1
|
Xiao S, Ahn DU. Formulation and characterization of protein-based complexes for nutrient delivery: Impact of polysaccharides on the encapsulation of curcumin with ovalbumin. Food Chem 2025; 486:144617. [PMID: 40339414 DOI: 10.1016/j.foodchem.2025.144617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/21/2025] [Accepted: 05/01/2025] [Indexed: 05/10/2025]
Abstract
Curcumin (CUR) has many bioactive functions and is susceptible to environmental stresses. Ovalbumin/polysaccharide complexes are widely used in CUR encapsulation. However, no comprehensive report on how the complexation of different polysaccharides will affect the encapsulating properties of ovalbumin (OVA) is available. The present study analyzed the effect of polysaccharides, alginate (AL), gum arabic (GA), or carboxymethyl cellulose (CMC) on the encapsulation properties of OVA. The particle size of OVA was increased upon complexing with polysaccharides or CUR. SEM and CLSM of all the CUR-loaded complexes showed irregular and sponge-like or layered structure and CUR and OVA were co-localized. CUR demonstrated significantly improved light and thermal stability, especially at pH 7.0. An enhanced (p < 0.05) antioxidant activity of CUR upon encapsulation with OVA was observed. Polysaccharides did not affect CUR encapsulation or stability but may delay the release rate of CUR.
Collapse
Affiliation(s)
- Shulan Xiao
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States of America; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, United States of America.
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States of America.
| |
Collapse
|
2
|
Yuan J, Lin S, Liu K, Guo F, Bao Z. Effect of Low-Density Lipoprotein (LDL) and High-Density Lipoprotein (HDL) on Frozen Gelation of Egg Yolk. Foods 2025; 14:522. [PMID: 39942115 PMCID: PMC11817411 DOI: 10.3390/foods14030522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
This study aimed to investigate the roles of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) in the gelatinization behavior of egg yolk, as well as the underlying mechanisms of action. This research examined the rheological properties, moisture distribution, and structural characteristics of a system containing reconstituted egg yolk components during the freezing process. The results indicated that increasing the concentration of LDL and HDL in the egg yolk system enhanced the apparent viscosity of egg yolk following a freeze-thaw treatment. Specifically, as the LDL and HDL content increased, G' and G" values increased significantly, whereas tanδ values decreased significantly and l* values declined. These findings suggest that both LDL and HDL are critical contributors to the gelatinization process of egg yolk. Furthermore, as the concentrations of LDL and HDL in the system increased, the amount of fixed water also rose, while the bound and free water content decreased. This observation implies that LDL and HDL facilitate water migration during the freezing of egg yolk. The increase in fluorescence intensity observed in the fluorescence spectra indicates a greater exposure of tyrosine residues on the protein surface, an enhancement of surface hydrophobicity, and a modification of protein conformation. Fluorescence inverted microscopy revealed that elevated levels of LDL and HDL in the system led to increased structural damage to the protein due to freezing, which subsequently promoted the aggregation of yolk proteins. This suggests that both LDL and HDL undergo aggregation during gelation. In egg yolk, LDL and HDL are essential for gel formation during the freezing of liquid egg yolk and play critical roles in both protein structure and water migration. Of the two lipoproteins, HDL has a more pronounced effect on gel formation during liquid egg yolk freezing. This study investigates the key substances involved in the gelatinization of egg yolk, providing a reference for further improvements in egg yolk gelatinization during freezing.
Collapse
Affiliation(s)
- Junze Yuan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (S.L.)
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (S.L.)
- Engineering Research Center of Special Dietary Food, The Education Department of Liaoning Province, Dalian 116034, China
| | - Kun Liu
- Dalian Green Snow Egg Products Development Co., Ltd., Dalian 116036, China; (K.L.); (F.G.)
| | - Fujun Guo
- Dalian Green Snow Egg Products Development Co., Ltd., Dalian 116036, China; (K.L.); (F.G.)
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (J.Y.); (S.L.)
- Engineering Research Center of Food, The Education Department of Liaoning Province, Dalian 116034, China
| |
Collapse
|
3
|
Zhao J, Jia W, Zhang R, Wang X, Zhang L. Improving curcumin bioavailability: Targeted delivery of curcumin and loading systems in intestinal inflammation. Food Res Int 2024; 196:115079. [PMID: 39614566 DOI: 10.1016/j.foodres.2024.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
Curcumin is a natural food ingredient and has the potential to alleviate inflammation and combat cancer. The incidence of intestinal inflammation has been increasing and poses a severe risk to human health. Due to low absorption and bioavailability, curcumin's anti-inflammatory ability is ineffective. To improve the bioavailability of curcumin, descriptions of the intestinal barrier, signaling pathways, and transport mechanisms are reviewed. Blocking the signaling pathways lowers the number of inflammatory cytokines produced, which is the primary mechanism by which curcumin relieves inflammatory symptoms. The bioavailability of curcumin is not only related to physicochemical properties but also to the nature of the carrier material. Environmental indicators also have an impact on the improvement of curcumin bioavailability in applications. There is a need to develop multifunctional and more stable nanomaterial targeting systems to improve curcumin bioavailability and achieve better results in nanotechnology research and targeted inflammation therapy.
Collapse
Affiliation(s)
- Junyi Zhao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.
| | - Rong Zhang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Xin Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Li Zhang
- Keyi Sunshine Test, Xi'an 710021, China
| |
Collapse
|
4
|
Chen H, Xu R, Xu E, Chen Y, Niu C, Chen Y. Construction and performance evaluation of polyguluronic acid polysaccharides-based drug delivery systems. Colloids Surf B Biointerfaces 2024; 242:114083. [PMID: 39029246 DOI: 10.1016/j.colsurfb.2024.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
Polysaccharides have garnered significant attention as potential nanoparticle carriers for targeted tumor therapy due to their excellent biodegradability and biocompatibility. Polyguluronic acid (PG) is a homogeneous acidic polysaccharide fragment derived from alginate, which is found in brown algae, possesses excellent bioactivities, unique properties. This study explored the immunomodulatory activity of PG and developed PG-based nanogels through modified disulfide bonds and Ca2+ dual crosslinking. We characterized their structure, assessed their drug-loading and release properties, and ultimately validated both the safety of the nanocarrier and the in vitro anti-tumor efficacy of the encapsulated drug. Results indicated that PG significantly enhanced the proliferative activity and phagocytosis of RAW264.7 cells while promoting reactive oxygen species (ROS) production and cytokine secretion. The study identified TLR4 as the primary receptor for PG recognition in RAW264.7 cells. Furthermore, PG-based drug-carrying nanogels were prepared, exhibiting uniform sizes of about 184 nm and demonstrating exceptional encapsulation efficiency (82.15 ± 0.82 %) and drug loading capacity (8.12 ± 0.08 %). In vitro release experiments showed that these nanogels could responsively release drugs under conditions of high glutathione (GSH) reduction, facilitating drug accumulation at tumor sites and enhancing therapeutic efficacy. This research not only expands the application of PG in drug delivery systems but also provides valuable insights into leveraging natural immunomodulatory polysaccharides as carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Huilin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Ran Xu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Enyu Xu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yan Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Chunyu Niu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
5
|
Gu X, Li W, Jiang X, Chang C, Wu J. Pectin-coated whey protein isolate/zein self-aggregated nanoparticles as curcumin delivery vehicles: Effects of heating, pH, and adding sequence. Int J Biol Macromol 2024; 258:128892. [PMID: 38134988 DOI: 10.1016/j.ijbiomac.2023.128892] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
In this work, pectin was employed as a coating material to fabricate zein/whey protein isolate (WPI)/pectin complex nanoparticles via a pH-adjusted and heat-induced electrostatic adsorption process for potential oral administration applications of curcumin. Factors such as the order of raw material addition, heating temperature and pH, and zein concentration were comprehensively examined. In addition to electrostatic interactions, Fourier transform infrared and fluorescence spectroscopy indicated that hydrophobic interactions and hydrogen bonds were also involved in the development of complex nanoparticles. The complex nanoparticles obtained not only improved the antioxidant activity of curcumin in aqueous phase, but also contributed to its controlled release under gastrointestinal conditions. Our findings revealed that the heating pH and adding sequence of raw materials had a notable impact on the properties of complex nanoparticles, and that pectin coating had an exceptional stabilizing effect on complex nanoparticles under gastrointestinal circumstances. This study provides novel insights and perspectives for the preparation of polysaccharide-protein complex nanoparticles, signifying the potential use of zein/WPI/pectin complex nanoparticles as delivery vehicles in the functional food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xiaolian Gu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wanbing Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Jiang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, Hubei, China.
| |
Collapse
|
6
|
Putro JN, Soetaredjo FE, Lunardi VB, Irawaty W, Yuliana M, Santoso SP, Puspitasari N, Wenten IG, Ismadji S. Polysaccharides gums in drug delivery systems: A review. Int J Biol Macromol 2023; 253:127020. [PMID: 37741484 DOI: 10.1016/j.ijbiomac.2023.127020] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
For the drug delivery system, drug carriers' selection is critical to the drug's success in reaching the desired target. Drug carriers from natural biopolymers are preferred over synthetic materials due to their biocompatibility. The use of polysaccharide gums in the drug delivery system has received considerable attention in recent years. Polysaccharide gums are renewable resources and abundantly found in nature. They could be isolated from marine algae, microorganisms, and higher plants. In terms of carbohydrates, the gums are water-soluble, non-starch polysaccharides with high commercial value. Polysaccharide gums are widely used for controlled-release products, capsules, medicinal binders, wound healing agents, capsules, and tablet excipients. One of the essential applications of polysaccharide gum is drug delivery systems. The various kinds of polysaccharide gums obtained from different plants, marine algae, and microorganisms for the drug delivery system application are discussed comprehensively in this review paper.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Valentino Bervia Lunardi
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
| | - Wenny Irawaty
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Natania Puspitasari
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - I Gede Wenten
- Department of Chemical Engineering, Institute of Technology Bandung (ITB), Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia.
| |
Collapse
|
7
|
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Liu X, Zhang D, Yu P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 2023; 311:120718. [PMID: 37028867 DOI: 10.1016/j.carbpol.2023.120718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liangyu Bai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoyi Tang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St.George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China.
| |
Collapse
|
8
|
Zhang Y, Guo Y, Liu F, Luo Y. Recent development of egg protein fractions and individual proteins as encapsulant materials for delivery of bioactives. Food Chem 2023; 403:134353. [DOI: 10.1016/j.foodchem.2022.134353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 10/14/2022]
|
9
|
Froelich A, Jakubowska E, Jadach B, Gadziński P, Osmałek T. Natural Gums in Drug-Loaded Micro- and Nanogels. Pharmaceutics 2023; 15:pharmaceutics15030759. [PMID: 36986620 PMCID: PMC10059891 DOI: 10.3390/pharmaceutics15030759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Gums are polysaccharide compounds obtained from natural sources, such as plants, algae and bacteria. Because of their excellent biocompatibility and biodegradability, as well as their ability to swell and their sensitivity to degradation by the colon microbiome, they are regarded as interesting potential drug carriers. In order to obtain properties differing from the original compounds, blends with other polymers and chemical modifications are usually applied. Gums and gum-derived compounds can be applied in the form of macroscopic hydrogels or can be formulated into particulate systems that can deliver the drugs via different administration routes. In this review, we present and summarize the most recent studies regarding micro- and nanoparticles obtained with the use of gums extensively investigated in pharmaceutical technology, their derivatives and blends with other polymers. This review focuses on the most important aspects of micro- and nanoparticulate systems formulation and their application as drug carriers, as well as the challenges related to these formulations.
Collapse
|
10
|
Dai L, Li S, Hao Q, Zhou R, Zhou H, Lei W, Kang H, Wu H, Li Y, Ma X. Low-density lipoprotein: a versatile nanoscale platform for targeted delivery. NANOSCALE ADVANCES 2023; 5:1011-1022. [PMID: 36798503 PMCID: PMC9926902 DOI: 10.1039/d2na00883a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Low-density lipoprotein (LDL) is a small lipoprotein that plays a vital role in controlling lipid metabolism. LDL has a delicate nanostructure with unique physicochemical properties: superior payload capacity, long residence time in circulation, excellent biocompatibility, smaller size, and natural targeting. In recent decades, the superiority and feasibility of LDL particles as targeted delivery carriers have attracted much attention. In this review, we introduce the structure, composition, advantages, defects, and reconstruction of LDL delivery systems, summarize their research status and progress in targeted diagnosis and therapy, and finally look forward to the clinical application of LDL as an effective delivery vehicle.
Collapse
Affiliation(s)
- Luyao Dai
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Shuaijun Li
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Ruina Zhou
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Hui Zhou
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Wenxi Lei
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| | - Hao Wu
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis Sacramento CA 95817 USA
- Department of Biophysics, School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University Health Science Center Xi'an Shaanxi 710061 China
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis Sacramento CA 95817 USA
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital, Medical School of Xi'an Jiaotong University Xi'an Shaanxi 710061 China
| |
Collapse
|
11
|
Meng Y, Qiu C, Li X, McClements DJ, Sang S, Jiao A, Jin Z. Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients. Crit Rev Food Sci Nutr 2022; 64:187-201. [PMID: 35930011 DOI: 10.1080/10408398.2022.2105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polysaccharides are natural polymers isolated from plants, microorganisms, algae, and some animals they are composed of aldoses or ketoses linked by glycosidic bonds. Due to the affordability, abundance, safety, and functionality, polysaccharides are widely used in the foods and medicines to construct oral delivery systems for sensitive bioactive ingredients. In this article, the characteristics and applications of nanoscale polysaccharide-based delivery carriers are reviewed, including their ability to encapsulate, protect, and deliver bioactive ingredients. This review discusses the sources, characteristics, and functional properties of common food polysaccharides, including starch, pectin, chitosan, xanthan gum, and alginate. It also highlights the potential advantages of using polysaccharides for the construction of nano-delivery systems, such as nanoparticles, nanogels, nanoemulsions, nanocapsules, and nanofibers. Moreover, the application of delivery systems assembled from polysaccharides is summarized, with a focus on pH-responsive delivery of bioactives. There are some key findings and conclusions: Nanoscale polysaccharide delivery systems provide several advantages, including improved water-dispersibility, flavor masking, stability enhancement, reduced volatility, and controlled release; Polysaccharide nanocarriers can be used to construct pH-responsive delivery vehicles to achieve intestinal-targeted delivery and controlled release of bioactive ingredients; Polysaccharides can be used in combination with other biopolymers to form composite delivery systems with enhanced functional attributes.
Collapse
Affiliation(s)
- Yaxu Meng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, United States
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
12
|
Chen X, Tian Y, Zhang J, Li Y, Zhang W, Zhang J, Dou Y, Dou H. Study on effects of preparation method on the structure and antioxidant activity of protein-Tremella fuciformis polysaccharide complexes by asymmetrical flow field-flow fractionation. Food Chem 2022; 384:132619. [DOI: 10.1016/j.foodchem.2022.132619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/22/2022] [Accepted: 02/28/2022] [Indexed: 01/16/2023]
|
13
|
Nanocellulose-based nanogels for sustained drug delivery: Preparation, characterization and in vitro evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Li Z, Xiong Y, Wang Y, Zhang Y, Luo Y. Low density lipoprotein-pectin complexes stabilized high internal phase pickering emulsions: The effects of pH conditions and mass ratios. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Ranjith FH, Adhikari B, Muhialdin BJ, Yusof NL, Mohammed NK, Ariffin SH, Meor Hussin AS. Peptide-based edible coatings to control postharvest fungal spoilage of mango (Mangifera indica L.) fruit. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Li Z, Wang Y, Luo Y. High internal phase Pickering emulsions stabilized by egg yolk low density lipoprotein for delivery of curcumin. Colloids Surf B Biointerfaces 2022; 211:112334. [PMID: 35051889 DOI: 10.1016/j.colsurfb.2022.112334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/25/2022]
Abstract
Egg yolk low density lipoprotein (LDL) was used to prepare high internal phase Pickering emulsions (HIPEs) and its role as a stabilizer was comprehensively studied in this work. LDL exists as homogenous nanoparticles with an average size of 49 nm and amphiphilic nature, having a contact angle close to 90°. HIPEs were studied by varying compositions of 75%-90% oil phase and 25%-10% aqueous phase containing 0.5%-2% LDL. Rheological measurement, confocal laser scanning and optical microscopes imaging together with digital photos revealed the solid gel network, the strength of which was dependent upon oil volume fraction and LDL concentration. Optimal formulation of HIPEs was found as 80% oil and 2% LDL concentration, which exhibited small droplets under 10 µm with negligible aggregations, even after four weeks storage under refrigeration or heating at 90 ℃ for 30 min. After three freeze-thawing cycles, the HIPEs were demulsified losing their gel structure, but a simple re-homogenization was able to reconstitute the gel network identical to original microstructure. Encapsulation of curcumin into Pickering HIPEs provided exceptional photostability (around 80% retention rate) against ultraviolet radiation and improved its bioaccessibility from 10% to 50% during in vitro digestion. Our findings may bring new opportunities to design semi-solid foods using natural and edible ingredients.
Collapse
Affiliation(s)
- Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China; Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Yi Wang
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
17
|
Co-assembly of foxtail millet prolamin-lecithin/alginate sodium in citric acid-potassium phosphate buffer for delivery of quercetin. Food Chem 2022; 381:132268. [PMID: 35121326 DOI: 10.1016/j.foodchem.2022.132268] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/24/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
Abstract
Foxtail millet nanoparticles with smaller mean size at ∼130 nm and narrower polydispersity index at ∼0.05 were prepared in citric acid-potassium phosphate buffer (pH 8.0). Through lecithin (Lec)/sodium alginate (Alg) coating, a hydrophobic FP core, a Lec monolayer, and a hydrophilic Alg shell were formed spontaneously. Dissociation experiment revealed that electrostatic interaction and hydrogen bonding were main driving forces for the formation and maintenance of stable FP-Lec/Alg NPs. In addition, Lec/Alg coated NPs exerted an important role in sustaining the controlled release of the encapsulated quercetin under simulated gastrointestinal tract conditions. Cellular uptake test exhibited that FP-Lec-Alg NPs cold enter epithelial cells in a time-dependent manner, showing the maximum uptake efficiency were 22% and 24%, respectively, after 2 h of incubation. About 220 nm NPs can be recovered by adding 10% (w/v) sucrose. FP-Lec-Alg NPs were found to be promising delivery materials to deliver quercetin and improve its bioavailability.
Collapse
|
18
|
Seidi F, Yazdi MK, Jouyandeh M, Habibzadeh S, Munir MT, Vahabi H, Bagheri B, Rabiee N, Zarrintaj P, Saeb MR. Crystalline polysaccharides: A review. Carbohydr Polym 2022; 275:118624. [PMID: 34742405 DOI: 10.1016/j.carbpol.2021.118624] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
The biodegradability and mechanical properties of polysaccharides are dependent on their architecture (linear or branched) as well as their crystallinity (size of crystals and crystallinity percent). The amount of crystalline zones in the polysaccharide significantly governs their ultimate properties and applications (from packaging to biomedicine). Although synthesis, characterization, and properties of polysaccharides have been the subject of several review papers, the effects of crystallization kinetics and crystalline domains on the properties and application have not been comprehensively addressed. This review places focus on different aspects of crystallization of polysaccharides as well as applications of crystalline polysaccharides. Crystallization of cellulose, chitin, chitosan, and starch, as the main members of this family, were discussed. Then, application of the aforementioned crystalline polysaccharides and nano-polysaccharides as well as their physical and chemical interactions were overviewed. This review attempts to provide a complete picture of crystallization-property relationship in polysaccharides.
Collapse
Affiliation(s)
- Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | | | - Henri Vahabi
- Université de Lorraine, CentraleSupélec, LMOPS, F-57000 Metz, France
| | - Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, United States
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
19
|
Effect of oxidized dextran on the stability of gallic acid-modified chitosan-sodium caseinate nanoparticles. Int J Biol Macromol 2021; 192:360-368. [PMID: 34634328 DOI: 10.1016/j.ijbiomac.2021.09.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
We incorporated oxidized dextran (Odex) into nanoparticles composed of gallic acid-modified chitosan (GA-CS) and sodium caseinate (NaCas). The mass ratio of GA-CS to NaCas and the pH of the reaction solution were optimized to obtain nanoparticles with excellent performance and stability. The interactions among various nanomaterials were confirmed by Fourier-transform infrared spectroscopy (FT-IR) and fluorescence spectrometer. The optimized complex nanoparticles had a diameter of approximately 131.2 nm with a polydispersity index (PDI) of 0.14, and a zeta potential of 26.2 mV. Our results showed that Odex enhanced the stability and function of GA-CS/NaCas nanoparticles (NP). At a curcumin loading of 10%, the encapsulation efficiency of Odex-crosslinked GA-CS/NaCas (NP (Odex)) was 96.2%, whereas that for uncrosslinked nanoparticles was 66.9%. Compared to the burst release profile of free curcumin in simulated GI fluids, the sustained release profile of encapsulated curcumin was observed. Radical-scavenging assays confirmed that the nanoparticles had excellent antioxidant activity themselves due to the grafting of phenolic acid on chitosan backbone. Overall, NP (Odex) with good GI stability and antioxidant activity hold promising for the oral delivery of hydrophobic bioactives.
Collapse
|
20
|
Li W, Yu Y, Peng J, Dai Z, Wu J, Wang Z, Chen H. Characterization of Cationic Modified Short Linear Glucan and Fabrication of Complex Nanoparticles with Low and High Methoxy Pectin. Foods 2021; 10:foods10102509. [PMID: 34681558 PMCID: PMC8535971 DOI: 10.3390/foods10102509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/17/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
In this study, we chemically modified the short linear glucan (SLG) using the 3-chloro-2-hydroxypropyl trimethylammonium chloride to introduce a positive surface charge via cationization (CSLG). We then prepared CSLG-based binary nanocomplex particles through electrostatic interactions with low and high methoxyl pectin. The two new types of binary nanocomplex were comprehensively characterized. It was found that the nanocomplex particles showed a spherical shape with the particle size of <700 nm, smooth surface, homogeneous distribution, and negative surface charge. Fourier transform infrared spectroscopy (FTIR) revealed that the driving forces to form nanocomplex were primarily electrostatic interactions and hydrogen bonding. In addition, increasing the CSLG concentration in the nanocomplex significantly enhanced both thermal stability and digestive stability. By comparing the two complex nanoparticles, the HMP-CSLG has a larger particle size and better stability under the GI condition due to the high content of the methoxy group. Additionally, the HMP-CSLG nanoparticle has a higher encapsulation efficiency and slower release rate under simulated gastrointestinal fluid for tangeretin compared with the LMP-CSLG. These results provide new insights into designing the CSLG-based nanocomplex as a potential oral delivery system for nutraceuticals or active ingredients.
Collapse
Affiliation(s)
- Wenhui Li
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.L.); (Y.Y.); (J.P.); (Z.D.); (Z.W.)
| | - Ying Yu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.L.); (Y.Y.); (J.P.); (Z.D.); (Z.W.)
| | - Jielong Peng
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.L.); (Y.Y.); (J.P.); (Z.D.); (Z.W.)
| | - Ziyang Dai
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.L.); (Y.Y.); (J.P.); (Z.D.); (Z.W.)
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.L.); (Y.Y.); (J.P.); (Z.D.); (Z.W.)
- Correspondence: ; Tel./Fax: +86-21-34205748
| | - Zhengwu Wang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (W.L.); (Y.Y.); (J.P.); (Z.D.); (Z.W.)
| | - Huiyun Chen
- Institute of Agricultural Product Processing Research, Ningbo Academy of Agricultural Science, NO. 19 Dehou Street, Yinzhou District, Ningbo 315040, China;
| |
Collapse
|
21
|
Li J, Zhai J, Gu L, Su Y, Gong L, Yang Y, Chang C. Hen egg yolk in food industry - A review of emerging functional modifications and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Dulong V, Morel M, Labat B, Picton L, Le Cerf D. Microgels Based on Carboxymethylpullulan Grafted with Ferulic Acid Obtained by Enzymatic Crosslinking in Emulsion for Drug Delivery Systems. Macromol Biosci 2021; 21:e2100165. [PMID: 34174176 DOI: 10.1002/mabi.202100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 11/12/2022]
Abstract
Carboxymethylpullulan (CMP) grafted with ferulic acid (FA) is crosslinked with laccase by the reverse water-in-oil emulsion technique (with sunflower oil) to obtain microgels with size from 40 to 200 µm. It is demonstrated that laccase activity and dispersion time have an impact on microgels' size. Fluorescence spectroscopy of different probes (e.g., pyrene, Nile red, and curcumin) shows the nonpolar characteristics of hydrophobic microdomains formed by the FA moieties and its dimers forming the crosslinking nodes. Encapsulation and release of curcumin or lidocaine used as drug models are studied in different buffers. Curcumin is well encapsulated but retained in microgels, while lidocaine is released at 65-70% in 2 h and 30 min in buffer simulating the gastrointestinal tract and at 75-85% in 1 h in acetate buffer pH 5.6 or phosphate-buffered saline (PBS) pH 6.9.
Collapse
Affiliation(s)
- Virginie Dulong
- UNIROUEN, INSA Rouen, Normandie Univ., CNRS, PBS, Rouen, 76000, France
| | - Morgane Morel
- UNIROUEN, INSA Rouen, Normandie Univ., CNRS, PBS, Rouen, 76000, France
| | - Béatrice Labat
- UNIROUEN, INSA Rouen, Normandie Univ., CNRS, PBS, Rouen, 76000, France
| | - Luc Picton
- UNIROUEN, INSA Rouen, Normandie Univ., CNRS, PBS, Rouen, 76000, France
| | - Didier Le Cerf
- UNIROUEN, INSA Rouen, Normandie Univ., CNRS, PBS, Rouen, 76000, France
| |
Collapse
|
23
|
Huang M, Mao Y, Li H, Yang H. Kappa-carrageenan enhances the gelation and structural changes of egg yolk via electrostatic interactions with yolk protein. Food Chem 2021; 360:129972. [PMID: 33971508 DOI: 10.1016/j.foodchem.2021.129972] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/05/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
The effect of κ-carrageenan (κ-C) on yolk over heat-induced gelation at natural yolk pH (6.2) and natural whole egg pH (7.5) was studied. The results showed the zeta potential values changed from -2.3 to -31.3 mV, from -8.6 to -28.6 mV for native pH yolk and pH 7.5 yolk because of the κ-C addition, respectively. These results indicated electrostatic interactions formed between protein and κ-C. The average area of holes formed by yolk gelation increased by κ-C addition. The addition of 1.0% κ-C decreased the gelling points from 62.1 to 54.4 °C, from 64.5 to 61. 6 °C for native pH and pH 7.5 yolk, respectively. A schematic model was established to show that κ-C enhances the yolk properties via electrostatic interactions. And the Fourier transform infrared (FTIR) spectroscopy verified the formation of κ-C-protein interactions. This study provides a guidance for designing novel food systems containing yolk and κ-C.
Collapse
Affiliation(s)
- Min Huang
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Yuzhu Mao
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongliang Li
- Guangzhou Welbon Biological Technology Co., Ltd, Guangzhou, Guangdong 523660, PR China
| | - Hongshun Yang
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
24
|
Liu H, Zhu X, Jiang Y, Sun‐Waterhouse D, Huang Q, Li F, Li D. Physicochemical and emulsifying properties of whey protein isolate (WPI)‐polydextrose conjugates prepared
via
Maillard reaction. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hui Liu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian271018China
| | - Xiaofei Zhu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian271018China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian271018China
| | - Dongxiao Sun‐Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian271018China
- School of Chemical Sciences The University of Auckland Auckland1010New Zealand
| | - Qingrong Huang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian271018China
- Department of Food Science Rutgers, The State University of New Jersey 65 Dudley Road New Brunswick NJ08901USA
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian271018China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes College of Food Science and Engineering Shandong Agricultural University Taian271018China
| |
Collapse
|
25
|
Feng S, Wang L, Shao P, Sun P, Yang CS. A review on chemical and physical modifications of phytosterols and their influence on bioavailability and safety. Crit Rev Food Sci Nutr 2021; 62:5638-5657. [PMID: 33612007 DOI: 10.1080/10408398.2021.1888692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Phytosterols have been shown to lower cholesterol levels and to have antioxidant, anti-inflammatory and other biological activities. However, the high melting point and poor solubility limit their bioavailability and practical application. It is advantageous to modify phytosterols chemically and physically. This article reviews and discusses the chemical and physical modifications of phytosterols, as well as their effects on the bioavailability and possible toxicity in vivo. The current research on chemical modifications is mainly focused on esterification to increase the oil solubility and water solubility. For physical modifications (mainly microencapsulation), there are biopolymer-based, surfactant-based and lipid-based nanocarriers. Both chemical and physical modifications of phytosterols can effectively increase the absorption and bioavailability. The safety of modified phytosterols is also an important issue. Phytosterol esters are generally considered to be safe. However, phytosterol oxides, which may be produced during the synthesis of phytosterol esters, have shown toxicity in animal models. The toxicity of nanocarriers also needs further studies.
Collapse
Affiliation(s)
- Simin Feng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China.,Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Liling Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ping Shao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, People's Republic of China.,Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Beijing, China
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
26
|
Gouda M, Chen K, Li X, Liu Y, He Y. Detection of microalgae single-cell antioxidant and electrochemical potentials by gold microelectrode and Raman micro-spectroscopy combined with chemometrics. SENSORS AND ACTUATORS B: CHEMICAL 2021; 329:129229. [DOI: 10.1016/j.snb.2020.129229] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
|
27
|
Formation of egg yolk-modified starch complex and its stabilization effect on high internal phase emulsions. Carbohydr Polym 2020; 247:116726. [DOI: 10.1016/j.carbpol.2020.116726] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
|
28
|
Dong X, Du S, Deng Q, Tang H, Yang C, Wei F, Chen H, Quek SY, Zhou A, Liu L. Study on the antioxidant activity and emulsifying properties of flaxseed gum-whey protein isolate conjugates prepared by Maillard reaction. Int J Biol Macromol 2020; 153:1157-1164. [DOI: 10.1016/j.ijbiomac.2019.10.245] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/25/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022]
|
29
|
Iqbal S, Xu Z, Huang H, Chen XD. Controlling the rheological properties of oil phases using controlled protein-polysaccharide aggregation and heteroaggregation in water-in-oil emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.05.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Feng J, Wu Y, Zhang L, Li Y, Liu S, Wang H, Li C. Enhanced Chemical Stability, Intestinal Absorption, and Intracellular Antioxidant Activity of Cyanidin-3- O-glucoside by Composite Nanogel Encapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10432-10447. [PMID: 31466447 DOI: 10.1021/acs.jafc.9b04778] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A composite nanogel was developed for cyanidin-3-O-glucoside (C3G) delivery by combining Maillard reaction and heat gelation. The starting materials utilized were ovalbumin, dextran, and pectin. C3G-loaded nanogel was spherical with a diameter of ∼185 nm, which was maintained over a wide range of pH and NaCl concentrations. The composite nanogel enhanced the chemical stability of C3G under accelerated degradation models and a simulated gastrointestinal tract. Clathrin-mediated, caveolae-mediated, and macropinocytosis-related endocytosis contributed to the higher cellular uptake of nano-C3G than that of free-C3G. The apparent permeability coefficients of C3G increased 2.16 times after nanoencapsulation. The transcytosis of the C3G-bearing nanogel occurred primarily through the clathrin-related pathway and macropinocytosis and followed the "common recycling endosomes-endoplasmic reticulum-Golgi complex-basolateral plasma membrane" route. Moreover, nano-C3G was more efficient in restoring the viability of cells and activities of endogenous antioxidant enzymes than free-C3G in oxidative models, which may be attributed to the former's high cellular absorption.
Collapse
Affiliation(s)
- Jin Feng
- Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Yinghui Wu
- Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Lixia Zhang
- Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Ying Li
- Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | | | | | - Chunyang Li
- Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| |
Collapse
|
31
|
Javanbakht S, Shaabani A. Carboxymethyl cellulose-based oral delivery systems. Int J Biol Macromol 2019; 133:21-29. [DOI: 10.1016/j.ijbiomac.2019.04.079] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/04/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
|
32
|
Ren JN, Hou YY, Fan G, Zhang LL, Li X, Yin K, Pan SY. Extraction of orange pectin based on the interaction between sodium caseinate and pectin. Food Chem 2019; 283:265-274. [PMID: 30722870 DOI: 10.1016/j.foodchem.2019.01.046] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 02/06/2023]
Abstract
The interaction between commercial orange pectin (COP) and sodium caseinate (SC) was studied using FTIR, fluorescence spectroscopy, CD, and LSCM. The effect of different conditions on the formation and separation of COP-SC complex was determined. The extraction of the orange pectin using SC precipitation (SCOP) was performed, and the physicochemical properties of SCOP were determined and compared with the orange pectin extracted by alcohol precipitation (APOP). The results showed that the electrostatic interaction was the main interaction between these two polymers, and it was strongly dependent on pH, COP/SC ratio, and salt concentration. The mixture of COP and SC formed an electrostatic complex in the pH range of 1.5-6.8 with the absence of NaCl. The recovery rate of SCOP and precipitation rate of SC were 89.43% and 98.33% when the ratio was 1:15. The physicochemical properties of SCOP were almost the same as APOP.
Collapse
Affiliation(s)
- Jing-Nan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan-Yuan Hou
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lu-Lu Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaijing Yin
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Si-Yi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
33
|
Feng J, Xu H, Zhang L, Wang H, Liu S, Liu Y, Hou W, Li C. Development of Nanocomplexes for Curcumin Vehiculization Using Ovalbumin and Sodium Alginate as Building Blocks: Improved Stability, Bioaccessibility, and Antioxidant Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:379-390. [PMID: 30566342 DOI: 10.1021/acs.jafc.8b02567] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Type I (Complex I) and type II nanocomplexes (Complex II) were created in this work for curcumin (Cur) delivery using ovalbumin (OVA, 1.0% w/w) and sodium alginate (ALG, 0.5% w/w) as building blocks. OVA was heated at 90 °C for 5 min at pH 7.0 and then coated with ALG at pH 4.2 to produce Complex I; OVA-ALG electrostatic complex was created at pH 4.0, which was treated at 90 °C for 5 min thereafter yielding Complex II. Complex I presented an irregular elliptical shape with a diameter of ∼250 nm, whereas Complex II adopted a defined spherical structure of a smaller size (∼200 nm). Complex II did not dissociate at the pH range of 5-7, which was different from Complex I. Cur was loaded into the nonpolar matrix of nanocomplexes through hydrogen bonding and hydrophobic interactions, and Complex II displayed a higher loading capacity than Complex I. Nanocomplexes were resistant to pepsinolysis during simulated gastrointestinal digestion, which enhanced the stability and controlled release of loaded Cur, thereby improving Cur bioaccessibility from ∼20% (free form) to ∼60%. Additionally, nanocomplexes contributed to the cellular antioxidant activity (CAA) of Cur by promoting its cellular uptake. The CAA of Cur was also better preserved in nanocomplexes especially in Complex II after digestion owing to the increased stability and bioaccessibility. Results from this work highlighted the effect of nanocomplex encapsulation on the performance of Cur and revealed the critical role of preparation method in the physicochemical attributes of nanocomplexes.
Collapse
Affiliation(s)
- Jin Feng
- Department of Functional Food and Bio-Active Compounds, Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Huiqing Xu
- Department of Functional Food and Bio-Active Compounds, Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Lixia Zhang
- Department of Functional Food and Bio-Active Compounds, Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| | - Hua Wang
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Songbai Liu
- Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment , Zhejiang University , 866 Yuhangtang Road , Hangzhou 310058 , China
| | - Yujiao Liu
- Academy of Agriculture and Forestry Science , Qinghai University , 251 Ningda Road , Xining 810016 , China
| | - Wanwei Hou
- Academy of Agriculture and Forestry Science , Qinghai University , 251 Ningda Road , Xining 810016 , China
| | - Chunyang Li
- Department of Functional Food and Bio-Active Compounds, Institute of Agro-Product Processing , Jiangsu Academy of Agricultural Sciences , 50 Zhongling Street , Nanjing 210014 , China
| |
Collapse
|
34
|
Neamtu I, Chiriac AP, Nita LE, Diaconu A, Rusu AG. Nanogels Containing Polysaccharides for Bioapplications. POLYMERIC NANOMATERIALS IN NANOTHERAPEUTICS 2019:387-420. [DOI: 10.1016/b978-0-12-813932-5.00011-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
35
|
Alginate hydrogel beads as a carrier of low density lipoprotein/pectin nanogels for potential oral delivery applications. Int J Biol Macromol 2018; 120:859-864. [DOI: 10.1016/j.ijbiomac.2018.08.135] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/11/2018] [Accepted: 08/25/2018] [Indexed: 11/15/2022]
|
36
|
Xiong W, Ren C, Li J, Li B. Characterization and interfacial rheological properties of nanoparticles prepared by heat treatment of ovalbumin-carboxymethylcellulose complexes. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
37
|
Hu Q, Luo Y. Recent advances of polysaccharide-based nanoparticles for oral insulin delivery. Int J Biol Macromol 2018; 120:775-782. [PMID: 30170057 DOI: 10.1016/j.ijbiomac.2018.08.152] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/25/2018] [Accepted: 08/26/2018] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is a highly prevalent metabolic and chronic disease affecting millions of people in the world. The most common route of insulin therapy is the subcutaneous injection due to its low bioavailability and enzymatic degradation. The search for effective and high patient compliance insulin delivery systems has been a major challenge over many decades. The polysaccharide-based nanoparticles as delivery vehicles for insulin oral administration have recently attracted substantial interests. The present review highlights the recent advances on the development of nanoparticles prepared from polysaccharides, including chitosan, alginate, dextran and glucan, for oral delivery of insulin, overcoming multiple barriers in gastrointestinal tract. The aims of this review are first to summarize the strategies that have been applied in the past 5 years to fabricate polysaccharide-based nanoparticles for insulin oral delivery, and then to provide in-depth understanding on the mechanisms by which such nanoparticles protect insulin against degradation in the digestive tract and provide sustained release to enhance mucus permeation and transepithelial transport of insulin administered via oral route.
Collapse
Affiliation(s)
- Qiaobin Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
38
|
Gouda M, Zu L, Ma S, Sheng L, Ma M. Influence of bio-active terpenes on the characteristics and functional properties of egg yolk. Food Hydrocoll 2018; 80:222-230. [DOI: 10.1016/j.foodhyd.2018.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 2018; 198:385-400. [PMID: 30093014 DOI: 10.1016/j.carbpol.2018.06.086] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Carrageenan is a class of naturally occurring sulphated polysaccharides, which is currently a promising candidate in tissue engineering and regenerative medicine as it resemblances native glycosaminoglycans. From pharmaceutical drug formulations to tissue engineered scaffolds, carrageenan has broad range of applications. Here we provide an overview of developing various forms of carrageenan based hydrogels. We focus on how these fabrication processes has an effect on physiochemical properties of the hydrogel. We outline the application of these hydrogels not only pertaining to sustained drug release but also their application in bone and cartilage tissue engineering as well as in wound healing and antimicrobial formulations. Administration of these hydrogels through various routes for drug delivery applications has been critically reviewed. Finally, we conclude by summarizing the current and future outlook that promotes the seaweed-derived polysaccharide as versatile, promising biomaterial for a variety of bioengineering applications.
Collapse
Affiliation(s)
- Ramanathan Yegappan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Vignesh Selvaprithiviraj
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sivashanmugam Amirthalingam
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
40
|
Zhou M, Hu Q, Wang T, Xue J, Luo Y. Characterization of high density lipoprotein from egg yolk and its ability to form nanocomplexes with chitosan as natural delivery vehicles. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.09.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Zhou M, Khen K, Wang T, Hu Q, Xue J, Luo Y. Chemical crosslinking improves the gastrointestinal stability and enhances nutrient delivery potentials of egg yolk LDL/polysaccharide nanogels. Food Chem 2018; 239:840-847. [DOI: 10.1016/j.foodchem.2017.07.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/13/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022]
|
42
|
Chang C, Wang T, Hu Q, Luo Y. Caseinate-zein-polysaccharide complex nanoparticles as potential oral delivery vehicles for curcumin: Effect of polysaccharide type and chemical cross-linking. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.05.039] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
43
|
Pectin coating improves physicochemical properties of caseinate/zein nanoparticles as oral delivery vehicles for curcumin. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.033] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Li S, Gao A, Dong S, Chen Y, Sun S, Lei Z, Zhang Z. Purification, antitumor and immunomodulatory activity of polysaccharides from soybean residue fermented with Morchella esculenta. Int J Biol Macromol 2017; 96:26-34. [PMID: 27939510 DOI: 10.1016/j.ijbiomac.2016.12.007] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 12/22/2022]
Abstract
Crude polysaccharides (MPS) from soybean residue fermented with Morchella esculenta were extracted and purified by DEAE Sephadex A-50 chromatography and Sephadex G-100 size-exclusion chromatography in sequence. Three main fractions MP-1, MP-3 and MP-4 were obtained during the purification steps. The recovery rates based on MPS used were 26.2%, 29.1% and 18.7% for MP-1, MP-3 and MP-4 respectively. The monosaccharide composition, ultraviolet spectrum, infrared spectrum and NMR of the three fractions were analyzed. Furthermore, the influence of polysaccharides fractions upon activation of macrophage cells (RAW 264.7), antitumor activities of the human hepatocellular cell line (HepG-2) and human cervical carcinoma cells (Hela) in vitro were evaluated. The results indicated that the proliferation of MP-3 on RAW 264.7 was 313.57% at 25μg/mL, which is high while MP-1 had a higher growth inhibition effect on HepG-2 cells of 68.01% at concentration of 50μg/mL. The fractions of MP-1, MP-3 and MP-4 induced apoptosis in HepG-2 cells and Hela cells by arresting cell cycle progression at the G0/G1 phase. These findings suggest that the purified polysaccharides fractions may be a potent candidate for human hepatocellular and cervical carcinoma treatment and prevention in functional foods and pharmacological fields.
Collapse
Affiliation(s)
- Shuhong Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ang Gao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shuang Dong
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ye Chen
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Shuang Sun
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|