1
|
Sangeetha BM, Chandrika KSVP, Prasad RD, Bhat BN, Dinesh KV. Copper doped chitosan-guar gum nanocomposite: A multifunctional carrier for Trichoderma with potent antifungal properties. Int J Biol Macromol 2025; 311:143919. [PMID: 40324506 DOI: 10.1016/j.ijbiomac.2025.143919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/21/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
In this study, a biopolymer-based nanocomposite was fabricated as a delivery material for the biocontrol agent Trichoderma harzianum Th4d. Cu-Cts-gg nanocomposite was synthesized using sol-gel method. Characterization studies like UV-vis spectroscopy, DLS, SEM and TEM were conducted to determine the nano size and shape of the nanocomposite. TEM analysis confirmed the formation of spherical shaped particles with an average size of 28.59 ± 4.23 nm. Entrapment of Th4d spores with the nanocomposite matrix exhibited entrapment efficiency of 99.75 to 100 %. Cu-Cts-gg-Th4d (1 % w/v) nanocomposite showed significant antifungal activity against soil borne pathogen Sclerotium rolfsii under both in vitro (100 % inhibition of mycelial growth) and in vivo (92.27 % disease reduction) conditions. Apart from this, Cu-Cts-gg-Th4d seed coating significantly enhanced the germination percentage, seedling vigour, fresh weight, and dry weight of groundnut plants. Root colonization and shelf-life studies of Cu-Cts-gg-Th4d proven its ability to deliver the Trichoderma to the target site, and to maintain the viability of Trichoderma up to 6 months under room temperature. It can be concluded that, Cu-Cts-gg-Th4d nanocomposite as a seed coating material is a promising alternative to the synthetic chemicals to provide seed protection against soil borne pathogens.
Collapse
Affiliation(s)
- B M Sangeetha
- ICAR-Indian Institute of Oilseeds Research, Hyderabad 500030, India; Professor Jayashankar Telangana Agricultural University, Hyderabad 500030, India
| | - K S V P Chandrika
- ICAR-Indian Institute of Oilseeds Research, Hyderabad 500030, India.
| | - R D Prasad
- ICAR-Indian Institute of Oilseeds Research, Hyderabad 500030, India.
| | - Bharati N Bhat
- Professor Jayashankar Telangana Agricultural University, Hyderabad 500030, India
| | - K V Dinesh
- ICAR-Indian Institute of Oilseeds Research, Hyderabad 500030, India
| |
Collapse
|
2
|
Fayer L, Vasconcellos R, de Oliveira ER, da Silva Almeida Ferreira C, de Souza NLGD, Manhabosco TM, de Oliveira LFC, Martins MA, Brandão HDM, Munk M. Cotton cellulose nanofiber/chitosan scaffolds for skin tissue engineering and wound healing applications. Biomed Mater 2024; 20:015024. [PMID: 39662035 DOI: 10.1088/1748-605x/ad9da4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024]
Abstract
Chitosan (CS) is a promising polymeric biomaterial for use in scaffolds forin vitroskin models and wound dressings, owing to its non-antigenic and antimicrobial properties. However, CS often exhibits insufficient physicochemical properties, mechanical strength, and bioactivity, limiting its efficacy in demanding applications. To address these challenges, cotton cellulose nanofibers (CNFs) represent a promising nanomaterial for enhancing CS-based scaffolds in tissue engineering. CNF offers superior stiffness, and mechanical properties that enhance cellular adhesion and proliferation, both crucial for effective tissue regeneration and healing. This study aimed to develop and characterize a scaffold combining cotton CNF and CS, focusing on its cytocompatibility with human fibroblasts and keratinocytes. The cotton CNF/CS scaffold was fabricated using the casting technique, and its physicochemical properties and cellular compatibility were assessedin vitro. The results demonstrated that incorporating cotton CNF significantly enhanced the stability of the CS matrix. The CS scaffold with 1000 μg ml-1of cotton CNF exhibited increased roughness and reduced rupture strain compared to the pure CS scaffold. The cotton CNF/CS scaffold effectively promoted the adhesion, viability, proliferation, migration, and collagen synthesis of skin cells. Notably, increased cell viability was observed in human fibroblasts cultured on scaffolds with higher concentrations of cotton CNF (100 and 1000 μg ml-1). Based on the findings, the cotton CNF/CS scaffold demonstrates enhanced physicochemical properties and bioactivity, making it a promising candidate for the development ofin vitrohuman skin models and wound healing dressings.
Collapse
Affiliation(s)
- Leonara Fayer
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Rebecca Vasconcellos
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Eduarda Rocha de Oliveira
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Caroline da Silva Almeida Ferreira
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | | | | | - Luiz Fernando Cappa de Oliveira
- Nucleus of Spectroscopy and Molecular Structure, Department of Chemistry, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| | - Maria Alice Martins
- National Laboratory of Nanotechnology for Agriculture, Embrapa Instrumentation, 13560-970 São Carlos, Brazil
| | - Humberto de Mello Brandão
- Laboratory of Applied Nanotechnology for Animal Production and Health, Brazilian Agricultural Research Corporation (EMBRAPA), 36038-330 Juiz de Fora, Brazil
| | - Michele Munk
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, 36036-900 Juiz de Fora, Brazil
| |
Collapse
|
3
|
Tsegay ZT, Hosseini E, Varzakas T, Smaoui S. The latest research progress on polysaccharides-based biosensors for food packaging: A review. Int J Biol Macromol 2024; 282:136959. [PMID: 39488309 DOI: 10.1016/j.ijbiomac.2024.136959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In recent years, polysaccharide-based biosensors have emerged as promising technologies for intelligent food packaging, offering innovative solutions to enhance food quality and safety. This review highlights advancements in designing, developing, and applying these biosensors, particularly those utilizing polysaccharides such as chitosan, cellulose and alginate. Engineered with nanomaterials like ZnO, silver, and carbon nano-tubes demonstrated high sensitivity in real-time monitoring of food spoilage indicators, including pH changes, volatile nitrogen compounds and microbial activity. We discuss the electrochemical properties of these biosensors, highlighting how the integration of electrochemical methods significantly improves their detection capabilities within packaging environments, leading to sensor sensitivity enhancement, greater accuracy, and spoilage detection, ultimately extending the shelf life of perishable food products. Additionally, the review addresses the practical challenges of industrial implementation and explores future research directions for optimizing sensor functionality and scalability. The findings underscore the potential of polysaccharide-based intelligent packaging as a sustainable and effective alternative to conventional methods, paving the way for broader commercial adoption.
Collapse
Affiliation(s)
- Zenebe Tadesse Tsegay
- Department of Food Science and Post-Harvest Technology, College of Dryland Agriculture and Natural Resources, Mekelle University, Mekelle, P.O. Box 231, Ethiopia
| | - Elahesadat Hosseini
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemical Engineering, Payame Noor University, Tehran, Iran
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Enzymatic Engineering (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia.
| |
Collapse
|
4
|
Fathi Z, Abdulkhani A, Hamzeh Y, Ashori A, Shakeri A, Lipponen J. Innovative upcycling cigarette filters into high-performance cellulose nanofiber-epoxy composites. Int J Biol Macromol 2024; 281:136561. [PMID: 39401619 DOI: 10.1016/j.ijbiomac.2024.136561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
This research introduces a novel upcycling method for transforming cigarette filters-an abundant and persistent environmental waste-into high-performance epoxy composites reinforced with cellulose nanofibers. The innovation lies in extracting cellulose acetate nanofibers from used cigarette butts via a multi-step purification and electrospinning process, followed by their conversion into regenerated cellulose nanofibers through alkaline hydrolysis. This dual-fiber approach allows us to fabricate four distinct epoxy composites, each reinforced by different nanofiber types: recycled cellulose acetate nanofibers, regenerated cellulose nanofibers from recycled cigarette filters, and their commercial counterparts. Notably, this is the first time regenerated nanofibers derived from waste cigarette filters have been utilized for epoxy composite reinforcement, demonstrating a sustainable, high-value use for a major pollutant. Comprehensive characterizations, including FTIR, XRD, SEM, and contact angle measurements, confirmed the successful regeneration of cellulose nanofibers, showing improved hydrophilicity, reduced crystallinity, and uniform nanofiber morphology with diameters between 200 and 300 nm. The innovation further extends to the mechanical performance of these composites: tensile tests revealed that those reinforced with regenerated cellulose nanofibers exhibited superior tensile strength (49.5-53.8 MPa), significantly outperforming both cellulose acetate nanofiber composites (40.1-42.6 MPa) and neat epoxy resin (31.4 MPa). This marked improvement is attributed to enhanced nanofiber dispersion and interfacial adhesion within the epoxy matrix, an essential advancement over traditional composites. In addition, thermal analysis showed that all composites maintained thermal stability in the 300-400 °C range, comparable to commercial alternatives. The regenerated nanofiber-reinforced composites also displayed enhanced optical transparency due to reduced light scattering, making them ideal candidates for applications requiring both mechanical strength and optical clarity. By pioneering the use of cigarette filter waste for fabricating advanced cellulose nanofiber composites, this study presents an eco-friendly approach to addressing environmental pollution while creating sustainable materials with superior mechanical, thermal, and optical properties.
Collapse
Affiliation(s)
- Ziba Fathi
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Ali Abdulkhani
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Yahya Hamzeh
- Department of Wood and Paper Sciences and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Alireza Shakeri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Juha Lipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
5
|
Zhang X, Sun H, Song S, Li Y, Zhang X, Zhang W. Preparation and characterization of polyvinyl alcohol/pullulan/ZnO-Nps composite film and its effect on the postharvest quality of Allium mongolicum Regel. Int J Biol Macromol 2024; 279:135380. [PMID: 39245089 DOI: 10.1016/j.ijbiomac.2024.135380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Allium mongolicum Regel is prone to rapid senescence and quality deterioration during postharvest storage. Herein, polyvinyl alcohol/pullulan/ZnO nanoparticles (PVA/PUL/ZnO-Nps) composite films were prepared via solution casting and studied to analyze the effects of ZnO-Nps on the PVA/PUL film matrix. Results revealed that the incorporation of suitable ZnO-Nps effectively reduced the light transmittance, improved water contact angle, water vapor permeability, and mechanical properties of the composite films, as well as enhanced their antimicrobial activity. The composite films were used for the postharvest preservation of A. mongolicum Regel. Results revealed that the PVA/PUL/ZnO-Nps film effectively reduced malondialdehyde accumulation content, superoxide radical generation rate, hydrogen peroxide content, improve the activity of related enzymes, and extend the storage time compared with that of polyethylene films. Therefore, the PVA/PUL/ZnO-Nps film can be used as a novel packaging material for the postharvest preservation of A. mongolicum Regel.
Collapse
Affiliation(s)
- Xinhua Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Haowen Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Shengzhao Song
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yingying Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xiuling Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Wentao Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
6
|
Li M, Liu Y, Wang Y, Liu T, Li Z, Jiang L. Development, characterization and application of chitosan/locust bean gum based multifunctional green food packaging containing Koelreuteria paniculata Laxm. bracts extract and Ti-carbon dots. Int J Biol Macromol 2024; 278:134610. [PMID: 39128737 DOI: 10.1016/j.ijbiomac.2024.134610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Multifunctional green food packaging films were developed by incorporating Koelreuteria paniculata Laxm. bract extract (KBE) and bio-waste-derived Ti-doped carbon dots (Ti-CDs) into a chitosan/locust bean gum (CG) matrix for the first time. Results from FTIR and XRD demonstrated the precise bonding of Ti-CDs to CG through a Schiff base reaction and hydrogen bonding, while KBE was effectively immobilized within the film matrix via hydrogen bonding. SEM and TGA analysis demonstrated enhanced thermal stability and density of the films. Addition of Ti-CDs synergistically improved the barrier properties and mechanical strength of the films through enhanced hydrogen bonding and Schiff base reactions. Specifically, the incorporation of 3 wt% Ti-CDs increased the oxygen barrier properties, tensile strength, water resistance, and vapor permeability of CG films by approximately 1.18, 0.75, and 1.51 times, respectively. Furthermore, the antimicrobial and antioxidant capabilities were significantly improved with the addition of KBE to films. The CG-3%CDs-KBE film coating effectively prolonged the shelf life of strawberries. Additionally, these films exhibited superior pH responsiveness and ammonia-sensitivity, enabling visual monitoring of shrimp freshness during storage. Importantly, CG-3%CDs-KBE films exhibited biodegradability in soil and displayed good biosafety. Overall, these findings underscore the promising potential of CG-3%CDs-KBE films as multifunctional green food packaging materials.
Collapse
Affiliation(s)
- Mei Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Yingzhu Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Yanyan Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tiantian Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ziao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Longwei Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Raza MA, Kim SA, Kim DI, Song MK, Han SS, Park SH. Synthesis of carboxymethyl chitosan-guar gum-poly(vinylpyrrolidone) ternary blended hydrogels with antibacterial/anticancer efficacy and drug delivery applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1706-1725. [PMID: 38754029 DOI: 10.1080/09205063.2024.2349409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Biopolymers have the utmost significance in biomedical applications and blending synthetic polymers has shown favorable characteristics versus individual counterparts. The utilization of the blends can be restricted through the use of toxic chemical agents such as initiators or crosslinkers. In this regard, a chemical agent-free ionizing irradiation is a beneficial alternative for preparing the hydrogels for biomedical applications. In this study, carboxymethyl chitosan (CM-CS), guar gum (GG), and poly(vinylpyrrolidone) (PVP) based ternary blends (TB) were crosslinked using various doses of ionizing irradiation to fabricate hydrogels. The prepared hydrogels were characterized for physicochemical properties, swelling analysis, biological assays, and drug delivery applications. Swelling analysis in distilled water revealed that the hydrogels exhibit excellent swelling characteristics. An in vitro cytocompatibility assay showed that the hydrogels have greater than 90% cell viability for the human epithelial cell line and a decreasing cell viability trend for the human alveolar adenocarcinoma cell line. In addition, the prepared hydrogels possessed excellent antibacterial characteristics against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli). Finally, the release studies of anti-inflammatory Quercus acutissima (QA) loaded hydrogels exhibited more than 80% release in phosphate-buffered saline (pH = 7.4). These findings suggest that TB hydrogels can be used as suitable carrier media for different release systems and biomedical applications.
Collapse
Affiliation(s)
- Muhammad Asim Raza
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | - Shin-Ae Kim
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Department of Nuclear Engineering, Hanyang University, Seoul, Republic of Korea
| | - Dong Im Kim
- Inhalation Toxicology Centre for Airborne Risk Factor, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Mi-Kyung Song
- Inhalation Toxicology Centre for Airborne Risk Factor, Korea Institute of Toxicology, Jeongeup, Republic of Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
- Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Akhter R, Masoodi FA, Wani TA. Chitosan, gelatin and pectin based bionanocomposite films with rosemary essential oil as an active ingredient for future foods. Int J Biol Macromol 2024; 272:132813. [PMID: 38825276 DOI: 10.1016/j.ijbiomac.2024.132813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bionanocomposite films of three biopolymers including chitosan, gelatin, and pectin incorporated with rosemary essential oil (REO) were developed and characterized in terms of their physical, structural, mechanical, morphological, antioxidant, and antimicrobial properties. Incorporation of REO showed an increased hydrophobic nature thus, improved water vapor transmission rate (WVTR), tensile strength (TS), elongation-at-break (EAB), and thermal stability significantly (P ≤ 0.05) as compared to the control films. The addition of REO leads to more opaque films with relatively increased microstructural heterogeneity, resulting in an increase in film opacity. Fourier transform infrared spectroscopy (FTIR) and particle size revealed that REO incorporation exhibits high physicochemical stability in chitosan, gelatin, and pectin bionanocomposite films. Incorporation of REO exhibited the highest inhibitory activity against the tested pathogenic strains (Bacillus subtilis and Escherichia coli). Furthermore, the addition of REO increased the inhibitory activity of films against ABTS and DPPH free radicals. Therefore, chitosan, gelatin, and pectin-based bionanocomposite films containing REO as food packaging could act as a potential barrier to extending food shelf life.
Collapse
Affiliation(s)
- Rehana Akhter
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| | - F A Masoodi
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Touseef Ahmed Wani
- Department of Food Science and Technology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
9
|
Jiang X, Liu H, Han J, Feng L, Wang J, Li L, Kitazawa H, Wang X, Guo Y, Wang Z. Influence of 3-chloropropyl) triethoxysilane and pH on the properties of modified guar gum film. Int J Biol Macromol 2024; 272:132934. [PMID: 38862320 DOI: 10.1016/j.ijbiomac.2024.132934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/22/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Guar gum (GG) as a polymer biopolymer is widely used in the field of bio-based packaging. However, its poor mechanical properties, barrier properties and high viscosity greatly hinder its use as an effective packaging material. Therefore, this study introduced CPTES to improve the mechanical (16.58-27.39 MPa) and tensile properties (26.80 %-30.67 %). The FTIR and XRD results indicated a strong interaction between the biofilm fractions modified by CPTES, CPTES bound to the hydroxyl groups on GG and formed a dense polysiloxane network through adsorption and grafting. OM and AFM reflect a denser and flatter film structure on the surface of the G30 film, which has the best film formation. Based on this, the pH of the solution was further adjusted to reach an alkaline environment, disrupting the intermolecular binding through electrostatic repulsion. The rheological behavior indicates that the viscosity and viscoelasticity of film solution gradually decrease with the increase in pH. OM and AFM results show that the G30/8 film has the best compact properties, while the nonporous compact film structure further improves the mechanical, barrierand and thermodynamic properties of the film. Accordingly, the findings of this study had a certain value for regulating the low viscoelasticity of GG emulsion and enhancing the stability of film formation.
Collapse
Affiliation(s)
- Xin Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Haipeng Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Jiali Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Lei Feng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Jia Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Ling Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China.
| | - Hiroaki Kitazawa
- Department of Food and Nutrition, Japan Women's University, Tokyo 112-8681, Japan
| | - Xiangyou Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Zongmin Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
10
|
Wu H, Wang X, Li S, Zhang Q, Chen M, Yuan X, Zhou M, Zhang Z, Chen A. Incorporation of cellulose nanocrystals to improve the physicochemical and bioactive properties of pectin-konjac glucomannan composite films containing clove essential oil. Int J Biol Macromol 2024; 260:129469. [PMID: 38242415 DOI: 10.1016/j.ijbiomac.2024.129469] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
This study aimed to investigate the effectiveness of cellulose nanocrystals (CNC) isolated from cotton in augmenting pectin (PEC)/konjac glucomannan (KGM) composite films containing clove essential oil (CEO) for food packaging application. The effects of CNC dosage on film properties were examined by analyzing the rheology of film-forming solutions and the mechanical, barrier, antimicrobial, and CEO-release properties of the films. Rheological and FTIR analysis revealed the enhanced interactions among the film components after CNC incorporation due to its high aspect ratio and abundant hydroxyl groups, which can also prevent CEO droplet aggregation, contributing to form a compact microstructure as confirmed by SEM and 3D surface topography observations. Consequently, the addition of CNC reinforced the polysaccharide matrix, increasing the tensile strength of the films and improving their barrier properties to water vapor. More importantly, antibacterial, controlled release and kinetic simulation experiments proved that the addition of CNC could further slow down the release rate of CEO, prolonging the antimicrobial properties of the films. PEC/KGM/CEO composite films with 15 wt% CNC was found to have relatively best comprehensive properties, which was also most effective in delaying deterioration of grape quality during the storage of 9 days at 25 °C.
Collapse
Affiliation(s)
- Hejun Wu
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China.
| | - Xiaoxue Wang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Shasha Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Qiangfeng Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Maoxu Chen
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Xiangyang Yuan
- College of Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Man Zhou
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| | - Anjun Chen
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Ya'an, Sichuan Province 625014, PR China
| |
Collapse
|
11
|
Cheng D, Guo Y, Du L, Khan I, Liu R, Chang M. Regulate structure and properties of κ-carrageenan/konjac glucomannan composite hydrogel by filling effects of Quillaja saponin-stabilized solid lipid nanostructure. Int J Biol Macromol 2023; 253:127090. [PMID: 37758107 DOI: 10.1016/j.ijbiomac.2023.127090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
κ-Carrageenan/konjac glucomannan (κ-CA/KGM) composite hydrogels often fail to meet industrial requirements due to their low gel strength and poor mechanical properties, while solid lipid nanoparticles are potential materials to address this challenge due to their good biocompatibility. In the study, we propose using Quillaja saponin-stabilized solid lipid nanoparticle (QSLN) as nanofillers to enhance properties of κ-carrageenan/konjac glucan (κ-CA/KGM) composite hydrogels, and with emphasis on the effect of QSLN filling concentration on the structure and properties of composite hydrogels and the possible mechanisms were investigated. The best performance of QSLN-filled composite hydrogels was achieved at the QSLN concentration of 2.4 %. QSLN was uniformly distributed in the hydrogel matrix and formed electrostatic interactions and hydrogen bonding interactions with the matrix at an appropriate filling level, which enhanced the textural and rheological properties of the hydrogel greatly. In addition, the results of low-field NMR experiments showed that the filling of QSLN reduced the water mobility by enhancing the entanglement of polymer chains in the hydrogel matrix, which improved the freeze-thaw stability and regulated the swelling and deswelling behavior of the composite hydrogel. However, with the increasing of QSLN filling concentration, the above improvements were weakened by the depletion of van der Waals interactions due to the large amount of QSLN aggregation and the weakening of electrostatic interaction. In turn, the hydrogel was found to modulate the crystalline behavior of QSLN by X-ray diffraction and differential scanning calorimeter monitoring. Overall, the optimal synergistic effect between structure and properties could be achieved when the QSLN filling concentration was 2.4 %. These results provide a basis for the development of products that require excellent gel properties and structure.
Collapse
Affiliation(s)
- Dekun Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiwen Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liyang Du
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruijie Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ming Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
12
|
Zhao Y, Li H, Chen J, Wang Y. A novel high water-soluble antibacterial films-based guar gum incorporated with Aloe vera gel and ε-polylysine. Food Chem 2023; 427:136686. [PMID: 37385057 DOI: 10.1016/j.foodchem.2023.136686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
The high water-soluble films are commonly used in food coating and food encapsulation. In this study, the effect of Aloe vera gel (AV) and ε-polylysine (ε-PL) on the comprehensive properties of films based on guar gum (GG) were investigated. When GG to AV was 8:2, the GG:AV:ε-PL composite films (water solubility = 68.50%) had an 82.42% higher water solubility than pure guar gum (PGG) films (water solubility = 37.55%). Compared with PGG films, the composite films more transparent, better thermal stability and elongation at break. X-ray diffraction and SEM analysis showed the composite films were amorphous structures and the AV and ε-PL did not change the structure of PGG. FITR analysis confirmed the formation of hydrogen bonds within the composite films. Antibacterial properties showed the composite films had a good antibacterial effect against Escherichia coli and Staphylococcus aureus. Therefore, the composite films can be a new option of high water-soluble antibacterial food packaging materials.
Collapse
Affiliation(s)
- Yakun Zhao
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Huan Li
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Jian Chen
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Yanbo Wang
- Food Safety Key Laboratory of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; School of Food and Health, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
13
|
Xu H, Zhang J, Zhou Q, Li W, Liao X, Gao J, Zheng M, Liu Y, Zhou Y, Jiang L, Sui X, Xiao Y. Synergistic effect and mechanism of cellulose nanocrystals and calcium ion on the film-forming properties of pea protein isolate. Carbohydr Polym 2023; 319:121181. [PMID: 37567717 DOI: 10.1016/j.carbpol.2023.121181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
The current serious environmental problems have greatly encouraged the design and development of food packaging materials with environmental protection, green, and safety. This study aims to explore the synergistic effect and corresponding mechanism of cellulose nanocrystals (CNC) and CaCl2 to enhance the film-forming properties of pea protein isolate (PPI). The combination of 0.5 % CNC and 4.5 mM CaCl2 resulted in a 76.6 % increase in tensile strength when compared with pure PPI-based film. Meanwhile, this combination effectively improved the barrier performance, surface hydrophobicity, water resistance, and biodegradability of PPI-based film. The greater crystallinity, viscoelasticity, lower water mobility, and improved protein spatial conformation were also observed in CNC/CaCl2 composite film. Compared with the control, the main degradation temperature of composite film was increased from 326.23 °C to 335.43 °C. The CNC chains bonded with amino acid residue of pea protein at specific sites via non-covalent forces (e.g., hydrogen bonds, Van der Waals forces). Meanwhile, Ca2+ promoted the ordered protein aggregation at suitable rate and degree, accompanied by the formation of more disulfide bonds. Furthermore, proper Ca2+ could strengthen the cross-linking and interaction between CNC and protein, thereby establishing a stable network structure. The prepared composite films are expected to be used for strawberry preservation.
Collapse
Affiliation(s)
- Huajian Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Jinglei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Weixiao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Xiangxin Liao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
14
|
Sudheer S, Bandyopadhyay S, Bhat R. Sustainable polysaccharide and protein hydrogel-based packaging materials for food products: A review. Int J Biol Macromol 2023; 248:125845. [PMID: 37473880 DOI: 10.1016/j.ijbiomac.2023.125845] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Sustainable food packaging is a necessary element to ensure the success of a food system, the accomplishment of which is weighed in terms of quality retention and ensured products safety. Irrespective of the raised environmental concerns regarding petroleum-based packaging materials, a sustainable analysis and a lab to land assessment should be a priority to eliminate similar fates of new material. Functionalized bio-based hydrogels are one of the smartest packaging inventions that are expected to revolutionize the food packaging industry. Although in this review, the focus relies on recent developments in the sustainable bio-based hydrogel packaging materials, natural biopolymers such as proteins and polysaccharides from which hydrogels could be obtained, the challenges encountered in hydrogel-based packaging materials and the future prospects of hydrogel-based food packaging materials are also discussed. Moreover, the need for 'Life Cycle Assessment' (LCA), stress on certifications and a sustainable waste management system is also suggested which can bring both food and packaging into the same recycling bins.
Collapse
Affiliation(s)
- Surya Sudheer
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| | - Smarak Bandyopadhyay
- Centre of Polymeric Systems, University Institute, Tomas Bata University in Zlin, Tř. T. Bati 5678, Zlin 76001, Czech Republic
| | - Rajeev Bhat
- ERA-Chair for Food (By-) Products Valorisation Technologies (VALORTECH), Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, Tartu 510014, Estonia.
| |
Collapse
|
15
|
Liu Y, Liu R, Shi J, Zhang R, Tang H, Xie C, Wang F, Han J, Jiang L. Chitosan/esterified chitin nanofibers nanocomposite films incorporated with rose essential oil: Structure, physicochemical characterization, antioxidant and antibacterial properties. Food Chem X 2023; 18:100714. [PMID: 37397189 PMCID: PMC10314151 DOI: 10.1016/j.fochx.2023.100714] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Active films were developed based on chitosan, esterified chitin nanofibers and rose essential oil (REO). The joint effects of chitin nanofibers and REO on structure and physicochemical properties of chitosan film were investigated. Scanning electron microscopy and Fourier transform infrared spectroscopy showed that the chitin nanofibers and REO had significant effects on the morphology and chemical structure of chitosan composite films. The negatively charged esterified chitin nanofibers formed a compact network structure through intermolecular hydrogen bonding and electrostatic interactions with the positively charged chitosan matrix. Chitin nanofibers and REO synergistically enhanced the water resistance, mechanical properties and UV resistance of chitosan-based films, but the addition of REO increased the oxygen permeability. Furthermore, the addition of REO enhanced the inhibition of ABTS and DPPH free radicals and microorganisms by chitosan-based film. Therefore, chitosan/chitin nanofiber-based active films containing REO as food packaging materials can potentially provide protection to extend food shelf life.
Collapse
Affiliation(s)
- Yingzhu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Academy of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| | - Jingbo Shi
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Rui Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongjie Tang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Academy of Green Food Science, Northeast Agricultural University, Harbin 150028, China
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
16
|
Sultana A, Kumar L, Gaikwad KK. Lignocellulose nanofibrils/guar gum-based ethylene scavenging composite film integrated with zeolitic imidazolate framework-8 for food packaging. Int J Biol Macromol 2023:125031. [PMID: 37244327 DOI: 10.1016/j.ijbiomac.2023.125031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/29/2023]
Abstract
Ethylene, a ripening hormone, is critical in limiting the shelf life of fresh produce, specifically climacteric fruits and vegetables. A simple and benign fabrication approach is used to transform sugarcane bagasse, an agro-industrial waste into lignocellulosic nanofibrils (LCNF). In this investigation, biodegradable film was fabricated using LCNF (extracted from sugarcane bagasse) and guar gum (GG) which was reinforced with zeolitic imidazolate framework (ZIF)-8/zeolite. The LCNF/GG film not only acts as a biodegradable matrix to hold the ZIF-8/zeolite composite, but also possesses ethylene scavenging, antioxidant, and UV-blocking properties. The characterization results suggested that pure LCNF showed antioxidant activity of around 69.55 %. The LCNF/GG/MOF-4 film has shown lowest UV-transmittance (5.06 %) and highest ethylene scavenging capacity (40.2 %) among all the samples. After 6 days of storage at 25 ± 2 °C, packaged control bananas samples underwent significant degradation. In contrast, a banana package consisting of LCNF/GG/MOF-4 film maintained their high quality in terms of colour. Fabricated novel biodegradable film has potential application prospects for being used in prolonging the shelf life of fresh produce.
Collapse
Affiliation(s)
- Afreen Sultana
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Lokesh Kumar
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kirtiraj K Gaikwad
- Department of Paper Technology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
17
|
Shih YF, Lin SH, Xu J, Su CJ, Huang CF, Hsu SH. Stretchable and biodegradable chitosan-polyurethane-cellulose nanofiber composites as anisotropic materials. Int J Biol Macromol 2023; 230:123116. [PMID: 36603720 DOI: 10.1016/j.ijbiomac.2022.123116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
Chitosan is a naturally derived biodegradable polymer with abundancy, sustainability, and ease of chemical modification. Polyurethanes are a family of elastic biocompatible polymers, and composites of polyurethanes have versatile properties and applications. Chitosan-polyurethane composites were recently developed but had insufficient strength and limited stretchability. In the current study, cellulose nanofibers (CNFs) were integrated in chitosan-polyurethane composites to prepare stretchable and anisotropic materials. A biodegradable polyurethane was first synthesized, end-capped with aldehyde to become dialdehyde polyurethane (DP) nanoparticles, and added with CNFs to prepare the DP-CNF composite crosslinker (DPF). The waterborne DPF crosslinker was then blended with chitosan solution to make polyurethane-CNF-chitosan (DPFC) composites. After blending, DPFC may form hydrogel in ~33 min at room temperature, which confirmed crosslinking. Composite films cast and dried from the blends showed good elongation (~420.2 %) at 60 °C. Anisotropic films were then generated by tension annealing with pre-strain. The annealed films with 200 % pre-strain exhibited large elastic anisotropy with ~4.9 anisotropic ratio. In situ SAXS/WAXS analyses unveiled that rearrangement and alignment of the microstructure during tension annealing accounted for the anisotropy. The anisotropic composite films had the ability to orient the growth of neural stem cells and showed the potential for biomimetic and tissue engineering applications.
Collapse
Affiliation(s)
- Yu-Feng Shih
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Shih-Ho Lin
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu, Taiwan, Republic of China
| | - Chih-Feng Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, Republic of China; Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, Republic of China.
| |
Collapse
|
18
|
Khanzada B, Mirza B, Ullah A. Chitosan based bio-nanocomposites packaging films with unique mechanical and barrier properties. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Xu J, He M, Wei C, Duan M, Yu S, Li D, Zhong W, Tong C, Pang J, Wu C. Konjac glucomannan films with Pickering emulsion stabilized by TEMPO-oxidized chitin nanocrystal for active food packaging. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
Wang F, Xie C, Ye R, Tang H, Jiang L, Liu Y. Development of active packaging with chitosan, guar gum and watermelon rind extract: Characterization, application and performance improvement mechanism. Int J Biol Macromol 2023; 227:711-725. [PMID: 36565825 DOI: 10.1016/j.ijbiomac.2022.12.210] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The objective of this study was to make a film matrix containing chitosan (CS) and guar gum (GG), and to improve the physicochemical properties of the film using watermelon rind extract (WRE) as a cross-linker and active substance for the preservation of fresh-cut bananas. The results of Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy showed that the WRE and CG matrix formed intermolecular hydrogen bond interactions, which made the structure of the resulting films more compact. With increasing amounts of WRE, the mechanical properties of the films were significantly increased, but the permeability of water vapor and oxygen was significantly decreased (p < 0.05). Notably, when the amount of extract reached 4 wt%, the DPPH radical scavenging activity of the composite film significantly increased to 83.24 %, and the antibacterial activity also reached its highest value. Fresh-cut bananas were stored at room temperature with polyethylene film, CG and CG-WRE. The CG with 4 wt% WRE effectively inhibited the changes in appearance, firmness, weight, color and total soluble solids content of fresh-cut bananas during storage. Therefore, CG-WRE as a novel active food packaging material, has good physicochemical properties and great potential to extend the shelf life of foods.
Collapse
Affiliation(s)
- Fenghui Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Cancan Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rong Ye
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hongjie Tang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Longwei Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Soybean Biology of Chinese Education Ministry, Northeast Agricultural University, Harbin 150030, China.
| | - Yingzhu Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
21
|
Zou Z, Ismail BB, Zhang X, Yang Z, Liu D, Guo M. Improving barrier and antibacterial properties of chitosan composite films by incorporating lignin nanoparticles and acylated soy protein isolate nanogel. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Zhang Z, Changqing F, Zhang W, Lei W, Wang D, Zhou X. Novel grasshopper protein/soy protein isolate/ pullulan ternary blend with hesperidin derivative for antimicrobial edible film. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
23
|
Jiang H, Zhang W, Chen L, Liu J, Cao J, Jiang W. Recent advances in guar gum-based films or coatings: Diverse property enhancement strategies and applications in foods. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Eco-friendly and biodegradable sodium alginate/quaternized chitosan hydrogel for controlled release of urea and its antimicrobial activity. Carbohydr Polym 2022; 291:119555. [DOI: 10.1016/j.carbpol.2022.119555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/12/2022] [Accepted: 04/27/2022] [Indexed: 01/30/2023]
|
25
|
Rahman S, Chowdhury D. Guar gum-sodium alginate nanocomposite film as a smart fluorescence-based humidity sensor: A smart packaging material. Int J Biol Macromol 2022; 216:571-582. [PMID: 35803412 DOI: 10.1016/j.ijbiomac.2022.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Perishable packed foods are easily damaged by the change in relative humidity. In this work, we demonstrate that guar gum- sodium alginate blending with glucose-glycerol carbon dots nanocomposite film can be used to detect relative humidity. The fabricated nanocomposite film was an excellent smart sensor based on the fluorescence 'on-off' mechanisms against humidity. The study demonstrates that at different relative humidity conditions, such as 11 %, 33 %, 75.30 %, 84 %, and 97 %, there is a change in the fluorescence of biocomposite films under UV light. The practical feasibility of the biocomposite developed film was tested in real conditions by placing a piece of bread with high humidity conditions wrapped with the developed nanocomposite film. It was observed that under such conditions, marked quenching of fluorescence was observed and hence detection of humidity was possible. Hence, the fabricated nanocomposite film can monitor the packed food freshness using just a UV light source. Such biopolymer nanocomposite is potential materials and may find application as smart packaging materials, especially as food packaging materials.
Collapse
Affiliation(s)
- Sazzadur Rahman
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Garchuk, Guwahati 781035, India.
| |
Collapse
|
26
|
Preparation of chitosan-cellulose-benzyl isothiocyanate nanocomposite film for food packaging applications. Carbohydr Polym 2022; 285:119234. [DOI: 10.1016/j.carbpol.2022.119234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/28/2022] [Accepted: 02/05/2022] [Indexed: 01/20/2023]
|
27
|
Development and characterization of chitosan/guar gum active packaging containing walnut green husk extract and its application on fresh-cut apple preservation. Int J Biol Macromol 2022; 209:1307-1318. [PMID: 35483509 DOI: 10.1016/j.ijbiomac.2022.04.145] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023]
Abstract
The aim of this work was to develop active packaging film by using chitosan/guar gum (CG) film matrix and walnut green husk extract (WE), for preservation of fresh-cut apple. WE was used as cross-linking agent to improve physicochemical properties, and as active substances to enhance antioxidant activity of CG films. Fourier transform infrared spectroscopy and scanning electron microscopy results showed WE formed intermolecular hydrogen bond interactions with the film matrix, and microstructures of the film were more compact. With the increase of WE content (0-4 wt%), the mechanical properties of composite films were significantly enhanced, while permeability of water vapor and oxygen was significantly decreased (p < 0.05). When the amount of extract reached 4 wt%, the DPPH radical scavenging activity of composite film was significantly increased to 94.59%. CG-WE and CG films were used as active packaging materials to preserve fresh-cut apple. When stored at 4 °C for 10 days, CG-WE films showed better performance in reducing firmness, weight loss, total soluble solids and inhibiting browning and microbial growth of fresh-cut apples. Therefore, as a new type of active food packaging material, CG-WE films have good physical properties, and great potential in ensuring food quality and extending shelf life.
Collapse
|
28
|
Zhang R, Li Q, Yang L, Dwibedi V, Ge Y, Zhang D, Li J, Sun T. The antibacterial activity and antibacterial mechanism of the tea polyphenol liposomes/lysozyme–chitosan gradual sustained release composite coating. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ran Zhang
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Qiuying Li
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Lili Yang
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Vagish Dwibedi
- University Institute of Biotechnology Chandigarh University Mohali Punjab 140413 India
| | - Yonghong Ge
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Defu Zhang
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Jianrong Li
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Tong Sun
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| |
Collapse
|
29
|
Ding Z, Tang Y, Zhu P. Reduced graphene oxide/cellulose nanocrystal composite films with high specific capacitance and tensile strength. Int J Biol Macromol 2022; 200:574-582. [PMID: 35077747 DOI: 10.1016/j.ijbiomac.2022.01.130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 11/29/2022]
Abstract
Due to the environmental degradation and energy depletion, the strategy for fabricating high-performance supercapacitor electrode materials based on graphene and nanocellulose has received great attention. Herein, an environmentally friendly reduced graphene oxide (RGO)/cellulose nanocrystal (CNC) composite conductive film was prepared using L-ascorbic acid (L-AA) as the reductant of graphene oxide (GO). Based on chemical structure analysis, L-AA was proved to be an effective reductant to remove oxygen containing groups of GO. Through microstructure observation, a unique stacking structure of CNC and RGO was observed, which could be largely attributed to the hydrogen bond interaction. Furthermore, the effect of CNC amount on the performance of RGO/CNC composite films was also systematically investigated. Particularly, the addition of CNC was found to exert a positive effect on the tensile strength, which might be mainly due to a mass of hydrogen bonds between the CNCs. Meanwhile, the RGO/CNC composite conductive film featured ideal electrical double-layer capacitive (EDLC) behavior, exhibiting a gravity specific capacitance of 222.5 F/g and tensile strength of 32.17 MPa at 20 wt% CNC content. Therefore, the RGO/CNC composite conductive films may hold great promise for environmentally friendly electrode materials of supercapacitors and flexible electrical devices.
Collapse
Affiliation(s)
- Zejun Ding
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanjun Tang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China; Pulp and Papermaking Center, Zhejiang Sci-Tech University, Hangzhou 310023, China.
| | - Peng Zhu
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
30
|
Zhang X, Zou W, Xia M, Zeng Q, Cai Z. Intelligent colorimetric film incorporated with anthocyanins-loaded ovalbumin-propylene glycol alginate nanocomplexes as a stable pH indicator of monitoring pork freshness. Food Chem 2022; 368:130825. [PMID: 34496332 DOI: 10.1016/j.foodchem.2021.130825] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/04/2022]
Abstract
Protein-polysaccharide nanocomplexes system could improve the low stability of ACNs, making ACNs become a potential and stable pH indicator. In this study, intelligent colorimetric film was designed to monitor pork freshness by incorporating ACNs-loaded ovalbumin-propylene glycol alginate nanocomplexes (ACNs-loaded OVA-PGA) into polyvinyl alcohol/ glycerol (PG) matrix. The intelligent film (PG/ACNs-loaded OVA-PGA film) presented well barrier performance (lower water vapor permeability and light transmittance at 200-600 nm). Fourier transform infrared spectroscopy further confirmed the hydrogen bonds among film-forming components. Moreover, Scanning electron microscope and X-ray diffraction showed that ACNs-loaded OVA-PGA was uniformly distributed in film matrix but decreased the crystallinity of polyvinyl alcohol. PG/ACNs-loaded OVA-PGA film had distinguishable colorimetric response to pH 2.0-11.0 buffers and volatile ammonia. In the test, PG/ACNs-loaded OVA-PGA film displayed visible color alterations from purplish-red to dark-blue as pork freshness decreased, suggesting it can be used in intelligent packaging for real-time monitoring freshness of meat products.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Wenjie Zou
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Minquan Xia
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Qi Zeng
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Zhaoxia Cai
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China.
| |
Collapse
|
31
|
Preparation of water-soluble dialdehyde cellulose enhanced chitosan coating and its application on the preservation of mandarin fruit. Int J Biol Macromol 2022; 203:184-194. [PMID: 35016973 DOI: 10.1016/j.ijbiomac.2022.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023]
Abstract
Biopolymers, e.g., polysaccharides and protein, have been employed as edible coatings for the preservation of fruits for many years and are the promising candidates for resolving the problems caused by the extensive using of synthesized polymers in recent years. Chitosan, a kind of polysaccharide with excellent antibacterial and coatings forming properties, has attracted a lot of research interests in being applied as an edible coating for the preservation of postharvest fruits. However, the applying of chitosan is restricted by its poor stability. In this study, we introduce the water-soluble dialdehyde cellulose (DAC) as the crosslinking agent for chitosan to enhance its stability. Fourier transform-infrared spectroscopy is applied to prove the happening of crosslinking and the detection of swelling ratio in water and mechanical properties of DAC-crosslinked chitosan (DAC/CS) confirms the enhanced stability. Furthermore, scanning electron microscope, thermogravimetric analysis, water contact angle, mechanical and gas barrier properties are performed to characterize DAC/CS films with different DAC contents. Finally, DAC/CS is employed as a coating agent to study the effect on the storage of mandarin fruit at room temperature. Chitosan, with enhanced stability by biopolymer, would be a promising candidate applied as a green edible coating in the preservation of fruits.
Collapse
|
32
|
Chen J, Long Z, Dou C, Wang X, Meng Y. Processing and characterization of thermoplastic corn starch-based film/paper composites containing microcrystalline cellulose. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6443-6451. [PMID: 33990962 DOI: 10.1002/jsfa.11315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/11/2021] [Accepted: 08/14/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Different thermoplastic starch (TPS) films were prepared with or without the addition of microcrystalline cellulose (MCC) obtained via the melt-extrusion method, and then the hot-press method was used to produce environmentally friendly TPS-based film/paper composites to replace petroleum-based materials. RESULTS The paper-plastic composites exhibited good interfacial adhesion from the scannign elctron microscopy images. It was seen that 5 wt.% MCC was added to reinforce the mechanical properties of TPS films, such that it also improved the barrier properties of MCC@TPS/paper composites and extended the path of water vapor through TPS films, which decreased the water vapor transmission rate of MCC@TPS/paper composites. TPS/paper composites and MCC@TPS/paper composites have better physical properties (i.e. smoothness, flexibility and folding resistance) than only paper. In particular, it was found that the water contact angle of MCC@TPS/paper composites and TPS/paper composites were higher than single-layer paper. Furthermore, MCC reinforced paper-plastic composites demonstrated good barrier properties which can meet the requirement of the need for lower water sensitive materials in the food packaging industry. CONCLUSION Thermoplastic corn starch-based film/paper composites have good application properties as a potential source of bioplastic materials. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Chen
- College of Environmental Engineering, Wuxi University, Wuxi, China
| | - Zhu Long
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, China
| | - Chang Dou
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Xia Wang
- College of Environmental Engineering, Wuxi University, Wuxi, China
| | - Yahui Meng
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
34
|
Enhanced antibacterial activity of lysozyme loaded quaternary ammonium chitosan nanoparticles functionalized with cellulose nanocrystals. Int J Biol Macromol 2021; 191:71-78. [PMID: 34534580 DOI: 10.1016/j.ijbiomac.2021.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022]
Abstract
In this study, cellulose nanocrystals (CNC) as functional cross-linker and Pickering emulsifier was used to stabilize Lysozyme (Lys) encapsulated in quaternary ammonium chitosan nanoparticles (QC NPs) via ionic gelation method. Physicochemical, structural, and antibacterial properties of the CNC stabilized Lys loaded QC NPs were also evaluated. Particle size, particle size distribution, Zeta potential (ZP), and spectroscopic analyses showed the successful encapsulation of Lys. Antibacterial activity of NPs against Staphylococcus aureus and Vibrio parahaemolyticus was investigated on the basis of inhibition zone (IZ), minimum inhibitory concentration (MIC), and minimum bacterial concentration (MBC). MIC and MBC of CNC stabilized Lys loaded HQC NPs against S. aureus were 0.094 and 0.188 while corresponding values for CNC stabilized Lys loaded LQC NPs V. parahaemolyticus were 0.156 and 0.312 mg/mL, respectively. Therefore, CNC stabilized Lys loaded QC NPs have potential implications in the food industry for food preservation and packaging.
Collapse
|
35
|
Rashki S, Shakour N, Yousefi Z, Rezaei M, Homayoonfal M, Khabazian E, Atyabi F, Aslanbeigi F, Safaei Lapavandani R, Mazaheri S, Hamblin MR, Mirzaei H. Cellulose-Based Nanofibril Composite Materials as a New Approach to Fight Bacterial Infections. Front Bioeng Biotechnol 2021; 9:732461. [PMID: 34858953 PMCID: PMC8631928 DOI: 10.3389/fbioe.2021.732461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistant microorganisms have become an enormous global challenge, and are predicted to cause hundreds of millions of deaths. Therefore, the search for novel/alternative antimicrobial agents is a grand global challenge. Cellulose is an abundant biopolymer with the advantages of low cost, biodegradability, and biocompatibility. With the recent growth of nanotechnology and nanomedicine, numerous researchers have investigated nanofibril cellulose to try to develop an anti-bacterial biomaterial. However, nanofibril cellulose has no inherent antibacterial activity, and therefore cannot be used on its own. To empower cellulose with anti-bacterial properties, new efficient nanomaterials have been designed based on cellulose-based nanofibrils as potential wound dressings, food packaging, and for other antibacterial applications. In this review we summarize reports concerning the therapeutic potential of cellulose-based nanofibrils against various bacterial infections.
Collapse
Affiliation(s)
- Somaye Rashki
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marzieh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Khabazian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
36
|
Pal K, Sarkar P, Anis A, Wiszumirska K, Jarzębski M. Polysaccharide-Based Nanocomposites for Food Packaging Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5549. [PMID: 34639945 PMCID: PMC8509663 DOI: 10.3390/ma14195549] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The article presents a review of the literature on the use of polysaccharide bionanocomposites in the context of their potential use as food packaging materials. Composites of this type consist of at least two phases, of which the outer phase is a polysaccharide, and the inner phase (dispersed phase) is an enhancing agent with a particle size of 1-100 nm in at least one dimension. The literature review was carried out using data from the Web of Science database using VosViewer, free software for scientometric analysis. Source analysis concluded that polysaccharides such as chitosan, cellulose, and starch are widely used in food packaging applications, as are reinforcing agents such as silver nanoparticles and cellulose nanostructures (e.g., cellulose nanocrystals and nanocellulose). The addition of reinforcing agents improves the thermal and mechanical stability of the polysaccharide films and nanocomposites. Here we highlighted the nanocomposites containing silver nanoparticles, which exhibited antimicrobial properties. Finally, it can be concluded that polysaccharide-based nanocomposites have sufficient properties to be tested as food packaging materials in a wide spectrum of applications.
Collapse
Affiliation(s)
- Kunal Pal
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, India
| | - Preetam Sarkar
- Department of Food Process Engineering, National Institute of Technology Rourkela, Rourkela 769008, India;
| | - Arfat Anis
- SABIC Polymer Research Center, Department of Chemical Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| | - Karolina Wiszumirska
- Department of Industrial Products and Packaging Quality, Institute of Quality Science, Poznań University of Economics and Business, Al. Niepodległości 10, 61-875 Poznań, Poland;
| | - Maciej Jarzębski
- Department of Physics and Biophysics, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland
| |
Collapse
|
37
|
Improvement of the physico-mechanical properties of antibacterial electrospun poly lactic acid nanofibers by incorporation of guar gum and thyme essential oil. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126659] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Zhu J, Gao W, Wang B, Kang X, Liu P, Cui B, Abd El-Aty AM. Preparation and evaluation of starch-based extrusion-blown nanocomposite films incorporated with nano-ZnO and nano-SiO 2. Int J Biol Macromol 2021; 183:1371-1378. [PMID: 34019919 DOI: 10.1016/j.ijbiomac.2021.05.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 05/16/2021] [Indexed: 12/18/2022]
Abstract
The effects of nano-ZnO and nano-SiO2 nanoparticles on the properties of starch-based films prepared by extrusion blowing were investigated in this study. New hydrogen bonds between hydroxypropyl starch (HS) and nanoparticles during the extrusion process were formed as shown by Fourier transform infrared spectroscopy (FTIR). The diffraction patterns of nanocomposite films reinforced with nano-ZnO were similar to those of nano-ZnO, except that the peak intensity decreased, whereas, the addition of SiO2 nanoparticles decreased the intensity of the main characteristic peaks, regardless of the HS and nano-ZnO reinforced films. The thermal stability, tensile strength, moisture barrier property, and surface hydrophobicity of nanocomposite films were improved with the incorporation of nano-ZnO and nano-SiO2, the finding that could be attributed to a strong interplay between nano-ZnO, nano-SiO2, and the starch matrix during the extrusion film blowing process. Similarly, the nano-ZnO/nano-SiO2 composite-reinforced films showed smooth, flat, and uniform appearances by scanning electron microscopy (SEM) and atomic force microscope (AFM) tests. In sum, Nano-ZnO and nano-SiO2 nanoparticles can be used as composite reinforcing agents for preparation of starch-based films through extrusion blowing.
Collapse
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Xuemin Kang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, China.
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
39
|
Li Q, Wu Y, Fang R, Lei C, Li Y, Li B, Pei Y, Luo X, ShilinLiu. Application of Nanocellulose as particle stabilizer in food Pickering emulsion: Scope, Merits and challenges. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Kusmono, Wildan MW, Lubis FI. Fabrication and Characterization of Chitosan/Cellulose Nanocrystal/Glycerol Bio-Composite Films. Polymers (Basel) 2021; 13:1096. [PMID: 33808206 PMCID: PMC8037625 DOI: 10.3390/polym13071096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Cellulose nanocrystal (CNC)-reinforced bio-composite films containing glycerol were produced using the solution casting technique. The influences of the addition of CNC (2, 4, and 8 wt%) and glycerol (10, 20, and 30 wt%) on the properties of the bio-composite films were studied in the present work. The resulting films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetry analysis (TGA), and according to their tensile, water absorption, and light transmission behavior. The introduction of 4 wt% CNC into the chitosan film did not affect the thermal stability, but the presence of 20 wt% glycerol reduced the thermal stability. The addition of 4 wt% CNC to the chitosan film increased its tensile strength, tensile modulus, and elongation at break by 206%, 138%, and 277%, respectively. However, adding more than 8 wt% CNC resulted in a drastic reduction in the strength and ductility of the chitosan film. The highest strength and stiffness of the chitosan bio-composite film were attained with 4 wt% CNC and 20 wt% glycerol. The water absorption and light transmission of the chitosan film were reduced dramatically by the presence of both CNC and glycerol.
Collapse
Affiliation(s)
- Kusmono
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jln. Grafika No. 2, Yogyakarta 55281, Indonesia
| | - Muhammad Waziz Wildan
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jln. Grafika No. 2, Yogyakarta 55281, Indonesia
| | - Fadhlan Ihsan Lubis
- Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jln. Grafika No. 2, Yogyakarta 55281, Indonesia
| |
Collapse
|
41
|
Antimicrobial and UV Blocking Properties of Composite Chitosan Films with Curcumin Grafted Cellulose Nanofiber. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106337] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Active natural-based films for food packaging applications: The combined effect of chitosan and nanocellulose. Int J Biol Macromol 2021; 177:241-251. [PMID: 33631258 DOI: 10.1016/j.ijbiomac.2021.02.105] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022]
Abstract
This work aimed to evaluate the potential of chitosan/cellulose nanocrystals (CNC) films to be used as active pads for meat packages to prolong its shelf-life and preserve its properties over time. Several CNC concentrations (5, 10, 25, and 50 wt%) were tested and the films were produced by solvent casting. The developed samples were characterized by ATR-FTIR, TGA, FESEM, and XRD. The transparency, antimicrobial, barrier and mechanical properties were also assessed. Finally, the films' ability to prolong food shelf-life was studied in real conditions using chicken meat. CNC incorporation improved the thermal stability and the oxygen barrier while the water vapor permeability was maintained. An enhancement of mechanical properties was also observed by the increase in tensile strength and Young's modulus in chitosan/CNC films. These films demonstrated bactericidal effect against Gram-positive and Gram-negative bacteria and fungicidal activity against Candida albicans. Lastly, chitosan-based films decreased the growth of Pseudomonas and Enterobacteriaceae bacteria in meat during the first days of storage compared to commercial membranes, while chitosan/CNC films reduced the total volatile basic nitrogen (TVB-N), indicating their efficiency in retarding meat's spoilage under refrigeration conditions. This work highlights the great potential of natural-based films to act as green alternatives for food preservation.
Collapse
|
43
|
Bilal M, Gul I, Basharat A, Qamar SA. Polysaccharides-based bio-nanostructures and their potential food applications. Int J Biol Macromol 2021; 176:540-557. [PMID: 33607134 DOI: 10.1016/j.ijbiomac.2021.02.107] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Polysaccharides are omnipresent biomolecules that hold great potential as promising biomaterials for a myriad of applications in various biotechnological and industrial sectors. The presence of diverse functional groups renders them tailorable functionalities for preparing a multitude of novel bio-nanostructures. Further, they are biocompatible and biodegradable, hence, considered as environmentally friendly biopolymers. Application of nanotechnology in food science has shown many advantages in improving food quality and enhancing its shelf life. Recently, considerable efforts have been made to develop polysaccharide-based nanostructures for possible food applications. Therefore, it is of immense importance to explore literature on polysaccharide-based nanostructures delineating their food application potentialities. Herein, we reviewed the developments in polysaccharide-based bio-nanostructures and highlighted their potential applications in food preservation and bioactive "smart" food packaging. We categorized these bio-nanostructures into polysaccharide-based nanoparticles, nanocapsules, nanocomposites, dendrimeric nanostructures, and metallo-polysaccharide hybrids. This review demonstrates that the polysaccharides are emerging biopolymers, gaining much attention as robust biomaterials with excellent tuneable properties.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Aneela Basharat
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmad Ahmad Qamar
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
44
|
Kang S, Xiao Y, Guo X, Huang A, Xu H. Development of gum arabic-based nanocomposite films reinforced with cellulose nanocrystals for strawberry preservation. Food Chem 2021; 350:129199. [PMID: 33610843 DOI: 10.1016/j.foodchem.2021.129199] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/05/2021] [Accepted: 01/21/2021] [Indexed: 02/03/2023]
Abstract
The present study aimed to develop a new bio-nanocomposite film based on gum arabic (GA) reinforced with cellulose nanocrystals (CNC). CNC was successfully fabricated and its microstructure was characterized. Subsequently, the effects of CNC on the rheological, physicochemical and functional properties of GA-based films were systematically evaluated. Results showed that the tensile strength (2.21 MPa) and elongation at break (62.79%) of film incorporated with 4% (w/w) CNC were effectively increased compared with the GA film (1.08 MPa and 42.50%). Additionally, 4% CNC reduced the water vapor and oxygen permeability by 10.61% and 25.30% respectively, while improved the ultraviolet light barrier and thermal stability of film. The well dispersion and filling effect of nanofiller contributed to form a compact and homogeneous film structure. Furthermore, the film containing 4% CNC decreased the weight loss of strawberries by 23.80% compared with the control group, thus delaying the deterioration of strawberry quality during storage.
Collapse
Affiliation(s)
- Shufang Kang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaqing Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinyu Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Aiyun Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
45
|
Riccio BVF, Klosowski AB, Prestes E, Sousa TB, Assunção Morais LC, Lemes BM, Beltrame FL, Campos PM, Ferrari PC. Chitosan/nanocellulose‐based bionanocomposite films for controlled betamethasone and silver sulfadiazine delivery. J Appl Polym Sci 2021. [DOI: 10.1002/app.50468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bruno Vincenzo Fiod Riccio
- Department of Pharmaceutical Sciences State University of São Paulo – UNESP Araraquara São Paulo Brazil
- Department of Pharmaceutical Sciences State University of Ponta Grossa – UEPG Ponta Grossa Paraná Brazil
| | - Ana Beatriz Klosowski
- Department of Pharmaceutical Sciences State University of Ponta Grossa – UEPG Ponta Grossa Paraná Brazil
| | - Eduardo Prestes
- Department of Materials Engineering State University of Ponta Grossa – UEPG Ponta Grossa Paraná Brazil
| | - Taynara Barbosa Sousa
- Department of Pharmaceutical Sciences State University of Ponta Grossa – UEPG Ponta Grossa Paraná Brazil
| | | | - Bruna Mikulis Lemes
- Department of Pharmaceutical Sciences State University of Ponta Grossa – UEPG Ponta Grossa Paraná Brazil
| | - Flávio Luís Beltrame
- Department of Pharmaceutical Sciences State University of Ponta Grossa – UEPG Ponta Grossa Paraná Brazil
| | - Patrícia Mazureki Campos
- Department of Pharmaceutical Sciences State University of Ponta Grossa – UEPG Ponta Grossa Paraná Brazil
| | | |
Collapse
|
46
|
do Nascimento EG, de Azevedo EP, Alves-Silva MF, Aragão CFS, Fernandes-Pedrosa MF, da Silva-Junior AA. Supramolecular aggregates of cyclodextrins with co-solvent modulate drug dispersion and release behavior of poorly soluble corticosteroid from chitosan membranes. Carbohydr Polym 2020; 248:116724. [PMID: 32919548 DOI: 10.1016/j.carbpol.2020.116724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/13/2020] [Accepted: 06/30/2020] [Indexed: 01/29/2023]
Abstract
In this study, the ability of different beta-cyclodextrins to facilitate homogeneous dispersion of triamcinolone acetonide (TA) into chitosan membranes is assessed. Drug loading was assessed through atomic force microscopy (AFM), scanning electron microscopy (MEV-FEG), and X-ray diffraction analyses. Drug interactions with the co-polymer were investigated with Fourier transform infrared spectroscopy, thermal analyses. Swelling assay, and in vitro drug release experiment were used to assess TA release behavior. Undispersed particles of drug were observed to remain in the simple chitosan membranes. Hydroxypropyl-β-cyclodextrin enabled the dispersion of TA into chitosan membranes and subsequent sustained drug release. In addition, the membrane performance as a drug delivery device is improved by adding specified amounts of the co-solvent triethanolamine. The experimental data presented in this study confirm the utility of our novel and alternative approach for obtaining a promising device for slow and controlled release of glucocorticoids, such as triamcinolone acetonide, for topical ulcerations.
Collapse
Affiliation(s)
- Ednaldo Gomes do Nascimento
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Eduardo Pereira de Azevedo
- Department of Pharmacy, Federal University of Potiguar, UnP, Av. Sen. Salgado Filho, 1610, Lagoa Nova, 59056-000, Natal, RN, Brazil
| | - Mariana Farias Alves-Silva
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Cícero Flávio S Aragão
- Laboratory of Quality Control of Pharmaceuticals, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Matheus F Fernandes-Pedrosa
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil
| | - Arnóbio Antônio da Silva-Junior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, UFRN, Gal. Gustavo Cordeiro de Farias, Petrópolis, 59072-570, Natal, RN, Brazil.
| |
Collapse
|
47
|
Zhang Q, Wang M, Mu G, Ren H, He C, Xie Q, Liu Q, Wang J, Cha R. Adsorptivity of cationic cellulose nanocrystals for phosphate and its application in hyperphosphatemia therapy. Carbohydr Polym 2020; 255:117335. [PMID: 33436178 DOI: 10.1016/j.carbpol.2020.117335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Nanocellulose has gained much attention because of its excellent properties. Cationic cellulose nanocrystals (cCNC) shows good adsorptivity toward negative ions and molecules. Phosphate binders are most used to treat hyperphosphatemia and it is significant to develop its alternatives with high specific and low cost in the clinic. Herein, we prepared cCNC and characterized it by FTIR, TEM, dynamic light scattering, and viscosity method. We simulated the binding process of cationic cellulose for phosphate and used it as phosphate binder for hyperphosphatemia therapy to study the phosphate binding effect and evaluate the oral toxicity. Cationic cellulose improved the conditions of mice models and efficiently decreased the level of phosphate in the serum. cCNC had a better binding effect than cationic microcrystalline cellulose both in vitro and in vivo. cCNC could be used as alternatives to phosphate binder for therapy of chronic renal failure and hyperphosphatemia.
Collapse
Affiliation(s)
- Qimeng Zhang
- Blood Purification Center, Beijing Zhongguancun Hospital, Beijing 100080, China.
| | - Mingzheng Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, China.
| | - Guangqin Mu
- Blood Purification Center, Beijing Zhongguancun Hospital, Beijing 100080, China.
| | - Haotian Ren
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Congshuang He
- Blood Purification Center, Beijing Zhongguancun Hospital, Beijing 100080, China.
| | - Qian Xie
- Division of Nephrology, Peking University Third Hospital, Beijing 100191, China.
| | - Quanxiao Liu
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Jigang Wang
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Ruitao Cha
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, No. 11 Zhongguancun Beiyitiao, Beijing 100190, China; NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, 2 Tiantan Xi Li, Beijing 100050, China.
| |
Collapse
|
48
|
Wang L, Lin L, Guo Y, Long J, Mu RJ, Pang J. Enhanced functional properties of nanocomposite film incorporated with EGCG-loaded dialdehyde glucomannan/gelatin matrix for food packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105863] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Jin K, Tang Y, Zhu X, Zhou Y. Polylactic acid based biocomposite films reinforced with silanized nanocrystalline cellulose. Int J Biol Macromol 2020; 162:1109-1117. [DOI: 10.1016/j.ijbiomac.2020.06.201] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/02/2020] [Accepted: 06/21/2020] [Indexed: 12/11/2022]
|
50
|
Design and validation of antibacterial and pH response of cationic guar gum film by combining hydroxyethyl cellulose and red cabbage pigment. Int J Biol Macromol 2020; 162:1311-1322. [DOI: 10.1016/j.ijbiomac.2020.06.198] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/01/2020] [Accepted: 06/21/2020] [Indexed: 01/28/2023]
|