering, School of Chemical Engineering, University of Campinas, Campinas, Brazil.
| |
Collapse
|
8
|
Achieving highly efficient gene transfer to the bladder by increasing the molecular weight of polymer-based nanoparticles. J Control Release 2021; 332:210-224. [PMID: 33607176 DOI: 10.1016/j.jconrel.2021.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 01/02/2023]
Abstract
Short dwell-time and poor penetration of the bladder permeability barrier (BPB) are the main obstacles to intravesical treatments for bladder diseases, and is evidenced by the lack of such therapeutic options on the market. Herein, we demonstrate that by finely tuning the molecular weight of our cationic polymer mucoadhesive nanoparticles, we enhanced our gene transfer, leading to improved adherence and penetrance through the BPB in a safe and efficient manner. Specifically, increasing the polymer molecular weight from 45 kDa to 83 kDa enhanced luciferase plasmid transfer to the healthy murine bladder, leading to 1.35 ng/g luciferase protein expression in the urothelium and lamina propria regions. The relatively higher molecular weight polymer (83 kDa) did not induce morphologic changes or inflammatory responses in the bladder. This approach of altering polymer molecular weight for prolonging gene transfer residence time and deeper penetration through the BPB could be the basis for the design of future gene therapies for bladder diseases.
Collapse
|
9
|
Gorshkova M, Volkova I. Preparation of pH-tunable polyelectrolyte complexes of alginate sodium salt and N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Franck CO, Fanslau L, Bistrovic Popov A, Tyagi P, Fruk L. Biopolymer‐based Carriers for DNA Vaccine Design. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Christoph O. Franck
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Luise Fanslau
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Andrea Bistrovic Popov
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| | - Puneet Tyagi
- Dosage Form Design and Development BioPharmaceuticals Development R&D Astra Zeneca Gaithersburg MD 20878 USA
| | - Ljiljana Fruk
- Department of Chemical Engineering and Biotechnology University of Cambridge Phillipa Fawcett Drive Cambridge CB3 0AS UK
| |
Collapse
|
11
|
Andreica BI, Cheng X, Marin L. Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Blagodatskikh IV, Vyshivannaya OV, Samoilova NA, Bezrodnykh EA, Klemenkova ZS, Kuryakov VN, Tikhonov VE, Khokhlov AR. Polyelectrolyte Complexes of Partially Betainated Chitosan Derivatives Soluble in Weakly Alkaline Media. POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20030037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Facile preparation and characterization of super tough chitosan/poly(vinyl alcohol) hydrogel with low temperature resistance and anti-swelling property. Int J Biol Macromol 2020; 142:574-582. [DOI: 10.1016/j.ijbiomac.2019.09.132] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/14/2019] [Accepted: 09/29/2019] [Indexed: 12/11/2022]
|
14
|
Gao Y, Zhang X, Jin X. Preparation and Properties of Minocycline-Loaded Carboxymethyl Chitosan Gel/Alginate Nonwovens Composite Wound Dressings. Mar Drugs 2019; 17:E575. [PMID: 31614468 PMCID: PMC6835814 DOI: 10.3390/md17100575] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
As derivatives from marine natural biomaterials, alginate-based and chitosan-based biomaterials are commonly used in wound dressings. Calcium alginate fiber (CAF) dressings possess excellent absorption and unique gel forming performance, but the low bioactivity limits its application in wound healing. Carboxymethyl chitosan (CM-Chit) has excellent antibacterial activity, but the gel structure with weak mechanical properties restricts its application. In this study, minocycline (Mino)/CM-Chit solution was coated on the surface of plasma treated CAF needle-punched nonwovens, and then Mino loaded CM-Chit gel/CAF nonwovens composite dressings were fabricated by EDC/NHS (1-3-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide) crosslinking. The dressings had a porous composite structure, which allowed them to quickly absorb and store a large number of wound exudates. Skin-like tensile performance allowed the dressings to provide a better healing environment. Antibacterial assay against Escherichia coli and Staphylococcus aureus indicated that the addition of Mino significantly improved the antibacterial activity of the wound dressings. The tight structure of CM-Chit gel prevented the burst release of Mino so that the dressings had antibacterial activity in a certain period of release time. Cell culture assay showed that the dressings had excellent cell biocompatibility. As new functional dressings, the prepared composite dressings had excellent potential in the clinical healing of wounds.
Collapse
Affiliation(s)
- Yingjun Gao
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xing Zhang
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xiangyu Jin
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
15
|
Chuang CC, Tsai MH, Yen HJ, Shyu HF, Cheng KM, Chen XA, Chen CC, Young JJ, Kau JH. A fucoidan-quaternary chitosan nanoparticle adjuvant for anthrax vaccine as an alternative to CpG oligodeoxynucleotides. Carbohydr Polym 2019; 229:115403. [PMID: 31826481 DOI: 10.1016/j.carbpol.2019.115403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 12/22/2022]
Abstract
We examined the efficacy of fucoidan-N-(2-hydroxy-3-trimethylammonium)propylchitosan nanoparticles (FUC-HTCC NPs) as adjuvants for anthrax vaccine adsorbed (AVA). Positively and negatively surface-charged FUC-HTCC NPs were prepared via polyelectrolyte complexation by varying the mass ratio of FUC and HTCC. When cultured with L929 cells or JAWS II dendritic cells, both charged NPs showed high cell viability and low cytotoxicity, observed via MTT assay and lactate dehydrogenase release assay, respectively. In addition, we have monitored excellent NPs uptake efficacy by dendritic cells and observed that combining FUC-HTCC NPs with AVA significantly increases the magnitude of IgG-anti-protective antigen titers in A/J mice compared to that by CpG oligodeoxynucleotides plus AVA or AVA alone, and PA-specific IgG1 and IgG2a analysis confirmed that FUC-HTCC NPs strongly stimulated humoral immunity. Furthermore, FUC-HTCC NPs plus AVA provided a superior survival rate (100%) of A/J mice compared to CpG oligodeoxynucleotides plus AVA (75%) or AVA alone (50%) following anthrax lethal toxin challenge. The findings support FUC-HTCC NPs as a potential adjuvant of AVA for rapid induction of protective immunity.
Collapse
Affiliation(s)
- Chuan-Chang Chuang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Meng-Hung Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Hui-Ju Yen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Huey-Fen Shyu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Kuang-Ming Cheng
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Xin-An Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC.
| | - Jyh-Hwa Kau
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC.
| |
Collapse
|
16
|
Izumrudov VA, Mussabayeva BK, Kassymova ZS, Klivenko AN, Orazzhanova LK. Interpolyelectrolyte complexes: advances and prospects of application. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4877] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Advances in the development of water-soluble nonstoichiometric polyelectrolyte complexes, which are characterized by high stability and can be involved in competitive interpolyelectrolyte reactions, are summarized and analyzed. The complexes remain stable over a wide range of external conditions (pH, ionic strength, temperature), but show a rapid, reversible and highly sensitive response to environmental changes outside this range by changing the phase state. The review considers methods of preparation and properties of nonstoichiometric polyelectrolyte complexes formed by interactions between oppositely charged polyelectrolytes. These reagents can be used for controlled modification of various surfaces, the preparation of soluble complexes functionalized by different molecules, the suppression and prevention of protein aggregation. The review briefly summarizes new types of soluble polyelectrolytes and polyelectrolyte complexes of different nature and with different structures, including biopolymers and dendrimers, suitable for solving problems in medicine and agricultural biotechnology. In order to evaluate the results achieved, there is a need to integrate and analyze the data on interpolyelectrolyte reactions, which are of most interest for a wide range of researchers.
The bibliography includes 118 references.
Collapse
|
17
|
Tan W, Zhang J, Mi Y, Dong F, Li Q, Guo Z. Synthesis, characterization, and evaluation of antifungal and antioxidant properties of cationic chitosan derivative via azide-alkyne click reaction. Int J Biol Macromol 2018; 120:318-324. [DOI: 10.1016/j.ijbiomac.2018.08.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/12/2018] [Accepted: 08/21/2018] [Indexed: 01/16/2023]
|
18
|
Momeni MM, Kahforoushan D, Abbasi F, Ghanbarian S. Using Chitosan/CHPATC as coagulant to remove color and turbidity of industrial wastewater: Optimization through RSM design. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 211:347-355. [PMID: 29427927 DOI: 10.1016/j.jenvman.2018.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 05/26/2023]
Abstract
One of the most important solid-liquid separation processes is coagulation and flocculation that is extensively used in the primary treatment of industrial wastewater. The biopolymers, because of biodegradable properties and low cost have been used as coagulants. In this study, chitosan as a natural coagulant of choice, was modified by (3-chloro 2-hydroxypropyl)trimethylammonium chloride and was used to remove the color and turbidity of industrial wastewater. To evaluate the effect of pH, settling time, the initial turbidity of wastewater, the amount of coagulant, and the concentration of dye (Melanoidin) were chosen to study their effects on removal of wastewater color and turbidity. The experiments were done in a batch system by using a jar test. To achieve the optimum conditions for the removal of color and turbidity, the response surface methodology (RSM) experimental design method was used. The results obtained from experiments showed that the optimum conditions for the removal of color were as: pH = 3, concentration of dye = 1000 mg/L, settling time = 78.93 min, and dose of coagulant = 3 g/L. The maximum color removal in these conditions was predicted 82.78% by the RSM model. The optimal conditions for the removal of turbidity of the waste water were as: pH = 5.66, initial turbidity = 60 NTU, settling time = 105 min, and amount of coagulant = 3 g/L. The maximum turbidity removal in these circumstances was predicted 94.19% by the model. The experimental results obtained in optimum conditions for removal of color and turbidity were 76.20% and 90.14%, respectively, indicating the high accuracy of the prediction model.
Collapse
Affiliation(s)
| | - Davood Kahforoushan
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran; Environmental Engineering Research Center, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran.
| | - Farhang Abbasi
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Saeid Ghanbarian
- Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
19
|
Yen HJ, Young YA, Tsai TN, Cheng KM, Chen XA, Chen YC, Chen CC, Young JJ, Hong PD. Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells. Carbohydr Polym 2018; 183:140-150. [DOI: 10.1016/j.carbpol.2017.11.096] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/13/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022]
|
20
|
Petrova-Brodskaya AV, Bondarenko AB, Timin AS, Plotnikova MA, Afanas'Ev MV, Semenova AA, Lebedev KI, Gorshkov AN, Gorshkova MY, Egorov VV, Klotchenko SA, Vasin AV. COMPARISON OF INFLUENZA A VIRUS INHIBITION IN VITRO BY SIRNA COMPLEXES WITH CHITOSAN DERIVATIVES, POLYETHYLENEIMINE AND HYBRID POLYARGININE-INORGANIC MICROCAPSULES. Vopr Virusol 2017; 62:259-265. [PMID: 36494957 DOI: 10.18821/0507-4088-2017-62-6-259-265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Anti-influenza drugs and vaccines have a limited effect due to the high mutation rate of virus genome. The direct impact on the conservative virus genome regions should significantly improve therapeutic effectiveness. The RNA interference mechanism (RNAi) is one of the modern approaches used to solve this problem. In this work, we have investigated the antiviral activity of small interfering RNA (siRNA) against the influenza A/PR/8/34 (H1N1), targeting conserved regions of NP and PA. Polycations were used for intracellular siRNA delivery: chitosan's derivatives (methylglycol and quaternized chitosan), polyethyleneimine, lipofectamine, and hybrid organic/non-organic microcapsules. A comparative study of these delivery systems with fluorescent labeled siRNA was conducted. The antiviral activity of three small interfering RNAs targeting the NP (NP-717, NP-1496) and PA (PA-1630) influenza A viruses genes was demonstrated, depending on the chosen carrier. The most effective intracellular delivery and antiviral activity were observed for hybrid microcapsules.
Collapse
Affiliation(s)
- A V Petrova-Brodskaya
- Research Institute of Influenza.,Peter the Great St. Petersburg Polytechnic University
| | - A B Bondarenko
- Research Institute of Influenza.,St. Petersburg State University
| | - A S Timin
- Peter the Great St. Petersburg Polytechnic University.,National Research Tomsk Polytechnic University
| | | | - M V Afanas'Ev
- Research Institute of Influenza.,St. Petersburg State University
| | - A A Semenova
- St. Petersburg State Chemical Pharmaceutical Academy
| | | | - A N Gorshkov
- Research Institute of Influenza.,Institute of Cytology
| | | | | | | | - A V Vasin
- Research Institute of Influenza.,Peter the Great St. Petersburg Polytechnic University
| |
Collapse
|
21
|
Zubareva A, Shagdarova B, Varlamov V, Kashirina E, Svirshchevskaya E. Penetration and toxicity of chitosan and its derivatives. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Gonçalves RC, da Silva DP, Signini R, Naves PLF. Inhibition of bacterial biofilms by carboxymethyl chitosan combined with silver, zinc and copper salts. Int J Biol Macromol 2017; 105:385-392. [PMID: 28756196 DOI: 10.1016/j.ijbiomac.2017.07.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/20/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
Abstract
Investigation of the antimicrobial action of carboxymethyl chitosan (CMCh) is among the alternative approaches in the control of pathogenic microorganisms. This study aimed to screen the toxicity using the brine shrimp lethality assay and to investigate the inhibitory activity of carboxymethyl in isolation or in combination with silver nitrate, copper sulfate and zinc sulfate on biofilm formation by Staphylococcus aureus ATCC 6538, Staphylococcus epidermidis ATCC 12228, Kocuria rhizophila ATCC 9341, Pseudomonas aeruginosa ATCC 9027, Escherichia coli ATCC 25312, and Burkholderia cepacia ATCC 17759. The CMCh was obtained by reacting chitosan with monochloroacetic acid under alkaline conditions, and the occurrence of carboxymethylation was evidenced by FTIR and 1H NMR spectroscopy. The CMCh was combined with metallic salts (AgNO3, CuSO4·5H2O and ZnSO4) to perform the bioassays to screen the toxicity, to determine the minimum inhibitory concentration and the impact of sub-inhibitory concentrations against biofilm formation. Although CMCh did not show inhibitory activity against bacterial growth, it had an interesting level of inhibition of bacterial biofilm. The results suggest that sub-inhibitory concentrations of compounds were effective against biofilm formation.
Collapse
Affiliation(s)
- Randys Caldeira Gonçalves
- Universidade Estadual de Goiás, Campus de Anápolis de Ciências Exatas e Tecnológicas, BR-153, Fazenda Barreiro do Meio, 3105, 75132-903 Anápolis, Goiás, Brazil.
| | - Diego Pereira da Silva
- Universidade Estadual de Goiás, Campus de Anápolis de Ciências Exatas e Tecnológicas, BR-153, Fazenda Barreiro do Meio, 3105, 75132-903 Anápolis, Goiás, Brazil.
| | - Roberta Signini
- Universidade Estadual de Goiás, Campus de Anápolis de Ciências Exatas e Tecnológicas, BR-153, Fazenda Barreiro do Meio, 3105, 75132-903 Anápolis, Goiás, Brazil.
| | - Plínio Lázaro Faleiro Naves
- Universidade Estadual de Goiás, Campus de Anápolis de Ciências Exatas e Tecnológicas, BR-153, Fazenda Barreiro do Meio, 3105, 75132-903 Anápolis, Goiás, Brazil.
| |
Collapse
|
23
|
Synthesis of a chitosan-based photo-sensitive hydrogel and its biocompatibility and biodegradability. Carbohydr Polym 2017; 166:228-235. [DOI: 10.1016/j.carbpol.2017.02.072] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023]
|
24
|
Yu Y, Sun F, Zhang C, Wang Z, Liu J, Tan H. Study on glyco-modification of endostatin-derived synthetic peptide endostatin2 (ES2) by soluble chitooligosaccharide. Carbohydr Polym 2016; 154:204-13. [DOI: 10.1016/j.carbpol.2016.08.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/26/2016] [Accepted: 08/14/2016] [Indexed: 10/21/2022]
|
25
|
Optimization of carboxymethyl chitosan synthesis using response surface methodology and desirability function. Int J Biol Macromol 2016; 85:615-24. [DOI: 10.1016/j.ijbiomac.2016.01.017] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
|
26
|
Maximova ED, Zhiryakova MV, Faizuloev EB, Nikonova AA, Ezhov AA, Izumrudov VA, Orlov VN, Grozdova ID, Melik-Nubarov NS. Cationic nanogels as Trojan carriers for disruption of endosomes. Colloids Surf B Biointerfaces 2015; 136:981-8. [PMID: 26562190 DOI: 10.1016/j.colsurfb.2015.10.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/10/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
Abstract
The comparison study of interaction of linear poly(2-dimethyl amino)ethyl methacrylate and its cationic nanogels of various cross-linking with both DNA and sodium poly(styrene sulfonate) has been performed. Although all amino groups of the nanogels proved to be susceptible for protonation, their accessibility for ion pairing with the polyanions was controlled and impaired with the cross-linking. The investigation of nanogels complexes with cells in culture that was accomplished by using of calcein pH-sensitive probe revealed a successive increase in the cytoplasmic fluorescence upon the growth in the cross-linking due to calceine leakage from acidic compartments to cytosol. This regularity implies that amino groups which are buried presumably inside the nanogel are protected against the ion-pairing with polyanions of plasma membrane and hence are able to manifest buffer properties while captured into acidic endosomes, i.e. possess lyso/endosomolytic capacity. These findings suggest that network architecture makes an important contribution to proton sponge properties of weak polycations.
Collapse
Affiliation(s)
- Ekaterina D Maximova
- M.V Lomonosov Moscow State University, School of Chemistry, GSP-1, Leninskie gory 1, build. 3, Moscow 119991,Russia; I. Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi pereulok 5a, Moscow 105064, Russia
| | - Marina V Zhiryakova
- M.V Lomonosov Moscow State University, School of Chemistry, GSP-1, Leninskie gory 1, build. 3, Moscow 119991,Russia
| | - Evgenyi B Faizuloev
- I. Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi pereulok 5a, Moscow 105064, Russia
| | - Alexandra A Nikonova
- I. Mechnikov Research Institute for Vaccines and Sera, Malyi Kazennyi pereulok 5a, Moscow 105064, Russia
| | - Alexander A Ezhov
- M.V Lomonosov Moscow State University, School of Physics, GSP-1, Leninskie gory 1, build. 2, Moscow 119991, Russia
| | - Vladimir A Izumrudov
- M.V Lomonosov Moscow State University, School of Chemistry, GSP-1, Leninskie gory 1, build. 3, Moscow 119991,Russia; A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russia
| | - Victor N Orlov
- M.V Lomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chermical Biology, GSP-1, Leninskie gory 1, build. 40, Moscow 119991, Russia
| | - Irina D Grozdova
- M.V Lomonosov Moscow State University, School of Chemistry, GSP-1, Leninskie gory 1, build. 3, Moscow 119991,Russia
| | - Nickolay S Melik-Nubarov
- M.V Lomonosov Moscow State University, School of Chemistry, GSP-1, Leninskie gory 1, build. 3, Moscow 119991,Russia.
| |
Collapse
|
27
|
Hydrodynamic behavior of quaternized chitosan at acidic and neutral pH. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0802-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Jiang Z, Han B, Li H, Yang Y, Liu W. Carboxymethyl chitosan represses tumor angiogenesis in vitro and in vivo. Carbohydr Polym 2015; 129:1-8. [PMID: 26050881 DOI: 10.1016/j.carbpol.2015.04.040] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 02/13/2015] [Accepted: 04/20/2015] [Indexed: 11/25/2022]
Abstract
Carboxymethyl chitosan (CMCS), with potent water solubility, biocompatibility, and non-toxicity, has emerged as a promising candidate for biomedical applications. In this study, the anti-tumor angiogenesis effects of CMCS were evaluated in vitro and in vivo. Our results showed that CMCS could inhibit the 2-dimensional and 3-dimensional migration of human umbilical vein endothelial cells (HUVECs) in vitro. CMCS significantly inhibited the growth of mouse hepatocarcinoma 22 tissues and could promote tumor cell necrosis as suggested by pathological observations. The CD34 expression in H22 tumor tissue, the levels of vascular endothelial growth factor and tissue inhibitor of metalloproteinase 1 in serum was regulated by CMCS treatment. CMCS could significantly improve thymus index, spleen index, tumor necrosis factor α and interferon γ level. In a conclusion, CMCS possessed potent anti-tumor effects by inhibiting tumor angiogenesis, stimulating immune functions. Our date provide more foundation for application of CMCS in biomedicine or biomaterials for targeted anticancer drugs delivery.
Collapse
Affiliation(s)
- Zhiwen Jiang
- Biochemistry Laboratory, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, PR China
| | - Baoqin Han
- Biochemistry Laboratory, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, PR China.
| | - Hui Li
- Biochemistry Laboratory, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, PR China
| | - Yan Yang
- Biochemistry Laboratory, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, PR China
| | - Wanshun Liu
- Biochemistry Laboratory, College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, Shandong, PR China
| |
Collapse
|
29
|
Franconetti A, Contreras-Bernal L, Prado-Gotor R, Cabrera-Escribano F. Synthesis of hyperpolarizable biomaterials at molecular level based on pyridinium–chitosan complexes. RSC Adv 2015. [DOI: 10.1039/c5ra09397j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Novel types of fluorescent and quaternized pyridinium–chitosan derivatives have been synthesized and their characteristics as potential NLO-phore biomaterials have been disclosed by DFT calculations.
Collapse
Affiliation(s)
- Antonio Franconetti
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | - Lidia Contreras-Bernal
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | - Rafael Prado-Gotor
- Departamento de Química Física
- Facultad de Química
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | | |
Collapse
|
30
|
Zhang X, Yao J, Zhang L, Fang J, Bian F. Synthesis and characterization of PEG-conjugated quaternized chitosan and its application as a gene vector. Carbohydr Polym 2014; 103:566-72. [DOI: 10.1016/j.carbpol.2013.12.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/23/2013] [Accepted: 12/25/2013] [Indexed: 02/08/2023]
|
31
|
|
32
|
Zhang L, Wang L, Guo B, Ma PX. Cytocompatible injectable carboxymethyl chitosan/N-isopropylacrylamide hydrogels for localized drug delivery. Carbohydr Polym 2014; 103:110-8. [PMID: 24528707 DOI: 10.1016/j.carbpol.2013.12.017] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/19/2013] [Accepted: 12/07/2013] [Indexed: 01/03/2023]
|
33
|
|
34
|
Buschmann MD, Merzouki A, Lavertu M, Thibault M, Jean M, Darras V. Chitosans for delivery of nucleic acids. Adv Drug Deliv Rev 2013; 65:1234-70. [PMID: 23872012 PMCID: PMC7103275 DOI: 10.1016/j.addr.2013.07.005] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 05/22/2013] [Accepted: 07/05/2013] [Indexed: 01/19/2023]
Abstract
Alternatives to efficient viral vectors in gene therapy are desired because of their poor safety profiles. Chitosan is a promising non-viral nucleotide delivery vector because of its biocompatibility, biodegradability, low immunogenicity and ease of manufacturing. Since the transfection efficiency of chitosan polyplexes is relatively low compared to viral counterparts, there is an impetus to gain a better understanding of the structure-performance relationship. Recent progress in preparation and characterisation has enabled coupling analysis of chitosans structural parameters that has led to increased TE by tailoring of chitosan's structure. In this review, we summarize the recent advances that have lead to a more rational design of chitosan polyplexes. We present an integrated review of all major areas of chitosan-based transfection, including preparation, chitosan and polyplexes physicochemical characterisation, in vitro and in vivo assessment. In each, we present the obstacles to efficient transfection and the strategies adopted over time to surmount these impediments.
Collapse
Affiliation(s)
- Michael D Buschmann
- Dept. Chemical Engineering and Inst. Biomedical Engineering, Ecole Polytechnique, Montreal, QC, Canada.
| | | | | | | | | | | |
Collapse
|