1
|
Frka-Petesic B, Parton TG, Honorato-Rios C, Narkevicius A, Ballu K, Shen Q, Lu Z, Ogawa Y, Haataja JS, Droguet BE, Parker RM, Vignolini S. Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications. Chem Rev 2023; 123:12595-12756. [PMID: 38011110 PMCID: PMC10729353 DOI: 10.1021/acs.chemrev.2c00836] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Indexed: 11/29/2023]
Abstract
Widespread concerns over the impact of human activity on the environment have resulted in a desire to replace artificial functional materials with naturally derived alternatives. As such, polysaccharides are drawing increasing attention due to offering a renewable, biodegradable, and biocompatible feedstock for functional nanomaterials. In particular, nanocrystals of cellulose and chitin have emerged as versatile and sustainable building blocks for diverse applications, ranging from mechanical reinforcement to structural coloration. Much of this interest arises from the tendency of these colloidally stable nanoparticles to self-organize in water into a lyotropic cholesteric liquid crystal, which can be readily manipulated in terms of its periodicity, structure, and geometry. Importantly, this helicoidal ordering can be retained into the solid-state, offering an accessible route to complex nanostructured films, coatings, and particles. In this review, the process of forming iridescent, structurally colored films from suspensions of cellulose nanocrystals (CNCs) is summarized and the mechanisms underlying the chemical and physical phenomena at each stage in the process explored. Analogy is then drawn with chitin nanocrystals (ChNCs), allowing for key differences to be critically assessed and strategies toward structural coloration to be presented. Importantly, the progress toward translating this technology from academia to industry is summarized, with unresolved scientific and technical questions put forward as challenges to the community.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- International
Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Thomas G. Parton
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Camila Honorato-Rios
- Department
of Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Aurimas Narkevicius
- B
CUBE − Center for Molecular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Kevin Ballu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Qingchen Shen
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Zihao Lu
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Yu Ogawa
- CERMAV-CNRS,
CS40700, 38041 Grenoble cedex 9, France
| | - Johannes S. Haataja
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box
15100, Aalto, Espoo FI-00076, Finland
| | - Benjamin E. Droguet
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard M. Parker
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
2
|
Pooja N, Chakraborty I, Rahman MH, Mazumder N. An insight on sources and biodegradation of bioplastics: a review. 3 Biotech 2023; 13:220. [PMID: 37265543 PMCID: PMC10230146 DOI: 10.1007/s13205-023-03638-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Durability and affordability are two main reasons for the widespread consumption of plastic in the world. However, the inability of these materials to undergo degradation has become a significant threat to the environment and human health To address this issue, bioplastics have emerged as a promising alternative. Bioplastics are obtained from renewable and sustainable biomass and have a lower carbon footprint and emit fewer greenhouse gases than petroleum-based plastics. The use of these bioplastics sourced from renewable biomass can also reduce the dependency on fossil fuels, which are limited in availability. This review provides an elaborate comparison of biodegradation rates of potential bioplastics in soil from various sources such as biomass, microorganisms, and monomers. These bioplastics show great potential as a replacement for conventional plastics due to their biodegradable and diverse properties.
Collapse
Affiliation(s)
- Nag Pooja
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Md. Hafizur Rahman
- Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Khulna, Bangladesh
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
3
|
Heidari Nia M, Ashkar S, Munguia-Lopez JG, Kinsella J, van de Ven TGM. Hairy Nanocellulose-Based Supramolecular Architectures for Sustained Drug Release. Biomacromolecules 2023; 24:2100-2117. [PMID: 37068101 DOI: 10.1021/acs.biomac.2c01514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The engineering of a new type of trifunctional biopolymer-based nanosponges polymerized by cross-linking beta-cyclodextrin ethylene diamine (βCD-EDA) with bifunctional hairy nanocellulose (BHNC) is reported herein. We refer to the highly cross-linked polymerized BHNC-βCD-EDA network as BBE. βCD-EDA and BHNC were cross-linked at various ratios with the help of DMTMM (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium) as a green activator in deionized water as a solvent, which resulted in different morphological shapes of BBE. Some of these structures were chiral due to cross-linked liquid crystalline structures. A comprehensive characterization study was done to show their unique morphological, structural, and dimensional properties of BBEs. Moreover, to further investigate and to confirm the surface modification of the precursors and final BBE structures, Fourier transform infrared and nuclear magnetic resonance spectroscopy, thermogravimetric analysis, Brunauer-Emmett-Teller analysis, and X-ray diffraction were applied. The hairy nanocellulose particles were considered as the backbone, and the immobilized cyclodextrin cavities can capture doxorubicin, which was used as a model drug molecule via host-guest inclusion complexation. Finally, the obtained BBE networks showed different and sustained drug release profiles and pH responsiveness. BBE biopolymers were tested as biocompatible nanocarriers for controlled release. We realize that these structures are too big for anti-cancer drug delivery by injection or oral intake, but these structures have a high potential to be applied in wound dressing and implants. They could also be used for capturing antibiotics, dyes, and organic compounds from wastewater.
Collapse
Affiliation(s)
- Marzieh Heidari Nia
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Said Ashkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| | - Jose Gil Munguia-Lopez
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Theo G M van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| |
Collapse
|
4
|
Abbasi Moud A, Abbasi Moud A. Flow and assembly of cellulose nanocrystals (CNC): A bottom-up perspective - A review. Int J Biol Macromol 2023; 232:123391. [PMID: 36716841 DOI: 10.1016/j.ijbiomac.2023.123391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Cellulosic sources, such as lignocellulose-rich biomass, can be mechanically or acid degraded to produce inclusions called cellulose nanocrystals (CNCs). They have several uses in the sectors of biomedicine, photonics, and material engineering because of their biodegradability, renewability, sustainability, and mechanical qualities. The processing and design of CNC-based products are inextricably linked to the rheological behaviour of CNC suspension or in combination with other chemicals, such as surfactants or polymers; in this context, rheology offers a significant link between microstructure and macro scale flow behaviour that is intricately linked to material response in applications. The flow behaviour of CNC items must be properly specified in order to produce goods with value-added characteristics. In this review article, we provide new research on the shear rheology of CNC dispersion and CNC-based hydrogels in the linear and nonlinear regime, with storage modulus values reported to range from ~10-3 to 103 Pa. Applications in technology and material science are also covered simultaneously. We carefully examined the effects of charge density, aspect ratio, concentration, persistence length, alignment, liquid crystal formation, the cause of chirality in CNCs, interfacial behaviour and interfacial rheology, linear and nonlinear viscoelasticity of CNC suspension in bulk and at the interface using the currently available literature.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran.
| | - Aliyeh Abbasi Moud
- Biomedical Engineering Department, AmirKabir University of Technology, P.O. Box 15875/4413, PC36+P45 District 6, Tehran, Tehran Province 1591634311, Iran
| |
Collapse
|
5
|
Solhi L, Guccini V, Heise K, Solala I, Niinivaara E, Xu W, Mihhels K, Kröger M, Meng Z, Wohlert J, Tao H, Cranston ED, Kontturi E. Understanding Nanocellulose-Water Interactions: Turning a Detriment into an Asset. Chem Rev 2023; 123:1925-2015. [PMID: 36724185 PMCID: PMC9999435 DOI: 10.1021/acs.chemrev.2c00611] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Modern technology has enabled the isolation of nanocellulose from plant-based fibers, and the current trend focuses on utilizing nanocellulose in a broad range of sustainable materials applications. Water is generally seen as a detrimental component when in contact with nanocellulose-based materials, just like it is harmful for traditional cellulosic materials such as paper or cardboard. However, water is an integral component in plants, and many applications of nanocellulose already accept the presence of water or make use of it. This review gives a comprehensive account of nanocellulose-water interactions and their repercussions in all key areas of contemporary research: fundamental physical chemistry, chemical modification of nanocellulose, materials applications, and analytical methods to map the water interactions and the effect of water on a nanocellulose matrix.
Collapse
Affiliation(s)
- Laleh Solhi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Valentina Guccini
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Katja Heise
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Iina Solala
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Elina Niinivaara
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - Wenyang Xu
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Laboratory of Natural Materials Technology, Åbo Akademi University, TurkuFI-20500, Finland
| | - Karl Mihhels
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Marcel Kröger
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Zhuojun Meng
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland.,Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou325001, China
| | - Jakob Wohlert
- Wallenberg Wood Science Centre (WWSC), Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044Stockholm, Sweden
| | - Han Tao
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British ColumbiaV6T 1Z3, Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, EspooFI-00076, Finland
| |
Collapse
|
6
|
Gonçalves DPN, Ogolla T, Hegmann T. Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal 2: Lyotropic Chromonic Liquid Crystals. Chemphyschem 2023; 24:e202200685. [PMID: 36197761 PMCID: PMC10092345 DOI: 10.1002/cphc.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Indexed: 02/03/2023]
Abstract
The importance of and the difference between molecular versus structural core chirality of substances that form nanomaterials, and their ability to transmit and amplify their chirality to and within a surrounding condensed medium is yet to be exactly understood. Here we demonstrate that neat as well as disodium cromoglycate (DSCG) surface-modified cellulose nanocrystals (CNCs) with both molecular and morphological core chirality can induce homochirality in racemic nematic lyotropic chromonic liquid crystal (rac-N-LCLC) tactoids. In comparison to the parent chiral organic building blocks, D-glucose, endowed only with molecular chirality, both CNCs showed a superior chirality transfer ability. Here, particularly the structurally compatible DSCG-modified CNCs prove to be highly effective since the surface DSCG moieties can insert into the DSCG stacks that constitute the racemic tactoids. Overall, this presents a highly efficient pathway for chiral induction in an aqueous medium and thus for understanding the origins of biological homochirality in a suitable experimental system.
Collapse
Affiliation(s)
- Diana P N Gonçalves
- Advanced Materials and Liquid Crystal Institute and, Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242-0001, USA
| | - Timothy Ogolla
- Materials Science Graduate Program, Kent State University, Kent, OH 44242-0001, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute and, Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242-0001, USA.,Materials Science Graduate Program, Kent State University, Kent, OH 44242-0001, USA
| |
Collapse
|
7
|
Lu D, Li M, Gao X, Yu X, Wei L, Zhu S, Xu Y. Cellulose Nanocrystal Films with NIR-II Circularly Polarized Light for Cancer Detection Applications. ACS NANO 2023; 17:461-471. [PMID: 36562644 DOI: 10.1021/acsnano.2c08910] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Near-infrared circularly polarized light is attractive for wide-ranging applications. However, high-performance near-infrared circularly polarized light is challenging to realize. Here, we show that left-handed chiral photonic cellulose nanocrystal (CNC) films produced from ultrasonicated suspensions enable right-handed circularly polarized luminescence with a dissymmetry factor of -0.330 in the second near-infrared window (NIR-II). We present a theoretical analysis of the adverse effect of structural defects and luminescence intensity heterogeneity on the right-handed circularly polarized luminescence glum inside the bandgap and the occurrence of left-handed circularly polarized luminescence at the band edges. We demonstrate the potential of the chiral photonic CNC films with NIR-II circularly polarized light for cancer cell discrimination. The present work identifies key scientific questions in CNC-based circularly polarized luminescence materials research.
Collapse
Affiliation(s)
- Di Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin130012, P. R. China
| | - Mengfei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin130012, P. R. China
| | - Xiaoqing Gao
- Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang325000, P. R. China
| | - Xiao Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin130012, P. R. China
| | - Lihong Wei
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin130012, P. R. China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin130012, P. R. China
| | - Yan Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin130012, P. R. China
| |
Collapse
|
8
|
Babi M, Williams A, Reid M, Grandfield K, Bassim ND, Moran-Mirabal JM. Unraveling the Supramolecular Structure and Nanoscale Dislocations of Bacterial Cellulose Ribbons Using Correlative Super-Resolution Light and Electron Microscopy. Biomacromolecules 2023; 24:258-268. [PMID: 36577132 DOI: 10.1021/acs.biomac.2c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cellulose is a structural linear polysaccharide that is naturally produced by plants and bacteria, making it the most abundant biopolymer on Earth. The hierarchical structure of cellulose from the nano- to microscale is intimately linked to its biosynthesis and the ability to process this sustainable resource for materials applications. Despite this, the morphology of bacterial cellulose microfibrils and their assembly into higher order structures, as well as the structural origins of the alternating crystalline and disordered supramolecular structure of cellulose, have remained elusive. In this work, we employed high-resolution transmission electron and atomic force microscopies to study the morphology of bacterial cellulose ribbons at different levels of its structural hierarchy and provide direct visualization of nanometer-wide microfibrils. The non-persistent twisting of cellulose ribbons was characterized in detail, and we found that twists are associated with nanostructural defects at the bundle and microfibril levels. To investigate the structural origins of the persistent disordered regions that are present along cellulose ribbons, we employed a correlative super-resolution light and electron microscopy workflow and observed that the disordered regions that can be seen in super-resolution fluorescence microscopy largely correlated with the ribbon twisting observed in electron microscopy. Unraveling the hierarchical assembly of bacterial cellulose and the ultrastructural basis of its disordered regions provides insights into its biosynthesis and susceptibility to hydrolysis. These findings are important to understand the cell-directed assembly of cellulose, develop new cellulose-based nanomaterials, and develop more efficient biomass conversion strategies.
Collapse
Affiliation(s)
- Mouhanad Babi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Center for Advanced Light Microscopy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Alyssa Williams
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Marcia Reid
- Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Kathryn Grandfield
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Nabil D Bassim
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Canadian Centre for Electron Microscopy, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Jose M Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario L8S 4M1, Canada.,Center for Advanced Light Microscopy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
9
|
Chang MH, Oh-e M. Kinetic arrest during the drying of cellulose nanocrystal films from aqueous suspensions analogous to the freezing of thermal motions. Sci Rep 2022; 12:21042. [PMID: 36470939 PMCID: PMC9722664 DOI: 10.1038/s41598-022-24926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
A comprehensive understanding of controlling the iridescence of cellulose films by manipulating the alignment and helical pitch of cellulose nanocrystals (CNCs) is required to advance cellulose photonics and its optoelectronic applications. Aqueous suspensions of CNCs exhibit a cholesteric liquid crystal (LC) phase with structural color; however, attaining a uniformly colored film is extremely difficult. Presumably, because multiple interrelated factors influence the CNC molecular alignment and helical pitch, existing models are not necessarily conclusive and remain a subject of debate. To eventually achieve homogeneously colored films, we compare aqueous CNC suspensions as a lyotropic liquid LC with thermotropic ones, and we spectroscopically confirm that the coloration of CNC droplets originates from the periodic CNC structure. The suspension drying process significantly influences the quality of iridescence of CNC films. Rapidly drying a droplet of a CNC suspension forms a concentric rainbow film, with red edges and a blue center, typical of the coffee-ring effect observed in air-dried films. By contrast, slow drying under controlled humidity, which reduces capillary flow, provides higher uniformity and a large blue area. Orbitally shaking films while drying under high humidity further improves the uniformity. Therefore, the evaporation rate significantly influences the thermodynamically stabilized helical pitch of CNCs, which determines the structural color. We qualitatively model the kinetic arrest induced by the rapid evaporation of lyotropic LCs in a manner equivalent to that induced by the rate of temperature change in thermotropic LCs and other materials.
Collapse
Affiliation(s)
- Meng-Hsiang Chang
- grid.38348.340000 0004 0532 0580Institute of Photonics Technologies, Department of Electrical Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu, 30013 Taiwan
| | - Masahito Oh-e
- grid.38348.340000 0004 0532 0580Institute of Photonics Technologies, Department of Electrical Engineering, National Tsing Hua University, 101 Sec. 2 Kuang-Fu Road, Hsinchu, 30013 Taiwan
| |
Collapse
|
10
|
Ma H, Cheng Z, Li X, Li B, Fu Y, Jiang J. Advances and Challenges of Cellulose Functional Materials in Sensors. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
11
|
Ma LL, Li CY, Pan JT, Ji YE, Jiang C, Zheng R, Wang ZY, Wang Y, Li BX, Lu YQ. Self-assembled liquid crystal architectures for soft matter photonics. LIGHT, SCIENCE & APPLICATIONS 2022; 11:270. [PMID: 36100592 PMCID: PMC9470592 DOI: 10.1038/s41377-022-00930-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 06/03/2023]
Abstract
Self-assembled architectures of soft matter have fascinated scientists for centuries due to their unique physical properties originated from controllable orientational and/or positional orders, and diverse optic and photonic applications. If one could know how to design, fabricate, and manipulate these optical microstructures in soft matter systems, such as liquid crystals (LCs), that would open new opportunities in both scientific research and practical applications, such as the interaction between light and soft matter, the intrinsic assembly of the topological patterns, and the multidimensional control of the light (polarization, phase, spatial distribution, propagation direction). Here, we summarize recent progresses in self-assembled optical architectures in typical thermotropic LCs and bio-based lyotropic LCs. After briefly introducing the basic definitions and properties of the materials, we present the manipulation schemes of various LC microstructures, especially the topological and topographic configurations. This work further illustrates external-stimuli-enabled dynamic controllability of self-assembled optical structures of these soft materials, and demonstrates several emerging applications. Lastly, we discuss the challenges and opportunities of these materials towards soft matter photonics, and envision future perspectives in this field.
Collapse
Affiliation(s)
- Ling-Ling Ma
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Chao-Yi Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Jin-Tao Pan
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yue-E Ji
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Chang Jiang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ren Zheng
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Ze-Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Yu Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Bing-Xiang Li
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yan-Qing Lu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
12
|
Bekić M, Vasiljević M, Stojanović D, Kokol V, Mihajlović D, Vučević D, Uskoković P, Čolić M, Tomić S. Phosphonate-Modified Cellulose Nanocrystals Potentiate the Th1 Polarising Capacity of Monocyte-Derived Dendritic Cells via GABA-B Receptor. Int J Nanomedicine 2022; 17:3191-3216. [PMID: 35909813 PMCID: PMC9329576 DOI: 10.2147/ijn.s362038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 06/26/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Phosphonates, like 3-AminoPropylphosphonic Acid (ApA), possess a great potential for the therapy of bone tumours, and their delivery via cellulose nanocrystals (CNCs) seems a promising approach for their increased efficacy in target tissues. However, the immunological effects of CNC-phosphonates have not been investigated thoroughly. The main aim was to examine how the modification of CNCs with phosphonate affects their immunomodulatory properties in human cells. Methods Wood-based native (n) CNCs were modified via oxidation (ox-CNCs) and subsequent conjugation with ApA (ApA-CNCs). CNCs were characterised by atomic force microscopy (AFM) and nanoindentation. Cytotoxicity and immunomodulatory potential of CNCs were investigated in cultures of human peripheral blood mononuclear cells (PBMCs) and monocyte-derived dendritic cells (MoDCs)/T cells co-cultures by monitoring phenotype, cytokines production, allostimulatory and Th/Treg polarisation capacity. Results AFM showed an increase in CNCs' thickens, elasticity modulus and hardness during the modification with ApA. When applied at non-toxic doses, nCNCs showed a tolerogenic potential upon internalisation by MoDCs, as judged by their increased capacity to up-regulate tolerogenic markers and induce regulatory T cells (Treg), especially when present during the differentiation of MoDCs. In contrast, ox- and ApA-CNCs induced oxidative stress and autophagy in MoDCs, which correlated with their stimulatory effect on the maturation of MoDCs, but also inhibition of MoDCs differentiation. ApA-CNC-treated MoDCs displayed the highest allostimulatory and Th1/CTL polarising activity in co-cultures with T cells. These effects of ApA-CNCs were mediated via GABA-B receptor-induced lowering of cAMP levels in MoDCs, and they could be blocked by GABA-B receptor inhibitor. Moreover, the Th1 polarising and allostimulatory capacity of MoDCs differentiated with ApA-CNC were largely preserved upon the maturation of MoDCs, whereas nCNC- and ox-CNC-differentiated MoDCs displayed an increased tolerogenic potential. Conclusion The delivery of ApA via CNCs induces potent DC-mediated Th1 polarisation, which could be beneficial in their potential application in tumour therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Miloš Vasiljević
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dušica Stojanović
- Department for Construction and Special Materials, Faculty for Technology and Metallurgy, University in Belgrade, Belgrade, Serbia
| | - Vanja Kokol
- Department of Textile Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
| | - Dušan Mihajlović
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Dragana Vučević
- Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Petar Uskoković
- Department for Construction and Special Materials, Faculty for Technology and Metallurgy, University in Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.,Center for Biomedical Sciences, Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Fittolani G, Vargová D, Seeberger PH, Ogawa Y, Delbianco M. Bottom-Up Approach to Understand Chirality Transfer across Scales in Cellulose Assemblies. J Am Chem Soc 2022; 144:12469-12475. [PMID: 35765970 PMCID: PMC9284553 DOI: 10.1021/jacs.2c04522] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellulose is a polysaccharide that displays chirality across different scales, from the molecular to the supramolecular level. This feature has been exploited to generate chiral materials. To date, the mechanism of chirality transfer from the molecular level to higher-order assemblies has remained elusive, partially due to the heterogeneity of cellulose samples obtained via top-down approaches. Here, we present a bottom-up approach that uses well-defined cellulose oligomers as tools to understand the transfer of chirality from the single oligomer to supramolecular assemblies beyond the single cellulose crystal. Synthetic cellulose oligomers with defined sequences self-assembled into thin micrometer-sized platelets with controllable thicknesses. These platelets further assembled into bundles displaying intrinsic chiral features, directly correlated to the monosaccharide chirality. Altering the stereochemistry of the oligomer termini impacted the chirality of the self-assembled bundles and thus allowed for the manipulation of the cellulose assemblies at the molecular level. The molecular description of cellulose assemblies and their chirality will improve our ability to control and tune cellulose materials. The bottom-up approach could be expanded to other polysaccharides whose supramolecular chirality is less understood.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Yu Ogawa
- Univ.
Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
14
|
Chiappini M, Dussi S, Frka-Petesic B, Vignolini S, Dijkstra M. Modeling the cholesteric pitch of apolar cellulose nanocrystal suspensions using a chiral hard-bundle model. J Chem Phys 2022; 156:014904. [PMID: 34998357 DOI: 10.1063/5.0076123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cellulose nanocrystals (CNCs) are naturally sourced elongated nanocolloids that form cholesteric phases in water and apolar solvents. It is well accepted that CNCs are made of bundles of crystalline microfibrils clustered side-by-side, and there is growing evidence that each individual microfibril is twisted. Yet, the origin of the chiral interactions between CNCs remains unclear. In this work, CNCs are described with a simple model of chiral hard splinters, enabling the prediction of the pitch using density functional theory and Monte Carlo simulations. The predicted pitch P compares well with experimental observations in cotton-based CNC dispersions in apolar solvents using surfactants but also with qualitative trends caused by fractionation or tip sonication in aqueous suspensions. These results suggest that the bundle shape induces an entropy-driven chiral interaction between CNCs, which is the missing link in explaining how chirality is transferred from the molecular scale of cellulose chains to the cholesteric order.
Collapse
Affiliation(s)
- Massimiliano Chiappini
- Soft Condensed Matter, Debye Institute for Nanomaterials Sciences, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Simone Dussi
- Physical Chemistry and Soft Matter, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bruno Frka-Petesic
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Silvia Vignolini
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Sciences, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
15
|
Gonçalves DPN, Hegmann T. Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal: Surface‐Modified Cellulose Nanocrystals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Diana P. N. Gonçalves
- Advanced Materials and Liquid Crystal Institute Kent State University Kent OH 44242-0001 USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute Kent State University Kent OH 44242-0001 USA
- Department of Chemistry and Biochemistry, Materials Science Graduate Program, and Brain Health Research Institute Kent State University Kent OH 44242-0001 USA
| |
Collapse
|
16
|
Gonçalves DPN, Hegmann T. Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal: Surface-Modified Cellulose Nanocrystals. Angew Chem Int Ed Engl 2021; 60:17344-17349. [PMID: 33949085 DOI: 10.1002/anie.202105357] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/16/2022]
Abstract
The vast majority of nanomaterials studied in light of their ability to transmit chirality to or amplify their chirality in a surrounding medium, constitute an achiral core with chirality solely installed at the surface by conjugation or encapsulation with optically active ligands. Here we present the inverse approach focusing on surface-modified cellulose nanocrystals (CNCs) with core chirality at both the molecular and the morphological level to quantify transmission and amplification of core chirality through space using a host nematic liquid crystal (N-LC) as reporter. We find that CNCs functionalized at the surface with achiral molecules, structurally related to the N-LC, exhibit better N-LC solubility, thereby serving as highly efficient chiral inducers. Moreover, functionalization with chiral molecules only marginally enhances the efficacy of helical distortion in the host N-LC matrix, indicating the high propensity of CNCs to transfer chirality from an inherently chiral core.
Collapse
Affiliation(s)
- Diana P N Gonçalves
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH, 44242-0001, USA.,Department of Chemistry and Biochemistry, Materials Science Graduate Program, and Brain Health Research Institute, Kent State University, Kent, OH, 44242-0001, USA
| |
Collapse
|
17
|
Release of internal molecular torque results in twists of Glaucocystis cellulose nanofibers. Carbohydr Polym 2021; 251:117102. [PMID: 33142640 DOI: 10.1016/j.carbpol.2020.117102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/05/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
The cellulose of the green alga Glaucocystis consists of almost pure Iα crystalline phase where the corresponding lattice b* axis parameter lies perpendicular to the cell wall surface in the multilamellar cell wall architecture, indicating that in this wall, cellulose is devoid of longitudinal twist. In contrast, when isolated from Glaucosytis cell walls, the cellulose microfibrils present a twisting behavior, which was investigated using electron microscopy techniques. Sequential electron microdiffraction analyses obtained under frozen hydrated conditions revealed that the cellulose microfibrils continuously right-hand twisted in the vitreous ice layer. This observation implies that the twists of these nanofibers are intrinsic to the cellulose molecule and not a result of the cell wall biogenesis process. Furthermore, scaling with the fourth power of width based on the classic mechanics of solid, the twist angle was in agreement with the reported values in higher plant celluloses, implying that the twist arises from the balance between tendency of individual chains to twist and the structure imposed by the crystal packing. The observed twist in isolated fibrils of Glaucocystis indicates that one cannot assume the presence of cellulose twisting in vivo based on observations of isolated cellulose nanoparticles, as microfibril can exist untwisted in the original cell wall but become twisted when released from the wall.
Collapse
|
18
|
Bolzon LB, Bindeiro AKDS, de Oliveira Souza ALM, Zanatta LD, de Paula R, Cerqueira BC, dos Santos JS. Rhodamine B oxidation promoted by P450-bioinspired Jacobsen catalysts/cellulose systems. RSC Adv 2021; 11:33823-33834. [PMID: 35497525 PMCID: PMC9042282 DOI: 10.1039/d1ra04915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/19/2021] [Indexed: 11/21/2022] Open
Abstract
P450-bioinspired Jacobsen/Cell(NEt2) catalysts have been applied in RhB dye oxidation, which is used illegally in food industries of some countries.
Collapse
Affiliation(s)
- Lucas Bomfim Bolzon
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Anna Karolina dos Santos Bindeiro
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Ana Luiza Marques de Oliveira Souza
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| | - Lucas Dimarô Zanatta
- Laboratório de Bioinorgânica, Departamento de Química, FFCLRP-USP, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo de Paula
- Centro de Formação de Professores, UFRB, Av. Nestor de Melo Pita 535, Campus de Amargosa, 45300-000, Amargosa, BA, Brazil
- Programa de Pós-Graduação em Química Pura e Aplicada-POSQUIPA, Universidade Federal do Oeste da Bahia, Rua Bertioga, 892, Morada Real, 47810-059, Barreiras, BA, Brazil
| | - Bruna Costa Cerqueira
- Centro de Formação de Professores, UFRB, Av. Nestor de Melo Pita 535, Campus de Amargosa, 45300-000, Amargosa, BA, Brazil
| | - Joicy Santamalvina dos Santos
- Grupo de Pesquisa em Bioinorgânica e Catálise (GPBioCat), Departamento de Química Geral e Inorgânica, IQ-UFBA, R. Barão de Jeremoabo 147, Campus de Ondina, 40170-115 Salvador, BA, Brazil
| |
Collapse
|
19
|
Heise K, Kontturi E, Allahverdiyeva Y, Tammelin T, Linder MB, Nonappa, Ikkala O. Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004349. [PMID: 33289188 PMCID: PMC11468234 DOI: 10.1002/adma.202004349] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Indexed: 06/12/2023]
Abstract
In the effort toward sustainable advanced functional materials, nanocelluloses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entangled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modifiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional properties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, biological scaffolding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected perspectives toward new directions for sustainable high-tech functional materials science based on nanocelluloses are described.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Eero Kontturi
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
| | - Yagut Allahverdiyeva
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFI‐20014Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland LtdVTT, PO Box 1000FIN‐02044EspooFinland
| | - Markus B. Linder
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Nonappa
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Olli Ikkala
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
| |
Collapse
|
20
|
Ye D, Rongpipi S, Kiemle SN, Barnes WJ, Chaves AM, Zhu C, Norman VA, Liebman-Peláez A, Hexemer A, Toney MF, Roberts AW, Anderson CT, Cosgrove DJ, Gomez EW, Gomez ED. Preferred crystallographic orientation of cellulose in plant primary cell walls. Nat Commun 2020; 11:4720. [PMID: 32948753 PMCID: PMC7501228 DOI: 10.1038/s41467-020-18449-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/19/2020] [Indexed: 12/20/2022] Open
Abstract
Cellulose, the most abundant biopolymer on earth, is a versatile, energy rich material found in the cell walls of plants, bacteria, algae, and tunicates. It is well established that cellulose is crystalline, although the orientational order of cellulose crystallites normal to the plane of the cell wall has not been characterized. A preferred orientational alignment of cellulose crystals could be an important determinant of the mechanical properties of the cell wall and of cellulose-cellulose and cellulose-matrix interactions. Here, the crystalline structures of cellulose in primary cell walls of onion (Allium cepa), the model eudicot Arabidopsis (Arabidopsis thaliana), and moss (Physcomitrella patens) were examined through grazing incidence wide angle X-ray scattering (GIWAXS). We find that GIWAXS can decouple diffraction from cellulose and epicuticular wax crystals in cell walls. Pole figures constructed from a combination of GIWAXS and X-ray rocking scans reveal that cellulose crystals have a preferred crystallographic orientation with the (200) and (110)/([Formula: see text]) planes preferentially stacked parallel to the cell wall. This orientational ordering of cellulose crystals, termed texturing in materials science, represents a previously unreported measure of cellulose organization and contradicts the predominant hypothesis of twisting of microfibrils in plant primary cell walls.
Collapse
Affiliation(s)
- Dan Ye
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sintu Rongpipi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Sarah N Kiemle
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- 123 Clapp Laboratory, Mount Holyoke College, 50 College Street, South Hadley, MA, 01075, USA
| | - William J Barnes
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Arielle M Chaves
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI, 02881, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Victoria A Norman
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Alexander Liebman-Peláez
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Alexander Hexemer
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Michael F Toney
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Alison W Roberts
- Department of Biological Sciences, The University of Rhode Island, Kingston, RI, 02881, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Daniel J Cosgrove
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
21
|
Delepierre G, Eyley S, Thielemans W, Weder C, Cranston ED, Zoppe JO. Patience is a virtue: self-assembly and physico-chemical properties of cellulose nanocrystal allomorphs. NANOSCALE 2020; 12:17480-17493. [PMID: 32808640 DOI: 10.1039/d0nr04491a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cellulose nanocrystals (CNCs) are bio-based rod-like nanoparticles with a quickly expanding market. Despite the fact that a variety of production routes and starting cellulose sources are employed, all industrially produced CNCs consist of cellulose I (CNC-I), the native crystalline allomorph of cellulose. Here a comparative study of the physico-chemical properties and liquid crystalline behavior of CNCs produced from cellulose II (CNC-II) and typical CNC-I is reported. CNC-I and CNC-II are isolated by sulfuric acid hydrolysis of cotton and mercerized cotton, respectively. The two allomorphs display similar surface charge densities and ζ-potentials and both have a right-handed twist, but CNC-II have a slightly smaller average length and aspect ratio, and are less hygroscopic. Interestingly, the self-assembly behavior of CNC-I and CNC-II in water is different. Whilst CNC-I forms a chiral nematic phase, CNC-II initially phase separates into an upper isotropic and a lower nematic liquid crystalline phase, before a slow reorganization into a large-pitch chiral nematic texture occurs. This is potentially caused by a combination of factors, including the inferred faster rotational diffusion of CNC-II and the different crystal structures of CNC-I and CNC-II, which are responsible for the presence and absence of a giant dipole moment, respectively.
Collapse
Affiliation(s)
- Gwendoline Delepierre
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland and University of British Columbia, 2424 Main Mall, Vancouver, BC V6 T 1Z4, Canada.
| | - Samuel Eyley
- Sustainable Materials Lab, Chemical Engineering, KU Leuven Kulak Kortrijk Campus, E. Sabbelaan 53 box 7659, 8500 Kortrijk, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Chemical Engineering, KU Leuven Kulak Kortrijk Campus, E. Sabbelaan 53 box 7659, 8500 Kortrijk, Belgium
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Emily D Cranston
- University of British Columbia, 2424 Main Mall, Vancouver, BC V6 T 1Z4, Canada.
| | - Justin O Zoppe
- Omya International AG, Baslerstrasse 42, 4665, Oftringen, Switzerland.
| |
Collapse
|
22
|
Chen T, Zhao Q, Meng X, Li Y, Peng H, Whittaker AK, Zhu S. Ultrasensitive Magnetic Tuning of Optical Properties of Films of Cholesteric Cellulose Nanocrystals. ACS NANO 2020; 14:9440-9448. [PMID: 32574040 DOI: 10.1021/acsnano.0c00506] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chiral photonic crystals derived from the self-assembly of cellulose nanocrystals (CNCs) have found important applications in optical devices due to the capacity to adjust the chiral nematic phase under external stimulus, in particular an applied magnetic field. To date, strong magnetic fields have been required to induce an optical response in CNC films. In this work, the self-assembly of films of CNCs can be tuned by applying an ultrasmall magnetic field. The CNCs, decorated with Fe3O4 nanoparticles (Fe3O4/CNCs), were dispersed in suspensions of neat CNCs so as to alter the magnetic response of the CNCs. A subsequent process of dispersion not only prevents the clumping of the magnetic nanoparticles but also enhances the sensitivity to an applied magnetic field. A small magnetic field of 7 mT can tune the self-assembly and the microstructure of the CNCs. The pitch of the chiral structure decreased with an increase in applied magnetic field, from 302 to 206 nm, for fields from 7 to 15 mT. This phenomenon is opposite that observed for neat CNCs, in which the pitch is observed to increase with an increase in the external magnetic strength. The optical response under application of an ultrasmall magnetic field could help with theoretical research and enable more applications, such as sensors or nanotemplating agents.
Collapse
Affiliation(s)
- Tianxing Chen
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qinglan Zhao
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xin Meng
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
23
|
Nanocellulose for Stabilization of Pickering Emulsions and Delivery of Nutraceuticals and Its Interfacial Adsorption Mechanism. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02481-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Rolland N, Mehandzhiyski AY, Garg M, Linares M, Zozoulenko IV. New Patchy Particle Model with Anisotropic Patches for Molecular Dynamics Simulations: Application to a Coarse-Grained Model of Cellulose Nanocrystal. J Chem Theory Comput 2020; 16:3699-3711. [DOI: 10.1021/acs.jctc.0c00259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicolas Rolland
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | | | - Mohit Garg
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
| | - Mathieu Linares
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Scientific Visualization Group, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Swedish e-Science Research Centre (SeRC), Linköping University, SE-581 83 Linköping, Sweden
| | - Igor V. Zozoulenko
- Laboratory of Organic Electronics, ITN, Linköping University, SE-601 74 Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, SE-601 74 Norrköping, Sweden
| |
Collapse
|
25
|
Zhu Q, Liu S, Sun J, Liu J, Kirubaharan CJ, Chen H, Xu W, Wang Q. Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydr Polym 2020; 235:115933. [DOI: 10.1016/j.carbpol.2020.115933] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/20/2020] [Accepted: 01/29/2020] [Indexed: 11/24/2022]
|
26
|
Dumitrică T. Intrinsic twist in Iβ cellulose microfibrils by tight-binding objective boundary calculations. Carbohydr Polym 2020; 230:115624. [DOI: 10.1016/j.carbpol.2019.115624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/24/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
|
27
|
Kinose Y, Sakakibara K, Ogawa H, Tsujii Y. Main-Chain Stiffness of Cellulosic Bottlebrushes with Polystyrene Side Chains Introduced Regioselectively at the O-6 Position. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuji Kinose
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Keita Sakakibara
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Hiroki Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yoshinobu Tsujii
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
28
|
Affiliation(s)
- Bruno Frka-Petesic
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge CB2 1EW, UK
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
29
|
Uto T, Yui T. DFT Optimization of Isolated Molecular Chain Sheet Models Constituting Native Cellulose Crystal Structures. ACS OMEGA 2018; 3:8050-8058. [PMID: 31458942 PMCID: PMC6644672 DOI: 10.1021/acsomega.8b00834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/28/2018] [Indexed: 06/10/2023]
Abstract
Because of high crystallinity and natural abundance, the crystal structures of the native cellulose allomorphs have been theoretically investigated to elucidate the cellulose chain packing schemes. Here, we report systematic structure optimization of cellulose chain sheet models isolated from the cellulose Iα and Iβ crystals by density functional theory (DFT). For each allomorph, the three-dimensional chain packing structure was partitioned along each of the three main crystal planes to construct either a flat chain sheet model or two stacked chain sheet models, each consisting of four cello-octamers. Various combinations of the basis set and DFT functional were investigated. The flat chain sheet models constituting the cellulose Iα (110) and Iβ (100) planes, where the cellulose chains are mainly linked by intermolecular hydrogen bonds, exhibit a right-handed twist. More uniform and symmetrical sheet twists are observed when the flat chain sheet models are optimized using a basis set with diffuse functions (6-31+G(d,p)). The intermolecular interactions are more stable when the chain sheet models are optimized with the two hybrid functionals CAM-B3LYP and M06-2X. Optimization of the two stacked chain sheet models, where van der Waals interactions predominated between adjacent chains, gave differing results; those retaining the initial structures and those losing the sheet appearance, corresponding to the cellulose Iα/Iβ (010)/(11̅0) and (100)/(110) chain sheet models, respectively. The cellulose Iβ (11̅0) chain sheet model is more stable using the M06-2X functional than using the CAM-B3LYP functional.
Collapse
Affiliation(s)
| | - Toshifumi Yui
- E-mail: .
Tel: +81-985-58-7319. Fax: +81-985-58-7323
| |
Collapse
|
30
|
Parker RM, Guidetti G, Williams CA, Zhao T, Narkevicius A, Vignolini S, Frka-Petesic B. The Self-Assembly of Cellulose Nanocrystals: Hierarchical Design of Visual Appearance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704477. [PMID: 29250832 DOI: 10.1002/adma.201704477] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/18/2017] [Indexed: 05/19/2023]
Abstract
By controlling the interaction of biological building blocks at the nanoscale, natural photonic nanostructures have been optimized to produce intense coloration. Inspired by such biological nanostructures, the possibility to design the visual appearance of a material by guiding the hierarchical self-assembly of its constituent components, ideally using natural materials, is an attractive route for rationally designed, sustainable manufacturing. Within the large variety of biological building blocks, cellulose nanocrystals are one of the most promising biosourced materials, primarily for their abundance, biocompatibility, and ability to readily organize into photonic structures. Here, the mechanisms underlying the formation of iridescent, vividly colored materials from colloidal liquid crystal suspensions of cellulose nanocrystals are reviewed and recent advances in structural control over the hierarchical assembly process are reported as a toolbox for the design of sophisticated optical materials.
Collapse
Affiliation(s)
- Richard M Parker
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Giulia Guidetti
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Cyan A Williams
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tianheng Zhao
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Aurimas Narkevicius
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Vignolini
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Bruno Frka-Petesic
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
31
|
Pillegowda M, Periyasamy G. DFT studies on interaction between bimetallic [Au 2 M] clusters and cellobiose. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Courtenay JC, Ramalhete SM, Skuze WJ, Soni R, Khimyak YZ, Edler KJ, Scott JL. Unravelling cationic cellulose nanofibril hydrogel structure: NMR spectroscopy and small angle neutron scattering analyses. SOFT MATTER 2018; 14:255-263. [PMID: 29238786 DOI: 10.1039/c7sm02113e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stiff, elastic, viscous shear thinning aqueous gels are formed upon dispersion of low weight percent concentrations of cationically modified cellulose nanofibrils (CCNF) in water. CCNF hydrogels produced from cellulose modified with glycidyltrimethylammonium chloride, with degree of substitution (DS) in the range 10.6(3)-23.0(9)%, were characterised using NMR spectroscopy, rheology and small angle neutron scattering (SANS) to probe the fundamental form and dimensions of the CCNF and to reveal interfibrillar interactions leading to gelation. As DS increased CCNF became more rigid as evidenced by longer Kuhn lengths, 18-30 nm, derived from fitting of SANS data to an elliptical cross-section, cylinder model. Furthermore, apparent changes in CCNF cross-section dimensions suggested an "unravelling" of initially twisted fibrils into more flattened ribbon-like forms. Increases in elastic modulus (7.9-62.5 Pa) were detected with increased DS and 1H solution-state NMR T1 relaxation times of the introduced surface -N+(CH3)3 groups were found to be longer in hydrogels with lower DS, reflecting the greater flexibility of the low DS CCNF. This is the first time that such correlation between DS and fibrillar form and stiffness has been reported for these potentially useful rheology modifiers derived from renewable cellulose.
Collapse
Affiliation(s)
- James C Courtenay
- Centre for Sustainable Chemical Technologies, University of Bath, Bath BA2 7AY, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Déléris I, Wallecan J. Relationship between processing history and functionality recovery after rehydration of dried cellulose-based suspensions: A critical review. Adv Colloid Interface Sci 2017; 246:1-12. [PMID: 28688780 DOI: 10.1016/j.cis.2017.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/29/2022]
Abstract
Cellulose-based suspensions have raised more and more attention due to their broad range of properties that can be used in paper industry and material science but also in medicine, nanotechnology and food science. Their final functionality is largely dependent on their processing history and notably the structural modifications that occur during drying and rehydration. The purpose of this work is to make a state-of-the-art contribution to the mechanisms involved in the process-structure-function relationships of cellulose-based hydrogels. The different assumptions that exist in the literature are reviewed taking the key role of the initial sample characteristics as well as the processing conditions into consideration. The decrease in swelling ability after drying is clearly due to an overall shrinkage of the structure of the material. At microscale, pore closure and cellulosic fibril aggregation are mentioned as the main reasons. The origins of such irreversible structural modifications take place at molecular level and is mainly explained by the establishment of a new balance of interactions between all components. Nevertheless, the respective contribution of each interaction are still under investigation.
Collapse
|
34
|
Frka-Petesic B, Guidetti G, Kamita G, Vignolini S. Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701469. [PMID: 28635143 DOI: 10.1002/adma.201701469] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Indexed: 05/20/2023]
Abstract
The self-assembly of cellulose nanocrystals is a powerful method for the fabrication of biosourced photonic films with a chiral optical response. While various techniques have been exploited to tune the optical properties of such systems, the presence of external fields has yet to be reported to significantly modify their optical properties. In this work, by using small commercial magnets (≈ 0.5-1.2 T) the orientation of the cholesteric domains is enabled to tune in suspension as they assemble into films. A detailed analysis of these films shows an unprecedented control of their angular response. This simple and yet powerful technique unlocks new possibilities in designing the visual appearance of such iridescent films, ranging from metallic to pixelated or matt textures, paving the way for the development of truly sustainable photonic pigments in coatings, cosmetics, and security labeling.
Collapse
Affiliation(s)
- Bruno Frka-Petesic
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, Lensfield Road, CB2 1EW, UK
| | - Giulia Guidetti
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, Lensfield Road, CB2 1EW, UK
| | - Gen Kamita
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, Lensfield Road, CB2 1EW, UK
| | - Silvia Vignolini
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, Lensfield Road, CB2 1EW, UK
| |
Collapse
|
35
|
Kannam SK, Oehme DP, Doblin MS, Gidley MJ, Bacic A, Downton MT. Hydrogen bonds and twist in cellulose microfibrils. Carbohydr Polym 2017; 175:433-439. [PMID: 28917886 DOI: 10.1016/j.carbpol.2017.07.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/23/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
Abstract
There is increasing experimental and computational evidence that cellulose microfibrils can exist in a stable twisted form. In this study, atomistic molecular dynamics (MD) simulations are performed to investigate the importance of intrachain hydrogen bonds on the twist in cellulose microfibrils. We systematically enforce or block the formation of these intrachain hydrogen bonds by either constraining dihedral angles or manipulating charges. For the majority of simulations a consistent right handed twist is observed. The exceptions are two sets of simulations that block the O2-O6' intrachain hydrogen bond, where no consistent twist is observed in multiple independent simulations suggesting that the O2-O6' hydrogen bond can drive twist. However, in a further simulation where exocyclic group rotation is also blocked, right-handed twist still develops suggesting that intrachain hydrogen bonds are not necessary to drive twist in cellulose microfibrils.
Collapse
Affiliation(s)
- Sridhar Kumar Kannam
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Daniel P Oehme
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Monika S Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Matthew T Downton
- IBM Research Australia, Level 5, 204 Lygon Street, 3053 Carlton, Victoria, Australia.
| |
Collapse
|
36
|
Abstract
Liquid crystals play an important role in biology because the combination of order and mobility is a basic requirement for self-organisation and structure formation in living systems. Cholesteric liquid crystals are omnipresent in living matter under both in vivo and in vitro conditions and address the major types of molecules essential to life. In the animal and plant kingdoms, the cholesteric structure is a recurring design, suggesting a convergent evolution to an optimised left-handed helix. Herein, we review the recent advances in the cholesteric organisation of DNA, chromatin, chitin, cellulose, collagen, viruses, silk and cholesterol ester deposition in atherosclerosis. Cholesteric structures can be found in bacteriophages, archaea, eukaryotes, bacterial nucleoids, chromosomes of unicellular algae, sperm nuclei of many vertebrates, cuticles of crustaceans and insects, bone, tendon, cornea, fish scales and scutes, cuttlebone and squid pens, plant cell walls, virus suspensions, silk produced by spiders and silkworms, and arterial wall lesions. This article specifically aims at describing the consequences of the cholesteric geometry in living matter, which are far from being fully defined and understood, and discusses various perspectives. The roles and functions of biological cholesteric liquid crystals include maximisation of packing efficiency, morphogenesis, mechanical stability, optical information, radiation protection and evolution pressure.
Collapse
Affiliation(s)
- Michel Mitov
- Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES), CNRS, BP 94347, 29 rue Jeanne-Marvig, F-31055 Toulouse Cedex 4, France.
| |
Collapse
|
37
|
|
38
|
van de Ven TGM, Sheikhi A. Hairy cellulose nanocrystalloids: a novel class of nanocellulose. NANOSCALE 2016; 8:15101-14. [PMID: 27453347 DOI: 10.1039/c6nr01570k] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Nanomaterials have secured such a promising role in today's life that imagining the modern world without them is almost impossible. A large fraction of nanomaterials is synthesized from environmentally-dangerous elements such as heavy metals, which have posed serious side-effects to ecosystems. Despite numerous advantages of synthetic nanomaterials, issues such as renewability, sustainability, biocompatibility, and cost efficiency have drawn significant attention towards natural products such as cellulose-based nanomaterials. Within the past decade, nanocelluloses, most remarkably nanocrystalline cellulose (NCC) and nanofibrillated cellulose (NFC), have successfully been used for a wide spectrum of applications spanning from nanocomposites, packaging, and mechanical and rheological property modifications, to chemical catalysis and organic templating. Yet, there has been little effort to introduce fundamentally new polysaccharide-based nanomaterials. We have been able to develop the first kind of cellulose-based nanoparticles bearing both crystalline and amorphous regions. These nanoparticles comprise a crystalline body, similar to conventional NCC, but with polymer chains protruding from both ends; therefore, these particles are called hairy cellulose nanocrystalloids (HCNC). In this article, we touch on the philosophy of HCNC synthesis, the striking superiority over existing nanocelluloses, and applications of this novel class of nanocelluloses. We hope that the emergence of hairy cellulose nanocrystalloids extends the frontiers of sustainable, green nanotechnology.
Collapse
Affiliation(s)
- Theo G M van de Ven
- Department of Chemistry, Pulp and Paper Research Centre, and Centre for Self-Assembled Chemical Structures, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada.
| | - Amir Sheikhi
- Department of Chemistry, Pulp and Paper Research Centre, and Centre for Self-Assembled Chemical Structures, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada.
| |
Collapse
|
39
|
Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 2016; 100:2063-72. [PMID: 26743657 DOI: 10.1007/s00253-015-7243-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
Production of bacterial nanocellulose (BNC) is becoming increasingly popular owing to its environmentally friendly properties. Based on this benefit of BNC production, researchers have also begun to examine the capacity for cellulose production through microbial hosts. Indeed, several research groups have developed processes for BNC production, and many studies have been published to date, with the goal of developing methods for large-scale production. During BNC bioproduction, the culture medium represents approximately 30 % of the total cost. Therefore, one important and challenging aspect of the fermentation process is identification of a new cost-effective culture medium that can facilitate the production of high yields within short periods of time, thereby improving BNC production and permitting application of BNC in the biotechnological, medical, pharmaceutical, and food industries. In this review, we addressed different aspects of BNC production, including types of fermentation processes and culture media, with the aim of demonstrating the importance of these parameters.
Collapse
|
40
|
Střelcová Z, Kulhánek P, Friák M, Fabritius HO, Petrov M, Neugebauer J, Koča J. The structure and dynamics of chitin nanofibrils in an aqueous environment revealed by molecular dynamics simulations. RSC Adv 2016. [DOI: 10.1039/c6ra00107f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The structure–property relations reveal the typical size of chitin nanofibrils observed in natural systems.
Collapse
Affiliation(s)
- Zora Střelcová
- CEITEC – Central European Institute of Technology
- Masaryk University
- 625 00 Brno
- Czech Republic
- National Centre for Biomolecular Research
| | - Petr Kulhánek
- CEITEC – Central European Institute of Technology
- Masaryk University
- 625 00 Brno
- Czech Republic
- National Centre for Biomolecular Research
| | - Martin Friák
- CEITEC – Central European Institute of Technology
- Masaryk University
- 625 00 Brno
- Czech Republic
- Max-Planck-Institut für Eisenforschung GmbH
| | | | - Michal Petrov
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf
- Germany
| | - Jörg Neugebauer
- Max-Planck-Institut für Eisenforschung GmbH
- 40237 Düsseldorf
- Germany
| | - Jaroslav Koča
- CEITEC – Central European Institute of Technology
- Masaryk University
- 625 00 Brno
- Czech Republic
- National Centre for Biomolecular Research
| |
Collapse
|