1
|
Wei Y, Cai Z, Ma A, Zhang H. Rheology and gelation of aqueous carboxymethylated curdlan solution: Impact of the degree of substitution. Carbohydr Polym 2024; 332:121921. [PMID: 38431398 DOI: 10.1016/j.carbpol.2024.121921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
Curdlan is a unique (1,3)-β-D-glucan with bioactivity and exceptional gelling properties. By chemical functionalization such as carboxymethylation, the physicochemical properties of curdlan can be significantly tailored. However, how the carboxymethylation extent of curdlan affects its rheology and gelation characteristics has yet to be fully understood. Herein, we investigated the impact of the degree of substitution (DS, ranging from 0.04 to 0.97) on the rheological and gelation behavior of carboxymethylated curdlan (CMCD). It was found that CMCD with DS below 0.20, resembling native curdlan, still retained its gelling capability. As the DS increased beyond 0.36, there was a significant increase in its water solubility instead of gelation, resulting in transparent solutions with steady/complex viscosities adhering to the Cox-Merz rule. Moreover, CMCD with high DS demonstrated the ability to undergo in-situ gelation in the presence of metal ions, attributed to the nonspecific electrostatic binding. Additionally, in vitro cytocompatibility testing showed positive compatibility across varying DS in CMCD. This research offers a holistic understanding of the viscosifying and gelling behaviors of CMCD with varying DS, thereby fostering their practical application as thickeners and gelling agents in fields ranging from food and biomedicine to cosmetics and beyond.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhixiang Cai
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Aiqin Ma
- Affiliated Sixth People's Hospital South Campus, Shanghai Jiao Tong University, 6600 Nanfeng Road, Fengxian District, Shanghai 201499, China.
| | - Hongbin Zhang
- Advanced Rheology Institute, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Chitbanyong K, Hou G, Shibata I, Takeuchi M, Kimura S, Isogai A. Polyglucuronic acids prepared from α-(1 → 3)-glucan by TEMPO-catalytic oxidation. Carbohydr Polym 2024; 330:121813. [PMID: 38368084 DOI: 10.1016/j.carbpol.2024.121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
2,2,6,6-Tetramethylpiperidine-1-oxyl radical (TEMPO)-catalytic oxidation was applied to a water-insoluble α-(1 → 3)-glucan in water at pH 10 and room temperature (∼24 °C), with solid NaOCl·5H2O as the primary oxidant. Oxidation with NaOCl at 15 mmol/g gave a water-soluble TEMPO-oxidized product at a mass recovery ratio of 97 %. The carboxy content of the TEMPO-oxidized product was 5.3 mmol/g, which corresponds to a degree of C6-oxidation (DO) of 93 %. A new water-soluble α-(1 → 3)-polyglucuronic acid with a nearly homogeneous chemical structure was therefore quantitatively obtained. X-ray diffraction and solid-state 13C NMR spectroscopic analyses showed that the original α-(1 → 3)-glucan and its TEMPO-oxidized product with a carboxy content of 5.3 mmol/g had crystalline structures, whereas the oxidized products with DOs of 50 % and 66 % had almost disordered structures. The carboxy groups in the oxidized products were regioselectively methyl esterified with trimethylsilyl diazomethane, and analyzed by using size-exclusion chromatography with multi-angle laser-light scattering and refractive index detections. The results show that the original α-(1 → 3)-glucan and its oxidized products with DOs of 50 %, 66 %, and 93 % had weight-average degrees of polymerization of 671, 288, 54, and 45, respectively. Substantial depolymerization of the α-(1 → 3)-glucan molecules therefore occurred during catalytic oxidation, irrespective of the oxidation pH.
Collapse
Affiliation(s)
- Korawit Chitbanyong
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Gaoyuan Hou
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Izumi Shibata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Miyuki Takeuchi
- Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| | - Akira Isogai
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657 Tokyo, Japan.
| |
Collapse
|
3
|
Bray JM, Stephens SM, Weierbach SM, Vargas K, Lambert KM. Recent advancements in the use of Bobbitt's salt and 4-acetamidoTEMPO. Chem Commun (Camb) 2023; 59:14063-14092. [PMID: 37946555 DOI: 10.1039/d3cc04709a] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Recent advances in synthetic methodologies for selective, oxidative transformations using Bobbitt's salt (4-acetamido-2,2,6,6-tetramethyl-1-oxopiperidinium tetrafluoroborate, 1) and its stable organic nitroxide counterpart ACT (4-acetamidoTEMPO, 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl, 2) have led to increased applications across a broad array of disciplines. Current applications and mechanistic understanding of these metal-free, environmentally benign, and easily accessible organic oxidants now span well-beyond the seminal use of 1 and 2 in selective alcohol oxidations. New synthetic methodologies for the oxidation of alcohols, ethers, amines, thiols, C-H bonds and other functional groups with 1 and 2 along with the field's current mechanistic understandings of these processes are presented alongside our contributions in this area. Exciting new areas harnessing the unique properties of these oxidants include: applications to drug discovery and natural product total synthesis, the development of new electrocatalytic methods for depolymerization of lignin and modification of other biopolymers, in vitro and in vivo nucleoside modifications, applications in supramolecular catalysis, the synthesis of new polymers and materials, enhancements in the design of organic redox flow batteries, uses in organic fuel cells, applications and advancements in energy storage, the development of electrochemical sensors, and the production of renewable fuels.
Collapse
Affiliation(s)
- Jean M Bray
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Shannon M Stephens
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Shayne M Weierbach
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Karen Vargas
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| | - Kyle M Lambert
- Department of Chemistry and Biochemistry, Old Dominion University, 4501 Elkhorn Ave, Norfolk, VA 23529, USA.
| |
Collapse
|
4
|
|
5
|
Bao M, Ehexige E, Xu J, Ganbold T, Han S, Baigude H. Oxidized curdlan activates dendritic cells and enhances antitumor immunity. Carbohydr Polym 2021; 264:117988. [PMID: 33910726 DOI: 10.1016/j.carbpol.2021.117988] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 03/13/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022]
Abstract
Curdlan activates dendritic cells (DCs) and enhances DC-based antitumor immunity. However, hydrophobicity and heterogeneity of curdlan particulates hinder perfect binding of curdlan to dectin-1 receptor, resulting in the reduced activation of antigen presenting cells and limited antitumor effects. Herein, we synthesized partially oxidized curdlan derivative (β-1,3-polyglucuronic acid, denote PGA). PGA-45 polymer, the reaction product prepared from curdlan by oxidation with 4-acetamido-TEMPO/NaClO/NaClO2 systems under acid conditions for 45 min, activated DCs, induced the expression of co-stimulatory molecules and cytokines, and promoted allogenic T cell proliferation as well as the expression of IL-2. Mechanistically, PGA-45 polymer strongly enhanced phosphorylation of IKK-β and reduced the expression of phosphorylated Akt, suggesting that PGA-45 may activate multiple cell surface receptors such as TLR4 and dectin-1. Administration of tumor lysate pulsed DCs pre-treated with PGA-45 particles induced strong antitumor activity in B16F10 melanoma model. Our data suggest that PGA-45 have strong adjuvant effects for anti-cancer immunity and the design of PGA polymers may provide insights in the development of novel adjuvants for cancer immunotherapy.
Collapse
Affiliation(s)
- Mingming Bao
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China
| | - Ehexige Ehexige
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China
| | - Jing Xu
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China
| | - Tsogzolmaa Ganbold
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China
| | - Shuqin Han
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China.
| | - Huricha Baigude
- Institute of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia, 010020, PR China.
| |
Collapse
|
6
|
Kikuchi M, Konno N, Suzuki T, Fujii Y, Kodama Y, Isogai A, Habu N. A bacterial endo-β-1,4-glucuronan lyase, CUL-I from Brevundimonas sp. SH203, belonging to a novel polysaccharide lyase family. Protein Expr Purif 2019; 166:105502. [PMID: 31546007 DOI: 10.1016/j.pep.2019.105502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/13/2022]
Abstract
Cellouronate is a (1,4)-β-D-glucuronan prepared by TEMPO-mediated oxidation from regenerated cellulose. We have previously isolated a cellouronate-degrading bacterial strain, Brevundimonas sp. SH203, that produces a cellouronate lyase (β-1,4-glucuronan lyase, CUL-I). In this study, the gene encoding CUL-I was cloned, and the recombinant enzyme was heterologously expressed in Escherichia coli. The predicted CUL-I protein is composed of 426 amino acid residues and includes a putative 21-amino acid signal peptide. The recombinant CUL-I specifically depolymerized β-1,4-glycoside linkages of cellouronate, and its mode of action was endo-type, like the native CUL-I. Sequence analysis showed CUL-I has no similarity to previously known polysaccharide lyases (PLs), indicating that CUL-I should be classified into a novel PL family.
Collapse
Affiliation(s)
- Masako Kikuchi
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Naotake Konno
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan; Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Tomohiro Suzuki
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yuta Fujii
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan
| | - Akira Isogai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Naoto Habu
- School of Agriculture, Utsunomiya University, 350 Mine-machi, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
7
|
Sun Y, Shi X, Zheng X, Nie S, Xu X. Inhibition of dextran sodium sulfate-induced colitis in mice by baker's yeast polysaccharides. Carbohydr Polym 2018; 207:371-381. [PMID: 30600019 DOI: 10.1016/j.carbpol.2018.11.087] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/07/2018] [Accepted: 11/27/2018] [Indexed: 12/19/2022]
Abstract
Most of the reported yeast polysaccharides are a mixture of chitin, β-glucan and mannoprotein, leading to different biological activities. Herein, we report the structures and the anti-inflammation of the purified baker's yeast polysaccharides (BBG1-BBG4). Experimental data indicated that BBG1 was a highly branched β-(1,6)-glucan linked to mannoprotein; BBG2 was a linear β-(1,3)-glucan; BBG3 and BBG4 were mixtures of a β-(1,6)-branched β-(1,3)-glucan and a linear β-(1,3)-glucan. Of these, BBG1 exhibited stronger inhibition of pro-inflammatory mediators of NO/iNOS, IL-6, IL-1β, etc. at protein and/or mRNA levels in LPS-stimulated RAW264.7 cells through inhibiting MAPK signalling pathways. Orally administered BBG1 and BBG2 significantly decreased the pro-inflammatory mediators of IL-6, iNOS and IL-1β at protein and/or mRNA levels, as well as colonic mucosal damage and macrophages infiltration in DSS-induced colitis mice. All these findings suggest that yeast polysaccharides have potentials as anti-inflammatory drugs or adjuvants in the intestinal inflammation therapy.
Collapse
Affiliation(s)
- Ying Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaodan Shi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Xing Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| | - Xiaojuan Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
8
|
Isogai A, Hänninen T, Fujisawa S, Saito T. Review: Catalytic oxidation of cellulose with nitroxyl radicals under aqueous conditions. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.07.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Tang R, Hao J, Zong R, Wu F, Zeng Y, Zhang Z. Oxidation pattern of curdlan with TEMPO-mediated system. Carbohydr Polym 2018; 186:9-16. [DOI: 10.1016/j.carbpol.2017.12.080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 12/31/2017] [Indexed: 10/18/2022]
|
10
|
Formation and characterization of polyelectrolyte complex synthesized by chitosan and carboxylic curdlan for 5-fluorouracil delivery. Int J Biol Macromol 2018; 107:397-405. [DOI: 10.1016/j.ijbiomac.2017.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/18/2017] [Accepted: 09/03/2017] [Indexed: 01/28/2023]
|
11
|
Qiu WY, Wang K, Wang YY, Ding ZC, Wu LX, Cai WD, Yan JK. pH dependent green synthesis of gold nanoparticles by completely C6-carboxylated curdlan under high temperature and various pH conditions. Int J Biol Macromol 2018; 106:498-506. [DOI: 10.1016/j.ijbiomac.2017.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 12/01/2022]
|
12
|
Tong Y, Ganbold T, Baigude H. Synthesis of amphoteric curdlan derivatives for delivery of therapeutic nucleic acids. Carbohydr Polym 2017; 175:739-745. [DOI: 10.1016/j.carbpol.2017.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
|
13
|
A novel self-assembly Lentinan-tetraphenylethylene composite with strong blue fluorescence in water and its properties. Carbohydr Polym 2017; 174:13-24. [DOI: 10.1016/j.carbpol.2017.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022]
|
14
|
Polysaccharide depolymerization from TEMPO-catalysis: Effect of TEMPO concentration. Carbohydr Polym 2017; 170:140-147. [DOI: 10.1016/j.carbpol.2017.04.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/11/2017] [Accepted: 04/23/2017] [Indexed: 11/19/2022]
|
15
|
|
16
|
Takaichi S, Hiraoki R, Inamochi T, Isogai A. One-step preparation of 2,3,6-tricarboxy cellulose. Carbohydr Polym 2014; 110:499-504. [DOI: 10.1016/j.carbpol.2014.03.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/09/2014] [Accepted: 03/27/2014] [Indexed: 11/30/2022]
|
17
|
Zhang R, Edgar KJ. Properties, Chemistry, and Applications of the Bioactive Polysaccharide Curdlan. Biomacromolecules 2014; 15:1079-96. [DOI: 10.1021/bm500038g] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ruoran Zhang
- Macromolecules and Interfaces Institute and ‡Department of
Sustainable Biomaterials, Virginia Tech Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Macromolecules and Interfaces Institute and ‡Department of
Sustainable Biomaterials, Virginia Tech Blacksburg, Virginia 24061, United States
| |
Collapse
|
18
|
Watanabe E, Habu N, Isogai A. Biodegradation of (1→3)-β-polyglucuronate prepared by TEMPO-mediated oxidation. Carbohydr Polym 2013; 96:314-9. [DOI: 10.1016/j.carbpol.2013.03.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 11/29/2022]
|