1
|
Cabeza C, Ahmed AEG, Minauf M, Wieland K, Harasek M. Starch hydrolysates, their impurities and the role of membrane-based technologies as a promising sustainable purification method at industrial scale. Food Res Int 2025; 209:116300. [PMID: 40253201 DOI: 10.1016/j.foodres.2025.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/14/2025] [Accepted: 03/14/2025] [Indexed: 04/21/2025]
Abstract
Starch hydrolysates are syrups obtained through the hydrolysis of starch with a defined carbohydrate composition and concentration. Annual harvest conditions and the availability of raw materials, such as corn, wheat, rice, potato, and certain plant roots, influence their quality. High-quality starch hydrolysate products serve numerous applications, including ingredients in food, textiles, paper, cosmetics, bioplastics, pharmaceuticals and construction. However, impurities such as colour molecules, characteristic flavours, salts, and proteins encountered in the solution along the starch processing steps can compromise product quality. With increasing emphasis on organic and sustainable production, starch hydrolysates must meet higher health and environmental standards. This review provides a comprehensive overview of starch hydrolysates production and purification. It explores the chemical processes leading to the formation of impurities and their impact on the final product composition and specific characteristics. Downstream processing methods for recovery, purification, and concentration are also investigated, comparing traditional techniques with emerging membrane-based technologies. Membrane technologies offer a potential solution for purifying plant-based starch hydrolysates efficiently and sustainably by enhancing purification while reducing energy consumption and waste generation. They operate at lower temperatures, avoiding phase transitions, extra heating, chemicals, and solvent exchanges. Although membrane technologies are widely used in various food industries, minimal research exist on their applications in starch hydrolysate processing, with limited experimental validation available. Addressing this gap, this review compiles established applications and discusses challenges hindering industrial adoption-including membrane fouling, the selection of appropriate membranes, the operational lifespan, and replacement costs,- while also identifying areas requiring further experimental research and development.
Collapse
Affiliation(s)
- Camila Cabeza
- Institute of Chemical Environmental & Bioscience Engineering E166, Technische Universität Wien, 1060 Vienna, Austria; Competence Center CHASE GmbH, Ghegastraße 3 Top 3.2, 1030 Vienna, Austria.
| | - Amal El Gohary Ahmed
- Institute of Chemical Environmental & Bioscience Engineering E166, Technische Universität Wien, 1060 Vienna, Austria
| | - Mario Minauf
- AGRANA Research & Innovation Center GmbH, Josef-Reither-Strasse 21-23, 3430 Tulln, Austria
| | - Karin Wieland
- Competence Center CHASE GmbH, Ghegastraße 3 Top 3.2, 1030 Vienna, Austria
| | - Michael Harasek
- Institute of Chemical Environmental & Bioscience Engineering E166, Technische Universität Wien, 1060 Vienna, Austria
| |
Collapse
|
2
|
Subrahmanyam K, Gul K, Sehrawat R. Superheated steam processing as a novel strategy for rapid synthesis of millet-starch citrates: Preparation, characterization, and in vitro starch digestibility. Int J Biol Macromol 2025; 304:140946. [PMID: 39947544 DOI: 10.1016/j.ijbiomac.2025.140946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
This study investigates the potential of superheated steam (SS) as a rapid and sustainable method for synthesising millet starch citrates with improved physicochemical and functional properties. Millet starch was esterified with citric acid (CA) under varying SS conditions (160-180 °C, 15-45 min) to optimise the degree of substitution (DS) and evaluate its influence on starch functionality. A range of DS values (0.023 to 0.121) were achieved, with the highest DS observed at 170 °C for 45 min. Structural analysis using Fourier-transform infrared spectroscopy confirmed successful esterification, with the appearance of a new peak at 1735 cm-1 indicating ester bond formation. X-ray diffraction showed a reduction in crystallinity with increasing DS, while polarised light microscopy and confocal scanning laser microscopy revealed alterations in molecular organisation. Scanning electron microscopy demonstrated minimal disruption to granule morphology. Contact angle measurements indicated increased hydrophobicity, with water contact angles rising from 29.63° in native starch to 71.63° in high DS samples. Additionally, a significant (p < 0.05) reduction in amylose content and paste viscosities was observed, correlating with improved resistance to gelatinisation and retrogradation. In vitro digestibility analysis showed a substantial increase in resistant starch content, from 18.69 % in native starch to 40.11 % in high DS samples. These findings highlight SS as an efficient and eco-friendly technology for producing starch citrates with tailored functionalities, particularly suited for low-glycaemic response and health-promoting food applications.
Collapse
Affiliation(s)
- Kadavakollu Subrahmanyam
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha 769008, India
| |
Collapse
|
3
|
Karmakar M, Kheto A, Sehrawat R, Kumar Y, Gul K, Routray W, Kumar L. Exposure of Proso millet starch to superheated steam: Effect on physicochemical, techno-functional, rheological behavior, digestibility, and related mechanism. Food Chem 2025; 468:142383. [PMID: 39667240 DOI: 10.1016/j.foodchem.2024.142383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
In the present study, proso millet starch (PMS) was treated with SHS (120-160 °C for 1-5 min) to investigate the molecular interactions and techno-functional, rheological, and digestible properties. Exposure to SHS induced the degradation of helical structure, and longer chains, reducing amylose, blue value, optical density, and relative crystallinity. Meanwhile, SHS treatment might have introduced hydro‑carbonyl groups, eventually increasing water absorption capacity, swelling power, and transparency. As per SEM images, SHS-treated PMS had rough and irregular polygon surfaces with small pinholes. Compared to control, SHS treatment slightly improved the elastic nature of PMS samples. Furthermore, SHS treatment at 140 and 160 °C for 3 and 5 min increased the slowly digestible and resistant starch content. Multivariate analysis suggests that SHS treatment could be performed at 140 °C for 3 min to modify the PMS.
Collapse
Affiliation(s)
- Moumita Karmakar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Ankan Kheto
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Rachna Sehrawat
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| | - Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, 148106, India
| | - Khalid Gul
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Winny Routray
- Department of Food Process Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Lokesh Kumar
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
4
|
Wang Z, Xiao Z, Ye J, Li J, Zhang X, Li T, Wang L. Effect of Superheated Steam Treatment on Rice Quality, Structure, and Physicochemical Properties of Starch. Foods 2025; 14:626. [PMID: 40002069 PMCID: PMC11854516 DOI: 10.3390/foods14040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
This study aimed to investigate the effect of superheated steam treatment on the cooking and eating quality of rice, and further explore the effect of superheated steam treatment on the structure, gel properties, and rheological behavior of rice starch. After superheated steam treatment, the optimal cooking time of rice was effectively reduced by 26.9%, and the taste value of rice was significantly improved, from 78.45 to 84.20, when treated at 155 °C for 10 s. Superheated steam treatment significantly reduced the amylose and protein content, and increased the average particle size of rice starch. Compared with the control, the enthalpy change (ΔH) in the superheated steam treatment rice starch decreased notably from 6.53 to 5.28 after treatment, the relative crystallinity of the starch was significantly reduced from 21.20 to 10.89, and the short-term order of the starch was enhanced owing to the rearrangement of starch molecules after gelatinization. The starch structure was more compact and orderly after the superheated steam treatment, which significantly improved the hardness, viscoelasticity, and strength of the gel. These results indicate that superheated steam treatment improves the quality of rice by changing the structure of rice starch.
Collapse
Affiliation(s)
- Ziyu Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ziwei Xiao
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Jing Ye
- Academy of Jiangsu Grain Science and Technology Innovation, Nanjing 210003, China
| | - Juan Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xinxia Zhang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Ting Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
5
|
Qiang J, Ding R, Kang C, Xiao T, Yan Y. Impact of waxy protein deletions on the crystalline structure and physicochemical properties of wheat V-type resistant starch (RS 5). Carbohydr Polym 2025; 347:122695. [PMID: 39486936 DOI: 10.1016/j.carbpol.2024.122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
This study investigated the effects of waxy (Wx) protein on wheat V-type resistant starch (RS5) formation, molecular structure, and physicochemical properties. We discovered that waxy protein deletions led to a rise in B- and C-type starch granules, while reducing A-type starch granules, amylose, and slowly digestible starch contents. Further, dodecyl gallate (DG) addition significantly increased RS5 content, and molecular dynamics simulations indicated that amylose and DG can form stable complexes. Molecular docking indicated that DG could potentially aid in protecting wheat starch from digestion by human α-glucosidase. RS5 content was significantly reduced by waxy protein deletions. X-ray powder diffraction, Fourier-transform infrared spectroscopy, and laser confocal microscopy-Raman analyses revealed that waxy protein deletions decreased long-range crystalline structures and relative crystallinity and increased short-range crystalline structures,and full width at half maximum at 480 cm-1 of RS5. Pearson correlation analysis showed that RS5 content was highly correlated with its crystal structure, functional characteristics, and digestive characteristics. Principal component analysis revealed that five parameters (amylopectin, long-range crystalline structures, amylose, relative crystallinity, and RS5 content) had significant effect on the crystalline structure and functionality of RS5.
Collapse
Affiliation(s)
- Jian Qiang
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Run Ding
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Caiyun Kang
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Tongtong Xiao
- College of Life Science, Capital Normal University, 100048 Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, China.
| |
Collapse
|
6
|
Ma S, Zhang J, Peng M, Shen R, Dong J. Effects of different heat treatment methods on physicochemical characteristics and in vitro digestibility of sweet potato flour and its application in meal replacement flour. J Food Sci 2024; 89:8488-8503. [PMID: 39475332 DOI: 10.1111/1750-3841.17481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/23/2024] [Accepted: 10/03/2024] [Indexed: 12/28/2024]
Abstract
This study examined the effects of various heat treatments on physicochemical properties, functionality, and starch digestibility of sweet potato flour. Heat treatments darkened the color but did not change the chemical structure. Solubility decreased and swelling power increased (17.3%-18.3%) with baking, frying, and microwaving, while extrusion and steaming had opposite effects. Rapidly digestible starch content increased (8.96%-41.91%) in all treatments except steaming, which reduced slowly digestible starch (61.81%-28.97%). Based on the analysis of these studies, using low-temperature baked and extruded sweet potato flour as the main raw material, combined with the concept of complete nutrition, supplemented by nutritious ingredients such as quinoa, oats, and whey protein, we have successfully developed two sweet potato meal replacement flours (SP-1 and SP-2) and found they had good brewing properties and showed shear-thinning behavior. This study provided theoretical basis for sweet potato deep processing and functional product development. PRACTICAL APPLICATION: This paper studied the effects of different heat treatments on sweet potato flour, and developed two meal replacement flour based on this, to provide a theoretical basis for the application of the sweet potato industry.
Collapse
Affiliation(s)
- Shunzhang Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, China
| | - Jingwen Zhang
- Henan Polytechnic College, Intelligent Health College, Zhengzhou, Henan, China
| | - Mingjun Peng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, China
| | - Ruiling Shen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, China
| | - Jilin Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
- Key Laboratory of Cold Chain Food Processing and Safety Control (Zhengzhou University of Light Industry), Ministry of Education, Zhengzhou, China
- Food Laboratory of Zhongyuan·Zhengzhou University of Light Industry, Food Laboratory of Zhongyuan, Luohe, Henan, China
| |
Collapse
|
7
|
Wu C, Gao F, Jia J, Guo L, Zhang C, Qian JY. Effect of superheated steam treatment on enzyme inactivation, morphostructural, physicochemical and digestion properties of sand rice (Agriophyllum squarrosum) flour. Food Chem 2024; 450:139336. [PMID: 38640540 DOI: 10.1016/j.foodchem.2024.139336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
The lipase (LA) and peroxidase (POD) activities, as well as morphological structure, physicochemical and digestion properties of sand rice flour (SRF) treated with superheated steam (SS), were investigated. SS treatment at 165 °C completely deactivated LA and resulted in a 98% deactivation of POD activities in SRF. This treatment also intensified gelatinization, induced noticeable color alterations, and decreased pasting viscosities. Furthermore, there was a moderate reduction in crystal structure, lamellar structure, and short-range ordered structure, with a pronounced reduction at temperatures exceeding 170 °C. These alterations significantly impacted SRF digestibility, leading to increased levels of rapidly digestible starch (RDS) and resistant starch (RS), with the highest RS content achieved at 165 °C. The effectiveness of SS treatment depends on temperature, with 165 °C being able to stabilize SRF with moderate changes in color and structure. These findings will provide a scientific foundation for SS applicated in SRF stabilization and modification.
Collapse
Affiliation(s)
- Chunsen Wu
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China
| | - Fan Gao
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China
| | - Juan Jia
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China
| | - Lunan Guo
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China
| | - Chen Zhang
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, 196 Huayangxi Road, Yangzhou 225127, PR China.
| |
Collapse
|
8
|
Peng Z, Wu M, Liao Q, Zhu N, Li Y, Huang Y, Wu J. Hot-water soluble fraction of starch as particle-stabilizers of oil-in-water emulsions: Effect of dry heat modification. Carbohydr Polym 2024; 336:122130. [PMID: 38670760 DOI: 10.1016/j.carbpol.2024.122130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
Dry heat treatment (DHT) ranging from 130 to 190 °C was employed to modify corn starch. The hot-water soluble fraction (HWS) of the DHT-modified starch was isolated, and its capacity and mechanism for stabilizing O/W emulsions were investigated. Corn starch underwent a significant structural transformation by DHT at 190 °C, characterized by a 7.3 % reduction in relative crystallinity, a tenfold decrease in weight-average molecular weight from 95.21 to 8.11 × 106 g/mol, and a degradation of over one-third of the extra-long chains of amylopectin (DP > 36) into short chains (DP 6-12). These structural modifications resulted in a substantial formation of soluble amylopectin, leading to a sharp increase in the HWS content of corn starch from 3.16 % to 85.06 %. This augmented HWS content surpassed the critical macromolecule concentration, prompting the formation of HWS nanoaggregates. These nanoaggregates, with an average particle size of 33 nm, functioned as particle stabilizers, ensuring the stability of the O/W emulsion through the Pickering mechanism. The O/W emulsion stabilized by HWS nanoaggregates exhibited noteworthy centrifugal and storage stability, with rheological properties remaining nearly unchanged over a storage period of 180 days. Given its straightforward preparation process, the HWS of DHT-modified starch could be a promising natural emulsifier.
Collapse
Affiliation(s)
- Zhenhuan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Minghua Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qichao Liao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Nanwei Zhu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yue Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Ying Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China; International Institute of Food Innovation Co, Ltd., Nanchang University, Nanchang 330200, China.
| |
Collapse
|
9
|
Kavya M, Krishnan R, Suvachan A, Sathyan S, Tozuka Y, Kadota K, Nisha P. The art and science of porous starch: understanding the preparation method and structure-function relationship. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 38768041 DOI: 10.1080/10408398.2024.2352548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Porous starch (PS), a modified form of starch with unique properties, is attracting substantial attention for its diverse advantages and applications. Its intricate porous structure, crystalline and amorphous characteristics, and hydrophilic-hydrophobic properties stem from pore formation via physical, chemical, enzymatic, and combined synergistic methods. Porous starch offers benefits like improved gelatinization temperature, water absorption, increased surface area, tunable crystallinity, and enhanced functional properties, making it appealing for diverse food industry applications. To optimize its properties, determining the parameters governing porous structure formation is crucial. Factors such as processing conditions, starch source, and modification methods substantially impact porosity and the overall characteristics of the material. Understanding and controlling these parameters allows customization for specific applications, from pharmaceutical drug delivery systems to enhancing texture and moisture retention in food products. To date, studies shedding light on how porosity formation can be fine-tuned for specific applications are fewer. This review critically assesses the existing reports on porous starch, focusing on how preparation methods affect porosity formation, thereby influencing the product's crystallinity/hydrophilic-hydrophobic nature and overall applicability.
Collapse
Affiliation(s)
- Mohan Kavya
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reshma Krishnan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
| | - Abhijith Suvachan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
| | - Sannya Sathyan
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - P Nisha
- Agro Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Council of Scientific and Industrial Research, Trivandrum, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
10
|
He Z, Zeng J, Hu J, Chen J, Peng D, Du B, Li P. Effects of cooking methods on the physical properties and in vitro digestibility of starch isolated from Chinese yam. Int J Biol Macromol 2024; 267:131597. [PMID: 38621567 DOI: 10.1016/j.ijbiomac.2024.131597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
The objective of this study was to compare the structural and functional attributes of Chinese yam starches obtained via different domestic cooking methods. Cooking changed the crystalline type from the C type to the CB type, and disrupted the short- and long-range molecular order of Chinese yam starch. The average chain length of amylopectin in BOS (boiling starch) was the smallest at 22.78, while RWS had the longest average chain length, reaching 24.24. These alterations in molecular structure resulted in variations in functional properties such as solubility, swelling power (SP), pasting characteristics, and rheological properties. Among these alterations, boiling was the most effective method for increasing the water-binding capacity and SP of starch. Specifically, its water holding capacity was 2.12 times that of RWS. In vitro digestion experiments indicated that BOS has a higher digestion rate (k = 0.0272 min-1) and lower RDS (rapidly digestible starch), which may be related to its amylopectin chain length distribution. This study can guide us to utilize yam starch through suitable cooking methods, which is relevant for the processing and application of Chinese yam starch.
Collapse
Affiliation(s)
- Zhilin He
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jieyu Zeng
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianjun Hu
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jiahuan Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Dong Peng
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
11
|
You M, Peng Z, Jiang Y, Yao C, Yang B, Ban Q, Cheng J. The properties of the rice resistant starch processing and its application in skimmed yogurt. Int J Biol Macromol 2024; 265:131087. [PMID: 38521311 DOI: 10.1016/j.ijbiomac.2024.131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/11/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Extrusion is typically employed to prepare resistant starch (RS). However, the process is complicated. In this study, the effects of twin-screw extrusion on the crystallinity, thermal properties, and functional properties of starch formed in different extrusion zones were investigated. The effects of this process on the rheological properties and microstructure of RS-added skimmed yogurt were also studied. According to the results, the RS content increased from 7.40 % in the raw material to 33.79 % in the extrudate. The A-type crystal structure of the starch was not observed. The dissociation temperature of the extruded starch ranged from 87.76 °C to 100.94 °C. The glycemic index (GI) of skimmed yogurt fortified with 0.4 % RS was 48.7, and the viscosity was also improved. The microstructure exhibited a uniform network of the starch-protein structure. The findings may serve as a theoretical basis for the application of RS in the food industry.
Collapse
Affiliation(s)
- Meiyue You
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Peng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunqing Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chiyu Yao
- Heilongjiang Yihua Rice Industry Company Limited, Jiamusi 156300, China
| | - Baocai Yang
- Heilongjiang Yihua Rice Industry Company Limited, Jiamusi 156300, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Department of Endocrinology, Affiliated Hospital of Jining Medical University, Jining 272007, China.
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
12
|
Yue D, Zhang H, Zhang T, Yang C, Yang T, Qu Z, Zhang Y, Chen G, Li S, Chen Y. Mild steam treatment: Enhancing the rehydration performance of instant rice noodles by changing the physicochemical properties and gel structure of rice starch. J Food Sci 2024; 89:2371-2383. [PMID: 38488724 DOI: 10.1111/1750-3841.17021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 04/12/2024]
Abstract
The "instant" quality of instant rice noodles is significantly affected by slow rehydration during cooking. This happens as a result of the native rice starch's low ability to gelatinize as well as the high shear and pressure utilized in industries during the widely used extrusion molding process. In order to address this issue, the rice flour was pretreated with mild steam (MS) technology. The results revealed that the rehydration qualities of the rice noodles that were extruded from the steam-treated flour significantly improved. There was a reduction of 25.5% in the rehydration time, from 443 to 330 s. The MS-treated rice starch's peak viscosity increased to 4503 from 4044 mPa/s. Decreases in gelatinization enthalpy (ΔH) and short-range ordering also suggest a reduction in difficulty in accomplishing starch gelatinization. Scanning electron microscopy studies showed particle aggregation increased as the treatment duration lasted longer. In conclusion, our findings indicate that we successfully addressed the issue of slow rehydration in instant rice noodles while presenting a novel approach for their manufacturing in the manufacturing sector.
Collapse
Affiliation(s)
- Daheng Yue
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Han Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Tiantian Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Cheng Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Tongliang Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Zihan Qu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yifu Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Guiyun Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Shuhong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ye Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
13
|
Chen H, Zhou Y, Zhang S, Xie Z, Wen P, Wang H, Hu Y, Wu P, Liu J, Jiang Q, Tu Z. Effects of different high-temperature conduction modes on the ovalbumin-glucose model: AGEs production and regulation of glycated ovalbumin on gut microbiota. Food Res Int 2023; 173:113487. [PMID: 37803807 DOI: 10.1016/j.foodres.2023.113487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Food high-temperature processing frequently induces the production of advanced glycation end products (AGEs) in the food industry. In this study, the effects of three high-temperature conduction modes on the AGEs production derived from ovalbumin (OVA)-glucose model and the regulation of glycated OVA on gut microbiota were investigated. The peak time of OVA shifted maximally from 13.72 to 13.57 due to the rise in molecular weight, confirming successful coupling between OVA and glucose. The inhibition of superheated steam (SS) on AGEs was observed, with the sample treated by SS showing the lowest content among glycated OVA groups. The analysis revealed an increase in AGEs during digestion and a decrease in fermentation, suggesting the release during digestion and the availability by intestinal flora. Furthermore, an expansion of Bifidobacterium and Lactobacillus, and the inhibition of Desulfovibrio and Escherichia-Shigella were observed, indicating the prebiotic activity of glycated OVA and its potential to improve intestinal health. These results provide valuable information for controlling high-temperature processing to inhibit AGEs formation and highlight the positive effects of glycated proteins on intestinal health.
Collapse
Affiliation(s)
- Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yanru Zhou
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun 331208, China
| | - Siqiong Zhang
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun 331208, China
| | - Zuohua Xie
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun 331208, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China; Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun 331208, China.
| | - Peihan Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jiaojiao Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qiannan Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Zongcai Tu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
14
|
Hu Y, Chen H, Yang Y, Zhang S, Xie Z, Liu J, Jiang Q, Liu J, Wen P. Comparison of ovalbumin glycation induced by high-temperature steaming and high-temperature baking: A study combining conventional spectroscopy with high-resolution mass spectrometry. Food Res Int 2023; 173:113279. [PMID: 37803592 DOI: 10.1016/j.foodres.2023.113279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 10/08/2023]
Abstract
High-temperature steaming (HTS) and high-temperature baking (HTB)-induced ovalbumin (OVA)-glucose glycation (140 °C, 1-3 min) were compared, and the different mechanisms were evaluated by changes in protein conformation, glycation sites and average degree of substitution per peptide molecule (DSP) values as well as the antioxidant activity of glycated OVA. Conventional spectroscopic results suggested that in comparison with HTB, HTS promoted protein expansion, increased β-sheet content and made OVA structure more orderly. Liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis showed that 10 glycation sites were found under HTB, while 4 new glycation sites R111, R200, R219 and K323 appeared under HTS, and 2 of them (R219 and K323) were located in internal β-sheet chains. The antioxidant activities of glycated OVA increased with increasing treatment time, and HTS showed stronger enhancement effect than HTB. Furthermore, the DSP values were generally higher under HTS than HTB. Compared with HTB, HTS with high penetrability could enhance the change of OVA primary structure and spatial conformation, making the protein structure more unfolded and stable, leading to more protein-sugar collisions occurred in inner OVA molecular and significantly promoted glycation. In conclusion, HTS is a promising method for high-temperature short-time glycation reaction, with drastically increasing the protein antioxidant activities.
Collapse
Affiliation(s)
- Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Haiqi Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yifan Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Siqiong Zhang
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China
| | - Zuohua Xie
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi 331208, China.
| | - Jiaojiao Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qiannan Jiang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Jun Liu
- National R&D Center of Freshwater Fish Processing and Engineering Research Center of Freshwater Fish High-value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| | - Pingwei Wen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
15
|
Zhang L, Meng Q, Zhao G, Ye F. Comparison of milling methods on the properties of common buckwheat flour and the quality of wantuan, a traditional Chinese buckwheat food. Food Chem X 2023; 19:100845. [PMID: 37780324 PMCID: PMC10534221 DOI: 10.1016/j.fochx.2023.100845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
The microstructural and techno-functional properties of buckwheat flour and its processability for making wantuan, as affected by different milling methods, were investigated. Results showed that the particle sizes (d(0.5)) of the flours made by stone-milling (SM), hammer-milling (HM), laboratory grinding with steaming pretreatment for 5 min (LG-5) and 10 min (LG-10) were 95.5, 111.5, 35.4 and 41.1 μm, respectively. Moreover, SM and HM flours had less liberated starch granules and 20.84%-24.32% higher relative crystallinity than LG-10 flour. Slurries of laboratory-grinded flours showed excellent suspension stability. LG-10 flour had lowest pasting viscosities but greatest storage modulus and loss modulus. Color differences among the wantuan made from different flours were not visibly perceived (ΔE < 5). Wantuan made from LG-5 flour exhibited highest textual quality due to its greatest resilience (0.376), good springiness (0.933) and accepted chewiness (1093.31). Concluding, steaming prior to grinding could improve the qualities of buckwheat flour for wantuan making.
Collapse
Affiliation(s)
- Lei Zhang
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Westa College, Southwest University, Chongqing 400715, People’s Republic of China
| | - Qifan Meng
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
| | - Fayin Ye
- College of Food Science, Southwest University, Chongqing 400715, People’s Republic of China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People’s Republic of China
| |
Collapse
|
16
|
Zhong Y, Yin X, Yuan Y, Kong X, Chen S, Ye X, Tian J. Changes in physiochemical properties and in vitro digestion of corn starch prepared with heat-moisture treatment. Int J Biol Macromol 2023; 248:125912. [PMID: 37479207 DOI: 10.1016/j.ijbiomac.2023.125912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023]
Abstract
To investigate the effect of heat-moisture treatment (HMT) on the physiochemical properties and in vitro digestibility of corn starch, the pasting behavior, viscoelasticity, thermal properties, long/short range structure, morphology and in vitro digestion of corn starch treated with different HMT conditions (HMT-20, 25, 30, 35 and 40 %) were characterized. Results indicated that after HMT, the pasting and disintegration behaviors of corn starch were affected and correlated with the moisture content. The dynamic viscoelasticity of corn starch was changed, and when glassy conditions were reached, the elastic properties decreased with increasing moisture while the viscous properties increased, especially for the HMT-40 %. The thermal stability of starch was improved by HMT, although the enthalpy of pasting (ΔH) was reduced. Additionally, the HMT processing also promoted the conversion of RDS to SDS and/or RS (SDS and RS increased to 39.80 % and 31.68 % for HMT-40 %, respectively), which might attribute to the rearrangement of free starch molecules. The present work provides a potential approach to make functional starches with healthy properties.
Collapse
Affiliation(s)
- Yuxiu Zhong
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xiuxiu Yin
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Ying Yuan
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China
| | - Xiangli Kong
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China
| | - Xingqian Ye
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, PR China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, PR China
| | - Jinhu Tian
- National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agri-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
17
|
He R, Li S, Zhao G, Zhai L, Qin P, Yang L. Starch Modification with Molecular Transformation, Physicochemical Characteristics, and Industrial Usability: A State-of-the-Art Review. Polymers (Basel) 2023; 15:2935. [PMID: 37447580 DOI: 10.3390/polym15132935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Starch is a readily available and abundant source of biological raw materials and is widely used in the food, medical, and textile industries. However, native starch with insufficient functionality limits its utilization in the above applications; therefore, it is modified through various physical, chemical, enzymatic, genetic and multiple modifications. This review summarized the relationship between structural changes and functional properties of starch subjected to different modified methods, including hydrothermal treatment, microwave, pre-gelatinization, ball milling, ultrasonication, radiation, high hydrostatic pressure, supercritical CO2, oxidation, etherification, esterification, acid hydrolysis, enzymatic modification, genetic modification, and their combined modifications. A better understanding of these features has the potential to lead to starch-based products with targeted structures and optimized properties for specific applications.
Collapse
Affiliation(s)
- Ruidi He
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Songnan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, 48 Wenhui East Road, Yangzhou 225009, China
| | - Gongqi Zhao
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Ligong Zhai
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Peng Qin
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| | - Liping Yang
- School of Food Engineering, Anhui Science and Technology University, 9 Donghua Road, Fengyang 233100, China
| |
Collapse
|
18
|
Abedi E, Savadkoohi S, Banasaz S. The effect of thiolation process with l-cysteine on amylolysis efficiency of starch-cysteine conjugate by α-amylase. Food Chem 2023; 410:135261. [PMID: 36610093 DOI: 10.1016/j.foodchem.2022.135261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/29/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
l-Cysteine (l-Cys) pre-treatment at two concentrations (150 mg/kg; PC1 and 300 mg/kg; PC2) on potato starch was conducted to produce starch-cysteine conjugates. Afterward, the effect of α-amylase on starch digestibility of potato native (PE) and starch-cysteine conjugates (PC1E and PC2E) were examined. Thiolation not only damaged starch according to the formation of pore and blister-like spots on the surface of starch granules, but also provided the functional group to immobilize α-amylase. Starch-cysteine conjugates showed a significantly greater degree of hydrolysis 24.1 % (PC1E) and 36.5 % (PC2E) in comparison with (16.8 %; PE). Destroying the granules integrity were accompanied with decreased crystallinity from 37.7 % to 33.1 % (PC1), 31.1 % (PC2), 27.6 % (PC1E) and 22.4 % (PC2E) with increasing thiol content (%) on surface from 2.3 %; PC1 to 3.4 %; PC2. The ratio of 1047/1022 cm- 1 reduced from 1.112 (native potato starch) to 0.974 (PC1E) and 0.867 (PC2E) after being subjected to α-amylase. Additionally, substantially low pasting viscosities (determined by RVA) along with the thermal properties (determined by DSC) of starch-cysteine conjugates treated with α-amylase could confirm the degradation of molecular structures containing low swelling power.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | - Sobhan Savadkoohi
- Department of Food Science and Technology, Hela Spice Australia, Melbourne, Victoria, Australia
| | - Shahin Banasaz
- Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), UR370 Qualit́e des Produits Animaux, F-63122 Saint-Genès-Champanelle, France.
| |
Collapse
|
19
|
Bai J, Huang J, Feng J, Jiang P, Zhu R, Dong L, Liu Z, Li L, Luo Z. Combined ultrasound and germination treatment on the fine structure of highland barley starch. ULTRASONICS SONOCHEMISTRY 2023; 95:106394. [PMID: 37018984 PMCID: PMC10122010 DOI: 10.1016/j.ultsonch.2023.106394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Highland barley is a grain crop grown in Tibet, China. This study investigated the structure of highland barley starch using ultrasound (40 kHz, 40 min, 165.5 W) and germination treatments (30℃ with 80% relative humidity). The macroscopic morphology and the barley's fine and molecular structure were evaluated. After sequential ultrasound pretreatment and germination, a significant difference in moisture content and surface roughness was noted between highland barley and the other groups. All test groups showed an increased particle size distribution range with increasing germination time. FTIR results also indicated that after sequential ultrasound pretreatment and germination, the absorption intensity of the intramolecular hydroxyl (-OH) group of starch increased, and hydrogen bonding was stronger compared to the untreated germinated sample. In addition, XRD analysis revealed that starch crystallinity increased following sequential ultrasound treatment and germination, but a-type of crystallinity remained after sonication. Further, the Mw of sequential ultrasound pretreatment and germination at any time is higher than that of sequential germination and ultrasound. As a result of sequential ultrasound pretreatment and germination, changes in the content of chain length of barley starch were consistent with germination alone. At the same time, the average degree of polymerisation (DP) fluctuated slightly. Lastly, the starch was modified during the sonication process, either prior to or following sonication. Pretreatment with ultrasound illustrated a more profound effect on barley starch than sequential germination and ultrasound treatment. In conclusion, these results indicate that sequential ultrasound pretreatment and germination improve the fine structure of highland barley starch.
Collapse
Affiliation(s)
- Jiayi Bai
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| | - Jiayi Huang
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| | - Jinxin Feng
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| | - Pengli Jiang
- Tibet Autonomous Region Grain Administration Grain and Oil Center Laboratory, Lhasa 850000, Tibet, China
| | - Rui Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | - Liwen Dong
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| | - Zhendong Liu
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| | - Liang Li
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China.
| | - Zhang Luo
- Food Science College, Tibet Agriculture & Animal Husbandry University, R&D Center of Agricultural Products with Tibetan Plateau Characteristics, The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, Tibet, China
| |
Collapse
|
20
|
Ma Y, Sang S, Wu F, Xu X. Insight into the thermal stability, structural change and rheological property of wheat gluten treated by superheated steam during hydration. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
21
|
Wang N, Dong Y, Dai Y, Zhang H, Hou H, Wang W, Ding X, Zhang H, Li C. Influences of high hydrostatic pressure on structures and properties of mung bean starch and quality of cationic starch. Food Res Int 2023; 165:112532. [PMID: 36869532 DOI: 10.1016/j.foodres.2023.112532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
It is difficult to improve the quality of chemical-modified starch by traditional technology. Hence, in this study, mung bean starch with poor chemical activity was used as raw material, the native starch was treated and the cationic starch was prepared under high hydrostatic pressure (HHP) at 500 MPa and 40 °C. By studying the changes in the structure and properties of native starch after HHP treatment, the influence mechanism of HHP on improving the quality of cationic starch was analyzed. Results showed high pressure could make water and etherifying agent enter the starch granules through pores, and HHP made the structure of starch undergone three stages similar to mechanochemical effect. After HHP treated for 5 and 20 min, the degree of substitution, reaction efficiency and other qualities of cationic starch increased remarkably. Hence, proper HHP treatment could help to improve the chemical activity of starch and quality of cationic starch.
Collapse
Affiliation(s)
- Ning Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Ying Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Yangyong Dai
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China.
| | - Hong Zhang
- College of Life Science, Dezhou University, Dezhou, Shandong 253023, China
| | - Hanxue Hou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Wentao Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Xiuzhen Ding
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Hui Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| | - Cheng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China; Engineering and Technology Center for Grain Processing in Shandong Province, Tai'an, Shandong 271018, China
| |
Collapse
|
22
|
Ma Y, Xu D, Xu X. The effect of wheat flour treated with superheated steam on the microstructure and rheological behaviors of batter and cake quality. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yongshuai Ma
- School of Food Science and Technology Jiangnan University Wuxi People's Republic of China
| | - Dan Xu
- School of Food Science and Technology Jiangnan University Wuxi People's Republic of China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi People's Republic of China
| | - Xueming Xu
- School of Food Science and Technology Jiangnan University Wuxi People's Republic of China
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi People's Republic of China
| |
Collapse
|
23
|
Zhong Y, Zhang Y, Zhu Z, Wang Y, Zeng Z, Liu C. Comparative study on physicochemical and nutritional properties of black rice influenced by superheated steam, far infrared radiation, and microwave treatment. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
LIU X. A new way to expand the application of starch and tung oil: tung oil anhydride modified starch. FOOD SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1590/fst.95822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuncai LIU
- Xiamen Yan Palace Seelong Food Co. Ltd., China
| |
Collapse
|
25
|
Jia R, McClements DJ, Dai L, He X, Li Y, Ji N, Qin Y, Xiong L, Sun Q. Improvement of pasting and gelling properties of potato starch using a direct vapor-heat moisture treatment. Int J Biol Macromol 2022; 219:1197-1207. [DOI: 10.1016/j.ijbiomac.2022.08.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/06/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022]
|
26
|
Miller K, Reichert CL, Schmid M, Loeffler M. Physical, Chemical and Biochemical Modification Approaches of Potato (Peel) Constituents for Bio-Based Food Packaging Concepts: A Review. Foods 2022; 11:foods11182927. [PMID: 36141054 PMCID: PMC9498702 DOI: 10.3390/foods11182927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Potatoes are grown in large quantities and are mainly used as food or animal feed. Potato processing generates a large amount of side streams, which are currently low value by-products of the potato processing industry. The utilization of the potato peel side stream and other potato residues is also becoming increasingly important from a sustainability point of view. Individual constituents of potato peel or complete potato tubers can for instance be used for application in other products such as bio-based food packaging. Prior using constituents for specific applications, their properties and characteristics need to be known and understood. This article extensively reviews the scientific literature about physical, chemical, and biochemical modification of potato constituents. Besides short explanations about the modification techniques, extensive summaries of the results from scientific articles are outlined focusing on the main constituents of potatoes, namely potato starch and potato protein. The effects of the different modification techniques are qualitatively interpreted in tables to obtain a condensed overview about the influence of different modification techniques on the potato constituents. Overall, this article provides an up-to-date and comprehensive overview of the possibilities and implications of modifying potato components for potential further valorization in, e.g., bio-based food packaging.
Collapse
Affiliation(s)
- Katharina Miller
- Research Group: Meat Technology & Science of Protein-Rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre, KU Leuven Ghent Technology Campus, B-9000 Ghent, Belgium or
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany
| | - Corina L. Reichert
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany
| | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, 72488 Sigmaringen, Germany
| | - Myriam Loeffler
- Research Group: Meat Technology & Science of Protein-Rich Foods (MTSP), Department of Microbial and Molecular Systems, Leuven Food Science and Nutrition Research Centre, KU Leuven Ghent Technology Campus, B-9000 Ghent, Belgium or
- Correspondence: ; Tel.: +32-9-3102553
| |
Collapse
|
27
|
Wu J, Xu S, Huang Y, Zhang X, Liu Y, Wang H, Zhong Y, Bai L, Liu C. Prevents kudzu starch from agglomeration during rapid pasting with hot water by a non-destructive superheated steam treatment. Food Chem 2022; 386:132819. [PMID: 35366635 DOI: 10.1016/j.foodchem.2022.132819] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/20/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
Superheated steam (SST) at different moisture contents (10% ∼ 30%) was used to prevent the agglomeration of kudzu starch during rapid pasting with hot water. Changes in pasting-related properties and multi-scale structures were investigated. At moisture content of 20%, SST dramatically reduced the agglomeration rate from 42.20% to 2.97% without destroying the microstructure of kudzu starch or deteriorating the rheological properties of kudzu starch paste, which was superior to the conventional pre-gelatinization treatment. The agglomeration was prevented mainly by decreasing the swelling power and increasing the pasting temperature of kudzu starch. The slight disruption of multi-scale structures may facilitate faster water absorption by kudzu starch, but it was not the primary prevention mechanism. Moreover, the solubility of kudzu starch was not related to the agglomeration, since it was significantly decreased by SST. Our findings could provide new insights into the rapid pasting of starchy powders or flours with hot water.
Collapse
Affiliation(s)
- Jianyong Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Shunqian Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Ying Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Xuan Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yunfei Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, No. 7777 Changdong Avenue, Nanchang 330096, China
| | - Haoqiang Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yejun Zhong
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| | - Long Bai
- Key Laboratory of Bio-Based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
28
|
Abedi E, Sayadi M, Pourmohammadi K. Effect of freezing-thawing pre-treatment on enzymatic modification of corn and potato starch treated with activated α-amylase: Investigation of functional properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
29
|
Wang H, Li Y, Wang L, Wang L, Li Z, Qiu J. Multi-scale structure, rheological and digestive properties of starch isolated from highland barley kernels subjected to different thermal treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Zhong Y, Xu J, Liu X, Ding L, Svensson B, Herburger K, Guo K, Pang C, Blennow A. Recent advances in enzyme biotechnology on modifying gelatinized and granular starch. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Pickering emulsion stabilized by hydrolyzed starch: Effect of the molecular weight. J Colloid Interface Sci 2022; 612:525-535. [PMID: 35016016 DOI: 10.1016/j.jcis.2021.12.185] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS The emulsifying ability of starch is influenced by its molecular weight. Reducing the molecular weight of starch is expected to influence interfacial adsorption and membrane elasticities, thereby affecting its emulsifying ability through Pickering effects. Hence, it should be possible to tailor the emulsifying ability of starch by adjusting its molecular weight. EXPERIMENTS Waxy corn starch (CS) and rice starch (RS) were hydrolyzed with pullulanase to obtain high (HM) and low molecular weight (LM) fractions. After the molecular weight was determined by size exclusion chromatography, the fractions were used to prepare model oil-in-water emulsions. The stability, microscopy, and particle size of the emulsions were characterized, and the underlying emulsification mechanism was subsequently studied through dynamic laser scattering, surface tension analysis, interfacial rheology, and Pearson's correlation calculations. FINDINGS In the molecular weight range obtained in this study, the smaller the molecular weight of starch, the stronger its emulsifying ability. The decrease in molecular weight resulted in considerable different adsorption and interfacial elasticities with smaller fractions occupying less area on the interface and forming interfaces with higher elasticities, resulting in higher stabilities through Pickering effects. Results thus suggest that the emulsifying ability of starch may be tailored by adjusting its molecular weight.
Collapse
|
32
|
Guo B, Zhu C, Huang Z, Yang R, Liu C. Microcapsules with slow-release characteristics prepared by soluble small molecular starch fractions through the spray drying method. Int J Biol Macromol 2022; 200:34-41. [PMID: 34973979 DOI: 10.1016/j.ijbiomac.2021.12.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023]
Abstract
The utilization of starch in the food and medical industry can be facilitated by using new non-chemical methods to make starch the only wall material to encapsulate microcapsules. In this study, soluble small molecular fraction obtained from corn starch by gelatinization and centrifugation methods and commercial soluble starch were used independently to encapsulate oil under the condition that wall material and core material were 2:1. Molecular weight of these starch fractions was measured firstly. The peak molecular weight of the soluble small molecular fraction of corn starch and commercial soluble starch was 3.537 × 105 Da and 2.720 × 104 Da, respectively. Basic physicochemical characteristics and application characteristics of the microcapsules were then characterized and compared. The soluble small molecular fraction of corn starch encapsulated microcapsule and the commercial soluble starch encapsulated microcapsule had high encapsulation efficiency (higher than 88%), high boiling water solubility (higher than 74%), high rehydration stability (higher than 2 h). Most importantly, the encapsulated oil of these microcapsules could be slowly released under the action of α-amylase and amyloglucosidase. Overall, both the soluble small molecular fraction of corn starch and commercial soluble starch could be used as microcapsule wall materials and might have great application potential in food and medicine.
Collapse
Affiliation(s)
- Baozhong Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing East Road 235, 330047 Nanchang, China
| | - Chunyan Zhu
- Ganzhou Quanbiao Biological Technology Co, Ltd., 341000 Ganzhou, China
| | - Zhaohua Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing East Road 235, 330047 Nanchang, China
| | - Rong Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing East Road 235, 330047 Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanjing East Road 235, 330047 Nanchang, China.
| |
Collapse
|
33
|
Šmídová Z, Rysová J. Gluten-Free Bread and Bakery Products Technology. Foods 2022; 11:foods11030480. [PMID: 35159630 PMCID: PMC8834121 DOI: 10.3390/foods11030480] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Gluten, a protein fraction from wheat, rye, barley, oats, their hybrids and derivatives, is very important in baking technology. The number of people suffering from gluten intolerance is growing worldwide, and at the same time, the need for foods suitable for a gluten-free diet is increasing. Bread and bakery products are an essential part of the daily diet. Therefore, new naturally gluten-free baking ingredients and new methods of processing traditional ingredients are sought. The study discusses the use of additives to replace gluten and ensure the stability and elasticity of the dough, to improve the nutritional quality and sensory properties of gluten-free bread. The current task is to extend the shelf life of gluten-free bread and bakery products and thus extend the possibility of its distribution in a fresh state. This work is also focused on various technological possibilities of gluten-free bread and the preparation of bakery products.
Collapse
|
34
|
Wen PW, Tu ZC, Hu YM, Wang H. Effects of Superheated Steam Treatment on the Allergenicity and Structure of Chicken Egg Ovomucoid. Foods 2022; 11:foods11020238. [PMID: 35053970 PMCID: PMC8774878 DOI: 10.3390/foods11020238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to explore the effects of an emerging and efficient heating technology, superheated steam (SS), on the allergenicity and molecular structure of ovomucoid (OVM). OVM was treated with 120–200 °C of SS for 2 to 10 min. The allergenicity (IgG/IgE binding abilities and cell degranulation assay) and molecular structure (main functional groups and amino acids modification) changes were investigated. The IgG-binding ability of OVM decreased and the releases of β-hex and TNF-γ were inhibited after SS treatment, indicating that the protein allergenicity was reduced. Significant increases in oxidation degree, free SH content and surface hydrophobicity were observed in SS-treated OVM. The protein dimer and trimer appeared after SS treatment. Meanwhile, obvious changes occurred in the primary structure. Specifically, serine can be readily modified by obtaining functional groups from other modification sites during SS treatment. Moreover, the natural OVM structure which showed resistance to trypsin digestion was disrupted, leading to increased protein digestibility. In conclusion, SS-induced OVM aggregation, functional groups and amino acids modifications as well as protein structure alteration led to reduced allergenicity and increased digestibility.
Collapse
Affiliation(s)
- Ping-Wei Wen
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China;
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
| | - Zong-Cai Tu
- National R&D Branch Center for Conventional Freshwater Fish Processing, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China;
- Engineering Research Center of Freshwater Fish High-Value Utilization of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
- Correspondence: ; Tel.: +86-791-8812-1868; Fax: +86-791-8830-5938
| | - Yue-Ming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; (Y.-M.H.); (H.W.)
| |
Collapse
|
35
|
Zhong C, Xiong Y, Lu H, Luo S, Wu J, Ye J, Liu C. Preparation and characterization of rice starch citrates by superheated steam: A new strategy of producing resistant starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Lou X, Luo D, Yue C, Zhang T, Li P, Xu Y, Xu B, Xiang J. Effect of ultrasound treatment on the physicochemical and structural properties of long-chain inulin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Ma Y, Zhang H, Jin Y, Xu D, Xu X. Impact of superheated steam on the moisture transfer, structural characteristics and rheological properties of wheat starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Fan L, Ye Q, Lu W, Chen D, Zhang C, Xiao L, Meng X, Lee YC, Wang HMD, Xiao C. The properties and preparation of functional starch: a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2015375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lvting Fan
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qin Ye
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wenjing Lu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Di Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Cen Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lihan Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xianghe Meng
- College of Food Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yi-Chieh Lee
- Department of Life Science, National Chung Hsing University, Taichung City, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung City, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City, Taiwan
| | - Chaogeng Xiao
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Gui Y, Zou F, Li J, Tang J, Guo L, Cui B. Corn starch modification during endogenous malt amylases: The impact of synergistic hydrolysis time of α-amylase and β-amylase and limit dextrinase. Int J Biol Macromol 2021; 190:819-826. [PMID: 34534581 DOI: 10.1016/j.ijbiomac.2021.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 11/15/2022]
Abstract
To expand the utility of barley malts and decrease the cost of enzyme-modified starch production, the structural and physicochemical characteristics of corn starch modified with fresh barley malts at different hydrolysis time were investigated. The results indicated that compared to native starch, A chain (DP 6-12) of the enzyme-treated starches increased at hydrolysis time (≤12 h), but it decreased at hydrolysis time (>12 h). Inversely, B chains (DP > 13) decreased at hydrolysis time (≤12 h) and they generally increased at hydrolysis time (>12 h). The relative crystallinity decreased from 25.63% to 21.38% and 1047 cm-1/1022 cm-1 reduced from 1.042 to 0.942 after endogenous malt amylases at hydrolysis time from 0 to 72 h, and the thermal degradation temperatures decreased from 323.19 to 295.94 °C, whereas the gelatinization temperatures slightly increased. The gel strength decreased at hydrolysis time less than 12 h, but it increased at hydrolysis time more than 12 h. The outcomings would provide a theoretical and applicative basis about how endogenous malt amylases with lower price modify starches to obtain desirable starch derivatives and industrial production.
Collapse
Affiliation(s)
- Yifan Gui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Feixue Zou
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jiahao Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Jun Tang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.
| |
Collapse
|
40
|
Asranudin, Holilah, Syarifin ANK, Purnomo AS, Ansharullah, Fudholi A. The effect of heat moisture treatment on crystallinity and physicochemical-digestibility properties of purple yam flour. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Influence of superheated steam treatment with tempering on lipid oxidation and hydrolysis of highland barley during storage. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Wheat flour superheated steam treatment induced changes in molecular rearrangement and polymerization behavior of gluten. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Ma Y, Zhang W, Pan Y, Ali B, Xu D, Xu X. Physicochemical, crystalline characterization and digestibility of wheat starch under superheated steam treatment. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Gui Y, Zou F, Li J, Zhu Y, Guo L, Cui B. The structural and functional properties of corn starch treated with endogenous malt amylases. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Wu X, Liang X, Dong X, Li R, Jiang G, Wan Y, Fu G, Liu C. Physical modification on the in vitro digestibility of Tartary buckwheat starch: Repeated retrogradation under isothermal and non-isothermal conditions. Int J Biol Macromol 2021; 184:1026-1034. [PMID: 34166697 DOI: 10.1016/j.ijbiomac.2021.06.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 01/19/2023]
Abstract
The effects of repeated retrogradation (RR, range from 1 to 3 times) at different temperatures (4 °C; 4/25 °C, with a 24 h interval; 25 °C) on the in vitro digestibility and structures of Tartary buckwheat starch (TS) were investigated in this study. Results demonstrated that TS treated by RR for 1 time under 4/25 °C contained the maximum content of slowly digestible starch (SDS, 35.25%); TS treated by RR for 3 times under 25 °C contained the maximum content of resistant starch (RS, 54.92%). As the increase of RR cycle times, the value of relative crystallinity, the ratios of 1047/1022 cm-1 and 995/1022 cm-1 increased, the starch pore wall thickened, and more smooth fragments appeared (observed by scanning electron microscope), while the value of melting temperature range trended to decrease. The crystallization type of TS changed from type "A" to a mixture of "B + V" after retrogradation treatment. Pearson correlation analysis revealed that the content of rapidly digestible starch (RDS) was negatively correlated with the ratio of 995/1022 cm-1, transition temperatures, and enthalpy (P < 0.05). These results would supply a potential method for the preparation of starch with slow-digesting properties, also improve the utilization and expand the application of TS.
Collapse
Affiliation(s)
- Xiaojiang Wu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Xinmei Liang
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Xianxian Dong
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Ruyi Li
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Guofu Jiang
- Jiangxi Chunsi Foods Co., Ltd., Zhangshu 331200, Jiangxi, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, College of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| |
Collapse
|
46
|
Kim AN, Rahman MS, Lee KY, Choi SG. Superheated steam pretreatment of rice flours: Gelatinization behavior and functional properties during thermal treatment. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Kaimal AM, Mujumdar AS, Thorat BN. Resistant starch from millets: Recent developments and applications in food industries. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Huang J, Guo Q, Manzoor MF, Chen Z, Xu B. Evaluating the sterilization effect of wheat flour treated with continuous high-speed-stirring superheated steam. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
|
50
|
Ma Y, Sang S, Xu D, Jin Y, Chen Y, Xu X. The contribution of superheated steam treatment of wheat flour to the cake quality. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|