1
|
Hu C, He F, Wu R, Zhou W, Ma W, Hao T, Cai P, Ye F, Xu Z, Zhou H, Wang P, Ding K, Li T. Precision Synthesis and Antiliver Fibrosis Activity of a Highly Branched Acidic 63-Mer Pectin Polysaccharide. J Am Chem Soc 2025; 147:8422-8432. [PMID: 39999120 DOI: 10.1021/jacs.4c16491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Natural polysaccharides possess various biological functions and have become increasingly important as drug candidates for biomedical development. However, the accessibility to multiple-branched and large-sized acidic polysaccharides with well-defined structures and the identification of related active glycan domains remain challenging. Here, we report the precision synthesis of a highly branched acidic pectin polysaccharide up to a 63-mer containing 10 different glycosidic linkages from Lycium barbarum. The synthetic strategy relies on highly stereoselective modular assembly of an orthogonally protected decasaccharide backbone, efficient synthesis of three side chain glycans by the integration of stereocontrolled one-pot chemoselective glycosylations and a hydrogen-bond-mediated aglycone delivery approach, and convergent assembly of the target polysaccharide in a branched site-specific glycosylation manner via flexible orthogonal protecting group manipulations. Structure-activity relationship studies of synthetic polysaccharide 63-mer and its short fragments (9-mer, 10-mer, 11-mer, and 33-mer) suggest that the decasaccharide as an active glycan domain exhibits better antiliver fibrosis activity.
Collapse
Affiliation(s)
- Chaoyu Hu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei He
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ruixue Wu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wanqi Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianhui Hao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengjun Cai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Farong Ye
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kan Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan 528400, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Li Y, Liu J, Pei D, Di D. Structural Characterization of, and Protective Effects Against, CoCl 2-Induced Hypoxia Injury to a Novel Neutral Polysaccharide from Lycium barbarum L. Foods 2025; 14:339. [PMID: 39941931 PMCID: PMC11818000 DOI: 10.3390/foods14030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/17/2024] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Oxidative stress is closely related to the occurrence and development of ischaemic stroke. Natural plant polysaccharides have potential value in inhibiting oxidative stress and preventing ischaemic stroke. Here, a novel neutral polysaccharide named LICP009-3F-1a with a Mw of 10,780 Da was separated and purified from Lycium barbarum L. fruits. Linkage and NMR data revealed that LICP009-3F-1a has the following backbone: →4)-β-D-Glcp-(1→6)-β-D-Galp-(1→, with a branched chain of β-D-Galp-(1→3)-β-D-Galp-(1→, α-L-Araf-(1→ and →6)-α-D-Glcp-(1→ connected to the main chain through O-3 of →3,6)-β-D-Galp-(1→. X-ray and SEM analyses showed that LICP009-3F-1a has a semicrystalline structure with a laminar morphology. Thermal property analysis showed that LICP009-3F-1a is thermally stable. In vivo experiments suggested that LICP009-3F-1a could inhibit hypoxia-induced oxidative stress damage by eliminating ROS, reversing and restoring the activities of the antioxidant enzymes SOD, CAT, and GPx, and reducing the expression levels of the HIF-1α and VEGF genes. Blocking the apoptosis genes Bax and Caspase 3 and upregulating the expression of the antiapoptotic gene Bcl-2 protected PC12 cells from hypoxia-induced apoptosis. These results suggest that LICP009-3F-1a may have multiple potential uses in the treatment of IS.
Collapse
Affiliation(s)
| | | | | | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China; (Y.L.); (J.L.); (D.P.)
| |
Collapse
|
3
|
Xiong S, Li N, Shi S, Zhao Y, Chen J, Ruan M, Xu Y, Liu R, Wang S, Wang H. Structural characterization of a polysaccharide from Scutellaria baicalensis Georgi and its immune-enhancing properties on RAW264.7 cells. Int J Biol Macromol 2024; 283:137890. [PMID: 39571863 DOI: 10.1016/j.ijbiomac.2024.137890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
A novel polysaccharide SPS01-2 (87.5 kDa) was isolated from the roots of Scutellaria baicalensis Georgi. Monosaccharide composition revealed that SPS01-2 consists of rhamnose, arabinose, galactose, galacturonic acid, and glucuronic acid in ratio of 4.4: 67.1: 22.2: 6.3: 1.2. Further investigations using methylation, NMR, and mass spectrometry indicated that SPS01-2 is classified as a type II arabinogalactan (AG-II) with a minor presence of type I rhamnogalacturonan (RG-I). The core structure alternates between 1,2/1,2,4-α-L-Rhap and 1,4-α-D-GalpA, with branches including 1,3,6-β-D-Galp, 1,3-β-D-Galp, T-β-D-Galp, and T-α-L-Rhap. The RG-I regions are linked to 1,6-β-D-Galp, and 1,3,6-β-D-Galp units. Numerous arabinan branches, featuring multiple branching points, are attached to the O-3 position of galactose. Additionally, T-β-D-Galp, 1,6-β-D-Galp, and T-β-D-4-OMe-GlcpA are also linked to galactose in the backbone. Furthermore, SPS01-2 demonstrated potential immune-enhancing properties by dose-dependently increasing proliferation, phagocytosis, and the production of nitric oxide and cytokines (TNF-α, IL-6, and IL-1β) in RAW264.7 cells. It also enhanced the expression of CD80, CD86, and MHC-II at concentrations ranging from 5 to 200 μg/mL. Moreover, the immunostimulatory activity of SPS01-2 was significantly reduced when branch linkages were removed through partial acid hydrolysis. Our findings indicate that SPS01-2 could serve as a natural immunostimulant in the food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Si Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Ning Li
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yonglin Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Min Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China; Spine Institute, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai 200032, China
| | - Yongbin Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Ruimin Liu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Mate ria Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
4
|
Pang Y, Peng Z, Ding K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr Polym 2024; 343:122457. [PMID: 39174094 DOI: 10.1016/j.carbpol.2024.122457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Pectic polysaccharides have long been a challenging subject of research in the field of macromolecular science, given their complex structures and wide range of biological effects. However, the extensive exploration of pectic polysaccharides has been limited due to the intricacy of their structures. In this comprehensive review, we aim to provide a thorough summary of the existing knowledge on pectic polysaccharides, with a particular focus on aspects such as classification, extraction methodologies, structural analysis, elucidation of biological activities, and exploration of target molecules and signaling pathways. By conducting a comprehensive analysis of existing literature and research achievements, we strive to establish a comprehensive and systematic framework that can serve as a reference and guide for further investigations into pectic polysaccharides. Furthermore, this review delves into the applications of pectic polysaccharides beyond their fundamental attributes and characteristics, exploring their potential in fields such as materials, food, and pharmaceuticals. We pay special attention to the promising opportunities for pectic polysaccharides in the pharmaceutical domain and provide an overview of related drug development research. The aim of this review is to facilitate a holistic understanding of pectic polysaccharides by incorporating multifaceted research, providing valuable insights for further in-depth investigations into this significant polymer.
Collapse
Affiliation(s)
- Yunrui Pang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Zhigang Peng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; China School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kan Ding
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; Carbohydrate Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
5
|
Sun Z, Liu J, Chen Z, So K, Hu Y, Chiu K. Lycium barbarum Extract Enhanced Neuroplasticity and Functional Recovery in 5xFAD Mice via Modulating Microglial Status of the Central Nervous System. CNS Neurosci Ther 2024; 30:e70123. [PMID: 39564756 PMCID: PMC11576918 DOI: 10.1111/cns.70123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/26/2024] [Accepted: 10/30/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is the most prevalent neurodegenerative disease with limited treatment options. This study aimed to investigate the effects of Lycium barbarum extract (LBE), a Chinese herb, on the central nervous system (CNS)-including the retina, brain, and spinal cord-in 5xFAD transgenic mice after the onset of AD. METHODS Starting at 6 months of age, 5xFAD mice received daily intragastric gavage of LBE (2 g/kg) for 2 months. At 8 months, behavioral tests were conducted to assess cognition, motor function, and visual function. These included the Morris water maze, novel object recognition, and Y-maze tests for cognition; the beam walking balance and clasping tests for motor function; and electroretinogram (ERG) for visual function. Immunohistochemistry, western blotting, and ELISA were used to evaluate Aβ deposition, microglial morphology, neuroinflammation, and neuroprotective signaling pathways. Primary microglia and the IMG cell line were used to study LBE's effects on Aβ uptake and degradation in vitro. RESULTS After 2 months of LBE treatment, the decline in cognition, motor, and visual functions in 5xFAD mice was significantly slowed. Microglia in the brain, spinal cord, and retina exhibited a neuroprotective state, with reduced Aβ deposition, decreased inflammatory cytokine levels (e.g., TNF-α, IL-1β, IL-6), increased Arg-1/iNOS ratio, and enhanced phagocytic capacity. LBE also promoted Aβ uptake and degradation in primary microglia and the IMG cell line. Neuroprotective signals such as p-Akt, p-Erk1/2, and p-CREB were elevated. Additionally, LBE treatment restored synaptic protein expression and enhanced neuroplasticity. CONCLUSION The findings suggest that LBE treatment can enhance neuroplasticity, reduce systemic inflammation, and improve phagocyte clearance of Aβ deposition via inducing a neuroprotective microglial phenotype throughout CNS. As an upper-class Chinese medicine, appropriate intake of LBE may serve as a beneficial antiaging strategy for AD.
Collapse
Affiliation(s)
- Zhongqing Sun
- Department of Neurology, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Innovation Research Institute, Xijing HospitalFourth Military Medical UniversityXi'anChina
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Jinfeng Liu
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
| | - Zihang Chen
- Department of PsychologyThe University of Hong KongHong KongSARChina
- Department of Sports Medicine, the First Affiliated HospitalJinan UniversityChina
| | - Kwok‐Fai So
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- State Key Lab of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
- Key Laboratory of CNS Regeneration, Guangdong‐Hongkong‐Macau CNS Regeneration Institute, Ministry of EducationJinan UniversityGuangzhouChina
| | - Yong Hu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Kai Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
- Orthopedics CenterThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Kin Chiu
- Department of Ophthalmology, School of Clinical MedicineThe University of Hong KongHong KongSARChina
- Department of PsychologyThe University of Hong KongHong KongSARChina
- State Key Lab of Brain and Cognitive SciencesThe University of Hong KongHong KongSARChina
| |
Collapse
|
6
|
Sun C, Su J, Wang J, Ding K, Chen C. Lycium barbarum polysaccharide increases thermogenesis and energy metabolism through modulation of the gut microbiota to confer resistance to cold temperatures. FASEB J 2024; 38:e70010. [PMID: 39230621 DOI: 10.1096/fj.202400870r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Traditional Chinese medical literature contains numerous records of many traditional Chinese herbal medicines that exhibit efficacy in enhancing resistance to cold, yet there is a lack of scientific explanation. Lycium barbarum is among the herbal medicines that are explicitly documented to enhance resistance to cold in the "Ben Cao Gang Mu (Compendium of Materia Medica)". Herein, we investigated L. barbarum polysaccharide (LBP)-induced browning of inguinal white adipose tissue (iWAT), energy expenditure and thermogenic function in a long-term (4 months) treatment mouse model. LBP supplementation resulted in a significant reduction in weight and adipocyte size in iWAT, along with increased gut microbiota diversity. Specifically, the levels of Lachnospiraceae, Ruminococcaceae and Bacteroidaceae (short-chain fatty acid-producing bacteria) were elevated, leading to a higher level of short-chain fatty acids (SCFAs) in the caecal content. These effects subsequently triggered the release of glucagon-like peptide-1 (GLP-1) and activated the CREB/PGC1α signaling pathway in iWAT, thereby increasing energy expenditure and enhancing thermogenic function. The antibiotic treatment experiments confirmed that the LBP-mediated gut microbiota participated in the process of iWAT browning. In summary, our findings provide the first scientific explanation and mechanistic insights into the cold resistance of L. barbarum and identify potentially safe natural product supplements for individuals in alpine areas.
Collapse
Affiliation(s)
- Chuanxin Sun
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Juan Su
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jiarui Wang
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Kan Ding
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan, Guangdong, P.R. China
| | - Chang Chen
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P.R. China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, P.R. China
- Beijing Institute for Brain Disorders Capital Medical University, Beijing, P.R. China
| |
Collapse
|
7
|
Jing X, Zhou G, Zhu A, Jin C, Li M, Ding K. RG-I pectin-like polysaccharide from Rosa chinensis inhibits inflammation and fibrosis associated to HMGB1/TLR4/NF-κB signaling pathway to improve non-alcoholic steatohepatitis. Carbohydr Polym 2024; 337:122139. [PMID: 38710550 DOI: 10.1016/j.carbpol.2024.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/23/2024] [Accepted: 04/06/2024] [Indexed: 05/08/2024]
Abstract
A novel RG-I pectin-like polysaccharide, YJ3A1, was purified from the flowers of Rosa chinensis and its structure and hepatoprotective effect in vivo and in vitro were investigated. The backbone of this polysaccharide is mainly composed of 1, 4-galactan, 1, 4-linked α-GalpA and 1, 2-linked α-Rhap disaccharide repeating unit attached by 1, 6-linked β-Galp or 1, 5-linked α-Araf on C-4 of the Rhap. Interestingly, oral administration of YJ3A1 significantly ameliorates NASH-associated inflammation, oxidative stress and fibrosis and does not affect the liver morphology of normal mice at a dose of 50 mg/kg. The mechanism study suggests that the biological activity may associate to inactivating of high-mobility group box 1 protein (HMGB1)/TLR4/NF-κB and Akt signaling pathways by restraining the expression and release of HMGB1, thereby impeding the effect of NASH. The current findings outline a novel leading polysaccharide for new drug candidate development against NASH.
Collapse
Affiliation(s)
- Xiaoqi Jing
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Guangqin Zhou
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Anming Zhu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China
| | - Can Jin
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China
| | - Meixia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China; Zhongshan Institute for Drug Discovery, Zhongshan Tsuihang New District, Zhongshan 528400, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu Province 210029, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
8
|
Kumar S, Malviya R, Sundram S. Nutritional neurology: Unraveling cellular mechanisms of natural supplements in brain health. HUMAN NUTRITION & METABOLISM 2024; 35:200232. [DOI: 10.1016/j.hnm.2023.200232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Zheng G, Wang Z, Wei J, Zhao J, Zhang C, Mi J, Zong Y, Liu G, Wang Y, Xu X, Zeng S. Fruit development and ripening orchestrating the biosynthesis and regulation of Lycium barbarum polysaccharides in goji berry. Int J Biol Macromol 2024; 254:127970. [PMID: 37944729 DOI: 10.1016/j.ijbiomac.2023.127970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Lycium barbarum polysaccharides (LBPs) are the primary bioactive components in fruits of L. barbarum, commonly known as goji berry. Despite significant progress in understanding the chemical structures and health benefits of LBPs, the biosynthesis and regulation of LBPs in goji berry remains largely unknown. In this study, physiological indicators, including LBPs, were monitored in goji berry during fruit development and ripening (FDR), suggesting that pectin might be the major component of LBPs with increased content reaching 235.8 mg/g DW. Proteomic and transcriptomic analysis show that 6410 differentially expressed genes (DEGs) and 2052 differentially expressed proteins (DEPs) were identified with overrepresentation of flavonoids and polysaccharides-related gene ontology (GO) terms and KEGG pathways. Weighted gene co-expression network analysis (WGCNA) showed that LBPs coexpress with genes involved in pectin biosynthesis (LbGALS3, LbGATL5, LbQUA1, LbGAUT1/4/7, LbRGGAT1, LbRRT1/7, and LbRHM2), modification (LbSBT1.7), and regulation (LbAP2, LbGL2 LbTLP2, LbERF4, and LbTTG2), as well as with novel transcription factors (LbSPL9 and LbRIN homologs) and glycosyltransferases. Transgenic hairy roots overexpressing LbRIN validated that LbRIN modulate the expression of WGCNA-predicted regulators, including LbERF4, LbTTG2, and LbSPL9. These findings suggest that the biosynthesis and regulation of LBPs is conserved partially to those in Arabidopsis pectin. Taken together, this study provides valuable insights into the biosynthesis and regulation of LBPs, which can facilitate future studies on synthetic biology applications and genetic improvement of LBPs.
Collapse
Affiliation(s)
- Guoqi Zheng
- Key Laboratory of the Ministry of Education for Protection and Utilization of Special Biological Resources in the Western, School of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China.
| | - Zhiqiang Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, China
| | - Jinrong Wei
- Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, China.
| | - Juanhong Zhao
- Key Laboratory of the Ministry of Education for Protection and Utilization of Special Biological Resources in the Western, School of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Chen Zhang
- Key Laboratory of the Ministry of Education for Protection and Utilization of Special Biological Resources in the Western, School of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Juanjuan Mi
- Key Laboratory of the Ministry of Education for Protection and Utilization of Special Biological Resources in the Western, School of Life Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Yuan Zong
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining, China.
| | - Genhong Liu
- College of Agricultural Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Ying Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, China.
| | - Xing Xu
- College of Agricultural Science, Ningxia University, Yinchuan 750021, Ningxia, China
| | - Shaohua Zeng
- College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, China; Guangdong Provincial Key Laboratory of Applied Botany, State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
10
|
Yang Y, Lv L, Shi S, Cai G, Yu L, Xu S, Zhu T, Su X, Mao N, Zhang Y, Peng S, He J, Liu Z, Wang D. Polysaccharide from walnut green husk alleviates liver inflammation and gluconeogenesis dysfunction by altering gut microbiota in ochratoxin A-induced mice. Carbohydr Polym 2023; 322:121362. [PMID: 37839834 DOI: 10.1016/j.carbpol.2023.121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
Walnut green husk polysaccharides (WGP) are isolated from the walnut green husk with a mean molecular weight of 12.77 kDa. The structural characterization revealed by methylation and NMR analysis indicated that WGP might consist of →4-α-D-Galp-(1→, α-D-Galp (1→, and →2)-α-L-Rhap-(1→. Previous studies have been demonstrated that WGP effectively prevented liver injury and modulated gut microbiota in high fructose-treated mice and high fat diet-treated rats. In this study, we found for the first time that WGP presenting outstanding protective effects on liver inflammation and gluconeogenesis dysfunction induced by ochratoxin A (OTA) in mice. Firstly, WGP decreased oxidative stress, down-regulated the expression of inflammatory factors and inhibited the TLR4/p65/IκBα pathway in the liver. Then, WGP reversed OTA-induced lower phosphoenolpyruvate carboxyl kinase (PEPCK), and glucose 6-phosphatase (G6PC) activities in the liver. Furthermore, WGP increased the diversity of gut microbiota and the abundance of beneficial bacteria, especially Lactobacillus and Akkermansia. Importantly, the results of fecal microbiota transplantation (FMT) experiment further confirmed that gut microbiota involved in the protective effects of WGP on liver damage induced by OTA. Our results indicated that the protective effect of WGP on liver inflammation and gluconeogenesis dysfunction caused by OTA may be due to the regulation of gut microbiota.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Linjie Lv
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shanshan Shi
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Gaofeng Cai
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shuwen Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tianyu Zhu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinyue Su
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ningning Mao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Yue Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jin He
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
11
|
Hong Z, Zhou LS, Zhao ZZ, Yuan GQ, Wang XJ, Lu Y, Chen DF. Structural Characterization and Anticomplement Activity of an Acidic Heteropolysaccharide from Lysimachia christinae Hance. PLANTA MEDICA 2023; 89:1457-1467. [PMID: 37541436 DOI: 10.1055/a-2148-7163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
A novel acidic heteropolysaccharide (LCP-90-1) was isolated and purified from a traditional "heat-clearing" Chinese medicine, Lysimachia christinae Hance. LCP-90-1 (Mw, 20.65 kDa) was composed of Man, Rha, GlcA, Glc, Gal, and Ara, with relative molar ratios of 1.00: 3.00: 11.62: 1.31: 1.64: 5.24. The backbone consisted of 1,4-α-D-GlcpA, 1,4-α-D-Glcp, 1,4-β-L-Rhap, and 1,3,5-α-L-Araf, with three branches of β-D-Galp-(1 → 4)-β-L-Rhap-(1→, α-L-Araf-(1→ and α-D-Manp-(1→ attached to the C-5 position of 1,3,5-α-L-Araf. LCP-90-1 exhibited potent anticomplement activity (CH50: 135.01 ± 0.68 µg/mL) in vitro, which was significantly enhanced with increased glucuronic acid (GlcA) content in its degradation production (LCP-90-1-A, CH50: 28.26 ± 0.39 µg/mL). However, both LCP-90-1 and LCP90-1-A were inactivated after reduction or complete acid hydrolysis. These observations indicated the important role of GlcA in LCP-90-1 and associated derivatives with respect to anticomplement activity. Similarly, compared with LCP-90-1, the antioxidant activity of LCP-90-1-A was also enhanced. Thus, polysaccharides with a high content of GlcA might be important and effective substances of L. christinae.
Collapse
Affiliation(s)
- Zhou Hong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Li-Shuang Zhou
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhi-Zhi Zhao
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Guo-Qi Yuan
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiao-Jiang Wang
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yan Lu
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Dao-Feng Chen
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- School of Pharmacy, Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Wen C, Li T, Wang B, Jin C, Li S, Li Y, Li M, Ding K. A pectic polysaccharide isolated from Achyranthes bidentata is metabolized by human gut Bacteroides spp. Int J Biol Macromol 2023; 248:125785. [PMID: 37451376 DOI: 10.1016/j.ijbiomac.2023.125785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/10/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
Achyranthes bidentata (A. bidentata) is a famous traditional Chinese medicine (TGM) for treatment osteoporosis. Polysaccharides, a major factor for shaping the gut microbiota, are the primary ingredients of A. bidentata. However, bioactivity of A. bidentata polysaccharide on human gut microbiota (HGM) remains unknown. Here, a homogeneous pectic polysaccharide A23-1 with average molecular weight of 93.085 kDa was extracted and purified from A. bidentata. And A23-1 was compsed of rhamnose, glucuronic acid, galacturonic acid, glucose, galactose and arabinose in a molar ratio of 7.26: 0.76: 5.12: 2.54: 23.51: 60.81. GC-MS, partial acid hydrolysis and NMR results indicated the backbone of A23-1 was composed of 1, 2, 4-Rhap and 1, 4-GlapA, while the branches were composed of galactose, arabinose, glucose and glucuronic acid. Further, A23-1 was found to be degraded into monosaccharides and fragments. Taking Bacteroides thetaiotaomicron (BT) as a model, we suggested three polysaccharide utilization loci (PULs) might be involved in the A23-1 degradation. Degraded products generated by BO might not support the growth of probiotics. Besides, acetate and propionate as the main end products were generated by Bacteroides spp. and probiotics utilizing A23-1. These findings suggested A23-1 was possible one of food sources of human gut Bacteroides spp.
Collapse
Affiliation(s)
- Chang Wen
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, PR China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Tingting Li
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, PR China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Binqiang Wang
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, PR China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Can Jin
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Saijuan Li
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yun Li
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Meixia Li
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Kan Ding
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, PR China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China; Henan Polysaccharide Research Center, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, Henan, China.
| |
Collapse
|
13
|
Li S, Wu F, Gao P, Jin C, Wang Y, Liao W, Ding K. A novel peptidoglycan isolated from Semiaquilegia adoxoides inhibits Aβ 42 production via activating autophagy. Fitoterapia 2023; 169:105552. [PMID: 37257698 DOI: 10.1016/j.fitote.2023.105552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
The accumulation of amyloid β (Aβ) containing senile plaques is one of the key histopathological hallmarks of Alzheimer's disease (AD). Increasing evidences demonstrated the important role of autophagy in Aβ clearance. Recent studies implied that extracts from Semiaquilegia adoxoides (DC.) Makino could ameliorate the memory of D-galactose induced aging mice. However, the bioactive substance and underlying mechanism remains unknown. Thus, the present study sought to explore the effects of a novel homogenous peptidoglycan on Aβ42 secretion and the underlying mechanism. Briefly, we extracted a novel peptidoglycan named SA02C using hot water extraction and alcohol precipitation with the Mw of 13.72 kDa. SA02C contains 73.33% carbohydrate and 27.83% protein. The structure characterization revealed that its glycan part might mainly composed of galacturonic acid with minor rhamnose in backbone, and branched with glucose, galactose, arabinose, xylose and galacturonic acid. The protein or peptide moiety in SA02C was bonded to the polysaccharide via threonine. Bioactivities test showed that SA02C could reduce Aβ42 production in a dose dependent manner with no obvious cytotoxicity. Mechanism study demonstrated that SA02C could modulate APP processing by upregulating the expression of ADAM10, sAPPα and downregulating BACE1, sAPPβ. Furthermore, SA02C also could stimulate autophagy by promoting the expression of the markers of autophagy such as LC3B and ATG5, resulting in the promotion of Aβ42 phagocytosis.
Collapse
Affiliation(s)
- Saijuan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Fangge Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Pengcheng Gao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Can Jin
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, China
| | - Yuyong Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Wenfeng Liao
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Kan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, China.
| |
Collapse
|
14
|
Sun C, Chen X, Yang S, Jin C, Ding K, Chen C. LBP1C-2 from Lycium barbarum alleviated age-related bone loss by targeting BMPRIA/BMPRII/Noggin. Carbohydr Polym 2023; 310:120725. [PMID: 36925250 DOI: 10.1016/j.carbpol.2023.120725] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Age-related bone loss is unavoidable and effective safe drugs are in great need. The fruit of Lycium barbarum was recorded to strengthen bones in the "Ben Cao Gang Mu (Compendium of Materia Medica)". However, there lacks scientific explanation. Herein, we investigated L. barbarum water extract (LBE), L. barbarum polysaccharides (LBP) and the homogeneous polysaccharide LBP1C-2 on the bone loss in adult mouse, aging mouse and ovariectomized mouse models. LBE, LBP and LBP1C-2 all markedly increased bone mass and bone strength in these models and promoted osteoblast proliferation, differentiation and ossification. Mechanistic studies showed that LBP1C-2 binds directly to the BMP receptors (BMPRIA and BMPRII) and noggin, activates the phosphorylation of Smad and disrupts the interaction between noggin and BMPs. Our results clearly elucidate the mechanism, the critical component and the direct targets of L. barbarum and provide potentially safe natural products and new drug candidate against age-related bone loss.
Collapse
Affiliation(s)
- Chuanxin Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xia Chen
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Shangpo Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Jin
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China
| | - Kan Ding
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan 528400, Guangdong, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Institute for Brain Disorders, Beijing 100069, China.
| |
Collapse
|
15
|
Li S, Li T, Wang B, Wen C, Li M, Ding K. A structure defined pectin SA02B from Semiaquilegia adoxoides is metabolized by human gut microbes. Int J Biol Macromol 2023; 234:123673. [PMID: 36801222 DOI: 10.1016/j.ijbiomac.2023.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Polysaccharide is one of the major factors for shaping the gut microbiota. However, bioactivity of polysaccharide isolated from Semiaquilegia adoxoides on human gut microbiota remains unclear. Thus, we hypothesize gut microbes may act on it. Herein, pectin SA02B from the roots of Semiaquilegia adoxoides with molecular weight 69.26 kDa was elucidated. The backbone of SA02B was composed of alternate 1, 2-linked α-Rhap and 1, 4-linked α-GalpA, with branches of terminal (T) -, 1, 4-, 1, 3- and 1, 3, 6-linked β-Galp, T-, 1, 5- and 1, 3, 5-linked α-Araf and T-, 1, 4-linked-β-Xylp substituted at C-4 of 1, 2, 4-linked α-Rhap. Bioactivity screening showed SA02B promoted the growth of Bacteroides spp. which deconstructed it into monosaccharide. Simultaneously, we observed competition might exist between Bacteroides spp. and probiotics. Besides, we found that both Bacteroides spp. and probiotics could generate SCFAs grown on SA02B. Our findings highlight SA02B may deserve as a prebiotic to be explored to benefit the health gut microbiota.
Collapse
Affiliation(s)
- Saijuan Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; Kweichow Maotai Hospital, Zunyi Medical University, Zhongshu Central Street, Renhuai 564500, China
| | - Tingting Li
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Binqiang Wang
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chang Wen
- School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Meixia Li
- Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| | - Kan Ding
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; School of Pharmacy, Zunyi Medical University, 201 Dalian Road, Zunyi 563003, China; Glycochemistry and Glycobiology Lab, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.
| |
Collapse
|
16
|
Song J, Zhang Y, Zhu Y, Jin X, Li L, Wang C, Zhou Y, Li Y, Wang D, Hu M. Structural characterization and anti-osteoporosis effects of polysaccharide purified from Eucommia ulmoides Oliver cortex based on its modulation on bone metabolism. Carbohydr Polym 2023; 306:120601. [PMID: 36746570 DOI: 10.1016/j.carbpol.2023.120601] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/28/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
EuOCP3, with a molecular weight of 38.1 kDa, is an acidic polysaccharide purified from Eucommia ulmoides Oliver cortex. Herein, we determined that the main backbone of EuOCP3 was predominantly composed of →4)-α-GalpA-(1 → 4)-α-GalpA-(1→, →4)-α-GalpA-(1 → 5)-α-Araf-(1→, →4)-α-GalpA-(1 → 2)-α-Rhap-(1→, and →4)-α-GalpA-(1 → 5)-α-Araf-(1 → 2)-α-Rhap-(1 → repeating blocks, which were connected by →2,3,5)-α-Araf-(1→. The side chains, substituted at C-2 and C-5 of →2,3,5)-α-Araf-(1→, contained T-β-Araf→ and T-β-Araf → 4)-α-GalpA-(1 → residues. In dexamethasone (Dex)-induced osteoporosis (OP) mice, EuOCP3 treatment restored cortical bone thickness, increased mineralized bone area, enhanced the number of osteoblasts, and decreased the number of osteoclasts on the surface of cortical bone. Combining analysis of gut microflora, serum metabolite profiles, and biological detection results, we demonstrated that EuOCP3 regulated the abundance of specific species within the gut microflora, such as g_Dorea and g_Prevotella, and ameliorated oxidative stress. In turn, enhancement of osteogenic function and restoration of bone metabolism via the extracellular signal-regulated kinase (ERK)/c-Jun N-terminal kinase (JNK)/nuclear factor erythroid-2 related factor 2 (Nrf2) signaling pathway was indicated. The current findings contribute to understanding the potential of EuOCP3 in anti-OP treatment.
Collapse
Affiliation(s)
- Jiyu Song
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Ying Zhou
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Yutong Li
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China.
| | - Min Hu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun 130021, China.
| |
Collapse
|
17
|
Yu Z, Xia M, Lan J, Yang L, Wang Z, Wang R, Tao H, Shi Y. A comprehensive review on the ethnobotany, phytochemistry, pharmacology and quality control of the genus Lycium in China. Food Funct 2023; 14:2998-3025. [PMID: 36912477 DOI: 10.1039/d2fo03791b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The Lycium genus, perennial herbs of the Solanaceae family, has been an important source of medicines and nutrient supplements for thousands of years in China, where seven species and three varieties are cultivated. Among these, Lycium barbarum L. and Lycium chinense Mill., two "superfoods", together with Lycium ruthenicum Murr, have been extensively commercialized and studied for their health-related properties. The dried ripe fruits of the genus Lycium are well recognized as functional foods for the management of various ailments including waist and knee pain, tinnitus, impotence, spermatorrhea, blood deficiency and weak eyes since ancient times. Phytochemical studies have reported numerous chemical components in the Lycium genus, categorized as polysaccharides, carotenoids, polyphenols, phenolic acids, flavonoids, alkaloids and fatty acids, and its therapeutic roles in antioxidation, immunomodulation, antitumor treatment, hepatoprotection and neuroprotection have been further confirmed by modern pharmacological studies. As a multi-functional food, the quality control of Lycium fruits has also attracted attention internationally. Despite its popularity in research, limited systematic and comprehensive information has been provided on the Lycium genus. Therefore, herein, we provide an up-to-date review of the distribution, botanical features, phytochemistry, pharmacology and quality control of the Lycium genus in China, which will provide evidence for further in-depth exploration and comprehensive utilization of Lycium, especially its fruits and active ingredients in the healthcare field.
Collapse
Affiliation(s)
- Zhonglian Yu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Mengqin Xia
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiping Lan
- Experiment center for teaching & learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rui Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hongxun Tao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212016, China
| | - Yanhong Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Institute of TCM International Standardization, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
18
|
Wang H, Li Y, Dai Y, Ma L, Di D, Liu J. Screening, structural characterization and anti-adipogenesis effect of a water-soluble polysaccharide from Lycium barbarum L. by an activity-oriented approach. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
19
|
Liang X, Liu M, Guo S, Zhang F, Cui W, Zeng F, Xu M, Qian D, Duan J. Structural elucidation of a novel arabinogalactan LFP-80-W1 from Lycii fructus with potential immunostimulatory activity. Front Nutr 2023; 9:1067836. [PMID: 36687689 PMCID: PMC9846619 DOI: 10.3389/fnut.2022.1067836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Polysaccharides are the most important effective components of Lycii fructus, which has a variety of biological activities and broad application prospects in the fields of medicine and food. In this study, we reported a novel arabinogalactan LFP-80-W1 with potential immunostimulatory activity. LFP-80-W1 was a continuous symmetrical single-peak with an average molecular weight of 4.58 × 104 Da and was mainly composed of arabinose and galactose. Oligosaccharide sequencing analyses and NMR data showed that the LFP-80-W1 domain consists of a repeated 1,6-linked β-Galp main chain with branches arabinoglycan and arabinogalactan at position C-3. Importantly, we found that LFP-80-W1 could activate the MAPK pathway and promote the release of NO, IL-6, and TNF-α cytokines in vitro. Therefore, our findings suggest that the homogeneous arabinogalactan from Lycii fructus, can be used as a natural immunomodulator.
Collapse
Affiliation(s)
- Xiaofei Liang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Mengqiu Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,*Correspondence: Sheng Guo,
| | - Fang Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Wanchen Cui
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Fei Zeng
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Mingming Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China
| | - Dawei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,Ningxia Innovation Center of Goji R&D, Yinchuan, China
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China,National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, China,Jinao Duan,
| |
Collapse
|
20
|
Ultrafiltration isolation, structure and effects on H1N1-induced acute lung injury of a heteropolysaccharide from Houttuynia cordata. Int J Biol Macromol 2022; 222:2414-2425. [DOI: 10.1016/j.ijbiomac.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/14/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
|
21
|
Deng C, Chen H, Meng Z, Meng S. Roles of traditional chinese medicine regulating neuroendocrinology on AD treatment. Front Endocrinol (Lausanne) 2022; 13:955618. [PMID: 36213283 PMCID: PMC9533021 DOI: 10.3389/fendo.2022.955618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/01/2022] [Indexed: 11/20/2022] Open
Abstract
The incidence of sporadic Alzheimer's disease (AD) is increasing in recent years. Studies have shown that in addition to some genetic abnormalities, the majority of AD patients has a history of long-term exposure to risk factors. Neuroendocrine related risk factors have been proved to be strongly associated with AD. Long-term hormone disorder can have a direct detrimental effect on the brain by producing an AD-like pathology and result in cognitive decline by impairing neuronal metabolism, plasticity and survival. Traditional Chinese Medicine(TCM) may regulate the complex process of endocrine disorders, and improve metabolic abnormalities, as well as the resulting neuroinflammation and oxidative damage through a variety of pathways. TCM has unique therapeutic advantages in treating early intervention of AD-related neuroendocrine disorders and preventing cognitive decline. This paper reviewed the relationship between neuroendocrine and AD as well as the related TCM treatment and its mechanism. The advantages of TCM intervention on endocrine disorders and some pending problems was also discussed, and new insights for TCM treatment of dementia in the future was provided.
Collapse
Affiliation(s)
- Chujun Deng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Huize Chen
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Zeyu Meng
- The Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shengxi Meng
- Department of Traditional Chinese Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
22
|
Zhang F, Zhang X, Liang X, Wu K, Cao Y, Ma T, Guo S, Chen P, Yu S, Ruan Q, Xu C, Liu C, Qian D, Duan JA. Defensing against oxidative stress in Caenorhabditis elegans of a polysaccharide LFP-05S from Lycii fructus. Carbohydr Polym 2022; 289:119433. [DOI: 10.1016/j.carbpol.2022.119433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022]
|
23
|
Wu D, Chen S, Ye X, Zheng X, Ahmadi S, Hu W, Yu C, Cheng H, Linhardt RJ, Chen J. Enzyme-extracted raspberry pectin exhibits a high-branched structure and enhanced anti-inflammatory properties than hot acid-extracted pectin. Food Chem 2022; 383:132387. [PMID: 35182862 DOI: 10.1016/j.foodchem.2022.132387] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 01/17/2023]
Abstract
To characterize the structure of purified raspberry pectin and discuss the impact of different extraction methods on the pectin structure, raspberry pectin was extracted by hot-acid and enzyme method and purified by stepwise ethanol precipitation and ion-exchange chromatography isolation. Enzyme-extracted raspberry pectin (RPE50%-3) presented relatively intact structure with molecular weight of 5 × 104 g/mol and the degree of methylation was 39%. The 1D/2D NMR analysis demonstrated RPE50%-3 was a high-branched pectin mainly containing 50% homogalacturonan, 16% branched α-1,5-arabinan and α-1,3-arabinan, 18% β-1,4-galactan and β-1,6-galactan. Acid-extracted raspberry pectin (RPA50%-3) contained less arabinan than RPE50%-3. Moreover, RPE50%-3 inhibited the nitric oxide (NO), TNF-α, IL-6 production of lipopolysaccharide-induced macrophages by 67%, 22% and 46% at the dosage of 200 ug/mL, while the inhibitory rate of RPA50%-3 were 33%, 9%, and 1%, respectively. These results suggested that enzyme-extracted raspberry pectin contained more arabinan sidechains and exhibited better immunomodulatory effect.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Xiaoliang Zheng
- Center for Molecular Medicine, Hangzhou Medical College, Hangzhou 310013, China
| | - Shokouh Ahmadi
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Chengxiao Yu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Zhejiang International Scientific and Technological Cooperation Base of Health Food Manufacturing and Quality Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
24
|
Lycium Genus Polysaccharide: An Overview of its Extraction, Structures, Pharmacological Activities and Biological Applications. SEPARATIONS 2022. [DOI: 10.3390/separations9080197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polysaccharide is considered to be the main active ingredient of the genus Lycium L., which is taken from the dried fruit of the famous Chinese herbal medicine and precious tonic known as wolfberry. Traditional uses include nourishing the liver and kidney and improving eyesight, with widespread use in the clinical practice of traditional Chinese medicine. Many studies have focused on the isolation and identification of the genus Lycium L. polysaccharide and its biological activities. However, the variety of raw materials and the mechanisms of polysaccharides differ. After extraction, the structure and biological activity of the obtained polysaccharides also differ. To date, approximately 58 kinds of polysaccharides have been isolated and purified from the Lycium genus, including water-soluble polysaccharides; homogeneous polysaccharides; pectin polysaccharides; acidic heteropolysaccharides; and arabinogalactans, which are composed of arabinose, glucosamine, galactose, glucose, xylose, mannose, fructose, ribose, galacturonic acid, and glucuronic acid. Pharmacological studies have shown that LBPs exhibit a variety of important biological activities, such as protection of nerves; promotion of reproduction; and anti-inflammatory, hepatoprotective, hypoglycemic, and eyesight-improving activities. The aim this paper is to summarize previous and current references to the isolation process, structural characteristics, and biological activities of the genus Lycium L. polysaccharide. This review will provide a useful reference for further research and application of the genus Lycium L. polysaccharide in the field of functional food and medicine.
Collapse
|
25
|
Wu D, Chen S, Ye X, Ahmadi S, Hu W, Yu C, Zhu K, Cheng H, Linhardt RJ, He Q. Protective effects of six different pectic polysaccharides on DSS-induced IBD in mice. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Sun Q, Du M, Kang Y, Zhu MJ. Prebiotic effects of goji berry in protection against inflammatory bowel disease. Crit Rev Food Sci Nutr 2022:1-25. [PMID: 34991393 DOI: 10.1080/10408398.2021.2015680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The prevalence of inflammatory bowel disease (IBD) is increasing, which is concerning because IBD is a known risk factor for the development of colorectal cancer. Emerging evidence highlights environmental factors, particularly dietary factors and gut microbiota dysbiosis, as pivotal inducers of IBD onset. Goji berry, an ancient tonic food and a nutraceutical supplement, contains a range of phytochemicals such as polysaccharides, carotenoids, and polyphenols. Among these phytochemicals, L. barbarum polysaccharides (LBPs) are the most important functional constituents, which have protective effects against oxidative stress, inflammation, and neurodegeneration. Recently, the beneficial effects of goji berry and associated LBPs consumption were linked to prebiotic effects, which can prevent dysbiosis associated with IBD. This review assessed pertinent literature on the protective effects of goji berry against IBD focusing on the gut microbiota and their metabolites in mediating the observed beneficial effects.
Collapse
Affiliation(s)
- Qi Sun
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, Washington, USA
| | - Yifei Kang
- School of Food Science, Washington State University, Pullman, Washington, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, Washington, USA
| |
Collapse
|
27
|
Liu J, Li Y, Pu Q, Qiu H, Di D, Cao Y. A polysaccharide from Lycium barbarum L.: Structure and protective effects against oxidative stress and high-glucose-induced apoptosis in ARPE-19 cells. Int J Biol Macromol 2021; 201:111-120. [PMID: 34968548 DOI: 10.1016/j.ijbiomac.2021.12.139] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/27/2022]
Abstract
Lycium barbarum polysaccharides (LBPs) are beneficial for vision; however, relevant research has mainly focused on entire crude polysaccharides, with the basis and exact structure of the polysaccharide rarely explored. In this study, LICP009-3F-2a, a novel polysaccharide from Lycium barbarum L., was separated and then purified using anion-exchange and size-exclusion chromatography. Structural characteristics were investigated using chemical and spectroscopic methods, which revealed that LICP009-3F-2a has an Mw of 13720 Da and is an acidic heteropolysaccharide composed of rhamnose (39.1%), arabinose (7.4%), galactose (22.5%), glucose (8.3%), galacturonic acid (13.7%), and glucuronic acid (4.0%). Linkage and NMR data revealed that LICP009-3F-2a has the following backbone: →2)-α-L-Rha-(1→2,4)-α-L-Rha- (1→4)-α-D-GalAp-(1→3,6)-β-D-Galp-(1→3,6)-β-D-Galp-(1→6)-β-D-Galp-(1→, with three main branches, including: α-L-Araf-(1→5)-α-L-Araf-(1→6)-β-D-Glcp-(1→2,4)-α-L-Rha-(1→, β-D-Glcp-(1→4)-β-D-Glcp-(1→3,6)-β-D-Galp-(1→, and β-D-Galp-(1→3)-β-D-Galp-(1→3,6) -β-D-Galp-(1→. Differential scanning colorimetry and thermogravimetric analysis showed that LICP009-3F-2a is thermally stable, while X-ray diffractometry showed that LICP009-3F-2a has a semi-crystalline structure. In addition, LICP009-3F-2a protects ARPE-19 cells from H2O2-induced oxidative damage by regulating the expression of antioxidant SOD1 and CAT enzymes and down-regulating MMP2 expression. Moreover, LICP009-3F-2a promotes the proliferation of ARPE-19 cells in a concentration-dependent manner, and protects ARPE-19 cells from hyperglycemia by inhibiting apoptosis.
Collapse
Affiliation(s)
- Jianfei Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunchun Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiaosheng Pu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duolong Di
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Youlong Cao
- National Wolfberry Engineering Research Center, Yinchuan 750002, Ningxia, China.
| |
Collapse
|
28
|
Mao XY, Yin XX, Guan QW, Xia QX, Yang N, Zhou HH, Liu ZQ, Jin WL. Dietary nutrition for neurological disease therapy: Current status and future directions. Pharmacol Ther 2021; 226:107861. [PMID: 33901506 DOI: 10.1016/j.pharmthera.2021.107861] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023]
Abstract
Adequate food intake and relative abundance of dietary nutrients have undisputed effects on the brain function. There is now substantial evidence that dietary nutrition aids in the prevention and remediation of neurologic symptoms in diverse pathological conditions. The newly described influences of dietary factors on the alterations of mitochondrial dysfunction, epigenetic modification and neuroinflammation are important mechanisms that are responsible for the action of nutrients on the brain health. In this review, we discuss the state of evidence supporting that distinct dietary interventions including dietary supplement and dietary restriction have the ability to tackle neurological disorders using Alzheimer's disease, Parkinson's disease, stroke, epilepsy, traumatic brain injury, amyotrophic lateral sclerosis, Huntington's disease and multiple sclerosis as examples. Additionally, it is also highlighting that diverse potential mechanisms such as metabolic control, epigenetic modification, neuroinflammation and gut-brain axis are of utmost importance for nutrient supply to the risk of neurologic condition and therapeutic response. Finally, we also highlight the novel concept that dietary nutrient intervention reshapes metabolism-epigenetics-immunity cycle to remediate brain dysfunction. Targeting metabolism-epigenetics-immunity network will delineate a new blueprint for combating neurological weaknesses.
Collapse
Affiliation(s)
- Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Xi-Xi Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qi-Wen Guan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Qin-Xuan Xia
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Nan Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, PR China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
29
|
Abstract
Wolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.
Collapse
|
30
|
Zeng H, Li P, Zhou L, Ding K. A novel pectin from Polygala tenuifolia blocks Aβ 42 aggregation and production by enhancing insulin-degradation enzyme and neprilysin. Int J Biol Macromol 2020; 161:35-43. [PMID: 32473218 DOI: 10.1016/j.ijbiomac.2020.05.212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/11/2020] [Accepted: 05/25/2020] [Indexed: 01/31/2023]
Abstract
More and more evidences show that pectin polysaccharide may have impact on Aβ42, one important molecule implicated in Alzhemer's disease pathology. We speculate special structural motif of pectin might have better bioactivity on Aβ42. To address this hypothesis, we reported structure and impact of a novel pectin RP02-1 with the molecular weight of 116.0 kDa from roots of Polygala tenuifolia on Aβ42 aggregation and production and the underlying mechanism. Its structure is characterized as a backbone of alternate 1, 2, 4-linked α-Rhap and 1, 4-linked α-GalpA, with branches of terminal (T) -, 1, 3-,1, 4-, 1, 6- and 1, 3, 6-linked β-Galp, T-, 1, 5- and 1, 3, 5-linked α-Araf substituted at C-4 of 1, 2, 4-linked α-Rhap. Bioactivity study shows that this pectin may significantly block the aggregation of Aβ42. We further show that RP02-1 suppresses Aβ42 production with no apparent cytotoxicity in both CHO/APPBACE1 and HEK293-APPsw cells. Mechanism study demonstrates that RP02-1 may enhance the expression of insulin-degradation enzyme (IDE) and neprilysin (NEP), which are the main enzymes involved in Aβ degradation. These results suggest that RP02-1 may be a candidate leading compound for anti-Alzheimer's disease new drug development by attenuating Aβ42 production and inhibiting Aβ42 aggregation.
Collapse
Affiliation(s)
- Hui Zeng
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Piaopiao Li
- School of Basic Medicine, Nanchang University; Nanchang 330006, PR China; Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China
| | - Lishuang Zhou
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Kan Ding
- Glycochemistry and Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
31
|
Zhou Y, Duan Y, Huang S, Zhou X, Zhou L, Hu T, Yang Y, Lu J, Ding K, Guo D, Cao X, Pei G. Polysaccharides from Lycium barbarum ameliorate amyloid pathology and cognitive functions in APP/PS1 transgenic mice. Int J Biol Macromol 2020; 144:1004-1012. [PMID: 31715236 DOI: 10.1016/j.ijbiomac.2019.09.177] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/29/2019] [Accepted: 09/22/2019] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most common degenerative disease of the central nervous system. It is associated with abnormal accumulation of amyloid-β (Aβ) plaques, impaired neurogenesis, and damaged cognitive functions. We have known for a long time that natural compounds and their derivatives have gained increasing attention in AD drug research due to their multiple effects and inherently enormous chemicals. In this study, we will demonstrate that polysaccharides from L. barbarum (LBP1), a traditional natural compound, can reduce Aβ level and improve the cognitive functions in APP/PS1 transgenic mouse. LBP1 can enhance neurogenesis as indicated by BrdU/NeuN double labeling. Furthermore, it can restore synaptic dysfunction at hippocampus CA3-CA1 pathway. Additionally, in vitro cell assay indicates that LBP1 may affect Aβ processing. In conclusion, our study indicates that LBP1 might be a potential therapeutic agent for the treatment of AD against multiple targets that include synaptic plasticity, Aβ pathology and neuropathology.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yanhong Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Shichao Huang
- School of Life Science and Technology, the Collaborative Innovation Center for Brain Science, Tongji University, Shanghai 200092, China
| | - Xuan Zhou
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China
| | - Lishuang Zhou
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingting Hu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongfeng Yang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xiaohua Cao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Life Science, East China Normal University, Shanghai, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101,China.
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
32
|
Zhang S, He F, Chen X, Ding K. Isolation and structural characterization of a pectin from Lycium ruthenicum Murr and its anti-pancreatic ductal adenocarcinoma cell activity. Carbohydr Polym 2019; 223:115104. [DOI: 10.1016/j.carbpol.2019.115104] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
|