1
|
Cen Q, Fan J, Hui F, Hu W, Yu S, Liu M, Shi T, Ren Y, Zeng X, Qin L. Influence and underlying mechanism of soluble dietary fiber derived from Ganoderma Lucidum-fermented sweet potato residue on the physicochemical-digestive characteristics of wheat starch. Int J Biol Macromol 2025; 309:142801. [PMID: 40185443 DOI: 10.1016/j.ijbiomac.2025.142801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
Chronic overconsumption of starchy foods has been associated with health risks including cardiovascular diseases and diabetes. Soluble dietary fiber (SDF) presents a promising solution for modifying starch-based food products. In this study, SDF extracted from sweet potato residue (SPR) before and after fermentation with Ganoderma lucidum was incorporated into wheat starch (WS) at varying proportions (0.2 %-0.8 %). Compared with unfermented SDF, the fermented SDF exhibited stronger intermolecular interactions and physical entanglement with WS. As the concentration of fermented SDF increased, the ratio of free water in the gel system increased, while the leaching of amylose (16.64 %-13.68 %), hardness (444-288 g) and chewiness (254.83-170.61) gradually decreased, resulting in the disruption of the WS network structure, increased crystallinity and thermal stability, and inhibition of starch retrogradation. Additionally, the content of resistant starch increased (44.87 %-51.15 %), and the starch digestibility rate decreased. This research furnishes a theoretical foundation for enhancing the resource utilization of SPR and developing functional starch-based foods with improved starch properties and low glycemic index.
Collapse
Affiliation(s)
- Qin Cen
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Jin Fan
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Fuyi Hui
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China; Sugarcane research institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China
| | - Wenkang Hu
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Shan Yu
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Mingzhu Liu
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Tingting Shi
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Yanjie Ren
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China
| | - Xuefeng Zeng
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China; Sugarcane research institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China.
| | - Likang Qin
- College of Life Sciences, Guizhou University, Guiyang 550000, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550000, China; Sugarcane research institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China.
| |
Collapse
|
2
|
Song J, Qi M, Han F, Xu M, Li Y, Zhang X, Yan C, Xie Y, Zhang D, Li H. Understanding the anti-browning mechanism and physicochemical properties in potato pulp during the magnetic field processing. Food Chem 2025; 464:141696. [PMID: 39442210 DOI: 10.1016/j.foodchem.2024.141696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/20/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
To reduce the detrimental effects of enzymatic-browning on potato pulp quality, this study investigated the anti-browning potential of magnetic field at varying intensities. The magnetic field (4 mT) enhanced the structural integrity of potato pulp cells, with the highest hardness (119.37 g). Furthermore, the potato pulp subjected to a magnetic field treatment of 4 mT for 60 min at a temperature of 32 °C (PP-MF-4) shown an orderly macromolecular aggregation, increased viscoelastic properties of potato pulp. The PP-MF-4 demonstrated excellent anti-browning capability, as evidenced by the highest L⁎ value (59.18), reduced browning index, and lower accumulation of browning-products. Furthermore, the PP-MF-4 exhibited a significant reduction in oxidative damage, attributed to enhanced antioxidant activity and total phenolic content. Besides, the PP-MF-4 inhibited browning enzymes and improved the molecular structure orderliness. Consequently, magnetic field presents a viable approach for mitigating enzymatic-browning in potato pulp, offering a promising methods for preserving its quality.
Collapse
Affiliation(s)
- Jialin Song
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Mingming Qi
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Feng Han
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Mei Xu
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Yueming Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Xin Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Chuangshuo Yan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Yujian Xie
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Dongliang Zhang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China
| | - Hongjun Li
- College of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Road, Zhangdian District, Zibo, Shandong, China.
| |
Collapse
|
3
|
Zhao L, Wang J, Xiao S, Du M, Zhao D, Dai X, Zhou Z, Cao Q. A novel isolation technique for sweetpotato starch and its application in thermal property characterization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1583-1592. [PMID: 39360446 DOI: 10.1002/jsfa.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The utilization of sweetpotato starch in the food industry is significantly influenced by the granule size of the starch. To isolate sweetpotato starch fractions with different sizes, an efficient isolation method is in demand. The differences in thermal properties of starch fractions with different sizes from various sweetpotato varieties were revealed insufficiently. RESULTS In this study, we devised a time-saving isolation technique to effectively isolate sweetpotato starch fractions based on granule sizes. The new technique was proved applicable for sweetpotato varieties with different flesh colors. The amylose contents of the isolated starch fractions were in the range 16.49-23.27%. A positive association was observed between amylose content, relative crystallinity of starch fractions and their granule size. Conversely, both the swelling power and water solubility at 95 °C displayed a consistent decline from more than 30 g g-1 to lower than 20 g g-1 as the granule size increased. Tp, To and Tc decreased gradually with an increase of starch granule size, while the medium- or small-sized starch fractions showed higher ΔH. In the first stage of thermogravimetric analysis curves, the weight of the small-sized starch fractions decreased the slowest, but no definite pattern was detected in the second or third stage. CONCLUSION Therefore, the newly established technique and the results of this study will help better understand the properties of sweetpotato starch fractions with different sizes and certainly provide guidelines for the utilization of sweetpotato starch in food processing and product development. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingxiao Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Jie Wang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Shizuo Xiao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Mingjuan Du
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Donglan Zhao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Xibin Dai
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Zhilin Zhou
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| | - Qinghe Cao
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, People's Republic of China
| |
Collapse
|
4
|
Sun C, Du K, He Z, Zhu Z, Hu Y, Wang C, Mei L, Xie Q, Chen Y, Liu Y, Luo G, Mustafa S, Chen X, Du X. Liquid nitrogen ball-milled mechanochemical modification of starches with typically selected A, B and C crystal types on multiscale structure and physicochemical properties. Food Chem 2025; 463:141148. [PMID: 39243611 DOI: 10.1016/j.foodchem.2024.141148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the effect of liquid nitrogen ball-milled mechanochemical treatment on multiscale structure and physicochemical properties of starches with typically selected A (rice starch, ReS), B (potato starch, PtS) and C (pea starch, PeS) crystal types. The morphology of starch samples changed from integral granules to irregular fragments, and the interaction between the exposure OH bonds led to a serious agglomeration. As the treatment times extended, the crystalline structure of starch samples was gradually destroyed, and the excessive treatment approached amorphization. Moreover, the thermal stability of starch samples showed the downward tendency; and with amorphization increased, the swelling power (SP), solubility (S), water absorption capacity (WAC), oil absorption capacity (OAC) and hydrolysis rate of starch samples gradually increased. The obtained results provided a theoretical foundation for broadening the application range of ball-milled starches with different crystal types.
Collapse
Affiliation(s)
- Chengyi Sun
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kai Du
- School of Food and Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, No. 193 Tunxi Road, Hefei University of Technology, Hefei 230009, China
| | - Zhaoxian He
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhijie Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Caihong Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Liping Mei
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qingling Xie
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yajie Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yanyan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Guangli Luo
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Saddam Mustafa
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xu Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Xianfeng Du
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
5
|
Ying R, Zeng S, Huang M. Microstructure of starch complexes coated with arabinoxylans and β-glucans: Effect on gelatinization and digestion properties. Int J Biol Macromol 2025; 284:137967. [PMID: 39581406 DOI: 10.1016/j.ijbiomac.2024.137967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/05/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Research has shown that the presence of a complete cell wall structure in the grain endosperm reduces the digestibility of grains (starch) in the human body. In this study, composite structures of diverse contents of arabinoxylan (AX) and β-glucan (BG) in combination with wheat starch were constructed to simulate the grid structure formed by the combination of starch granules wrapped within cell walls in the starch endosperm. The gel properties following gelatinization and aging of the complexes were analyzed using rheology, differential scanning calorimetry, X-ray scanning, and infrared spectroscopy. Based on this, the differences in the in vitro digestion process of starch complexes were investigated, and the digestion mechanism was explored to offer a theoretical basis for the development of starch-based foods with a low glycemic index. The synergistic effect of AX and BG was found to promote the entanglement and aggregation of molecules, AX and BG inhibits the gelatinization of starch. AX/BG (10 % blend proportion) significantly inhibited starch digestion in the starch complexes, with the lowest hydrolysis rate (76.7 %), which may be because AX and BG wrap the starch particles effectively.
Collapse
Affiliation(s)
- Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shiqi Zeng
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
6
|
Liao Q, Wu M, Cai M, Cai J, Peng Z, Huang X, Zhong Y, Wu J. Prevent lumping during hot-water rehydration of lotus rhizome powder by restricted swelling treatment. Food Chem 2024; 460:140410. [PMID: 39029365 DOI: 10.1016/j.foodchem.2024.140410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Lotus rhizome powder (LRP) tends to lump during hot-water rehydration, adversely affecting its edible quality. By utilizing a restricted swelling treatment (ST), where LRP was swollen at a temperature slightly below its onset gelatinization temperature (To), the lumping rate could be substantially reduced from 30.95% to 6.39%. This treatment induced an ordered-disordered structural transition of LRP without compromising its granule morphology and water dispersibility. This transition led to significant increases in thermal transition temperatures and a notable delay in peak pasting time by 86.6 s. These changes effectively delayed the formation of a gelatinous skin surrounding the dry granules, allowing them sufficient time to absorb water and paste completely, thereby preventing lumping. The prevention of lumping was beneficial for obtaining desired viscoelasticity of LRP paste. Conversely, ST treatments conducted at temperatures markedly deviating from To resulted in significantly higher lumping rates, underscoring the importance of carefully controlling the ST temperature.
Collapse
Affiliation(s)
- Qichao Liao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Minghua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingxi Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiamei Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Zhenhuan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xiaoxin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yejun Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Jianyong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd, Nanchang University, Nanchang 330200, China.
| |
Collapse
|
7
|
Song X, Chen J, Deng L, Zhao Q. Rheological, textural, and pasting properties of A- and B-type wheat starches in relation to their molecular structures. Food Chem 2024; 460:140810. [PMID: 39167869 DOI: 10.1016/j.foodchem.2024.140810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
A- and B-type wheat starches have significant differences in rheological, textural, and pasting properties; however, the structure-property relationship is not fully revealed. Herein, the physicochemical characteristics and molecular structures of A- and B-type starches isolated from three wheat varieties with different apparent amylose contents (2.41%-27.93%) were investigated. A-type starches exhibited higher pasting viscosities, relative crystallinity, onset gelatinization temperatures, and enthalpies, while B-type starches had wide gelatinization temperature ranges. B-type starches had lower resistant starch contents than their A-type counterparts, but B-type starches formed more stable gels and had a lower tendency to retrograde, resulting in lower hardness, storage (G') and loss (G'') moduli but higher tan δ values. A-type starches had lower contents of short amylose (100 ≤ X < 1000) and amylopectin chains (DP 6-12) than B-type. These findings elucidated the differences in molecular structures between A- and B-type starches, which can contribute to their effective application.
Collapse
Affiliation(s)
- Xiaoyan Song
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China; School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Jianyang Chen
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China
| | - Lili Deng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
8
|
Lan G, Xie S, Duan Q, Huang W, Huang W, Zhou J, Chen P, Xie F. Effect of soybean polysaccharide and soybean oil on gelatinization and retrogradation properties of corn starch. Int J Biol Macromol 2024; 264:130772. [PMID: 38467217 DOI: 10.1016/j.ijbiomac.2024.130772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/02/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
This investigation stems from the wide interest in mitigating starch retrogradation, which profoundly impacts the quality of starch-based food, garnering significant attention in the contemporary food industry. Our study delves into the intricate dynamics of soluble soybean polysaccharide (SSPS) and soybean oil (SO) when added individually or in combination to native corn starch (NCS), offering insights into the gelatinization and retrogradation phenomena. We observed that SSPS (0.5 %, w/w) hindered starch swelling, leading to an elevated gelatinization enthalpy change (∆H) value, while SO (0.5 %, w/w) increased ∆H due to its hydrophobicity. Adding SSPS and/or SO concurrently reduced the viscosity and storage modulus (G') of starch matrix. For the starch gel (8 %, w/v) after refrigeration, SSPS magnified water-holding capacity (WHC) and decreased hardness through hydrogen bonding with starch, while SO increased hardness with limited water retention. Crucially, the combination of SSPS and SO maximized WHC, minimized hardness, and significantly inhibited starch retrogradation. The specific ratio of SSPS to SO was found to significantly influence the starch properties, with a 1:1 ratio resulting in the most desirable quality for application in starch-based foods. This study offers insights for utilizing polysaccharides and lipids in starch-based food products to extend shelf life.
Collapse
Affiliation(s)
- Guowei Lan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shumin Xie
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingfei Duan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weijuan Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jinfeng Zhou
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
| | - Pei Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
9
|
Yu Y, Hao Z, Wang B, Deng C, Hu J, Bian Y, Wang T, Zheng M, Yu Z, Zhou Y. Effects of two celery fibers on the structural properties and digestibility of glutinous rice starch: A comparative study. Int J Biol Macromol 2024; 264:130776. [PMID: 38471614 DOI: 10.1016/j.ijbiomac.2024.130776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/13/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
The present study focused on the extraction of water-soluble dietary fiber (CSDF) and water-insoluble dietary fiber (CIDF) from celery. It investigated their effects on glutinous rice starch's (GRS) physicochemical, structural, and digestive properties. The results showed that as the addition of the two dietary fibers increased, they compounded with GRS to varying degrees, with the complexing index reaching 69.41 % and 60.81 %, respectively. The rheological results indicated that the two dietary fibers reduced the viscosity of GRS during pasting and inhibited the short-term regrowth of starch. The FTIR and XRD results revealed that the two fibers interacted with GRS through hydrogen bonding, effectively inhibiting starch retrogradation. Furthermore, both fibers increased the pasting temperature of GRS, thus delaying its pasting and exhibiting better thermal stability. Regarding digestibility, the starch gels containing dietary fibers exhibited significantly reduced digestibility, with RS significantly increased by 8.15 % and 8.95 %, respectively. This study provides insights into the interaction between two dietary fibers and GRS during processing. It enriches the theoretical model of dietary fiber-starch interaction and provides a reference for the application development of starch-based functional foods.
Collapse
Affiliation(s)
- Yiyang Yu
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Baixue Wang
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changyue Deng
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jingwei Hu
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yiran Bian
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Taosuo Wang
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Food Processing Research Institute, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
10
|
Wang Y, Pan Y, Zhou C, Li W, Wang K. Effects of Kiwifruit Dietary Fibers on Pasting Properties and In Vitro Starch Digestibility of Wheat Starch. Nutrients 2024; 16:749. [PMID: 38474877 DOI: 10.3390/nu16050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, the roles of kiwifruit soluble/insoluble dietary fiber (SDF/IDF, respectively) in the pasting characteristics and in vitro digestibility of wheat starch were explored. According to RVA and rheological tests, the IDF enhanced the wheat starch viscosity, decreased the gelatinization degree of the starch granules, and exacerbated starch retrogradation. The addition of SDF in high quantities could reduce the starch gelatinization level, lower the system viscosity, and exacerbate starch retrogradation. Through determining the leached amylose content and conducing scanning electron microscopy, the IDF and SDF added in high quantities was combined with the leached amylose wrapped around the starch granules, which reduced the leached amylose content and decreased the gelatinization degree of the starch granules. The Fourier transform infrared results showed that the addition of both the IDF and SDF resulted in an enhancement in hydrogen bonding formed by the hydroxyl groups of the system. The in vitro digestion results strongly suggested that both the IDF and SDF reduced the wheat starch digestibility. The above findings are instructive for the application of both IDF and SDF in starchy functional foods.
Collapse
Affiliation(s)
- Yaqi Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yaoyi Pan
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chang Zhou
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Wenru Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Kunli Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
11
|
Zuo R, Kong X, Wang Y, He Y, Deng S, Zhuang X, Qiu D. Isolation and characterization of natural nano starch from amaranth starch. Int J Biol Macromol 2024; 260:129525. [PMID: 38237832 DOI: 10.1016/j.ijbiomac.2024.129525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/27/2023] [Accepted: 01/13/2024] [Indexed: 01/21/2024]
Abstract
Nano starch exhibits many advantages for application in diverse fields. Amaranth starch consisted of starch particle aggregates, isolated amaranth starch, and few natural nano starch (NNS), while NNS (0.92 ± 0.12 μm) was successfully isolated for the first time. Compared with the isolated amaranth starch, NNS showed smaller particle size but larger molecular weight, suggesting that the molecules arranged densely. NNS had a weak A-type crystal structure because of its more content of short starch chains, but higher amylose content resulted in the increase of its gelatinization temperature. The special NNS, owning several different physicochemical properties from amaranth starch, can open new ways for the production and application of nano biomass materials.
Collapse
Affiliation(s)
- Raozhen Zuo
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, Ningbo 315211, China; College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Xiangli Kong
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yajuan Wang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, Ningbo 315211, China; Zhejiang Institute of Tianjin University, Zhejiang, Ningbo 315201, China
| | - Yan He
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, Ningbo 315211, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, China
| | - Xuechen Zhuang
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, Ningbo 315211, China.
| | - Dan Qiu
- School of Materials and Chemical Engineering, Ningbo University of Technology, Zhejiang, Ningbo 315211, China; Zhejiang Institute of Tianjin University, Zhejiang, Ningbo 315201, China.
| |
Collapse
|
12
|
Xie X, Chen J, Cheng L, Zhang B, Zhu H, Xu C, Liang D. Physicochemical properties of different size fractions of potato starch cultivated in Highland China. Int J Biol Macromol 2024; 256:128065. [PMID: 37963508 DOI: 10.1016/j.ijbiomac.2023.128065] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
Location influences the properties of potato starch. Potato starch granules cultivated in highland of China were separated into three fractions according to the sedimentation time: large- (∼81 μm, large fraction potato starch, LFPS), medium- (∼28 μm, medium fraction potato starch, MFPS), and small-size (∼15 μm, small fraction potato starch, SFPS) fractions. SFPS showed a spherical shape, MFPS showed an ellipsoid shape and LFPS showed an elongated shape. The three fractions showed the similar XRD patterns, while the relative crystallinity decreased with the decrease of granule size (LFPS 23.61%, MFPS 20.74% and SFPS 20.48%). The water solubility was positively corelated with the granule size, while the swelling power showed a negative relationship with the granule size. For the rheological properties, all the three fractions showed a shear-shinning behavior; and SFPS had the highest peak temperature. However, the MFPS showed the lowest storage modulus during the temperature sweep. The granule size didn't influence the nutritional properties of potato starch and LFPS had the highest slowly digestible starch (SDS) (83.77%) and resistant starch (RS) (13.66%) contents. Some of the properties are different from the previous studies.
Collapse
Affiliation(s)
- Xinhua Xie
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, Henan, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jianyang Chen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, Henan, China
| | - Lilin Cheng
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, Henan, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Bobo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, Henan, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Hongshuai Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, Henan, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Chao Xu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, Henan, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Dan Liang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, Henan, China; National R&D Center for Frozen Rice & Wheat Products Processing Technology, Henan Engineering Laboratory of Quick-Frozen Flour-Rice Food and Prepared Food, Henan Agricultural University, Zhengzhou 450002, Henan, China
| |
Collapse
|
13
|
Zhang Y, Wang Y, Yang B, Han X, He Y, Wang T, Sun X, Zhao J. Effects of zucchini polysaccharide on pasting, rheology, structural properties and in vitro digestibility of potato starch. Int J Biol Macromol 2023; 253:127077. [PMID: 37769764 DOI: 10.1016/j.ijbiomac.2023.127077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/16/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Zucchini polysaccharide (ZP) has a unique molecular structure and a variety of biological activities. This study aimed to evaluate the effects of ZP (1, 2, 3, 4 and 5 %, w/w) on the properties of potato starch (PS), including pasting, rheological, thermodynamic, freeze-thaw stability, micro-structure, and in vitro digestibility of the ZP-PS binary system. The results showed that the appearance of ZP significantly reduced the peak, breakdown, final and setback viscosity and prolonged the pasting temperature of PS, whereas increased the trough viscosity. The tests of rheological showed that ZP had a damaging effect on PS gels. Meanwhile, the results of thermodynamic and Fourier transform infrared exhibited that the presence of ZP significantly retarded the retrogradation of PS, especially at a higher levels. The observation of the microstructure exhibited that ZP significantly altered the microscopic network structure of the PS gels, and ZP reduced the formation of the gel structure. Besides, ZP postponed the retrogradation process of PS gels. Moreover, ZP weakened the freeze-thaw stability of the PS gel. Furthermore, ZP also can decrease the digestibility and estimated glycemic index (eGI) value of PS from 86.04 % and 70.89 to 77.67 % and 65.22, respectively. Simultaneously, the addition of ZP reduced the rapidly digestible starch content (from 25.09 % to 16.59 %) and increased the slowly digestible starch (from 24.99 % to 26.77 %) and resistant starch content (from 49.92 % to 56.64 %). These results have certain guiding significance for the application of ZP in starch functional food.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Yiming Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xunze Han
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Yuting He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Tiange Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xun Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China; Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
14
|
Dhull SB, Chandak A, Chawla P, Goksen G, Rose PK, Rani J. Modifications of native lotus (Nelumbo nucifera G.) rhizome starch and its overall characterization: A review. Int J Biol Macromol 2023; 253:127543. [PMID: 37866555 DOI: 10.1016/j.ijbiomac.2023.127543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Lotus (Nelumbo nucifera G.) rhizomes are an under-utilized and sustainable starch source that constitutes up to 20 % starch. The review mainly focused on the extraction methods of starch, the chemical composition of LRS, and techno-functional characteristics such as swelling power, solubility, in vitro digestibility, pasting property, and gelatinization is highlighted in LRS review. Lotus rhizome starch (LRS) is also used as a water retention agent, thickening, gelling, stabilizing, and filling in food and non-food applications. Native starch has limited functional characteristics in food applications so by modifying the starch, functional characteristics are enhanced. Single and dual treatment processes are available to enhance microstructural properties, resistant starch, techno-functional, morphological, and, film-forming properties. Compared with other starch sources, there is a lack of systematic information on the LRS. Many industries are interested in developing food products based on starch such as nanoparticles, hydrogels, edible films, and many others. Additionally, there are several recommendations to improve the applications in the food industry. Finally, we provide an outlook on the future possibility of LRS.
Collapse
Affiliation(s)
- Sanju Bala Dhull
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Ankita Chandak
- Department of Food Science and Technology, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India.
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial zone, Tarsus University, 33100 Mersin, Turkey
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| | - Jyoti Rani
- Department of Botany, Chaudhary Devi Lal University, Sirsa, Haryana 125055, India
| |
Collapse
|
15
|
Chen C, Li G, Hemar Y, Corke H, Zhu F. Granular architecture of lotus seed starch and its impact on physicochemical properties. Food Res Int 2023; 174:113564. [PMID: 37986517 DOI: 10.1016/j.foodres.2023.113564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Lotus seed starch has high apparent amylose content (AAM). A representative definition of its granular architecture (e.g., lamellar structure) remained absent. This study defined the granular shape, crystalline and lamellar structures, and digestibility of twenty-two samples of lotus seed starch (LS) by comparing with those of potato and maize starches. LS granules had more elongated shape and longer repeat distance of lamellae than potato and maize starch granules. The enzymatic susceptibility of LS granules was more affected by AAM than granular architecture. Using these LSs as a model system, the relationships between lamellar structure of starch granules and properties of their gelatinized counterparts were investigated. In LSs, thinner amorphous lamella and thicker crystalline lamella were associated with higher swelling power and yield stress. The relationships were found to be connected via certain structural characteristics of amylopectin.
Collapse
Affiliation(s)
- Chuanjie Chen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Guantian Li
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yacine Hemar
- Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
16
|
Jia R, Cui C, Gao L, Qin Y, Ji N, Dai L, Wang Y, Xiong L, Shi R, Sun Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr Polym 2023; 321:121260. [PMID: 37739518 DOI: 10.1016/j.carbpol.2023.121260] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 09/24/2023]
Abstract
Swelling behavior involves the process of starch granules absorbing enough water to swell and increase the viscosity of starch suspension under hydrothermal conditions, making it one of the important aspects in starch research. The changes that starch granules undergo during the swelling process are important factors in predicting their functional properties in food processing. However, the factors that affect starch swelling and how swelling, in turn, affects the texture and digestion characteristics of starch-based foods have not been systematically summarized. Compared to its long chains, the short chains of amylose easily interact with amylopectin chains to inhibit starch swelling. Generally, reducing the swelling of starch could increase the strength of the gel while limiting the accessibility of digestive enzymes to starch chains, resulting in a reduction in starch digestibility. This article aims to conduct a comprehensive review of the mechanism of starch swelling, its influencing factors, and the relationship between swelling and the pasting, gelling, and digestion characteristics of starch. The role of starch swelling in the edible quality and nutritional characteristics of starch-based foods is also discussed, and future research directions for starch swelling are proposed.
Collapse
Affiliation(s)
- Ruoyu Jia
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Congli Cui
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lin Gao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Rui Shi
- College of Food Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong Province 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying, Shandong Province 257300, China.
| |
Collapse
|
17
|
Jiang X, Gu Y, Zhang L, Sun J, Yan J, Wang C, Lai B, Wu H. Physicochemical Properties of Granular and Gelatinized Lotus Rhizome Starch with Varied Proximate Compositions and Structural Characteristics. Foods 2023; 12:4330. [PMID: 38231847 DOI: 10.3390/foods12234330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
As a traditional and popular dietary supplement, lotus rhizome starch (LRS) has health benefits for its many nutritional components and is especially suitable for teenagers and seniors. In this paper, the approximate composition, apparent amylose content (AAC), and structural characteristics of five LRS samples from different regions were investigated, and their correlations with the physicochemical properties of granular and gelatinized LRS were revealed. LRS exhibited rod-shaped and ellipsoidal starch granules, with AAC ranging from 26.6% to 31.7%. LRS-3, from Fuzhou, Jiangxi Province, exhibited a deeper hydrogel color and contained more ash, with 302.6 mg/kg iron, and it could reach the pasting temperature of 62.6 °C. In comparison, LRS-5, from Baoshan, Yunnan Province, exhibited smoother granule surface, less fragmentation, and higher AAC, resulting in better swelling power and freeze-thaw stability. The resistant starch contents of LRS-3 and LRS-5 were the lowest (15.3%) and highest (69.7%), respectively. The enzymatic digestion performance of LRS was positively correlated with ash content and short- and long-term ordered structures but negatively correlated with AAC. Furthermore, the color and network firmness of gelatinized LRS was negatively correlated with its ash content, and the retrograde trend and freeze-thaw stability were more closely correlated with AAC and structural characteristics. These results revealed the physicochemical properties of LRS from different regions and suggested their advantages in appropriate applications as a hydrogel matrix.
Collapse
Affiliation(s)
- Xinyu Jiang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yiting Gu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Lichao Zhang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China
| | - Jinjian Sun
- Dalian Center for Food and Drug Control and Certification, Dalian 116037, China
| | - Jianan Yan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ce Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Bin Lai
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Haitao Wu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
18
|
Zhuang W, Zheng S, Chen F, Gao S, Zhong M, Zheng B. Effects of Tremella fuciformis Mushroom Polysaccharides on Structure, Pasting, and Thermal Properties of Chinese Chestnuts ( Castanea henryi) Starch Granules under Different Freeze-Thaw Cycles. Foods 2023; 12:4118. [PMID: 38002176 PMCID: PMC10670311 DOI: 10.3390/foods12224118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this study was to investigate the effect of Tremella fuciformis polysaccharides on the physicochemical properties of freeze-thawed cone chestnut starch. Various aspects, including water content, crystallinity, particle size, gelatinization, retrogradation, thermal properties, rheological properties, and texture, were examined. The results revealed that moderate freezing and thawing processes increased the retrogradation of starch; particle size, viscosity, shear type, hinning degree, and hardness decreased. After adding Tremella fuciformis polysaccharide, the particle size, relative crystallinity, and gelatinization temperature decreased, which showed solid characteristics. Consequently, the inclusion of Tremella fuciformis polysaccharide effectively countered dehydration caused by freezing and thawing, reduced viscosity, and prevented the retrogradation of frozen-thawed chestnut starch. Moreover, Tremella fuciformis polysaccharide played a significant role in enhancing the stability of the frozen-thawed chestnut starch. These findings highlight the potential benefits of incorporating Tremella fuciformis polysaccharides in starch-based products subjected to freeze-thaw cycles.
Collapse
Affiliation(s)
- Weijing Zhuang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuyi Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Chen
- College of Modern Agricultural Technology, Fujian Vocational College of Agriculture, Fuzhou 350119, China;
| | - Shujuan Gao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meifang Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.Z.); (S.Z.); (S.G.); (M.Z.)
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
19
|
Orellana-Palma P, Macias-Bu L, Carvajal-Mena N, Petzold G, Guerra-Valle M. Encapsulation of Concentrated Solution Obtained by Block Freeze Concentration in Calcium Alginate and Corn Starch Calcium Alginate Hydrogel Beads. Gels 2023; 9:gels9050374. [PMID: 37232964 DOI: 10.3390/gels9050374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
A model (sucrose and gallic acid) solution was concentrated by block freeze concentration (BFC) at three centrifugation cycles, and the solutions were encapsulated in calcium alginate and corn starch calcium alginate hydrogel beads. Static and dynamic tests determined the rheological behavior, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR) established thermal and structural properties, and the release kinetics was evaluated under in vitro simulated digestion experiment. The highest efficiency encapsulation value was close to 96%. As the concentrated solution increased in terms of solutes and gallic acid, the solutions were fitted to the Herschel-Bulkley model. Moreover, from the second cycle, the solutions exhibited the highest values of storage modulus (G') and loss modulus (G″), contributing to form a more stable encapsulation. The FTIR and DSC results demonstrated strong interactions between corn starch and alginate, establishing a good compatibility and stability in the bead formation. The kinetic release model under in vitro conditions was fitted to the Korsmeyer-Peppas model, demonstrating the significant stability of the model solutions inside the beads. Therefore, the present study proposes a clear and precise definition for the elaboration of liquid foods obtained by BFC and its incorporation inside an edible material that facilitates the controlled release in specific sites.
Collapse
Affiliation(s)
- Patricio Orellana-Palma
- Departamento de Ingeniería en Alimentos, Facultad de Ingeniería, Campus Andrés Bello, Universidad de La Serena, Av. Raúl Bitrán 1305, La Serena 1720010, Chile
| | - Loren Macias-Bu
- Facultad de Ciencias Tecnológicas, Universidad Nacional de Agricultura, Catacamas 16201, Honduras
| | - Nailín Carvajal-Mena
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Campus Fernando May, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán 3780000, Chile
| | - Guillermo Petzold
- Departamento de Ingeniería en Alimentos, Facultad de Ciencias de la Salud y de los Alimentos, Campus Fernando May, Universidad del Bío-Bío, Av. Andrés Bello 720, Chillán 3780000, Chile
| | - Maria Guerra-Valle
- Departamento de Nutrición y Dietética, Facultad de Ciencias Para el Cuidado de la Salud, Campus Concepción, Universidad San Sebastián, Lientur 1457, Concepción 4080871, Chile
| |
Collapse
|
20
|
Fan Y, Zhang L, Zheng C, Xue F, Wang Z, Wang X, Wang L. Contact forces and motion behavior of non-Newtonian fluid-solid food by coupled SPH-FEM method. J Food Sci 2023. [PMID: 37125946 DOI: 10.1111/1750-3841.16581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/14/2023] [Accepted: 04/01/2023] [Indexed: 05/02/2023]
Abstract
The non-Newtonian fluid-solid interaction food has complex physical properties and complicated contact force, which brings the greater technical challenge to improving the food fetching rate. In this work, we used the smooth particle hydrodynamics and finite element coupling method for a node-to-surface penalty function contact to characterize the contact forces between non-Newtonian fluid food and solid foods. The shear rheological properties and density of non-Newtonian fluid food, including xanthan gum (XG) and guar gum (GG), were investigated by a viscometer and densitometer, respectively. The results showed that the shear viscosity of non-Newtonian fluid food depends to some extent on the mass ratio of the thickening gums. We investigated the effects of the end-effector with different fetching velocities and different inclination angles, and the nut root powder paste (NRPP) food with different ratios of XG and GG, on the fetching rate, stress-strain, and motion behavior. The results showed that the stress increased with increasing v1 and w; however, the v2 had less effect on the stress. The sparseness of the distribution of solid food was related to the v1 and w, whereas it was less influenced by the v2 . The distribution of solid food became denser in the X-Z plane and sparser in the X-Y plane with increasing inclination angle. The motion behavior of viscoelastic solid foods depended on the mass ratio of XG to GG dissolved in NRPP. The present work can provide a theoretical foundation for meal-assisting robots and robots in the field of food engineering with the task of improving the food fetching rate.
Collapse
Affiliation(s)
- Yuhe Fan
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| | - Lixun Zhang
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| | | | - Feng Xue
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| | - Zhenhan Wang
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| | - Xingyuan Wang
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| | - Lan Wang
- College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China
| |
Collapse
|
21
|
Zhu C, Zhang X, Xu R, Zhong Y, Li S, Li J, Huang C, Wu W, Zhai M, Nurzikhan S, Blennow A, Guo D. Starch granular size and multi-scale structure determine population patterns in bivariate flow cytometry sorting. Int J Biol Macromol 2023; 231:123306. [PMID: 36669629 DOI: 10.1016/j.ijbiomac.2023.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Bivariate flow cytometry (FC) sorting with forward scatter (FSC) and side scatter (SSC) is a recently established novel technique to separate starch granules. However, the forming mechanism of starch FC-dependent population patterns (i.e. the number of subgroups (NS) and FSC/SSC-dependent distribution patterns) remain partly elusive. For this, the correlation of granular size and multi-scale structure of native starches and FC-dependent population patterns was investigated through employing a wide range of native starches originating from different species involving cereal-, pulse-, and tuber crops. Results showed NS was pertinent with particle size, amylose content (AC), amylopectin chains length distribution, lamellar structure, short-range ordered structure. The distinct NS was determined by impacts of native starch FSC / SSC-dependent distribution patterns. Specifically, starch granular size significantly correlated with both FSC and SSC-dependent distribution patterns. The proportion of chains with DP 6-12 was the intra-molecular decisive factor to influence short-range ordered structure, finally leading to FSC-dependent distribution patterns. By contrast, AC was another intra-molecular index to determine SSC-dependent distribution patterns through affecting lamellar structure and short-range ordered structure.
Collapse
Affiliation(s)
- Chuanhao Zhu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xudong Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Crop Science, Quality of Plant Products, University of Hohenheim, Stuttgart 70599, Germany.
| | - Renyuan Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyue Zhong
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Silu Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinyuan Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenggang Huang
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenhao Wu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingming Zhai
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | - Andreas Blennow
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Denmark
| | - Dongwei Guo
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
22
|
Yang H, Zhao J, Ma H, Shi Z, Huang X, Fan G. Shading affects the starch structure and digestibility of wheat by regulating the photosynthetic light response of flag leaves. Int J Biol Macromol 2023; 236:123972. [PMID: 36906208 DOI: 10.1016/j.ijbiomac.2023.123972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Heavy haze-induced decreases in solar radiation represent an important factor that affects the structural properties of starch macromolecules. However, the relationship between the photosynthetic light response of flag leaves and the structural properties of starch remains unclear. In this study, we investigated the impact of light deprivation (60 %) during the vegetative-growth or grain-filling stage on the leaf light response, starch structure, and biscuit-baking quality of four wheat cultivars with contrasting shade tolerance. Shading decreased the apparent quantum yield and maximum net photosynthetic rate of flag leaves, resulting in a lower grain-filling rate and starch content and higher protein content. Shading decreased the starch, amylose, and small starch granule amount and swelling power but increased the larger starch granule amount. Under shade stress, the lower amylose content decreased the resistant starch content while increasing the starch digestibility and estimated glycemic index. Shading during the vegetative-growth stage increased starch crystallinity, 1045/1022 cm-1 ratio, starch viscosity, and the biscuit spread ratio, while shading during the grain-filling stage decreased these values. Overall, this study indicated that low light affects the starch structure and biscuit spread ratio by regulating the photosynthetic light response of flag leaves.
Collapse
Affiliation(s)
- Hongkun Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Jiarong Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Hongliang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Zhiqiang Shi
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610061, PR China.
| | - Xiulan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China
| | - Gaoqiong Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Chengdu 611130, Sichuan, PR China; Key Laboratory of Crop Eco-Physiology & Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 611130, Sichuan, PR China.
| |
Collapse
|
23
|
Sun X, Sun Z, Saleh AS, Lu Y, Zhang X, Ge X, Shen H, Yu X, Li W. Effects of various microwave intensities collaborated with different cold plasma duration time on structural, physicochemical, and digestive properties of lotus root starch. Food Chem 2023; 405:134837. [DOI: 10.1016/j.foodchem.2022.134837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
24
|
Motion behavior of non-Newtonian fluid-solid interaction foods. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
25
|
Zhang Y, Wang X, Guan X. Effects of adding quinoa flour on the composite wheat dough: a comprehensive analysis of the pasting, farinograph and rheological properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Zhang
- School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai 200093 China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center Shanghai 200093 China
| | - Xiaoxuan Wang
- School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiao Guan
- School of Health Science and Engineering University of Shanghai for Science and Technology Shanghai 200093 China
- National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center Shanghai 200093 China
| |
Collapse
|
26
|
Wang J, Liu Y, Li J, Diao Y, Hu Z, Yan S. Mechanism of bluish pigment formation in lotus rhizome starch with ferrous sulfate and its application in rapid detection of adulteration. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jie Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanzhao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, China
- Hubei Aquatic Vegetable Preservation Processing Engineering Technology Research Center, Wuhan, China
| | - Ying Diao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Zhongli Hu
- Hubei Lotus Rhizome Engineering Technology Research Center, College of Life Science, Wuhan University, Wuhan, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Yangtze River Economic Belt Engineering Research Center for Green Development of Bulk Aquatic Bioproducts Industry of Ministry of Education, Wuhan, China
- Hubei Aquatic Vegetable Preservation Processing Engineering Technology Research Center, Wuhan, China
| |
Collapse
|
27
|
Chen S, Qin L, Chen T, Yu Q, Chen Y, Xiao W, Ji X, Xie J. Modification of starch by polysaccharides in pasting, rheology, texture and in vitro digestion: A review. Int J Biol Macromol 2022; 207:81-89. [PMID: 35247426 DOI: 10.1016/j.ijbiomac.2022.02.170] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/05/2022]
Abstract
Starch is a copolymer with unique physicochemical characteristics, is known for its low cost, easy degradability, renewable and easy availability. However, natural starches have some undesirable properties such as poor solubility, poor functional properties, lower resistant starch content with reduced retrogradation, and poor stability under various temperatures, pH, which limit their application in food. Different modification methods are used to improve its performance and expand its application. Numerous studies have been conducted to investigate why the addition of small amounts of polysaccharides affects the properties of starch pastes and gels. The application of polysaccharide-modified starch can be seen in the pasting, rheology, texture and in vitro digestive properties of starch gels. The main influencing factors include different starches, different specific polysaccharides, and different methods of preparation of composite pastes and gels. This paper reviews the changes in the properties of starch in terms of pasting, rheology, texture and in vitro digestion after modification with polysaccharides and the mechanism of polysaccharide action on starch.
Collapse
Affiliation(s)
- Shuai Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Ting Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenhao Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaoyao Ji
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
28
|
Showkat QA, Majid D, Rather JA, Naqash S, Dar BN, Makroo HA. Drying of lotus rhizome slices: Influence of drying conditions on Fourier transform infrared spectroscopy, rheology, functional, and physicochemical characteristics of lotus rhizome powder. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.13954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qazi A. Showkat
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| | - Darakshan Majid
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| | - Jahangir A. Rather
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| | - Saadiya Naqash
- Division of Food Science and Technology SKUAST‐K Srinagar India
| | - Basharat N. Dar
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| | - Hilal A. Makroo
- Department of Food Technology Islamic University of Science and Technology Awantipora India
| |
Collapse
|
29
|
Xue S, Mei J, Liu Y, Ren M, Li M, Fu Z. In vitro digestibility and physicochemical properties of
Arenga pinnata
starch‐chitosan following heat‐moisture treatment. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shan Xue
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Jiang‐Yang Mei
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Yuan‐Sen Liu
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Min‐Hong Ren
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Meng‐Yun Li
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| |
Collapse
|
30
|
Abstract
Nature has developed starch granules varying in size from less than 1 μm to more than 100 μm. The granule size is an important factor affecting the functional properties and the applicability of starch for food and non-food applications. Within the same botanical species, the range of starch granule size can be up to sevenfold. This review critically evaluated the biological and environmental factors affecting the size of starch granules, the methods for the separation of starch granules and the measurement of size distribution. Further, the structure at different length scales and properties of starch-based on the granule size is elucidated by specifying the typical applications of granules with varying sizes. An amylopectin cluster model showing the arrangement of amylopectin from inside toward the granule surface is proposed with the hypothesis that the steric hindrance for the growth of lamellar structure may limit the size of starch granules.
Collapse
Affiliation(s)
- Ming Li
- Laboratory of Cereal Processing and Quality Control, Institute of Food Science and Technology, CAAS/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Venea Dara Daygon
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, Australia
| | - Vicky Solah
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Sushil Dhital
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
31
|
[Development of an asymmetrical flow field-flow fractionation system for the size characterization of starch granules]. Se Pu 2021; 39:1247-1254. [PMID: 34677020 PMCID: PMC9404181 DOI: 10.3724/sp.j.1123.2021.05001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
淀粉颗粒粒径与分子尺寸分别在1~100 μm和20~250 nm之间,是影响淀粉功能特性的重要因素之一。非对称场流分离(AF4)是一种基于样品与外力场相互作用机制的分离技术,已应用于表征淀粉分子尺寸分布。商品化的AF4系统的粒径检测范围为1 nm~10 μm,对于淀粉颗粒粒径表征具有一定的局限性。该文研制了AF4分离系统;考察了其在微米尺度下对红薯、莲子和大米淀粉颗粒粒径表征的性能;采用微米尺寸的聚苯乙烯乳化球(PS)标准样品验证了构建的AF4系统的分离性能。实验结果显示,构建的AF4系统对PS混合样品(粒径2、6、12、20 μm)实现了基线分离,同商品化AF4相比提高了检测上线,具有分离表征淀粉颗粒的潜力。此外,该文研究了载液组成对淀粉颗粒分离表征的影响;通过光学显微镜验证了构建的AF4系统在微米尺度上对淀粉颗粒粒径分布的表征能力。最后,采用商品化的AF4系统串联多角度激光光散射检测器和示差折光检测器对3种淀粉分子进行了分离表征,考察了淀粉的溶解温度对其表征结果的影响。在摩尔质量10 6~108 g/mol范围内,红薯和莲子淀粉的回转半径和水合半径的比值(Rg/Rh)在0.9~1.1之间,大米淀粉的Rg/Rh在1.2~1.4之间。实验结果证明构建的AF4系统是一种快速、准确的淀粉颗粒粒径表征方法,与商品化的AF4系统结合可为研究淀粉尺寸分布与其功能性质之间的关系提供技术支持。
Collapse
|
32
|
Plant based protein products: Characterization and functionality of dried tofu noodles containing lotus root powder. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Abstract
Millets are an underutilized and important drought-resistant crop, which are mainly used for animal feed. The major constituent in millet is starch (70%); millet starch represents an alternative source of starches like maize, rice, potato, etc. This encouraged us to isolate and characterize the starches from different millet sources and to evaluate the application of these starches in edible film preparation. In the present study, the physicochemical, morphological, and film-forming characteristics of millet starches were studied. The amylose content, swelling power, and solubility of millet starches ranged from 11.01% to 16.61%, 14.43 to 18.83 g/g, and 15.2% to 25.9%, respectively. Significant differences (p < 0.05) were found with different pasting parameters, and the highest peak (2985 cP), breakdown (1618 cP), and final viscosity (3665 cP) were observed for barnyard, proso, and finger millet starch, respectively. Little millet starch achieved the highest pasting temperature. All starches showed A-type crystalline patterns, and relative crystallinity was observed at levels of 24.73% to 32.62%, with proso millet starch achieving the highest value. The light transmittance of starches varied from 3.3% to 5.2%, with proso millet starch showing the highest transparency. Significant differences (p < 0.05) were observed in the water solubility, thickness, opacity and mechanical characteristics of films. The results of the present study facilitate a better assessment of the functional characteristics of millet starches for their possible applications in the preparation of starch films.
Collapse
|
34
|
Effects of Three Types of Polymeric Proanthocyanidins on Physicochemical and In Vitro Digestive Properties of Potato Starch. Foods 2021; 10:foods10061394. [PMID: 34208678 PMCID: PMC8235072 DOI: 10.3390/foods10061394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/11/2023] Open
Abstract
The effects of three types of polymeric proanthocyanidins (PPC) with different degrees of polymerization (DP), namely PPC1 (DP = 6.39 ± 0.13), PPC2 (DP = 8.21 ± 0.76), and PPC3 (DP = 9.92 ± 0.21), on the physicochemical characteristics and in vitro starch digestibility of potato starch were studied. PPC addition (5%, w/w) increased the gelatinization temperature and decreased some viscosity indices of potato starch, including the peak, trough, breakdown, and setback viscosities. Starch-PPC pastes showed reduced thixotropy and improved stability and gelling properties compared to starch paste. The three types of proanthocyanidins all showed evident inhibitory effects on the digestion and retrogradation of potato starch, including short-term and long-term retrogradation. Among the three, PPC with a lower DP had stronger effects on the starch short-term retrogradation and gelling performance, whereas larger PPC molecules exhibited a greater impact on starch recrystallization and digestive characteristics. The research consequences were conducive to explore the application of functional PPC in starch-based food processing.
Collapse
|
35
|
Zhou T, Zhang L, Liu Q, Liu W, Hu H. Rheological behaviors and physicochemical changes of doughs reconstituted from potato starch with different sizes and gluten. Food Res Int 2021; 145:110397. [PMID: 34112400 DOI: 10.1016/j.foodres.2021.110397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/19/2021] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
The effects of different sizes of potato starch on the rheological and physiochemical properties of model doughs were investigated. Compared with those of model dough prepared from original starch, the strengths of model doughs prepared from fractionated starch were higher, which indicates that fractionated starch can positively influence the properties of doughs. Additionally, the model dough prepared using large size starch granules had higher storage modulus (G'), loss modulus (G''), and composite modulus (|G*|) values compared to those of other types of dough; it also had the highest elasticity, viscosity, and strength. This might be related to its high amylose content (20.28 ± 0.69%) and high 1045 cm-1/1022 cm-1 ratio (1.27 ± 0.17). The model dough (S) prepared from starch with small sizes had the highest contents of disulfide bonds (2.91 μmolg-1), β-turn (33.92 ± 1.17%), and β-sheet (22.57 ± 0.54%); and it also had better network structure and dough stability. Thus, the stability of the S model dough was affected by phosphorus (1194.57 ± 25.32 ppm) and amylopectin (84.19 ± 1.88%) content, and, moreover, by the competition for water. Stability and network structure of dough are relative to the size distribution of starch granules. Finally, a schematic model showing the mechanism of the influence of phosphorus, sulfhydryl, and disulfide bonds in fractionated starch on the rheological properties of dough was developed.
Collapse
Affiliation(s)
- Tongtong Zhou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Liang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Qiannan Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China
| | - Wei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| | - Honghai Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, PR China.
| |
Collapse
|
36
|
Characterization of underutilized root starches from eight varieties of ramie (Boehmeria nivea) grown in China. Int J Biol Macromol 2021; 183:1475-1485. [PMID: 34023373 DOI: 10.1016/j.ijbiomac.2021.05.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 11/21/2022]
Abstract
Ramie root is an underutilized starch source. In this study, eight ramie varieties were investigated for starch properties. Starch content ranged from 18.6% to 50.1% in dry root. Starches from different varieties showed similar morphology including ellipsoidal, spherical and truncated granules with size D[4,3] from 10.1 to 14.1 μm. Starch had amylose content from 20.8% to 28.5%. All ramie varieties had B-type starches with relative crystallinity from 24.8% to 27.1%, ordered degree from 0.724 to 0.897 and lamellar thickness from 9.1 to 9.6 nm. Starches had gelatinization peak temperature from 70.5 to 73.8 °C and enthalpy from 14.9 to 15.8 J/g. Starches had swelling power and water solubility from 27.9 to 31.9 g/g and from 11.7% to 15.5%, respectively, at 95 °C, and exhibited different pasting properties with breakdown viscosity from 36 to 377 mPa s and setback viscosities from 1295 to 1863 mPa s. Starch pastes exhibited pseudoplastic behavior and different rheological properties. Native, gelatinized and retrograded starches had resistant starch from 81.7% to 83.9%, from 1.7% to 5.1% and from 5.6% to 13.3%, respectively. The eight varieties were divided into 3 groups according to starch properties. This study is helpful for selecting suitable ramie variety as starch source.
Collapse
|
37
|
Cao D, Lin Z, Huang L, Damaris RN, Yang P. Genome-wide analysis of AP2/ERF superfamily in lotus (Nelumbo nucifera) and the association between NnADAP and rhizome morphology. BMC Genomics 2021; 22:171. [PMID: 33750315 PMCID: PMC7945336 DOI: 10.1186/s12864-021-07473-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/24/2021] [Indexed: 11/10/2022] Open
Abstract
Background The AP2/ERF family is widely present in plants and plays a crucial regulatory role in plant growth and development. As an essential aquatic horticultural model plant, lotus has an increasingly prominent economic and research value. Results We have identified and analysed the AP2/ERF gene family in the lotus. Initially, 121 AP2/ERF family genes were identified. By analysing their gene distribution and protein structure, and their expression patterns during the development of lotus rhizome, combined with previous studies, we obtained an SNP (megascaffold_20:3578539) associated with lotus rhizome phenotype. This SNP was in the NnADAP gene of the AP2 subfamily, and the changes in SNP (C/T) caused amino acid conversion (proline/leucine). We constructed a population of 95 lotus varieties for SNP verification. Through population typing experiments, we found that the group with SNP CC had significantly larger lotus rhizome and higher soluble sugar content among the population. Conclusions In conclusion, we speculate that the alteration of the SNP in the NnADAP can affect the size and sugar content of the lotus rhizome. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07473-w.
Collapse
Affiliation(s)
- Dingding Cao
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhongyuan Lin
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Longyu Huang
- Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
38
|
Salvador-Reyes R, Rebellato AP, Lima Pallone JA, Ferrari RA, Clerici MTPS. Kernel characterization and starch morphology in five varieties of Peruvian Andean maize. Food Res Int 2021; 140:110044. [PMID: 33648270 DOI: 10.1016/j.foodres.2020.110044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/20/2023]
Abstract
Peruvian Andean maize (PAM) has been commonly used as an ingredient that confers color, flavor, and texture in culinary. Nevertheless, no studies are focusing on agro-industrial interest characteristics to develop new products. This study aimed to evaluate the physicochemical, nutritional, and technological characteristics of kernels and the starch granule morphology of the five main PAM varieties: Chullpi, Piscorunto, Giant Cuzco, Sacsa, and Purple. PAM's characterization was performed according to the official methods, and its morphology was observed by scanning electron microscopy (SEM). Physically, the varieties of larger kernels (Giant Cuzco and Sacsa) presented a higher 1000-kernel weight and a lower hectoliter weight than those of smaller size (Piscorunto, Purple, and Chullpi). Nutritionally, PAM had higher ether extract (5%) and ash (2%) contents than other pigmented maizes. Likewise, they presented more significant amounts of essential amino acids, as leucine (10 mg/g protein) and tryptophan (up to 2 mg/g protein); unsaturated fatty acids, oleic (30%) and linoleic (53%); and minerals, as magnesium (104 mg/100 g). SEM showed that endosperm structure and starch morphology vary according to maize types and their grain location. Starch granules of floury PAM varieties were small and polyhedral in the sub-aleurone endosperm, whereas those of the central area were bigger and spherical. In Chullpi, it was observed a portion of vitreous endosperm with a compact structure. The low protein content (8.3%) and the endosperm structure of floury varieties of PAM influenced their pasting properties. Their pasting temperature was <69 to 71 °C>, peak viscosity < 3200 to 4400 cP>, and seatback <1250 to 1706 cP>; therefore, they do not retrograde easily. The results suggest that PAM has characteristics that would help elaborate regional products with added value, such as soups, willows, beverages, and porridges.
Collapse
Affiliation(s)
- Rebeca Salvador-Reyes
- Department of Food Tecnology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil.
| | - Ana Paula Rebellato
- Department of Food Tecnology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil
| | - Juliana Azevedo Lima Pallone
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil
| | - Roseli Aparecida Ferrari
- Institute of Food Technology (ITAL), Food Science and Quality Center (CCQA), Campinas, São Paulo, Brazil
| | - Maria Teresa Pedrosa Silva Clerici
- Department of Food Tecnology, School of Food Engineering, University of Campinas (UNICAMP), Rua Monteiro Lobato, 80, CEP: 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
39
|
Characterization, Functional Properties, and Resistant Starch of Freshwater Macrophytes. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2021; 2021:8825970. [PMID: 33553420 PMCID: PMC7843195 DOI: 10.1155/2021/8825970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/12/2020] [Accepted: 12/30/2020] [Indexed: 12/03/2022]
Abstract
Several aquatic macrophytes such as Colocasia esculenta, Eleocharis dulcis, Nelumbo nucifera, Sagittaria sagittifolia, Trapa bispinosa, and Typha angustifolia possessed carbohydrate mainly in their storage and reproductive parts. Starch morphology, total starch, and amylose content of these six freshwater plant species were determined. Their functional properties, i.e., starch crystallinity, thermal properties, and rheological behaviour were assessed. Large starch granules were in N. nucifera rhizome (>15 μm), medium-sized was N. nucifera seed (8-18 μm), while the rest of the starches were small starch granules (<8 μm). Shapes of the starch granules varied from oval and irregular with centric hilum to elongated granules with the eccentric hilum. Eleocharis dulcis corm starch had significantly higher total starch content (90.87%), followed by corms of C. esculenta (82.35%) and S. sagittifolia (71.71%). Nelumbo nucifera seed starch had significantly higher amylose content (71.45%), followed by T. angustifolia pollen (36.47%). In comparison, the waxy starch was in N. nucifera rhizome (7.63%), T. bispinosa seed (8.83%), C. esculenta corm (10.61%), and T. angustifolia rhizome (13.51%). Higher resistant starch was observed mostly in rhizomes of N. nucifera (39.34%)>T. angustifolia (37.19%) and corm parts of E. dulcis (37.41%)>S. sagittifolia (35.09%) compared to seed and pollen starches. The XRD profiles of macrophytes starches displayed in all the corms and N. nucifera seed had A-type crystallinity. The T. bispinosa seed had CA-type, whereas the rest of the starches exhibited CB-type crystallinity. Waxy starches of C. esculenta corm had higher relative crystallinity (36.91%) and viscosity (46.2 mPa s) than regular starches. Based on thermal properties, high-amylose of N. nucifera seed and T. angustifolia pollen resulted in higher gelatinization enthalpy (19.93 and 18.66 J g−1, respectively). Starch properties showed equally good potential as commercial starches in starch-based food production based on their starch properties and functionality.
Collapse
|
40
|
Physicochemical properties of a new starch from ramie (Boehmeria nivea) root. Int J Biol Macromol 2021; 174:392-401. [PMID: 33539954 DOI: 10.1016/j.ijbiomac.2021.01.205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 01/08/2023]
Abstract
A new starch was isolated from ramie root, and its physicochemical properties were investigated. Ramie dry root contained 45.9% starch. Starch had truncated, ellipsoidal, and spherical granule shapes with size from 7 to 30 μm and D[4,3] about 14.1 μm. Starch contained 38.9% apparent amylose content and 22.4% true amylose content, exhibited B-type crystallinity, and had 26.6% relative crystallinity, 0.82 ordered degree, and 9.2 nm lamellar thickness. Starch had 71.8 °C gelatinization peak temperature and 15.6 J/g gelatinization enthalpy, and exhibited 31.4 g/g swelling power and 17.1% water solubility at 95 °C. Starch had peak, hot, breakdown, final, and setback viscosities at 3048, 2768, 279, 4165, and 1397 mPa s, respectively, and showed peak time at 4.36 min and pasting temperature at 75.0 °C. The native, gelatinized, and retrograded starches contained 15.1%, 94.0%, and 86.5% rapidly digestible starch and 83.3%, 4.0%, and 10.7% resistant starch, respectively. Compared with potato and rice starches, ramie starch was somewhat similar to potato starch but significantly different from rice starch in starch component, crystalline structure, and functional properties. Therefore, ramie starch exhibited the potential to be used as a thickening agent, resistant-digesting food additive, and alternative to potato starch in food and nonfood industries.
Collapse
|
41
|
Showkat QA, Rather JA, Abida Jabeen, Dar BN, Makroo HA, Majid D. Bioactive components, physicochemical and starch characteristics of different parts of lotus (
Nelumbo nucifera
Gaertn.) plant: a review. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Qazi A. Showkat
- Department of Food Technology IUST Awantipora Kashmir192122India
| | | | - Abida Jabeen
- Division of Food Science and Technology SKUAST Srinagar Kashmir190025India
| | - B. N. Dar
- Department of Food Technology IUST Awantipora Kashmir192122India
| | - H. A. Makroo
- Department of Food Technology IUST Awantipora Kashmir192122India
| | - Darakshan Majid
- Department of Food Technology IUST Awantipora Kashmir192122India
| |
Collapse
|
42
|
Li Z, Wei C. Morphology, structure, properties and applications of starch ghost: A review. Int J Biol Macromol 2020; 163:2084-2096. [PMID: 32950526 DOI: 10.1016/j.ijbiomac.2020.09.077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/19/2020] [Accepted: 09/10/2020] [Indexed: 01/24/2023]
Abstract
Starch ghost, an insoluble structure of gelatinized starch, plays an important role in the applications of starch. In this review, we summarized the preparation, morphology, structure, properties and applications of starch ghost. The preparation steps of starch ghost include gelatinization, purification and preservation, and many factors influence the yield of starch ghost. The morphology and content of starch ghost can be influenced by many factors like starch resource and amylose content. Ghosts from non-waxy starches are composed of amylopectin with long branch-chains and amylose. These molecules cross-link to each other to reinforce the structure, and tend to form B-type double helix in ghosts from high-amylose starches. Some surface proteins that bind tightly to starch granules are also present in starch ghost. Protein and lipid are thought to have limited effects on the structural stability, but they make a big difference in the morphology of starch ghost. Starch ghost shows a different resistance to amylase among various starches, but it can be further digested under the high shear force. The mechanical, enzymatic hydrolysis and electrochemical properties of starch ghost make it widely used as emulsifier, stabilizer, thickener and starch-based films or gels in food and non-food processing industries.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China; Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
43
|
Mei J, Zhang L, Lin Y, Li S, Bai C, Fu Z. Pasting, Rheological, and Thermal Properties and Structural Characteristics of Large and Small
Arenga pinnata
Starch Granules. STARCH-STARKE 2020. [DOI: 10.1002/star.201900293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiang‐Yang Mei
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Lu Zhang
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Ying Lin
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Shu‐Bo Li
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Cong‐Hao Bai
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| | - Zhen Fu
- Institute of Light Industry and Food Engineering Guangxi University Nanning 530004 China
| |
Collapse
|
44
|
Ye F, Li J, Zhao G. Physicochemical properties of different-sized fractions of sweet potato starch and their contributions to the quality of sweet potato starch. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Fu L, Liu L, Chen W, Wang Q, Lv X, Wang J, Ji Z, Yu G, Liu Q, Zhang X. Physicochemical and functional characteristics of starches from common vetch (Vicia sativa L.). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Kong XR, Zhu ZY, Zhang XJ, Zhu YM. Effects of Cordyceps polysaccharides on pasting properties and in vitro starch digestibility of wheat starch. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105604] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
47
|
Comparison of physicochemical properties of very small granule starches from endosperms of dicotyledon plants. Int J Biol Macromol 2020; 154:818-825. [PMID: 32198038 DOI: 10.1016/j.ijbiomac.2020.03.147] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 11/21/2022]
Abstract
In this study, 6 very small granule starches (VSGSs) were isolated from endosperms of dicotyledon Amaranthus cruentus, Agriophyllum squarrosum, Chenopodium quinoa, Euryale ferox, Mirabilis jalapa, and Vaccaria hispanica. Their morphologies and physicochemical properties were investigated. Most VSGSs with granule size <3 μm were spherical or polygonal, and their apparent amylose contents ranged from 19.4 to 33.1% with A. cruentus starch the lowest and E. ferox starch the highest. All VSGSs had the same A-type crystalline structure with relative crystallinities from 23.3 to 29.6%. Though 6 VSGSs had slight differences in short-range ordered structure and lamellar repeat distance, their lamellar peak intensities exhibited significant differences. The gelatinization temperatures showed significant differences among 6 VSGSs with C. quinoa starch the lowest and M. jalapa starch the highest. The 6 VSGSs had significantly different pasting viscosities with peak viscosities from 1887 to 4579 mPa s, hot viscosities from 1704 to 3479 mPa s, breakdown viscosities from 56 to 1170 mPa s, final viscosities from 2419 to 4811 mPa s, and setback viscosities from 715 to 1821 mPa s. The digestion properties of starches were significantly different among 6 VSGSs. The above results could provide some references for applications of these VSGSs.
Collapse
|
48
|
Lu X, Xu R, Zhan J, Chen L, Jin Z, Tian Y. Pasting, rheology, and fine structure of starch for waxy rice powder with high-temperature baking. Int J Biol Macromol 2020; 146:620-626. [DOI: 10.1016/j.ijbiomac.2020.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/22/2019] [Accepted: 01/02/2020] [Indexed: 10/25/2022]
|
49
|
Liu K, Kong XL, Li QM, Zhang HL, Zha XQ, Luo JP. Stability and bioavailability of vitamin D3 encapsulated in composite gels of whey protein isolate and lotus root amylopectin. Carbohydr Polym 2020; 227:115337. [DOI: 10.1016/j.carbpol.2019.115337] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/08/2023]
|
50
|
Luo Y, Shen M, Li E, Xiao Y, Wen H, Ren Y, Xie J. Effect of Mesona chinensis polysaccharide on pasting, rheological and structural properties of corn starches varying in amylose contents. Carbohydr Polym 2019; 230:115713. [PMID: 31887863 DOI: 10.1016/j.carbpol.2019.115713] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022]
Abstract
Waxy corn starch (WS), normal corn starch (NS), and high amylose corn starch (HS) were used to investigate the effect of Mesona chinensis polysaccharide (MCP) on pasting, rheological, and textual properties of corn starches. Corn starches (6 %, w/v)-MCP (0.05 %, 0.1 %, 0.2 %, 0.3 %, and 0.5 %, w/v) blended systems were used. The pasting viscosity of samples increased after adding MCP, and the improvement effect was most noticeable in WS-MCP system. Meanwhile, MCP can significantly promote the gelatinization and strengthen viscoelasticity of HS-MCP system. MCP inhibited the dissolution of NS and the swelling of WS, while promote the dissolution of HS and WS, as well as the swelling of NS and HS. Furthermore, gelatinization treatment decreased the crystallinity of samples, while high concentration of MCP slightly increased the crystallinity. MCP could promote the formation of a more ordered structure of blended systems, especially for WS-MCP system.
Collapse
Affiliation(s)
- Yu Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuehuan Xiao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Huiliang Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China.
| | - Yanming Ren
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China; School of Food Science and Technology, Nanchang University, Nanchang, 330047, China; China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, 330047, China.
| |
Collapse
|