1
|
Gandhi R, Chopade N, Deshmukh PK, Ingle RG, Harde M, Lakade S, More MP, Tade RS, Bhadane MS. Unveiling cyclodextrin conjugation as multidentate excipients: An exploratory journey across industries. Carbohydr Res 2025; 549:109357. [PMID: 39708386 DOI: 10.1016/j.carres.2024.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/10/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
The discovery of branched molecules like dextrin by Schardinger in 1903 marked the inception of cyclodextrin (CD) utilization, catalyzing its journey from laboratory experimentation to widespread commercialization within the pharmaceutical industry. CD, a cyclic oligosaccharide containing glucopyranose units, acts as a versatile guest molecule, forming inclusion complexes (ICs) with various host molecules. Computational studies have become instrumental in elucidating the intricate interactions between β-CD and guest molecules, enabling the prediction of binding energy, forces, affinity, and complex stability. The computational approach has established robust correlations with experimental outcomes, enhancing our understanding of CD-mediated complexation phenomena. This comprehensive review delves into the CD based Inclusion complex (CDIC) formation and a myriad of components, including drug molecules, amino acids, vitamins, and volatile oils. These complexes find applications across diverse industries, ranging from pharmaceuticals to nutraceuticals, food, fragrance, and beyond. In the pharmaceutical realm, β- CDICs offer innovative solutions for enhancing drug solubility, stability, and bioavailability, thus overcoming formulation challenges associated with poorly water-soluble drugs. Furthermore, the versatility of CDs extends beyond pharmaceuticals, with applications in the encapsulation of phytoactive compounds in nutraceuticals and the enhancing flavor, aroma in food and fragrance industries. This review underscores the pivotal role of CDs conjugation in modern drug delivery systems, emphasizing the importance of interdisciplinary approaches that integrate computational modeling with experimental validation. As the pharmaceutical landscape continues to evolve, CDs-based formulations stand poised to drive innovation and address the ever-growing demand for efficacious and patient-friendly drug delivery solutions.
Collapse
Affiliation(s)
- Roshani Gandhi
- Department of Pharmacognosy, Laddhad College of Pharmacy, Dist-Buldhana, M.S. 443 001, India
| | - Nishant Chopade
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist-Buldhana, M.S. 443 101, India
| | - Prashant K Deshmukh
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist-Buldhana, M.S. 443 101, India
| | - Rahul G Ingle
- Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (Deemed to be University) Sawangi, Wardha, M.S. 442004, India
| | - Minal Harde
- Department of Pharmaceutical Chemistry, PES's Modern College of Pharmacy, Nigdi, Pune, 411044, India
| | - Sameer Lakade
- Department of Pharmaceutics, Rasiklal M. Dhariwal Institute of Pharmaceutical Education and Research, Chinchwad, Pune, 411019, India
| | | | - Rahul S Tade
- Department of Pharmaceutics, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist - Dhule, M.S. 425405, India
| | - Mahesh S Bhadane
- Department of Physics, Rayat Shikshan Sanstha's Dada Patil Mahavidyalaya, Karjat, Dist - Ahemadnagar, M.S. 414 402, India
| |
Collapse
|
2
|
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021; 48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Conventional liposomes still face many challenges associated with the poor physical and chemical stability, considerable loss of encapsulated cargo, lack of stimulus responsiveness, and rapid elimination from blood circulation. Integration of versatile functional biopolymers has emerged as an attractive strategy to overcome the limitation of usage of liposomes. This review comprehensively summarizes the most recent studies (2015-2020) and their challenges aiming at the exploration of biopolymer-liposome hybrid systems, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, and liposome-in-nanofiber. The physicochemical principles and key technical information underlying the combined strategies for the fabrication of polymeric liposomes, the advantages and limitations of each of the systems, and the stabilization mechanisms are discussed through various case studies. Special emphasis is directed toward the synergistic efficiencies of biopolymers and phospholipid bilayers on encapsulation, protection, and controlled delivery of bioactives (e.g., vitamins, carotenoids, phenolics, peptides, and other health-related compounds) for the biomedical, pharmaceutical, cosmetic, and functional food applications. The major challenges, opportunities, and possible further developments for future studies are also highlighted.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
3
|
Recent trends in the development of biomass-based polymers from renewable resources and their environmental applications. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Gharib R, Jemâa JMB, Charcosset C, Fourmentin S, Greige‐Gerges H. Retention of Eucalyptol, a Natural Volatile Insecticide, in Delivery Systems Based on Hydroxypropyl‐β‐Cyclodextrin and Liposomes. EUR J LIPID SCI TECH 2020. [DOI: 10.1002/ejlt.201900402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Riham Gharib
- Bioactive Molecules Research Laboratory Faculty of Sciences Lebanese University B.P. 90656 Jdaidet El‐Metn Lebanon
| | - Jouda Mediouni Ben Jemâa
- Laboratory of Biotechnology Applied to Agriculture National Agricultural Research Institute of Tunisia University of Carthage Rue Hedi Karray Ariana Tunis 2049 Tunisia
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés Université Claude Bernard Lyon 1 UMR 5007, CNRS, CPE, 43 bd du 11 Novembre Villeurbanne Cedex 691622 France
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant EA 4492 SFR Condorcet FR CNRS 3417, Université du Littoral‐Côte d'Opale Dunkerque 59140 France
| | - Hélène Greige‐Gerges
- Bioactive Molecules Research Laboratory Faculty of Sciences Lebanese University B.P. 90656 Jdaidet El‐Metn Lebanon
| |
Collapse
|
5
|
Liposomal membrane permeability assessment by fluorescence techniques: Main permeabilizing agents, applications and challenges. Int J Pharm 2020; 580:119198. [PMID: 32169353 DOI: 10.1016/j.ijpharm.2020.119198] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 01/08/2023]
Abstract
Liposomes are lipid vesicles made of one or multiple lipid bilayers surrounding an internal aqueous core. They are broadly employed as models to study membrane structure and properties. Among these properties, liposome membrane permeability is crucial and widely assessed by fluorescence techniques. The first part of this review is devoted to describe the various techniques used for membrane permeability assessment. Attention is paid to fluorescence techniques based on vesicle leakage of self-quenching probes, dye/quencher pair or cation/ligand pair. Secondly, the membrane-active agents inducing membrane permeabilization is presented and details on their mechanisms of action are given. Emphasis is also laid on the intrinsic and extrinsic factors that can modulate the membrane permeability. Hence, a suitable liposomal membrane should be formulated according to the aim of the study and its application.
Collapse
|
6
|
Li J, Xin M, Huo Y, Cai A, Yan M, Wang C, Wei G. Synthesis of β-cyclodextrin-PEG-G molecules to delay tumor growth and application of β-cyclodextrin-PEG-G aggregates as drug carrier. Carbohydr Polym 2020; 229:115478. [DOI: 10.1016/j.carbpol.2019.115478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022]
|
7
|
Pascual-Villalobos MJ, Cantó-Tejero M, Guirao P, López MD. Fumigant Toxicity in Myzus persicae Sulzer (Hemiptera: Aphididae): Controlled Release of ( E)-anethole from Microspheres. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9010124. [PMID: 31963690 PMCID: PMC7020152 DOI: 10.3390/plants9010124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
(E)-anethole is a phenylpropanoid that is the main compound found in the essential oils (EOs) of anise and fennel seeds, and either fumigant or direct contact activity of this compound has been demonstrated against aphids and stored product pests. In this work, solid microspheres were prepared by three methods-oil emulsion entrapment, spray-drying, and complexed with β-cyclodextrin. Fumigation activity of each microsphere preparation was tested against the green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), on pepper leaves. The best insecticidal activity was with (E)-anethole encapsulated in oil emulsion beads and introduced to aphids as a vapour over 24 h, with an LC50 of 0.415 μL/L compared to 0.336 μL/L of vapors from free (E)-anethole. Scanning electron microscopy of the beads revealed a compact surface with low porosity that produced a controlled release of the bioactive for more than 21 d, whilst most of the volatile was evaporated within two days if applied unformulated. Spray drying gave spherical particles with the greatest encapsulated yield (73%) of 6.15 g of (E)-anethole incorporated per 100 g of powder. Further work will be done on improving the formulation methods and testing the solid microspheres in all aphid stages scaling up the experimental assay. It is foreseen that nanotechnology will play a role in future developments of low risk plant protection products.
Collapse
Affiliation(s)
- María J. Pascual-Villalobos
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor S/N La Alberca, 30150 Murcia, Spain;
| | - Manuel Cantó-Tejero
- Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), C/Mayor S/N La Alberca, 30150 Murcia, Spain;
| | - Pedro Guirao
- Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, Escuela Politécnica Superior de Orihuela, Carretera de Beniel Km. 3.2, 03312 Orihuela, Alicante, Spain;
| | - María D. López
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Concepción, Campus Chillán, Avenida Vicente Méndez 595, P.O. Box 537, Chillán 3812120, Chile;
| |
Collapse
|
8
|
Auezova L, Najjar A, Kfoury M, Fourmentin S, Greige‐Gerges H. Antibacterial activity of free or encapsulated selected phenylpropanoids against
Escherichia coli
and
Staphylococcus epidermidis. J Appl Microbiol 2020; 128:710-720. [DOI: 10.1111/jam.14516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/22/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022]
Affiliation(s)
- L. Auezova
- Bioactive Molecules Research Laboratory Department of Chemistry and Biochemistry Faculty of Sciences, Section II Lebanese University Beirut Lebanon
| | - A. Najjar
- Bioactive Molecules Research Laboratory Department of Chemistry and Biochemistry Faculty of Sciences, Section II Lebanese University Beirut Lebanon
| | - M. Kfoury
- Bioactive Molecules Research Laboratory Department of Chemistry and Biochemistry Faculty of Sciences, Section II Lebanese University Beirut Lebanon
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492 SFR Condorcet FR CNRS3417 Université du Littoral‐Côte d'Opale Dunkerque France
| | - S. Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV) EA 4492 SFR Condorcet FR CNRS3417 Université du Littoral‐Côte d'Opale Dunkerque France
| | - H. Greige‐Gerges
- Bioactive Molecules Research Laboratory Department of Chemistry and Biochemistry Faculty of Sciences, Section II Lebanese University Beirut Lebanon
| |
Collapse
|
9
|
Lena JB, van Herk AM, Jana S. Effect of anethole on the copolymerization of vinyl monomers. Polym Chem 2020. [DOI: 10.1039/d0py00833h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copolymerization behavior of Anethole with common vinyl monomers, determination of reactivity ratios via nonlinear least square method and the effect of Anethole on molecular weight and branching of copolymers produced via batch and semi-batch processes were reported.
Collapse
Affiliation(s)
- Jean-Baptiste Lena
- Functional Molecules & Polymers
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore
| | - Alexander M. van Herk
- Functional Molecules & Polymers
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore
| | - Satyasankar Jana
- Functional Molecules & Polymers
- Institute of Chemical and Engineering Sciences (ICES)
- Agency for Science
- Technology and Research (A*STAR)
- Singapore
| |
Collapse
|
10
|
Lu X, Zhong R, Sun H, Zheng B, Chen L, Miao S, Liang P. Inhibition Effect of Triglyceride Accumulation by Large Yellow Croaker Roe DHA-PC in HepG2 Cells. Mar Drugs 2019; 17:md17090485. [PMID: 31438457 PMCID: PMC6780795 DOI: 10.3390/md17090485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023] Open
Abstract
The phospholipids (PLs) of large yellow croaker (Pseudosciaena crocea, P. crocea) roe contain a high level of polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), which can lower blood lipid levels. In previous research, PLs of P. crocea roe were found able to regulate the accumulation of triglycerides. However, none of these involve the function of DHA-containing phosphatidylcholine (DHA-PC), which is the main component of PLs derived from P. crocea roe. The function by which DHA-PC from P. crocea roe exerts its effects has not yet been clarified. Herein, we used purified DHA-PC and oleic acid (OA) induced HepG2 cells to establish a high-fat model, and the cell activity and intracellular lipid levels were then measured. The mRNA and protein expression of Fatty Acid Synthase (FAS), Carnitine Palmitoyl Transferase 1A (CPT1A) and Peroxisome Proliferator-Activated Receptor α (PPARα) in HepG2 cells were detected via RT-qPCR and western blot as well. It was found that DHA-PC can significantly regulate triglyceride accumulation in HepG2 cells, the effect of which was related to the activation of PPARα receptor activity, upregulation of CPT1A, and downregulation of FAS expression. These results can improve the understanding of the biofunction of hyperlipidemia mediated by DHA-PC from P. crocea roe, as well as provide a theoretical basis for the utilization of DHA-PC from P. crocea roe as a functional food additive.
Collapse
Affiliation(s)
- Xiaodan Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rongbin Zhong
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - He Sun
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijiao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Miao
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Co. Cork, Ireland
| | - Peng Liang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Gharib R, Haydar S, Charcosset C, Fourmentin S, Greige-Gerges H. First study on the release of a natural antimicrobial agent, estragole, from freeze-dried delivery systems based on cyclodextrins and liposomes. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
13
|
Yakavets I, Lassalle HP, Scheglmann D, Wiehe A, Zorin V, Bezdetnaya L. Temoporfin-in-Cyclodextrin-in-Liposome-A New Approach for Anticancer Drug Delivery: The Optimization of Composition. NANOMATERIALS 2018; 8:nano8100847. [PMID: 30340318 PMCID: PMC6215177 DOI: 10.3390/nano8100847] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/03/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022]
Abstract
The main goal of this study was to use hybrid delivery system for effective transportation of temoporfin (meta-tetrakis(3-hydroxyphenyl)chlorin, mTHPC) to target tissue. We suggested to couple two independent delivery systems (liposomes and inclusion complexes) to achieve drug-in-cyclodextrin-in-liposome (DCL) nanoconstructs. We further optimized the composition of DCLs, aiming to alter in a more favorable way a distribution of temoporfin in tumor tissue. We have prepared DCLs with different compositions varying the concentration of mTHPC and the type of β-cyclodextrin (β-CD) derivatives (Hydroxypropyl-, Methyl- and Trimethyl-β-CD). DCLs were prepared by thin-hydration technique and mTHPC/β-CD complexes were added at hydration step. The size was about 135 nm with the surface charge of (−38 mV). We have demonstrated that DCLs are stable and almost all mTHPC is bound to β-CDs in the inner aqueous liposome core. Among all tested DCLs, trimethyl-β-CD-based DCL demonstrated a homogenous accumulation of mTHPC across tumor spheroid volume, thus supposing optimal mTHPC distribution.
Collapse
Affiliation(s)
- Ilya Yakavets
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
| | - Henri-Pierre Lassalle
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| | | | - Arno Wiehe
- Biolitec Research GmbH, Otto-Schott-Strasse 15, 07745 Jena, Germany.
| | - Vladimir Zorin
- Laboratory of Biophysics and Biotechnology, Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk, Belarus.
- International Sakharov Environmental Institute, Belarusian State University, Dauhabrodskaja 23, 220030 Minsk, Belarus.
| | - Lina Bezdetnaya
- Centre de Recherche en Automatique de Nancy, Centre National de la Recherche Scientifique UMR 7039, Université de Lorraine, Campus Sciences, Boulevard des Aiguillette, 54506 Vandoeuvre-lès-Nancy, France.
- Research Department, Institut de Cancérologie de Lorraine, 6 Avenue de Bourgogne, 54519 Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
14
|
Kaddah S, Khreich N, Kaddah F, Khrouz L, Charcosset C, Greige-Gerges H. Corticoids modulate liposome membrane fluidity and permeability depending on membrane composition and experimental protocol design. Biochimie 2018; 153:33-45. [PMID: 29935242 DOI: 10.1016/j.biochi.2018.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/15/2018] [Indexed: 01/22/2023]
Abstract
Given that literature data may give inconsistent results on the effect of a drug on lipid membrane properties, this work aims to investigate the impact of the liposome composition and experimental protocol design on glucocorticoids (GRs: cortisol, cortisone, fludrocortisone acetate, methylprednisolone, prednisolone and prednisone)-modulating membrane fluidity and permeability. GRs-loaded liposomes consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterol (CHOL) were prepared by reverse phase evaporation technique (REV) at DPPC:CHOL:GR molar ratios of 100:100:2.5, and 100:100:10. The formulations were characterized for their size and homogeneity, encapsulation efficiency and loading rates of GRs, incorporation rates and loading rates of DPPC and CHOL. Changes in DPPC membrane fluidity (CHOL% 0, 10, 20, 30 and 100) after exposure to methylprednisolone were monitored by using 5- and 16-doxyl stearic acids (DSA) as spin probes. For permeability studies, the above-mentioned GRs-loaded liposomes and the preformed liposomes exposed to GRs (2.5 mol%) were compared for the leakage of an encapsulated fluorescent dye, sulforhodamine B (SRB), at 37 °C in buffer (pH 7.5) containing NaCl. The SRB release kinetics were analyzed by the Higuchi model for two release phases (from 0 to 10 h, and from 10 to 48 h). All formulations exhibited a monodispersed size distribution of liposomes with a mean particle value close to 0.4 μm, also the DPPC and CHOL were highly incorporated (>95%). High loading rate values of DPPC and CHOL were also obtained. Except for fludrocortisone acetate (51%) and prednisolone (77%), high loading rate values of GRs were obtained (>81%). Fluidity and permeability studies showed that the GR concentration, CHOL content, experimental protocol design including the period of incubation represent critical parameters to be considered in analyzing the effect of drugs on the membrane properties.
Collapse
Affiliation(s)
- Samar Kaddah
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon; Laboratoire d'Automatique et de Génie des Procédés (LAGEP), Université Claude Bernard, Lyon 1, France
| | - Nathalie Khreich
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon
| | - Fouad Kaddah
- École Supérieure d'ingénieurs de Beyrouth, Université Saint Joseph, Beyrouth, Mar Roukoz-Dekwaneh, Lebanon
| | - Lhoussain Khrouz
- Laboratoire de Chimie, École Normale Supérieure de Lyon (ENS), Université Claude Bernard, Lyon 1, France
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés (LAGEP), Université Claude Bernard, Lyon 1, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon.
| |
Collapse
|
15
|
Soy PC liposomes as CLA carriers for food applications: Preparation and physicochemical characterization. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Gharib R, Greige-Gerges H, Fourmentin S, Charcosset C. Hydroxypropyl-ß-cyclodextrin as a membrane protectant during freeze-drying of hydrogenated and non-hydrogenated liposomes and molecule-in-cyclodextrin-in- liposomes: Application to trans-anethole. Food Chem 2017; 267:67-74. [PMID: 29934191 DOI: 10.1016/j.foodchem.2017.10.144] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/03/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023]
Abstract
The effect of hydrogenation of phospholipids on the characteristics of freeze-dried liposomes was investigated using hydroxypropyl-ß-cyclodextrin (HP-ß-CD) as membrane protectant. The ethanol-injection method was applied to prepare liposomes using hydrogenated (Phospholopion-90H and 80H) and non-hydrogenated phospholipids (Lipoid-S100) in combination with cholesterol. Various liposomal formulations were tested: conventional liposomes (CL) and HP-ß-CD-loaded liposomes (CDL). Liposome suspensions were concentrated by ultracentrifugation; the pellets were reconstituted in water or CD solution and the dispersions were characterized for their size, polydispersity index and zeta potential. Results demonstrated that HP-ß-CD protected only the hydrogenated batches (CL and CDL) during freeze-drying. Moreover, the presence of HP-ß-CD in the aqueous phase of CDL protected them during freeze-drying. Freeze-dried CL and CDL made of phospholipon-90H loading anethole were demonstrated to be physically stable upon reconstitution in HP-ß-CD solutions, and are able to retain anethole after 6 months of storage at 4 °C thereby making them valuable for food applications.
Collapse
Affiliation(s)
- Riham Gharib
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Doctoral School of Sciences and Technologies, Lebanese University, Lebanon; Laboratoire d'Automatique et de Génie des Procédés, Université Claude Bernard Lyon 1, UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France; Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492 SFR Condorcet FR CNRS 3417, Université du Littoral-Côte d'Opale, 59140 Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Doctoral School of Sciences and Technologies, Lebanese University, Lebanon.
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), EA 4492 SFR Condorcet FR CNRS 3417, Université du Littoral-Côte d'Opale, 59140 Dunkerque, France.
| | - Catherine Charcosset
- Laboratoire d'Automatique et de Génie des Procédés, Université Claude Bernard Lyon 1, UMR 5007, CNRS, CPE, 43 bd du 11 Novembre, 691622 Villeurbanne Cedex, France.
| |
Collapse
|
17
|
Development of Antimicrobial Gelatin-Based Edible Films by Incorporation of Trans-Anethole/β-Cyclodextrin Inclusion Complex. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1954-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Li J, Qiao Y, Wu Z. Nanosystem trends in drug delivery using quality-by-design concept. J Control Release 2017; 256:9-18. [PMID: 28414149 DOI: 10.1016/j.jconrel.2017.04.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023]
Abstract
Quality by design (QbD) has become an inevitable trend because of its benefits for product quality and process understanding. Trials have been conducted using QbD in nanosystems' optimization. This paper reviews the application of QbD for processing nanosystems and summarizes the application procedure. It provides prospective guidelines for future investigations that apply QbD to nanosystem manufacturing processes. Employing the QbD concept in this way is a novel area in nanosystem quality.
Collapse
Affiliation(s)
- Jing Li
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China
| | - Zhisheng Wu
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China.
| |
Collapse
|