1
|
Yuan H, Zhao Z, Wang C, Gao H, Nie Y. Functional nanocellulose hydrogel with amino acid integration for enhanced Li/Fe separation in LiFePO 4 batteries. Int J Biol Macromol 2025; 298:140018. [PMID: 39828165 DOI: 10.1016/j.ijbiomac.2025.140018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
With the rising prevalence of lithium-ion batteries, efficient recovery of metal ions, particularly those potentially released from LiFePO4 anodes, has become critical. Given that both Fe3+ and Li+ ions can form electrostatic adsorptive interactions, achieving effective separation of conventional adsorbent materials becomes challenging. This study presents an amino acid-functionalized nanocellulose hydrogel (ANH) synthesized by incorporating L-threonine, which significantly enhances the selective adsorption of Fe3+ in a mixed-ion environment by leveraging coordination differences between Li+ and Fe3+. The morphology, functional groups, and pore structure of ANH were extensively characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, and mercury intrusion porosimetry techniques. Through batch experiments, the adsorption thermodynamics and isotherms of ANH for Fe3+ were examined. Furthermore, the adsorption selectivity of ANH for Li+ and Fe3+ was evaluated in a mixed-ion system, revealing that the adsorption capacity for Fe3+ was four times higher than for Li+ at elevated concentrations. The adsorption mechanism of Li+/Fe3+ was elucidated through multi-scale simulations, and the influence of varying amino acid grafting degree on adsorption metrics, such as solvent-accessible area and hydrogen bonding numbers, was investigated. The combination of experimental and theoretical results demonstrates the potential of ANH to inform the development of high-performance, selective adsorbents.
Collapse
Affiliation(s)
- Hanmeng Yuan
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Zhao
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenguang Wang
- Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China; Longzihu New Energy Laboratory, Henan University, Kaifeng 475001, China
| | - Hongshuai Gao
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
| | - Yi Nie
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Mesoscience and Engineering, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
| |
Collapse
|
2
|
Yang W, Li W, Lei Y, He P, Wei G, Guo L. Functionalization of cellulose-based sponges: Design, modification, environmental applications, and sustainability analysis. Carbohydr Polym 2025; 348:122772. [PMID: 39562056 DOI: 10.1016/j.carbpol.2024.122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
The trend of economic globalization is accelerating, and as competition for resources intensifies within the international community, there is an urgent need to seek environmentally friendly renewable resources. Sponges, due to their excellent inherent properties, have significant potential for applications in various fields. While considerable attention has been given to the synthesis of inorganic and plastic/rubber-based sponges in recent years, research on cellulose-based sponges (CBSs) has been on the rise. This review provides an overview of recent advances related to CBSs, detailing their structure and properties, including structural design, functional modification, and applications. An extensive sustainability analysis comparing CBSs with inorganic and plastic/rubber sponges shows that CBSs offer superior sustainability. The review also explores the latest applications of CBSs in environmental science, such as catalysts, dye removal, oil-water separation, ion removal, and seawater evaporation. Overall, this review highlights the inherent advantages of CBSs and encourages the exploration of their broader application areas.
Collapse
Affiliation(s)
- Weiwei Yang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Wanying Li
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Yu Lei
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Krasian T, Daranarong D, Punyodom W, Manokruang K, Somsunan R, Jantrawut P, Chaiwarit T, Panraksa P, Jantanasakulwong K, Rachtanapun P, Worajittiphon P. Electrospun composite membranes of ethyl cellulose and MXene (Ti 3C 2T x): Biocompatible platforms for enhanced drug delivery and antibacterial wound healing. Int J Biol Macromol 2025; 287:138596. [PMID: 39662568 DOI: 10.1016/j.ijbiomac.2024.138596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Ethyl cellulose (EC), a degradable cellulose derivative, served as a primary component in membranes fabricated by electrospinning for in vitro drug delivery applications. An effective strategy to enhance drug release was incorporating high-surface-area nanomaterials into polymeric drug carriers, which facilitated drug attachment to both the polymer matrix and additive surfaces, promoting release. MXene (Ti3C2Tx) demonstrated promising potential in improving tensile mechanical properties, antibacterial activity, and curcumin (Cur) release performance of EC membrane. Compared to Cur-loaded EC/MXene membranes, the toughness of Cur-loaded EC-based carriers significantly increased by 53.58 %, reaching 3.821 kJ/m3. This composite membrane exhibited exceptional antibacterial efficacy, notably reducing Staphylococcus aureus colonies by 52.4 × 107 CFU/mL after 168 h, through the dilution spread plate method. Using MTT assay, the composite membrane demonstrated biocompatibility, as evidenced by >70 % viability of mouse fibroblast L929 cells with observable cell attachment after 168 h. Importantly, the EC/MXene membrane achieved a Cur release amount of 69.82 % compared to 7.11 % from Cur-loaded EC membranes within 168 h, representing a 62.71 % enhancement in Cur release. The EC/MXene composite membrane is a promising drug delivery candidate, particularly for Cur, by utilizing the sustainability of EC as the primary drug carrier component.
Collapse
Affiliation(s)
- Tharnthip Krasian
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kiattikhun Manokruang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Runglawan Somsunan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Worajittiphon P, Majan P, Wangkawong K, Somsunan R, Jantrawut P, Panraksa P, Chaiwarit T, Srithep Y, Sommano SR, Jantanasakulwong K, Rachtanapun P. Inside-out templating: A strategy to decorate helical carbon nanotubes and 2D MoS 2 on ethyl cellulose sponge for enhanced oil adsorption and oil/water separation. Int J Biol Macromol 2024; 273:133119. [PMID: 38880452 DOI: 10.1016/j.ijbiomac.2024.133119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Ethyl cellulose (EC)-based composite sponges were developed for oil spillage treatment. The EC sponge surface was decorated with helical carbon nanotubes (HCNTs) and molybdenum disulfide (MoS2) (1 phr) using the inside-out sugar templating method. The inside surface of a sugar cube was coated with HCNTs and MoS2. After filling the sugar cube pores with EC and the subsequent sugar leaching, the decorating materials presented on the sponge surface. The EC/HCNT/MoS2 sponge had a high level of oil removal based on its adsorption capacity (41.68 g/g), cycled adsorption (∼75-79 %), separation flux efficiency (∼85-95 %), and efficiency in oil/water emulsion separation (92-94 %). The sponge maintained adsorption capacity in acidic, basic, and salty conditions, adsorbed oil under water, and functioned as an oil/water separator in a continuous pump-assisted system. The compressive stress and Young's modulus of the EC sponge increased following its decoration using HCNTs and MoS2. The composite sponge was robust based on cycled compression and was thermally stable up to ∼120 οC. Based on the eco-friendliness of EC, the low loading of HCNTs and MoS2, and sponge versatility, the developed EC/HCNT/MoS2 sponge should be good candidate for use in sustainable oil adsorption and separation applications.
Collapse
Affiliation(s)
- Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Panudda Majan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanlayawat Wangkawong
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Runglawan Somsunan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yottha Srithep
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Sarana Rose Sommano
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
5
|
Yehia RM, Lamie C, Attia DA. Microsponges-mediated targeted topical delivery of rosemary oil for hair growth promotion: optimization and in-vivo studies. Pharm Dev Technol 2024; 29:604-617. [PMID: 38958230 DOI: 10.1080/10837450.2024.2372572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/09/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
Individuals experiencing hair loss, irrespective of gender, confront significant psychological challenges. This study explores the untapped potential of rosemary oil (ROS) to stimulate hair growth, addressing its limited permeability. The focus is on innovating ROS-loaded microsponges (MS) for enhanced topical application. Utilizing Box-Behnken design (33), the study optimizes ROS-MS compositions by varying solvent volume, polymer mix, and drug concentration. The optimized ROS-MS formulation exhibits noteworthy attributes: a 94% ± 0.04 production yield, 99.6% ± 0.5 encapsulation efficiency, and 96.4% ± 1.6 cumulative ROS release within 24 h. These microsponges exhibit uniformity with a particle size of 14.1 µm ± 4.5. The OPT-ROSMS-gel showcases favorable characteristics in appearance, spreadability, pH, drug content, and extrudability. Ex-vivo skin deposition tests highlight heightened permeability of OPT-ROSMS-gel compared to pure ROS-gel, resulting in three-fold increased follicular retention. In-vivo studies underscore the superior efficacy of OPT-ROSMS-gel, revealing enhanced hair development in length, thickness, and bulb diameter, surpassing ROS-gel and minoxidil by approximately 1.2 and 1.5 times, respectively, along with nearly two-fold increase in β-catenin levels. In conclusion, microsponges emerge as a promising ROS delivery method, effectively addressing hair loss. This research advances hair loss treatments and underscores the significance of this innovative paradigm in fostering hair growth.
Collapse
Affiliation(s)
- Rania M Yehia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Caroline Lamie
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Dalia A Attia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
6
|
Mei J, Ding Z, Sun X, Mo S, Zheng X, Li Z. A solvent-template ethyl cellulose-polydimethylsiloxane crosslinking sponge for rapid and efficient oil adsorption. Int J Biol Macromol 2023:125399. [PMID: 37331535 DOI: 10.1016/j.ijbiomac.2023.125399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Lipophilic adsorbents for oil-water separation are usually synthesized using the template method, in which hydrophobic materials are coated on a ready-made sponge. Herein, a novel solvent-template technique is used to directly synthesize a hydrophobic sponge, by crosslinking polydimethylsiloxane (PDMS) with ethyl cellulose (EC) which plays a vital role in the formation of 3D porous structure. The as-prepared sponge has advantages of strong hydrophobility, high elasticity, as well as excellent adsorption performance. In addition, the sponge can be readily decorated by nano-coatings. After the sponge was simply dipped in nanosilica, the water contact angle increases from 139.2° to 144.5°, and the maximum adsorption capacity for chiroform rises from 25.6 g/g to 35.4 g/g. The adsorption equilibrium can be reached within 3 min, and, the sponge can be regenerated by squeezing, without any change in hydrophobility or evident decline in capacity. The simulation tests of emulsion separation and oil-spill cleanup demonstrate that the sponge has great potential in oil-water separation.
Collapse
Affiliation(s)
- Jinfeng Mei
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Zilong Ding
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xiaoyun Sun
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Siqi Mo
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xudong Zheng
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, PR China; School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
7
|
Ouyang D, Lei X, Zheng H. Recent Advances in Biomass-Based Materials for Oil Spill Cleanup. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:620. [PMID: 36770581 PMCID: PMC9920432 DOI: 10.3390/nano13030620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Oil spill on sea surfaces, which mainly produced by the oil leakage accident happened on tankers, offshore platforms, drilling rigs and wells, has bring irreversible damage to marine environments and ecosystems. Among various spill oil handling methods, using sorbents to absorb and recover spill oils is a perspective method because they are cost-effective and enable a high recovery and without secondary pollution to the ecosystem. Currently, sorbents based on biomass materials have aroused extensively attention thanks to their features of inexpensive, abundant, biodegradable, and sustainable. Herein, we comprehensively review the state-of-the-art development of biomass-based sorbents for spill oil cleanup in the recent five years. After briefly introducing the background, the basic theory and material characteristics for the separation of oil from water and the adsorption of oils is also presented. Various modification methods for biomass materials are summarized in section three. Section four discusses the recent progress of biomass as oil sorbents for oil spill cleanup, in which the emphasis is placed on the oil sorption capacity and the separation efficiency. Finally, the challenge and future development directions is outlined.
Collapse
Affiliation(s)
- Dan Ouyang
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Xiaotian Lei
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Honglei Zheng
- Faculty of Information Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
8
|
Liang L, Tan W, Dong Y, Gu F, Meng X. Modified cotton fabric based on thiolene click reaction and its oil/water separation application. ENVIRONMENTAL TECHNOLOGY 2022; 43:4137-4146. [PMID: 34161192 DOI: 10.1080/09593330.2021.1944324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
A cotton fabric with special wettability was prepared in two simple steps. The surface of the fabric was grafted with silicon-oxygen group using 3-(methacryloyloxy) propyl trimethoxysilane (MSPMA) as the reagent, and then (3-mercaptopropyl)triethoxysilane (MPTES) was used to react with the grafted fabric under ultraviolet light according to the principle of thiolene reaction. Meanwhile, the modified cotton fabrics with various pore sizes were obtained via modifying the cotton fabric with different pore size under the same experimental conditions. The as-prepared fabric had a better hydrophobic and lipophilic effect, whose water contact angle could be up to 146.7° and the separation efficiency for different kinds of oil/water mixtures was better than 94%. In addition, the pore sizes of cotton fabrics had a great effect on the rate of oil/water separation, which increased with the increase of the pore size.
Collapse
Affiliation(s)
- Liping Liang
- College of Life Science, College of Textile and Garment, Shaoxing University, Shaoxing, People's Republic of China
| | - Weishou Tan
- College of Life Science, College of Textile and Garment, Shaoxing University, Shaoxing, People's Republic of China
| | - Yanyan Dong
- College of Life Science, College of Textile and Garment, Shaoxing University, Shaoxing, People's Republic of China
| | - Feng Gu
- College of Life Science, College of Textile and Garment, Shaoxing University, Shaoxing, People's Republic of China
| | - Xu Meng
- College of Life Science, College of Textile and Garment, Shaoxing University, Shaoxing, People's Republic of China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, People's Republic of China
- Zhejiang Sub-center of National Carbon Fiber Engineering Technology Research Center, Shaoxing, People's Republic of China
| |
Collapse
|
9
|
Aoudi B, Boluk Y, Gamal El-Din M. Recent advances and future perspective on nanocellulose-based materials in diverse water treatment applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156903. [PMID: 35753453 DOI: 10.1016/j.scitotenv.2022.156903] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/10/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Over the past few years, nanocellulose and its derivatives have drawn attention as promising bio-based materials for water treatment applications due to their high surface area, high strength, and renewable, biocompatible nature. The abundance of hydroxyl functional groups on the surfaces of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) enables a broad range of surface modifications which results in propitious nanocomposites with tunable characteristics. In this context, this review describes the continuously developing applications of nanocellulose-based materials in the areas of adsorption, catalysis, filtration, and flocculation, with a special emphasis on the removal of contaminants such as heavy metals, dyes, and pharmaceutical compounds from diverse water systems. Recent progresses in the diverse forms of application of nanocellulose adsorbents (suspension, hydrogel, aerogel, and membrane) are also highlighted. Finally, challenges and future perspectives on emerging nanocellulose-based materials and their possible industrial applications are presented and discussed.
Collapse
Affiliation(s)
- Bouthaina Aoudi
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Yaman Boluk
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
10
|
A Modified Porous Sponge with Selective Ability for Oil Removal from Oil-Water Mixtures. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/4790592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As oil and chemical spills pose a significant threat to the water environment, the need to develop efficient sorbent materials to remove oil and organic pollutants from water has arisen. This study aimed to develop a simple modification scheme to impart oil and water selective absorption capacity to a common three-dimensional porous material. Commercially available polyurethane sponges were used as the base material, and vinyl silica aerogel particles were loaded onto the sponges using polydimethylsiloxane as an adhesion agent. As a result, the water contact angle of the modified sponge increased from 118° to 149.2°, and the water absorption decreased from 106.5 g/g to 0.2 g/g; it could absorb oil in oil-water mixtures without absorbing water and maintain an excellent level of selective absorption ability after 20 cycles. This modification scheme is easy to operate and robust and is a scheme of practical application.
Collapse
|
11
|
Huang J, Li D, Huang L, Tan S, Liu T. Bio-Based Aerogel Based on Bamboo, Waste Paper, and Reduced Graphene Oxide for Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3064-3075. [PMID: 35196452 DOI: 10.1021/acs.langmuir.1c02821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, the discharge of industrial waste oil has increased and offshore oil leakage has occurred frequently, and thus water pollution has become a worldwide problem that attracts much attention. In this regard, a kind of oil-absorbing material with high oil-absorbing property and good mechanical property is urgently needed. Here, we reported a new type of aerogels with three-dimensional layered voids using natural bamboo powder, waste paper (WP), and graphene oxide (GO) as raw materials. The obtained aerogel had high adsorption capacity (87-121 g/g), compressibility, and high elasticity, which can separate oil from water and selectively absorb oil. This study provides not only a new treatment in agricultural waste treatment but also a facile, green, and low-cost approach to synthesize high-performance graphene-based oil absorbers, which might give us an effective solution for oil pollution of water resources worldwide.
Collapse
Affiliation(s)
- Jiwei Huang
- Guangdong Engineering Technology Research Centre of Graphene-Like Functional and High-Performance Products and Materials, Institute of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Dandan Li
- Guangdong Engineering Technology Research Centre of Graphene-Like Functional and High-Performance Products and Materials, Institute of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Langhuan Huang
- Guangdong Engineering Technology Research Centre of Graphene-Like Functional and High-Performance Products and Materials, Institute of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shaozao Tan
- Guangdong Engineering Technology Research Centre of Graphene-Like Functional and High-Performance Products and Materials, Institute of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Ting Liu
- Guangdong Engineering Technology Research Centre of Graphene-Like Functional and High-Performance Products and Materials, Institute of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Iskandar MA, Yahya EB, Abdul Khalil HPS, Rahman AA, Ismail MA. Recent Progress in Modification Strategies of Nanocellulose-Based Aerogels for Oil Absorption Application. Polymers (Basel) 2022; 14:polym14050849. [PMID: 35267674 PMCID: PMC8912783 DOI: 10.3390/polym14050849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 02/06/2023] Open
Abstract
Oil spills and oily wastewater have become a major environmental problem in recent years, directly impacting the environment and biodiversity. Several techniques have been developed to solve this problem, including biological degradation, chemicals, controlled burning, physical absorption and membrane separation. Recently, biopolymeric aerogels have been proposed as a green solution for this problem, and they possess superior selective oil absorption capacity compared with other approaches. Several modification strategies have been applied to nanocellulose-based aerogel to enhance its poor hydrophobicity, increase its oil absorption capacity, improve its selectivity of oils and make it a compressible and elastic magnetically responsive aerogel, which will ease its recovery after use. This review presents an introduction to nanocellulose-based aerogel and its fabrication approaches. Different applications of nanocellulose aerogel in environmental, medical and industrial fields are presented. Different strategies for the modification of nanocellulose-based aerogel are critically discussed in this review, presenting the most recent works in terms of enhancing the aerogel performance in oil absorption in addition to the potential of these materials in near future.
Collapse
Affiliation(s)
- M. A. Iskandar
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.A.I.); (A.A.R.)
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence:
| | - A. A. Rahman
- School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.A.I.); (A.A.R.)
| | - M. A. Ismail
- Teraju Saga Sdn. Bhd. MP813, Jalan Melaka Perdana 2, Taman Melaka Perdana, Alor Gajah, Melaka 78000, Malaysia;
| |
Collapse
|
13
|
Kim GH, Kang DH, Jung BN, Shim JK. Fabrication and Characterization of Hydrophobic Cellulose Nanofibrils/Silica Nanocomposites with Hexadecyltrimethoxysilane. Polymers (Basel) 2022; 14:833. [PMID: 35215748 PMCID: PMC8963035 DOI: 10.3390/polym14040833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Cellulose nanofibrils (CNFs) have attracted much attention because of their renewability and potential biocompatibility. However, CNFs are extremely hydrophilic due to the presence of a large number of hydroxyl groups, limiting their use as a water-resistant material. In this work, we controlled the adsorption behavior of silica nanoparticles on the surface of CNFs by adjusting the synthesis conditions. The silica nanoparticle size and packing efficiency on the CNF surface could be controlled by varying the ammonium hydroxide and water concentrations. In addition, hexadecyltrimethoxysilane (HDTMS) was successfully grafted onto CNF or CNF/silica nanocomposite surfaces, and the quantitative content of organic/inorganic substances in HDTMS was analyzed through XPS and TGA. The HDTMS-modified CNF/silica nanocomposites were more advantageous in terms of hydrophobicity than the HDTMS-modified CNF composites. This is because the silica nanoparticles were adsorbed on the surface of the CNFs, increasing the surface roughness and simultaneously increasing the amount of HDTMS. As a result, the HDTMS-modified CNFs showed a water contact angle (WCA) of ~80°, whereas HDTMS-modified CNF/silica nanocomposites obtained superhydrophobicity, with a WCA of up to ~159°. This study can provide a reference for the expansion of recyclable eco-friendly coating materials via the adsorption of silica nanoparticles and hydrophobic modification of CNF materials.
Collapse
Affiliation(s)
- Gi-Hong Kim
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (G.-H.K.); (D.-H.K.); (B.-N.J.)
| | - Dong-Ho Kang
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (G.-H.K.); (D.-H.K.); (B.-N.J.)
| | - Bich-Nam Jung
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (G.-H.K.); (D.-H.K.); (B.-N.J.)
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea
| | - Jin-Kie Shim
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Korea; (G.-H.K.); (D.-H.K.); (B.-N.J.)
| |
Collapse
|
14
|
Abdelmonem AM, Zámbó D, Rusch P, Schlosser A, Klepzig LF, Bigall NC. Versatile Route for Multifunctional Aerogels Including Flaxseed Mucilage and Nanocrystals. Macromol Rapid Commun 2022; 43:e2100794. [PMID: 35085414 DOI: 10.1002/marc.202100794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Indexed: 11/05/2022]
Abstract
Preparation of low density monolithic and free-standing organic-inorganic hybrid aerogels of various properties is demonstrated using green chemistry from a biosafe natural source (flaxseed mucilage) and freeze-casting and subsequent freeze drying. Bio-aerogels, luminescent aerogels and magneto-responsive aerogels were obtained by combination of the flaxseed mucilage with different types of nanoparticles. Moreover, the aerogels are investigated as possible drug release system using curcumin as a model. Various characterization techniques like thermogravimetric analysis, nitrogen physisorption, electron microscopy, UV/Vis absorption and emission spectroscopy, bulk density and mechanical measurements as well as in vitro release profile measurements are employed to investigate the obtained materials. The flaxseed-inspired organic-inorganic hybrid aerogels exhibit ultra-low densities of as low as 5.6 mg/cm3 for 0.5% (w/v) mucilage polymer, a specific surface area of 4 to 20 m2 /g, high oil absorption capacity (23 g/g) and prominent compressibility. The natural biopolymer technique leads to low cost and biocompatible functional lightweight materials with tunable properties (physicochemical and mechanical) and significant potential for applications as supporting or stimuli responsive materials, carriers, reactors, microwave, and electromagnetic radiation protective (absorbing) material as well as in drug delivery and oil absorption. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Abuelmagd M Abdelmonem
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany.,Food Technology Research Institute, Agricultural Research Center, 9 Cairo University St., Giza, 12619, Egypt
| | - Dániel Zámbó
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany.,Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. str. 29-33, Budapest, H-1121, Hungary
| | - Pascal Rusch
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany
| | - Anja Schlosser
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany
| | - Lars F Klepzig
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany
| | - Nadja C Bigall
- Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hannover, 30167, Germany.,Laboratory of Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, Hannover, 30167, Germany.,Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Leibniz Universität Hannover, Hannover, 30167, Germany
| |
Collapse
|
15
|
Nguyen PTT, Do NHN, Goh XY, Goh CJ, Ong RH, Le PK, Phan-Thien N, Duong HM. Recent Progresses in Eco-Friendly Fabrication and Applications of Sustainable Aerogels from Various Waste Materials. WASTE AND BIOMASS VALORIZATION 2021; 13:1825-1847. [PMID: 34745389 PMCID: PMC8560886 DOI: 10.1007/s12649-021-01627-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Tons of waste from residential, commercial and manufacturing activities are generated due to the growing population, urbanization and economic development, prompting the need for sustainable measures. Numerous ways of converting waste to aerogels, a novel class of ultra-light and ultra-porous materials, have been researched to tackle the issues of waste. This review provides an overview of the status of aerogels made from agricultural waste, municipal solid, and industrial waste focusing on the fabrication, properties, and applications of such aerogels. The review first introduced common methods to synthesize the aerogels from waste, including dispersion and drying techniques. Following that, numerous works related to aerogels from waste are summarized and compared, mainly focusing on the sustainability aspect of the processes involved and their contributions for environmental applications such as thermal insulation and oil absorption. Next, advantages, and disadvantages of the current approaches are analyzed. Finally, some prospective waste aerogels and its applications are proposed.
Collapse
Affiliation(s)
- Phuc T. T. Nguyen
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Nga H. N. Do
- Refinery and Petrochemical Technology Research Centre, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Xue Yang Goh
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Chong Jin Goh
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Ren Hong Ong
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Phung K. Le
- Refinery and Petrochemical Technology Research Centre, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Hai M. Duong
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
- University of Cuu Long (UCL), Vinh Long, Vinh Long Province Vietnam
- Department of Chemical Engineering, Stanford University, Stanford, USA
| |
Collapse
|
16
|
Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers (Basel) 2021; 13:polym13162739. [PMID: 34451277 PMCID: PMC8400096 DOI: 10.3390/polym13162739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022] Open
Abstract
Recent developments in the application of lignocellulosic materials for oil spill removal are discussed in this review article. The types of lignocellulosic substrate material and their different chemical and physical modification strategies and basic preparation techniques are presented. The morphological features and the related separation mechanisms of the materials are summarized. The material types were classified into 3D-materials such as hydrophobic and oleophobic sponges and aerogels, or 2D-materials such as membranes, fabrics, films, and meshes. It was found that, particularly for 3D-materials, there is a clear correlation between the material properties, mainly porosity and density, and their absorption performance. Furthermore, it was shown that nanocellulosic precursors are not exclusively suitable to achieve competitive porosity and therefore absorption performance, but also bulk cellulose materials. This finding could lead to developments in cost- and energy-efficient production processes of future lignocellulosic oil spillage removal materials.
Collapse
|
17
|
Liu L, Liu Y, Tan M, Che N, Li C. Double-network cross-linked aerogel with rigid and super-elastic conversion: simple formation, unique properties, and strong sorption of organic contaminants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42637-42648. [PMID: 33818721 DOI: 10.1007/s11356-021-13305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Novel adsorbents with high adsorption capacity, broad-spectrum adsorption performance, and good reusability are needed for the treatment of diverse and complex contaminants in water. In this work, we used in situ hydrothermal reaction to fabricate graphene oxide (GO) and poly(vinyl alcohol) (PVA) based aerogels (GPXA, X represented the volume of PVA) through the cross-linking network that meets the above requirement. After adding Ca2+, GP16A (with 16 mL PVA) had surprisingly rigid and super-elastic conversion that is dependent on water stimulus. The strong adsorption of methylene blue (MB) on GP16A illustrated that it had excellent dye removal ability. The adsorption capacity of GP16A to MB was 698.38 mg g-1 and it remained 85.62% after repeated adsorption-desorption cycles. The adsorption was controlled by multiple mechanisms including electrostatic interaction, π-π interaction, and hydrogen bond. In addition, hydrophobically modified GP16A (GP16A-MTMS) effectively absorbed common oils and organic solvents. Repeated absorption of GP16A-MTMS was re-activated by squeezing operation. This study provides an alternative technique for preparing aerogel materials with high recyclability, dimensional stability, and solvent resistance, and for dealing organic contaminants in water.
Collapse
Affiliation(s)
- Longfei Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An, 271018, China
| | - Yanli Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An, 271018, China
| | - Miaomiao Tan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An, 271018, China
| | - Naiju Che
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An, 271018, China
| | - Chengliang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'An, 271018, China.
| |
Collapse
|
18
|
Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, Rizwan M, Senthilnithy R, Mahanama KRR, Tripathy A, Azman MF. Cellulose supported magnetic nanohybrids: Synthesis, physicomagnetic properties and biomedical applications-A review. Carbohydr Polym 2021; 267:118136. [PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
Collapse
Affiliation(s)
| | - Khadija Munawar
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ching Yern Chee
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sumit Pramanik
- Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Chennai, Tamil Nadu, India.
| | - Ahmed Halilu
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hazlee Azil Illias
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Rajendram Senthilnithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, 10250 Nawala, Nugegoda, Sri Lanka
| | | | - Ashis Tripathy
- Center for MicroElectroMechanics Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Mohd Fahmi Azman
- Physics Division, Centre for foundation studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Faiz Norrrahim MN, Mohd Kasim NA, Knight VF, Mohamad Misenan MS, Janudin N, Ahmad Shah NA, Kasim N, Wan Yusoff WY, Mohd Noor SA, Jamal SH, Ong KK, Zin Wan Yunus WM. Nanocellulose: a bioadsorbent for chemical contaminant remediation. RSC Adv 2021; 11:7347-7368. [PMID: 35423275 PMCID: PMC8695092 DOI: 10.1039/d0ra08005e] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/05/2021] [Indexed: 11/29/2022] Open
Abstract
Chemical contaminants such as heavy metals, dyes, and organic oils seriously affect the environment and threaten human health. About 2 million tons of waste is released every day into the water system. Heavy metals are the largest contributor which cover about 31% of the total composition of water contaminants. Every day, approximately 14 000 people die due to environmental exposure to selected chemicals. Removal of these contaminants down to safe levels is expensive, high energy and unsustainable by current approaches such as oxidation, biodegradation, photocatalysis, precipitation, reverse osmosis and adsorption. A combination of biosorption and nanotechnology offers a new way to remediate these chemical contaminants. Nanostructured materials are proven to have higher adsorption capacities than the same material in its larger-scale form. Nanocellulose is very promising as a high-performance bioadsorbent due to its interesting characteristics of high adsorption capacity, high mechanical strength, hydrophilic surface chemistry, renewability and biodegradability. It has been proven to have higher adsorption capacity and better binding affinity than other similar materials at the macroscale. The high specific surface area and abundance of hydroxyl groups within lead to the possible functionalization of this material for decontamination purposes. Several research papers have shown the effectiveness of nanocellulose in the remediation of chemical contaminants. This review aims to provide an overview of the most recent developments regarding nanocellulose as an adsorbent for chemical contamination remediation. Recent advancements regarding the modification of nanocellulose to enhance its adsorption efficiency towards heavy metals, dyes and organic oils were highlighted. Moreover, the desorption capability and environmental issue related to every developed nanocellulose-based adsorbent were also tackled.
Collapse
Affiliation(s)
- Mohd Nor Faiz Norrrahim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Noor Azilah Mohd Kasim
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Victor Feizal Knight
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Muhammad Syukri Mohamad Misenan
- Department of Chemistry, College of Arts and Science, Yildiz Technical University, Davutpasa Campus 34220 Esenler Istanbul Turkey
| | - Nurjahirah Janudin
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Noor Aisyah Ahmad Shah
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Norherdawati Kasim
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Wan Yusmawati Wan Yusoff
- Department of Physics, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Siti Aminah Mohd Noor
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Siti Hasnawati Jamal
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Keat Khim Ong
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| | - Wan Md Zin Wan Yunus
- Research Centre for Chemical Defence, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
- Department of Chemistry and Biology, Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
- Research Centre for Tropicalisation, Universiti Pertahanan Nasional Malaysia Kem Perdana Sungai Besi 57000 Kuala Lumpur Malaysia
| |
Collapse
|
20
|
Sam EK, Liu J, Lv X. Surface Engineering Materials of Superhydrophobic Sponges for Oil/Water Separation: A Review. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05906] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ebenezer Kobina Sam
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jun Liu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaomeng Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
21
|
Cellulose supported promising magnetic sorbents for magnetic solid-phase extraction: A review. Carbohydr Polym 2021; 253:117245. [DOI: 10.1016/j.carbpol.2020.117245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
|
22
|
Solvent-free nanoalumina loaded nanocellulose aerogel for efficient oil and organic solvent adsorption. J Colloid Interface Sci 2021; 581:299-306. [DOI: 10.1016/j.jcis.2020.07.099] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022]
|
23
|
Yin Z, Sun X, Bao M, Li Y. Construction of a hydrophobic magnetic aerogel based on chitosan for oil/water separation applications. Int J Biol Macromol 2020; 165:1869-1880. [PMID: 33086115 DOI: 10.1016/j.ijbiomac.2020.10.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/23/2020] [Accepted: 10/10/2020] [Indexed: 02/01/2023]
Abstract
Hydrophobic/oleophilic absorbents have been largely studied and used in recovering spilled oil. However, they still suffer from several drawbacks and two of them are poor biocompatibility and hard to thoroughly rinse. In order to address these problems, here a hydrophobic magnetic chitosan-based aerogel is fabricated via electrostatic interactions between chitosan (CS), itaconic acid (IA) and Fe3O4 nanoparticles and dip-coating in ethanol solution of Candelilla wax (CW). Due to the interconnected porous structure of chitosan-based aerogel, the magnetism of Fe3O4 nanoparticles and the hydrophobicity of CW, the prepared aerogel exhibits high absorption capacities (from 17.7 to 43.8 g/g) towards various types of organic liquids, excellent magnetic controllability with saturation magnetization of 15.93 emu/g and good water repellency with water contact angle (WCA) of 147.9°. In addition, the aerogel can also continuously separate immiscible oil/water mixtures and water-in-oil emulsions as the form of filter. More significantly, the absorbed organic liquids can be completely recovered by simply placing the aerogel in water solution of IA at 75 °C, which can avoid cleaning agent consumption. As a consequence, this renewable, biodegradable and eco-friendly oil scavenger presents a bright prospect in practical applications.
Collapse
Affiliation(s)
- Zichao Yin
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaojun Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yang Li
- China Petrochemical Corporation (Sinopec Group), Beijing 100728, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
24
|
Zhu W, Huang W, Zhou W, Qiu Z, Wang Z, Li H, Wang Y, Li J, Xie Y. Sustainable and antibacterial sandwich-like Ag-Pulp/CNF composite paper for oil/water separation. Carbohydr Polym 2020; 245:116587. [DOI: 10.1016/j.carbpol.2020.116587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023]
|
25
|
|
26
|
Wang C, Okubayashi S. Preparation of cellulose triacetate aerogel via non‐solvent impacted thermally induced phase separation for oil absorption. J Appl Polym Sci 2020. [DOI: 10.1002/app.49565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Cheng Wang
- Advanced Fibro‐Science Kyoto Institute of Technology Kyoto Japan
| | - Satoko Okubayashi
- Advanced Fibro‐Science Kyoto Institute of Technology Kyoto Japan
- Research Institute for Sustainable Humanosphere Kyoto University Kyoto Japan
| |
Collapse
|
27
|
Yin Z, Li Y, Song T, Bao M, Li Y, Lu J, Li Y. An environmentally benign approach to prepare superhydrophobic magnetic melamine sponge for effective oil/water separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116308] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Gu H, Zhou X, Lyu S, Pan D, Dong M, Wu S, Ding T, Wei X, Seok I, Wei S, Guo Z. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J Colloid Interface Sci 2019; 560:849-856. [PMID: 31708258 DOI: 10.1016/j.jcis.2019.10.084] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Cellulose aerogels are a new category of high-efficiency adsorbents for treating oil spills and water pollution. However, the hydrophilic properties and recyclability of aerogels after adsorption hamper developments and applications. Combining both hydrophobic and magnetic properties are expected to improve their adsorption capacity and functionality. EXPERIMENTS In this study, the effect of oleic acid (OA) and nanomagnetite on the preparation of magnetic nanocellulose aerogels (called as NCA/OA/Fe3O4) by a mechanical mixing combined with freeze-drying method have been investigated. FINDINGS It has been found that the optimal condition for fabricating this NCA/OA/Fe3O4 aerogel is 0.4 wt% nanocellulose, 3 mg mL-1 OA and 0.5 wt% Fe3O4 in the aqueous solution. This aerogel has a very low density of 9.2 mg cm-3 and demonstrates a high adsorption capacity of 68.06 g g-1 for cyclohexane. In addition, this aerogel adsorbent demonstrates an excellent magnetic responsivity and can be easily recycled by a permanent magnet after adsorption. As a consequence, this hydrophobic magnetic NCA/OA/Fe3O4 aerogel is promising not only for easy oil and organic solvent adsorption but also potentially for other magnetic related applications.
Collapse
Affiliation(s)
- Hongbo Gu
- Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiaomin Zhou
- Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shangyun Lyu
- Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Duo Pan
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China; Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37966, USA
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, China; Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37966, USA
| | - Tao Ding
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xin Wei
- Department of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Ilwoo Seok
- Mechanical Engineering, Arkansas State University, Jonesboro, AR 72401, USA
| | - Suying Wei
- Department of Chemistry & Biochemistry, Lamar University, Beaumont, TX 77710, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37966, USA
| |
Collapse
|
29
|
Parmar KR, Dora DTK, Pant KK, Roy S. An ultra-light flexible aerogel-based on methane derived CNTs as a reinforcing agent in silica-CMC matrix for efficient oil adsorption. JOURNAL OF HAZARDOUS MATERIALS 2019; 375:206-215. [PMID: 31071618 DOI: 10.1016/j.jhazmat.2019.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Bamboo shaped multi-walled Carbon Nanotubes were synthesized by the thermo-catalytic decomposition of methane in a modified chemical vapour deposition reactor. The prepared carbon nanotubes were reinforced in the mero-hydrophobic carboxymethyl cellulose and silica matrix for the preparation of low density, highly flexible aerogel. The synthesized aerogel exhibited a large specific surface area and uniform pore structure as confirmed by the nitrogen adsorption-desorption analysis. The water contact angle of 148.8° for the aerogel demonstrated that the synthesized aerogels were superhydrophobic in nature. The performance of aerogels was tested for the adsorption of singer oil and motor oil. Investigations revealed that aerogel can adsorb more than 28 times its weight effectively. Moreover, the adsorbed oil can be recovered by mechanical squeezing owing to its flexible nature. In addition, the aerogel could maintain its oil adsorption capacity even after 5 regeneration cycles, demonstrating superior recyclability. The peculiar properties - outstanding flexibility and superhydrophobicity exhibited by the aerogels establish them as a proficient and recyclable oil adsorbents during the oil seepage.
Collapse
Affiliation(s)
- Kaushal R Parmar
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| | - D T K Dora
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| | - K K Pant
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India.
| | - S Roy
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
30
|
Nie X, Lv P, Stanley SL, Wang D, Wu S, Wei Q. Ultralight nanocomposite aerogels with interpenetrating network structure of bacterial cellulose for oil absorption. J Appl Polym Sci 2019. [DOI: 10.1002/app.48000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xiaolin Nie
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan University Wuxi Jiangsu 214122 China
| | - Pengfei Lv
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan University Wuxi Jiangsu 214122 China
| | - Sarah L. Stanley
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan University Wuxi Jiangsu 214122 China
| | - Di Wang
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan University Wuxi Jiangsu 214122 China
| | - Shuanglin Wu
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan University Wuxi Jiangsu 214122 China
| | - Qufu Wei
- Key Laboratory of Eco‐Textiles, Ministry of EducationJiangnan University Wuxi Jiangsu 214122 China
- Fujian Key Laboratory of Novel Functional Textile Fibers and MaterialsMinjiang University Fuzhou Fujian 350108 China
| |
Collapse
|
31
|
Shi G, Qian Y, Tan F, Cai W, Li Y, Cao Y. Controllable synthesis of pomelo peel-based aerogel and its application in adsorption of oil/organic pollutants. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181823. [PMID: 30891289 PMCID: PMC6408386 DOI: 10.1098/rsos.181823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Oil/water separation is a field of high significance as it might efficiently resolve the contamination of industrial oily wastewater and other oil/water pollution. In this paper, an environmentally-friendly hydrophobic aerogel with high porosity and low density was successfully synthesized with renewable pomelo peels (PPs) as precursors. Typically, a series of sponge aerogels (HPSA-0, HPSA-1 and HPSA-2) were facilely prepared via high-speed dispersion, freeze-drying and silanization with methyltrimethoxysilane. Indeed, the physical properties of aerogel such as density and pore diameter could be tailored by different additives (filter paper fibre and polyvinyl alcohol). Hence, their physico-chemical properties including internal morphology and chemical structure were characterized in detail by Fourier transform infrared, Brunauer-Emmett-Teller, X-ray diffraction, scanning electron microscope, Thermal gravimetric analyzer (TG) etc. Moreover, the adsorption capacity was further determined and the results revealed that the PP-based aerogels presented excellent adsorption performance for a wide range of oil products and/or organic solvents (crude oil 49.8 g g-1, soya bean oil 62.3 g g-1, chloroform 71.3 g g-1 etc.). The corresponding cyclic tests showed the absorption capacity decreased slightly from 94.66% to 93.82% after 10 consecutive cycles, indicating a high recyclability.
Collapse
Affiliation(s)
- Guangyu Shi
- School of Light Industry and Chemical Engineering, Dalian polytechnic university, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, People's Republic of China
| | - Yizhu Qian
- Dalian No. 24 high school.No. 217, Jiefang Road, Zhongshan District, Dalian 116001, People's Republic of China
| | - Fengzhi Tan
- School of Light Industry and Chemical Engineering, Dalian polytechnic university, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, People's Republic of China
| | - Weijie Cai
- School of Light Industry and Chemical Engineering, Dalian polytechnic university, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, People's Republic of China
| | - Yuan Li
- School of Light Industry and Chemical Engineering, Dalian polytechnic university, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, People's Republic of China
| | - Yafeng Cao
- School of Light Industry and Chemical Engineering, Dalian polytechnic university, No. 1, Qinggongyuan, Ganjingzi District, Dalian 116034, People's Republic of China
| |
Collapse
|
32
|
Karki HP, Kafle L, Ojha DP, Song JH, Kim HJ. Cellulose/polyacrylonitrile electrospun composite fiber for effective separation of the surfactant-free oil-in-water mixture under a versatile condition. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.08.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Nanomagnetic Organogel Based on Dodecyl Methacrylate for Absorption and Removal of Organic Solvents. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2213-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
34
|
Construction of hydrophobic alginate-based foams induced by zirconium ions for oil and organic solvent cleanup. J Colloid Interface Sci 2018; 533:182-189. [PMID: 30153595 DOI: 10.1016/j.jcis.2018.08.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023]
Abstract
Hydrophobic modification of sodium alginate (SA) foams via a simple freeze-drying and post cross-linking induced by zirconium (Zr) ions was developed. All results demonstrated that Zr ions not only constructed surface microstructure but also lowered surface energy of foams, leading to the hydrophobic character. Hydrophobic and oleophilic foams showed excellent adsorption capacities for different oils and organic solvents (11.2-25.9 g/g). Furthermore, SA solution can be also coated on porous substrates, such as melamine sponges (MS) and Nylon strainers (NS), to give hydrophobic modification by Zr ion crosslinking. These excellent performances made them a promising for oil adsorption and cleanup.
Collapse
|
35
|
Yu M, Lin B, Chen S, Deng Q, Liu G, Wang Q. Biomimetic fabrication of superhydrophobic loofah sponge: robust for highly efficient oil-water separation in harsh environments. RSC Adv 2018; 8:24297-24304. [PMID: 35539192 PMCID: PMC9082177 DOI: 10.1039/c8ra04336a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/05/2018] [Indexed: 01/02/2023] Open
Abstract
Oil/water separation has become an increasingly important field due to frequent industrial oily wastewater emission and crude oil spill accidents. Herein, we fabricate a robust superhydrophobic loofah sponge via a versatile, environmentally friendly, and low-cost dip coating strategy, which involves the modification of commercial loofah sponge with waterborne polyurea and fused SiO2 nanoparticles without the modification of any toxic low-surface-energy compound. The as-prepared loofah sponge showed excellent superhydrophobic/superoleophilic properties and exhibited robustness for effective oil-water separation in extremely harsh environments (such as 1 M HCl, 1 M NaOH, saturated NaCl solution and hot water higher than 95 °C) due to the remarkably high chemical stability. In addition, the as-prepared loofah sponge was capable of excellent anti-fouling, has self-cleaning ability and could act as the absorber for effective separation of surfactant-free oil-in-water emulsions. More importantly, the as-prepared loofah sponge demonstrated remarkable robustness against strong sandpaper abrasion and finger wipes, while retaining its superhydrophobicity and efficient oil/water separation efficiency even after more than 50 abrasion cycles. This facile and green synthesis approach presented here has the advantage of large-scale fabrication of a multifunctional biomass-based adsorbent material as a promising candidate in anti-fouling, self-cleaning, and versatile water-oil separation.
Collapse
Affiliation(s)
- Mingguang Yu
- School of Materials Science and Energy Engineering, Foshan University Foshan 528000 China
| | - Binbin Lin
- School of Materials Science and Energy Engineering, Foshan University Foshan 528000 China
| | - Shangxian Chen
- School of Materials Science and Energy Engineering, Foshan University Foshan 528000 China
| | - Qianjun Deng
- School of Materials Science and Energy Engineering, Foshan University Foshan 528000 China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture, Guangdong Key Laboratory of Agricultural Products Processing Guangzhou 510610 China
| | - Qing Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology Guangzhou 510640 China
| |
Collapse
|
36
|
Li Z, Shao L, Hu W, Zheng T, Lu L, Cao Y, Chen Y. Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr Polym 2018; 191:183-190. [DOI: 10.1016/j.carbpol.2018.03.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
|
37
|
Lu Y, Yuan W. Superhydrophobic three-dimensional porous ethyl cellulose absorbent with micro/nano-scale hierarchical structures for highly efficient removal of oily contaminants from water. Carbohydr Polym 2018; 191:86-94. [DOI: 10.1016/j.carbpol.2018.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/13/2022]
|
38
|
Phanthong P, Reubroycharoen P, Kongparakul S, Samart C, Wang Z, Hao X, Abudula A, Guan G. Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydr Polym 2018; 190:184-189. [DOI: 10.1016/j.carbpol.2018.02.066] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 10/18/2022]
|
39
|
Fu S, Zhou H, Wang H, Ding J, Liu S, Zhao Y, Niu H, Rutledge GC, Lin T. Magnet-responsive, superhydrophobic fabrics from waterborne, fluoride-free coatings. RSC Adv 2018; 8:717-723. [PMID: 35538939 PMCID: PMC9076852 DOI: 10.1039/c7ra10941e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/12/2017] [Indexed: 11/21/2022] Open
Abstract
Durable superhydrophobic fabrics with magnetic response ability have been prepared by waterborne, fluoride-free coatings.
Collapse
Affiliation(s)
- Sida Fu
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Hua Zhou
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Hongxia Wang
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Jie Ding
- Defence Science and Technology Group
- Australia
| | - Shuai Liu
- School of Material and Electric Engineering
- Soochow University
- China
| | - Yan Zhao
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Haitao Niu
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| | - Gregory C. Rutledge
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Tong Lin
- Institute for Frontier Materials
- Deakin University
- Geelong
- Australia
| |
Collapse
|
40
|
Jiao R, Bao L, Zhang W, Sun H, Zhu Z, Xiao C, Chen L, An L. Synthesis of aminopyridine-containing conjugated microporous polymers with excellent superhydrophobicity for oil/water separation. NEW J CHEM 2018. [DOI: 10.1039/c8nj02500b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aminopyridine-containing conjugated microporous polymer based membranes with excellent superhydrophobicity for continuous oil/water separation on a large scale.
Collapse
Affiliation(s)
- Rui Jiao
- College of Petrochemical Technology
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Lulu Bao
- College of Petrochemical Technology
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Wanli Zhang
- College of Petrochemical Technology
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Hanxue Sun
- College of Petrochemical Technology
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Zhaoqi Zhu
- College of Petrochemical Technology
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Chaohu Xiao
- College of Petrochemical Technology
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Lihua Chen
- Experimental Center
- Northwest Minzu University
- Lanzhou 730030
- P. R. China
| | - Li An
- College of Petrochemical Technology
- School of Material Science and Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| |
Collapse
|