1
|
Wang X, Fu S, Han Y, Yang X, Wang J, Yang X. Ursolic acid- betulinic acid-CCM NPs: A delivery system for improving the stability and bioavailability of CCM. Food Res Int 2025; 205:115947. [PMID: 40032459 DOI: 10.1016/j.foodres.2025.115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/24/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
The research constructed a co-assembly nanoparticles (NPs) of ursolic acid (UA) and betulinic acid (BA) as carriers to load the active substance curcumin (CCM) by co-precipitation method, aiming to improve the stability and bioavailability of CCM in the human body and enabling CCM to play more functions in the production of functional foods. The average particle size of UA-BA-CCM NPs was 222.6 nm and zeta potential was -26.63 mV. The UA-BA-CCM NPs had small size and great stability. The drug loading was up to 20.42 %. Moreover, the hydrogen bonds and π-π stacking existed in the three molecules. The result was verified by Molecular Dynamics Simulation, FITR, and UV experiments. In simulated in vitro release experiments, the release rate of the NPs was lower than free CCM in gastric phase, improving CCM bioavailability. Meanwhile, the UA-BA-CCM NPs performed better clearing free radicals than free CCM. Thus, UA-BA-CCM NPs delivery system not only could improve stability and bioavailability of CCM, but also might make CCM play a role in the functional food.
Collapse
Affiliation(s)
- Xiaoting Wang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001 China
| | - Shiyao Fu
- Institute of Plant Virology, Ningbo University, Ningbo 315000 China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 China
| | - Ying Han
- Institute of Plant Virology, Ningbo University, Ningbo 315000 China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 China
| | - Xuening Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001 China
| | - Jing Wang
- Institute of Plant Virology, Ningbo University, Ningbo 315000 China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001 China; Institute of Plant Virology, Ningbo University, Ningbo 315000 China.
| |
Collapse
|
2
|
Qin Z, Ng W, Ede J, Shatkin JA, Feng J, Udo T, Kong F. Nanocellulose and its modified forms in the food industry: Applications, safety, and regulatory perspectives. Compr Rev Food Sci Food Saf 2024; 23:e70049. [PMID: 39495568 DOI: 10.1111/1541-4337.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/16/2024] [Accepted: 10/02/2024] [Indexed: 11/06/2024]
Abstract
Nanocellulose (NC), known for its unique properties including high mechanical strength, low density, and extensive surface area, presents significant potential for broad application in the food sector. Through further modification, NC can be enhanced and adapted for various purposes. Applications in the food industry include stabilizing, encapsulating, and packaging material. Additionally, due to its unique characteristics during digestion in the gastrointestinal tract, NC and its derivatives exhibit the potential to be used as health-promotion food ingredients. However, while the safety data on unmodified NC is readily available, the safety of modified forms of NC for use in food remains uncertain. This review offers a comprehensive analysis of recent breakthroughs in NC and its derivatives for innovative food applications. It synthesizes existing research on safety evaluations, with a particular emphasis on the latest findings on toxicity and biocompatibility. Furthermore, the paper outlines the regulatory landscape for NC-based food ingredients and food contact materials in the United States and European Union and provides recommendations to expedite regulatory authorization and commercialization. Ultimately, this work offers valuable insights to promote the sustainable and innovative application of NC compounds in the food sector.
Collapse
Affiliation(s)
- Zijin Qin
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Wei Ng
- Vireo Advisors, LLC, Boston, Massachusetts, USA
| | - James Ede
- Vireo Advisors, LLC, Boston, Massachusetts, USA
| | | | - Jiannan Feng
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Toshifumi Udo
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, Clarke, Athens, Georgia, USA
| |
Collapse
|
3
|
Yong HW, Ojagh SMA, Théberge-Julien G, Castellanos LSR, Tebbji F, van de Ven TGM, Sellam A, Rhéaume É, Tardif JC, Kakkar A. Soft nanoparticles as antimicrobial agents and carriers of microbiocides for enhanced inhibition activity. J Mater Chem B 2024; 12:9296-9311. [PMID: 39158840 DOI: 10.1039/d4tb01200c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Antibiotic resistance continues to pose significant health challenges. Considering severe limitations in the discovery and supply of new antibiotics, there is an unmet need to design alternative and more effective strategies for addressing this global issue. Use of polymeric nanoparticles with cationic shell surfaces offers a highly promising approach to coupling their inherent bactericidal action with sustained delivery of small lipophilic microbicides. We have utilized this platform for assembling multi-tasking soft core-shell nanoparticles from star polymers with the desired asymmetric arm composition. These stable nanoparticles with low critical micelle concentration imparted intrinsic antimicrobial potency due to high positive charge density in the corona, as well as the loading of active biocidal agents (such as curcumin and terbinafine) for potential dual and coadjuvant inhibition. This strategic combination allows for both immediate (direct contact) and extended (drug delivery) antibacterial activities for better therapeutic efficacy. Micellar nanoparticles with and without therapeutic cargo were highly efficient against both Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis), representative Gram-negative and Gram-positive bacteria, respectively. Interestingly, we observed bacteria- and concentration-dependent effects, in which higher concentrations of charged nanoparticles were more effective against E. coli, whereas B. subtilis was inhibited only at lower concentrations. This work highlights a valuable platform to achieve combination therapy through nanoparticles with charged coronas and delivery of potent therapeutics to overcome antimicrobial resistance.
Collapse
Affiliation(s)
- Hui Wen Yong
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Seyed Mohammad Amin Ojagh
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Gabriel Théberge-Julien
- Research Centre, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
| | | | - Faiza Tebbji
- Research Centre, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
| | - Theo G M van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| | - Adnane Sellam
- Research Centre, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Éric Rhéaume
- Research Centre, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
- Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Jean-Claude Tardif
- Research Centre, Montréal Heart Institute, 5000 Belanger Street, Montréal, Québec H1T 1C8, Canada.
- Department of Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec H3A 0B8, Canada.
| |
Collapse
|
4
|
Ly TB, Bui BTA, Nguyen YTH, Le KA, Tran VT, Le PK. Innovative ultrasonic emulsification of cinnamon essential oil pickering emulsion stabilized by rice straw-derived cellulose nanocrystals. Int J Biol Macromol 2024; 276:134084. [PMID: 39084991 DOI: 10.1016/j.ijbiomac.2024.134084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024]
Abstract
For the first time, ultrasonic emulsification was studied for cinnamon essential oil (CEO) Pickering emulsion, stabilized by cellulose nanocrystal (CNC) from rice straw. Sonication proved to be an effective method for emulsifying CEO, creating small emulsion droplets around 700 nm in size, with an even dispersion characterized through a low polydispersity index. The biomass-derived CNC exhibits high encapsulation efficiency (> 95 %) with varying CEO concentration (5-25 vol%), creating droplets with negative surface charge with limited aggregation of emulsions. Optimization through the Box Behnken design using response surface methodology provides a model for the interaction and effects of variables towards the formulation. Optimal condition was concluded to be at 11.47 vol% CEO, 0.84 wt/vol% CNC and at 6 sonication cycles. The optimized Pickering emulsions retain the antimicrobial properties of CEO, with a large inhibition zone and low MIC value of around 0.048 vol% CEO. DPPH inhibition assay indicates that the emulsification process enhances the antioxidation properties of cinnamon essential oil, expressed through a lower IC50 of 0.90 vol% CEO, in comparison to pure essential oil at 1.33 vol% CEO. Overall, this research proposes a novel approach towards using nanocellulose as carriers for essential oil with potential in a large variety of applications.
Collapse
Affiliation(s)
- Tuyen B Ly
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Bup T A Bui
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Yen T H Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung ward, Thu Duc City, Ho Chi Minh City, Viet Nam; Institute for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung Street, Phu Nhuan District, Ho Chi Minh City, Viet Nam
| | - Kien A Le
- Institute for Tropical Technology and Environmental Protection, 57A Truong Quoc Dung Street, Phu Nhuan District, Ho Chi Minh City, Viet Nam
| | - Viet T Tran
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Phung K Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City, Linh Trung ward, Thu Duc City, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
5
|
Pocasap P, Tamprasit K, Rungsri T, Kaimuangpak K, Srisongkram T, Katekaew S, Kamwilaisak K, Puthongking P, Weerapreeyakul N. Pickering Emulsion of Oleoresin from Dipterocarpus alatus Roxb. ex G. Don and Its Antiproliferation in Colon (HCT116) and Liver (HepG2) Cancer Cells. Molecules 2024; 29:2695. [PMID: 38893569 PMCID: PMC11174047 DOI: 10.3390/molecules29112695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Oleoresin of Dipterocarpus alatus Roxb. ex G. Don (DA) has been traditionally used for local medicinal applications. Several in vitro studies have indicated its pharmacological potential. However, the low water solubility hinders its use and development for pharmaceutical purposes. The study aimed to (1) formulate oil-in-water (o/w) Pickering emulsions of DA oleoresin and (2) demonstrate its activities in cancer cells. The Pickering emulsions were formulated using biocompatible carboxylated cellulose nanocrystal (cCNC) as an emulsifier. The optimized emulsion comprised 3% (F1) and 4% (v/v) (F2) of oleoresin in 1% cCNC and 0.1 M NaCl, which possessed homogeneity and physical stability compared with other formulations with uniform droplet size and low viscosity. The constituent analysis indicated the presence of the biomarker dipterocarpol in both F1 and F2. The pharmacological effects of the two emulsions were demonstrated in vitro against two cancer cell lines, HepG2 and HCT116. Both F1 and F2 suppressed cancer cell viability. The treated cells underwent apoptosis, as demonstrated by distinct nuclear morphological changes in DAPI-stained cells and Annexin V/PI-stained cells detected by flow cytometry. Our study highlights the prospect of Pickering emulsions for oleoresin, emphasizing enhanced stability and potential pharmacological advantages.
Collapse
Affiliation(s)
- Piman Pocasap
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Kawintra Tamprasit
- Graduate School in the Program of Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (K.T.); (K.K.)
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Thanyathanya Rungsri
- Faculty of Pharmaceutical Sciences in the Program of Doctor of Pharmacy, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Karnchanok Kaimuangpak
- Graduate School in the Program of Research and Development in Pharmaceuticals, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (K.T.); (K.K.)
| | - Tarapong Srisongkram
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Somporn Katekaew
- Department of Biochemistry, Faculty of Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Khanita Kamwilaisak
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Ploenthip Puthongking
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Natthida Weerapreeyakul
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen 40002, Thailand;
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| |
Collapse
|
6
|
Du Y, Niu L, Song X, Niu J, Zhang C, Zhi K. Dual-modified starch as particulate emulsifier for Pickering emulsion: Structure, safety properties, and application for encapsulating curcumin. Int J Biol Macromol 2024; 266:131206. [PMID: 38574919 DOI: 10.1016/j.ijbiomac.2024.131206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
In this study, cinnamic acid modified acid-ethanol hydrolyzed starch (CAES) with different degrees of substitution (DS) was fabricated to stabilize Pickering emulsions and probed their application for encapsulating curcumin (Cur). Successful preparation of CAES (with DS from 0.016 to 0.191) was confirmed by 1H NMR and FT-IR, and their physicochemical properties were characterized by XRD, SEM, and TGA. The biosafety evaluations and surface wettability confirmed the excellent safety and amphiphilic character of CAES. CAES-stabilized Pickering emulsion (CS-PE) exhibited different emulsion stability at different DS, with CS-PE (0.031) showing the highest stability. CLSM revealed that the CAES (0.031) formed a dense barrier on the surface of the oil droplets, preventing them from coalescing. The CS-PE (0.031) achieved effective encapsulation of Cur (up to 96.2 %). Compared with free Cur, CS-PE (0.031) exhibited better photochemical stability, higher free fatty acids (FFA) release, and enhanced bioaccessibility. These studies suggested that CAES may serve as a promising emulsifier for stabilizing Pickering emulsions to encapsulate and deliver hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Yanjin Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lingling Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinkun Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jihan Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Kangkang Zhi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest Normal University, Lanzhou, Gansu 730070, China; Institute of New Rural Development, Northwest Normal University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
7
|
Zhang L, Li X, Xu X, Song L, Bi A, Wu C, Ma Y, Du M. Semisolid medium internal phase emulsions stabilized by dendritic-like mushroom cellulose nanofibrils: Concentration effect and stabilization mechanism. Food Chem 2024; 436:137693. [PMID: 37832422 DOI: 10.1016/j.foodchem.2023.137693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Emulsions with reduced fat and natural stabilizers are currently prevalent. Herein, semisolid emulsions with an oil phase of 50 % were successfully prepared using cellulose nanofibrils from mushroom stipes as stabilizers. Cellulose nanofibrils obtained by high-pressure homogenization were dendritic-like and possessed a contact angle of 70.50 ± 0.41°. The rheological properties and stability of emulsions increased significantly as nanocellulose concentrations increased from 5 to 20 mg/mL, while nanocellulose at 25-30 mg/mL significantly reduced the storage stability and anti-lipid oxidation ability of emulsions. The microstructure of semisolid emulsions demonstrated that nanocellulose fibers at 20 mg/mL could stabilize emulsions by forming compact interfacial films around droplets and creating intensive bridging networks between neighboring droplets, while nanofibers at concentrations over 20 mg/mL easily clustered in the aqueous phase, making the droplets more susceptible to aggregation and demulsification. The results demonstrate that cellulose nanofibrils from mushroom byproducts have the potential to stabilize semisolid food-grade emulsions.
Collapse
Affiliation(s)
- Ling Zhang
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xiang Li
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Xianbing Xu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Liang Song
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Anqi Bi
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Chao Wu
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yunjiao Ma
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
8
|
Confessor MVA, Agreles MAA, Campos LADA, Silva Neto AF, Borges JC, Martins RM, Scavuzzi AML, Lopes ACS, Kretzschmar EADM, Cavalcanti IMF. Olive oil nanoemulsion containing curcumin: antimicrobial agent against multidrug-resistant bacteria. Appl Microbiol Biotechnol 2024; 108:241. [PMID: 38413482 PMCID: PMC10899360 DOI: 10.1007/s00253-024-13057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 02/29/2024]
Abstract
The present work aimed to develop, characterize, and evaluate the antibacterial and antibiofilm activity of two nanoemulsions (NEs) containing 500 µg/mL of curcumin from Curcuma longa (CUR). These NEs, produced with heating, contain olive oil (5%) and the surfactants tween 80 (5%) and span 80 (2.5%), water q.s. 100 mL, and were stable for 120 days. NE-2-CUR presented Ø of 165.40 ± 2.56 nm, PDI of 0.254, ζ of - 33.20 ± 1.35 mV, pH of 6.49, and Entrapment Drug Efficiency (EE) of 99%. The NE-4-CUR showed a Ø of 105.70 ± 4.13 nm, PDI of 0.459, ζ of - 32.10 ± 1.45 mV, pH of 6.40 and EE of 99.29%. Structural characterization was performed using DRX and FTIR, thermal characterization using DSC and TG, and morphological characterization using SEM, suggesting that there is no significant change in the CUR present in the NEs and that they remain stable. The MIC was performed by the broth microdilution method for nine gram-positive and gram-negative bacteria, as well as Klebsiella pneumoniae clinical isolates resistant to antibiotics and biofilm and efflux pump producers. The NEs mostly showed a bacteriostatic profile. The MIC varied between 125 and 250 µg/mL. The most sensitive bacteria were Staphylococcus aureus and Enterococcus faecalis, for which NE-2-CUR showed a MIC of 125 µg/mL. The NEs and ceftazidime (CAZ) interaction was also evaluated against the K. pneumoniae resistant clinical isolates using the Checkerboard method. NE-2-CUR and NE-4-CUR showed a synergistic or additive profile; there was a reduction in CAZ MICs between 256 times (K26-A2) and 2 times (K29-A2). Furthermore, the NEs inhibited these isolates biofilms formation. The NEs showed a MBIC ranging from 15.625 to 250 µg/mL. Thus, the NEs showed physicochemical characteristics suitable for future clinical trials, enhancing the CAZ antibacterial and antibiofilm activity, thus becoming a promising strategy for the treatment of bacterial infections caused by multidrug-resistant K. pneumoniae. KEY POINTS: • The NEs showed physicochemical characteristics suitable for future clinical trials. • The NEs showed a synergistic/additive profile, when associated with ceftazidime. • The NEs inhibited biofilm formation of clinical isolates.
Collapse
Affiliation(s)
- Maine Virgínia Alves Confessor
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil.
- University Center UNIFACISA, Manoel Cardoso Palhano, 124-152, Itararé, CEP, Campina Grande, Paraiba, 58408-326, Brazil.
| | - Maria Anndressa Alves Agreles
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Luís André de Almeida Campos
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Azael Francisco Silva Neto
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Joyce Cordeiro Borges
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
| | - Rodrigo Molina Martins
- University Center UNIFACISA, Manoel Cardoso Palhano, 124-152, Itararé, CEP, Campina Grande, Paraiba, 58408-326, Brazil
| | | | - Ana Catarina Souza Lopes
- Department of Tropical Medicine, Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | | | - Isabella Macário Ferro Cavalcanti
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Prof. Moraes Rego Avenue, 1235, Cidade Universitária, CEP, Recife, Pernambuco, 50670-901, Brazil
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão, Pernambuco, Brazil
| |
Collapse
|
9
|
Begum F, Chutia H, Bora M, Deb P, Mahanta CL. Characterization of coconut milk waste nanocellulose based curcumin-enriched Pickering nanoemulsion and its application in a blended beverage of defatted coconut milk and pineapple juice. Int J Biol Macromol 2024; 259:129305. [PMID: 38262827 DOI: 10.1016/j.ijbiomac.2024.129305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 01/25/2024]
Abstract
In this study, we aimed to develop a blended beverage enriched with curcumin. The curcumin was incorporated within a Pickering nanoemulsion that was stabilized with nanocellulose. The nanocellulose was synthesized from coconut milk waste residue using 38 %-42 % sulfuric acid (AC) and 5 and 10 min ultrasound (UL) separately and in combination (ACU). While combined treatment showed an increase in particle size with ultrasonication time, PDI was observed to decrease. ACU with 10 min ultrasonication was further used at 0.05 %, 0.1 %, 0.2 %, and 0.3 % for stabilization of curcumin enriched Pickering nanoemulsion. The curcumin in Pickering nanoemulsion fabricated with 0.1 % of nanocellulose with an average particle size and PDI value of 259.6 nm and 0.284, respectively was found to be the most stable as compared to other Pickering nanoemulsions at different pH levels and temperatures. RP-HPLC analysis revealed that with 0.1 % of nanocellulose, the Pickering nanoemulsion was most stable at 2 pH and 63 °C temperatures. The in vitro release of curcumin from Pickering nanoemulsion added to a blended beverage in intestinal phase was 51.58 %, which was higher than the stomach phase (38.19 %). The outcomes clearly showed Pickering nanoemulsion to be a promising carrier for curcumin encapsulation in beverage.
Collapse
Affiliation(s)
- Fogila Begum
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, 784028, India
| | - Hemanta Chutia
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, 784028, India
| | - Mayuri Bora
- Department of Physics, School of Sciences, Tezpur University, 784028, India.
| | - Pritam Deb
- Department of Physics, School of Sciences, Tezpur University, 784028, India.
| | - Charu Lata Mahanta
- Department of Food Engineering and Technology, School of Engineering, Tezpur University, 784028, India.
| |
Collapse
|
10
|
Kuzhithariel Remanan M, Zhu F. Encapsulation of ferulic acid in high internal phase Pickering emulsions stabilized using nonenyl succinic anhydride (NSA) and octenyl succinic anhydride (OSA) modified quinoa and maize starch nanoparticles. Food Chem 2023; 429:136748. [PMID: 37467669 DOI: 10.1016/j.foodchem.2023.136748] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/31/2023] [Accepted: 06/26/2023] [Indexed: 07/21/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized using modified starch nanoparticles (SNPs) were studied as a delivery system for ferulic acid (FA). The quinoa (Q, 153 nm) and maize (M, 221 nm) SNPs were prepared by sono-precipitation and modified with nonenyl succinic anhydride (NSA) and octenyl succinic acid (OSA). The FA-encapsulated HIPPEs obtained showed neither coalescence nor Ostwald ripening, as reflected by emulsion index and droplet size measurements. Confocal laser scanning microscopy revealed FA entrapped droplets surrounded by the SNPs layer. The rheological measurements confirmed strong network formation and long-term stability. In vitro studies (pH 7.4, 96 h) showed sustained release of FA from the gel network. After 15 days, the encapsulation efficiencies for HIPPEs stabilized with both NSA and OSA modified QSNPs and MSNPs were close to 99%. The results showed that FA could be feasibly encapsulated in HIPPEs stabilized using modified SNPs.
Collapse
Affiliation(s)
- Mejo Kuzhithariel Remanan
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Fan Zhu
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
11
|
Morais JPS, Rosa MDF, de Brito ES, de Azeredo HMC, de Figueirêdo MCB. Sustainable Pickering Emulsions with Nanocellulose: Innovations and Challenges. Foods 2023; 12:3599. [PMID: 37835252 PMCID: PMC10572501 DOI: 10.3390/foods12193599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The proper mix of nanocellulose to a dispersion of polar and nonpolar liquids creates emulsions stabilized by finely divided solids (instead of tensoactive chemicals) named Pickering emulsions. These mixtures can be engineered to develop new food products with innovative functions, potentially more eco-friendly characteristics, and reduced risks to consumers. Although cellulose-based Pickering emulsion preparation is an exciting approach to creating new food products, there are many legal, technical, environmental, and economic gaps to be filled through research. The diversity of different types of nanocellulose makes it difficult to perform long-term studies on workers' occupational health, cytotoxicity for consumers, and environmental impacts. This review aims to identify some of these gaps and outline potential topics for future research and cooperation. Pickering emulsion research is still concentrated in a few countries, especially developed and emerging countries, with low levels of participation from Asian and African nations. There is a need for the development of scaling-up technologies to allow for the production of kilograms or liters per hour of products. More research is needed on the sustainability and eco-design of products. Finally, countries must approve a regulatory framework that allows for food products with Pickering emulsions to be put on the market.
Collapse
Affiliation(s)
| | | | - Edy Sousa de Brito
- Embrapa Food and Territories, Rua Cincinato Pinto, 348, Maceió 57020-050, Brazil;
| | | | | |
Collapse
|
12
|
Chang Y, Wang Q, Huang J, Luo X, Huang Y, Wu Y, Chen P, Zheng Y. Curcumin-Loaded Bamboo Shoot Cellulose Nanofibers: Characterization and In Vitro Studies. Foods 2023; 12:3512. [PMID: 37761221 PMCID: PMC10528234 DOI: 10.3390/foods12183512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Given its high biological and pharmacological activities, curcumin (CUR) offers promising applications in functional foods. However, its low stability and bioavailability have greatly hindered its application in the food industry. The present study prepared cellulose nanofiber (CNF) from bamboo shoot processing byproducts and investigated its potential as a low-cost carrier. Our results showed that CUR was immobilized on CNF surfaces mainly through hydrogen bonding and eventually encapsulated in CNF matrices, forming a CNF-CUR complex with an encapsulation efficiency of 88.34% and a loading capacity of 67.95%. The CUR encapsulated in the complex showed improved stability after thermal and UV light treatments. Moreover, a slow and extended release pattern of CUR in a simulated gastrointestinal tract was observed, which could be appropriately described using the Korsmeyer-Peppas model. These results revealed that CNF is a promising protective carrier for the slow release of CUR, making it a better candidate for functional foods.
Collapse
Affiliation(s)
- Yu Chang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| | - Qi Wang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Q.W.); (J.H.)
| | - Juqing Huang
- Institute of Agricultural Engineering, Fujian Academy of Agricultural Sciences, Fuzhou 350003, China; (Q.W.); (J.H.)
| | - Xianliang Luo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| | - Yajuan Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| | - Yirui Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| | - Peng Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.C.); (X.L.); (Y.H.); (Y.W.); (P.C.)
| |
Collapse
|
13
|
Le TTN, Nguyen TKN, Nguyen VM, Dao TCM, Nguyen HBC, Dang CT, Le TBC, Nguyen TKL, Nguyen PTT, Dang LHN, Doan VM, Ho HN. Development and Characterization of a Hydrogel Containing Curcumin-Loaded Nanoemulsion for Enhanced In Vitro Antibacteria and In Vivo Wound Healing. Molecules 2023; 28:6433. [PMID: 37687262 PMCID: PMC10490385 DOI: 10.3390/molecules28176433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Curcumin (CUR) is a natural compound extracted from turmeric (Curcuma longa L.) used to cure acne, wound healing, etc. Its disadvantages, such as poor solubility and permeability, limit its efficacy. Nanoemulsion (NE)-based drug delivery systems have gained popularity due to their advantages. This study aimed to optimize a CUR-NE-based gel and evaluate its physicochemical and biological properties. A NE was prepared using the catastrophic phase inversion method and optimized using the Design Expert 12.0 software. The CUR-NE gel was characterized in terms of visual appearance, pH, drug release, antibacterial and wound healing effects. The optimal formulation contained CUR, Capryol 90 (oil), Labrasol:Cremophor RH40 (1:1) (surfactants), propylene glycol (co-surfactant), and water. The NE had a droplet size of 22.87 nm and a polydispersity index of 0.348. The obtained CUR-NE gel had a soft, smooth texture and a pH of 5.34 ± 0.05. The in vitro release of CUR from the NE-based gel was higher than that from a commercial gel with nanosized CUR (21.68 ± 1.25 µg/cm2, 13.62 ± 1.63 µg/cm2 after 10 h, respectively). The CUR-NE gel accelerated in vitro antibacterial and in vivo wound healing activities as compared to other CUR-loaded gels. The CUR-NE gel has potential for transdermal applications.
Collapse
Affiliation(s)
- Thi Thanh Ngoc Le
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.T.N.L.); (T.K.N.N.); (T.C.M.D.); (H.B.C.N.)
| | - Thi Kieu Nhi Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.T.N.L.); (T.K.N.N.); (T.C.M.D.); (H.B.C.N.)
| | - Van Minh Nguyen
- Faculty of Odonto-Stomatology, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam;
| | - Thi Cam Minh Dao
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.T.N.L.); (T.K.N.N.); (T.C.M.D.); (H.B.C.N.)
| | - Hoai Bao Chau Nguyen
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.T.N.L.); (T.K.N.N.); (T.C.M.D.); (H.B.C.N.)
| | - Cong Thuan Dang
- Department of Histology, Embryology, Pathology, and Forensic, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (C.T.D.); (P.T.T.N.)
| | - Thi Bao Chi Le
- Department of Microbiology, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.B.C.L.); (T.K.L.N.)
| | - Thi Khanh Linh Nguyen
- Department of Microbiology, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.B.C.L.); (T.K.L.N.)
| | - Phuong Thao Tien Nguyen
- Department of Histology, Embryology, Pathology, and Forensic, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (C.T.D.); (P.T.T.N.)
| | - Le Hoang Nam Dang
- Department of Anatomy and Surgical Training, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam;
| | - Van Minh Doan
- Faculty of Traditional Medicine, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam;
| | - Hoang Nhan Ho
- Faculty of Pharmacy, University of Medicine and Pharmacy, Hue University, 6 Ngo Quyen, Hue 530000, Thua Thien Hue, Vietnam; (T.T.N.L.); (T.K.N.N.); (T.C.M.D.); (H.B.C.N.)
| |
Collapse
|
14
|
Ji C, Wang Y. Nanocellulose-stabilized Pickering emulsions: Fabrication, stabilization, and food applications. Adv Colloid Interface Sci 2023; 318:102970. [PMID: 37523998 DOI: 10.1016/j.cis.2023.102970] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/13/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Pickering emulsions have been widely studied due to their good stability and potential applications. Nanocellulose including cellulose nanocrystals (CNCs), cellulose nanofibrils (CNFs), and bacterial cellulose nanofibrils (BCNFs) has emerged as sustainable stabilizers/emulsifiers in food-related Pickering emulsions due to their favorable properties such as renewability, low toxicity, amphiphilicity, biocompatibility, and high aspect ratio. Nanocellulose can be widely obtained from different sources and extraction methods and can effectively stabilize Pickering emulsions via the irreversible adsorption onto oil-water interface. The synergistic effects of nanocellulose and other substances can further enhance the interfacial networks. The nanocellulose-based Pickering emulsions have potential food-related applications in delivery systems, food packaging materials, and fat substitutes. Nanocellulose-based Pickering emulsions as 3D printing inks exhibit good injectable and gelling properties and are promising to print spatial architectures. In the future, the utilization of biomass waste and the development of "green" and facile extraction methods for nanocellulose production deserve more attention. The stability of nanocellulose-based Pickering emulsions in multi-component food systems and at various conditions is an utmost challenge. Moreover, the case-by-case studies on the potential safety issues of nanocellulose-based Pickering emulsions need to be carried out with the standardized assessment procedures. In this review, we highlight key fundamental work and recent reports on nanocellulose-based Pickering emulsion systems. The sources and extraction of nanocellulose and the fabrication of nanocellulose-based Pickering emulsions are briefly summarized. Furthermore, the synergistic stability and food-related applications of nanocellulose-stabilized Pickering emulsions are spotlighted.
Collapse
Affiliation(s)
- Chuye Ji
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, McGill University, Ste Anne de Bellevue, Quebec H9X 3V9, Canada.
| |
Collapse
|
15
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
16
|
Freire N, Barbosa RDM, García-Villén F, Viseras C, Perioli L, Fialho R, Albuquerque E. Environmentally Friendly Strategies for Formulating Vegetable Oil-Based Nanoparticles for Anticancer Medicine. Pharmaceutics 2023; 15:1908. [PMID: 37514094 PMCID: PMC10386571 DOI: 10.3390/pharmaceutics15071908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The development of green synthesized polymeric nanoparticles with anticancer studies has been an emerging field in academia and the pharmaceutical and chemical industries. Vegetable oils are potential substitutes for petroleum derivatives, as they present a clean and environmentally friendly alternative and are available in abundance at relatively low prices. Biomass-derived chemicals can be converted into monomers with a unique structure, generating materials with new properties for the synthesis of sustainable monomers and polymers. The production of bio-based polymeric nanoparticles is a promising application of green chemistry for biomedical uses. There is an increasing demand for biocompatible and biodegradable materials for specific applications in the biomedical area, such as cancer therapy. This is encouraging scientists to work on research toward designing polymers with enhanced properties and clean processes, containing oncology active pharmaceutical ingredients (APIs). The nanoencapsulation of these APIs in bio-based polymeric nanoparticles can control the release of the substances, increase bioavailability, reduce problems of volatility and degradation, reduce side effects, and increase treatment efficiency. This review discusses the use of green chemistry for bio-based nanoparticle production and its application in anticancer medicine. The use of castor oil for the production of renewable monomers and polymers is proposed as an ideal candidate for such applications, as well as more suitable methods for the production of bio-based nanoparticles and some oncology APIs available for anticancer application.
Collapse
Affiliation(s)
- Nathália Freire
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil
| | - Fátima García-Villén
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Av. de las Palmeras 4, Armilla, 18100 Granada, Spain
| | - Luana Perioli
- Department of Pharmaceutic Science, University of Perugia, 06123 Perugia, Italy
| | - Rosana Fialho
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| | - Elaine Albuquerque
- Graduate Program in Industrial Engineering, Polytechnic School, Federal University of Bahia, Salvador 40210-630, Brazil
| |
Collapse
|
17
|
Wen C, Cao L, Yu Z, Liu G, Zhang J, Xu X. Advances in lipo-solubility delivery vehicles for curcumin: bioavailability, precise targeting, possibilities and challenges. Crit Rev Food Sci Nutr 2023; 64:10835-10854. [PMID: 37410019 DOI: 10.1080/10408398.2023.2229433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
BACKGROUND Curcumin (Cur) is a natural pigment containing a diketone structure, which has attracted extensive attention due to its strong functional activities. However, the low solubility and poor stability of Cur limit its low bioavailability and multi-function. It is essential to develop effective measures to improve the unfavorable nature of Cur and maximize its potential benefits in nutritional intervention. SCOPE AND APPROACH The focus of this review is to emphasize the construction of lipo-solubility delivery vehicles for Cur, including emulsion, nanoliposome and solid liposome. In addition, the potential benefits of vehicles-encapsulated Cur in the field of precise nutrition were summarized, including high targeting properties and multiple disease interventions. Further, the deficiencies and prospects of Cur encapsulated in vehicles for precise nutrition were discussed. KEY FINDINGS AND CONCLUSIONS The well-designed lipo-solubility delivery vehicles for Cur can improve its stability in food processing and the digestion in vivo. To meet the nutritional requirements of special people for Cur-based products, the improvement of the bioavailability by using delivery vehicles will provide a theoretical basis for the precise nutrition of Cur in functional food.
Collapse
Affiliation(s)
- Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Liyan Cao
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Zhenyue Yu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yang Zhou, China
| |
Collapse
|
18
|
Chen H, Jiang Y, Zhang B, Fang Y, Lin Q, Ding Y. Application of Pickering emulsions stabilized by corn, potato and pea starch nanoparticles: Effect of environmental conditions and approach for curcumin release. Int J Biol Macromol 2023; 238:124115. [PMID: 36963551 DOI: 10.1016/j.ijbiomac.2023.124115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023]
Abstract
To apply octenyl succinic anhydride (OSA)-modified corn, potato and pea starch nanoparticles (OCSNPs, OPtSNPs and OPSNPs, respectively) as Pickering emulsion stabilizers, effect of environmental conditions such as 30 days of storage period, pH of 1-11, ionic strength of 0.1-0.9 mol/L and heat of 30-90 °C on the stability of the emulsions was evaluated. Compared with emulsions stabilized by starch nanoparticles (SNPs), the emulsions stabilized by OSA-modified SNPs (OSNPs) kept stable against different environmental stresses (pH, ionic strength and heat) as well as for a storage period of 30 days, especially for OPtSNPs. Additionally, oiling-off was not observed in OSNPs emulsions over the storage time. OSNPs emulsions also showed improved protection on curcumin during storage and controlled release during in vitro digestion. These findings enlarged the application of OCSNPs, OPtSNPs and OPSNPs stabilized-Pickering emulsion in food systems and deliver system.
Collapse
Affiliation(s)
- Huirong Chen
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yuling Jiang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Biao Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yongbo Ding
- National Engineering Research Center of Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food For Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China..
| |
Collapse
|
19
|
Zhang F, Shen R, Li N, Yang X, Lin D. Nanocellulose: An amazing nanomaterial with diverse applications in food science. Carbohydr Polym 2023; 304:120497. [PMID: 36641166 DOI: 10.1016/j.carbpol.2022.120497] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Recently, nanocellulose has gained growing interests in food science due to its many advantages including its broad resource of raw materials, renewability, interface stability, high surface area, mechanical strength, prebiotic characteristics, surface chemistry versatility and easy modification. Since then, this review summarized the sources, morphology, and structure characteristics of nanocellulose. Meanwhile, the mechanical, chemical, and combined treatment methods for the preparation of nanocellulose with desired properties were elaborated. Furthermore, the application of nanocellulose in Pickering emulsions, reinforced food packaging, functional food ingredient, food-grade hydrogels, and biosensors were emphasized. Finally, the safety, challenges, and future perspectives of nanocellulose were discussed. This work provided key developments and effective benefits of nanocellulose for future research opportunities in food.
Collapse
Affiliation(s)
- Fengrui Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Rui Shen
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Nan Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China
| | - Dehui Lin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
20
|
Biopolymer- and Lipid-Based Carriers for the Delivery of Plant-Based Ingredients. Pharmaceutics 2023; 15:pharmaceutics15030927. [PMID: 36986788 PMCID: PMC10051097 DOI: 10.3390/pharmaceutics15030927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Natural ingredients are gaining increasing attention from manufacturers following consumers’ concerns about the excessive use of synthetic ingredients. However, the use of natural extracts or molecules to achieve desirable qualities throughout the shelf life of foodstuff and, upon consumption, in the relevant biological environment is severely limited by their poor performance, especially with respect to solubility, stability against environmental conditions during product manufacturing, storage, and bioavailability upon consumption. Nanoencapsulation can be seen as an attractive approach with which to overcome these challenges. Among the different nanoencapsulation systems, lipids and biopolymer-based nanocarriers have emerged as the most effective ones because of their intrinsic low toxicity following their formulation with biocompatible and biodegradable materials. The present review aims to provide a survey of the recent advances in nanoscale carriers, formulated with biopolymers or lipids, for the encapsulation of natural compounds and plant extracts.
Collapse
|
21
|
Li Z, Hu W, Dong J, Azi F, Xu X, Tu C, Tang S, Dong M. The use of bacterial cellulose from kombucha to produce curcumin loaded Pickering emulsion with improved stability and antioxidant properties. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Recent Advances in Improving the Bioavailability of Hydrophobic/Lipophilic Drugs and Their Delivery via Self-Emulsifying Formulations. COLLOIDS AND INTERFACES 2023. [DOI: 10.3390/colloids7010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Formulations based on emulsions for enhancing hydrophobic and lipophilic drug delivery and its bioavailability have attracted a lot of interest. As potential therapeutic agents, they are integrated with inert oils, emulsions, surfactant solubility, liposomes, etc.; drug delivering systems that use emulsion formations have emerged as a unique and commercially achievable accession to override the issue of less oral bioavailability in connection with hydrophobic and lipophilic drugs. As an ideal isotropic oil mixture of surfactants and co-solvents, it self-emulsifies and forms fine oil in water emulsions when acquainted with aqueous material. As droplets rapidly pass through the stomach, fine oil promotes the vast spread of the drug all over the GI (gastrointestinal tract) and conquers the slow disintegration commonly seen in solid drug forms. The current status of advancement in technologies for drug carrying has promulgated the expansion of innovative drug carriers for the controlled release of self-emulsifying pellets, tablets, capsules, microspheres, etc., which got a boost for drug delivery usage with self-emulsification. The present review article includes various kinds of formulations based on the size of particles and excipients utilized in emulsion formation for drug delivery mechanisms and the increase in the bioavailability of lipophilic/hydrophobic drugs in the present time.
Collapse
|
23
|
Zhao H, Wang S, Liu X, Zhao G, Yang L, Song H, Zhang G, He Y, Liu H. Application of soy protein isolate fiber and soy soluble polysaccharide non-covalent complex: A potential way for pH-triggered release. Food Chem 2023; 402:134494. [DOI: 10.1016/j.foodchem.2022.134494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/27/2023]
|
24
|
Frosi I, Ferron L, Colombo R, Papetti A. Natural carriers: Recent advances in their use to improve the stability and bioaccessibility of food active compounds. Crit Rev Food Sci Nutr 2022; 64:5700-5718. [PMID: 36533404 DOI: 10.1080/10408398.2022.2157371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decades, the incorporation of bioactive compounds in food supplements aroused the attention of scientists. However, these ingredients often exhibit both low solubility and stability and their poor bioaccessibility within the gastrointestinal tract limits their effectiveness. To overcome these drawbacks, many carriers have been investigated for encapsulating nutraceuticals and enhancing their bioavailability. It is note that several different vegetable wall materials have been applied to build delivery systems. Considering their encapsulation mechanism, lipid and protein-based carriers display specific interaction patterns with bioactives, whereas polysaccharidic-based carriers can entrap them by creating porous highly stable networks. To maximize the encapsulation efficiency, mixed systems are very promising. Following the current goal of using natural and sustainable ingredients, only a limited number of studies about the isolation of new ingredients from agro-food waste are available. In this review, a comprehensive overview of the state of art in the development of innovative natural lipid-, protein- and polysaccharide-based plant carriers is presented, focusing on their application as food active compounds. Different aspects to be considered in the design of delivery systems are discussed, including the carrier structure and chemical features, the interaction between the encapsulating and the core material, and the parameters affecting bioactives entrapment.
Collapse
Affiliation(s)
- Ilaria Frosi
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | - Lucia Ferron
- Drug Sciences Department, University of Pavia, Pavia, Italy
| | | | - Adele Papetti
- Drug Sciences Department, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Liu L, Ode Boni BO, Ullah MW, Qi F, Li X, Shi Z, Yang G. Cellulose: A promising and versatile Pickering emulsifier for healthy foods. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2142940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Li Liu
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Biaou Oscar Ode Boni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Fuyu Qi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Kumari M, Nanda DK. Potential of Curcumin nanoemulsion as antimicrobial and wound healing agent in burn wound infection. Burns 2022:S0305-4179(22)00278-9. [DOI: 10.1016/j.burns.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/29/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
|
27
|
Kuzhithariel Remanan M, Zhu F. Encapsulation of rutin in Pickering emulsions stabilized using octenyl succinic anhydride (OSA) modified quinoa, maize, and potato starch nanoparticles. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Ubeyitogullari A, Ahmadzadeh S, Kandhola G, Kim JW. Polysaccharide-based porous biopolymers for enhanced bioaccessibility and bioavailability of bioactive food compounds: Challenges, advances, and opportunities. Compr Rev Food Sci Food Saf 2022; 21:4610-4639. [PMID: 36199178 DOI: 10.1111/1541-4337.13049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 01/28/2023]
Abstract
Bioactive food compounds, such as lycopene, curcumin, phytosterols, and resveratrol, have received great attention due to their potential health benefits. However, these bioactive compounds (BCs) have poor chemical stability during processing and low bioavailability after consumption. Several delivery systems have been proposed for enhancing their stability and bioavailability. Among these methods, porous biopolymers have emerged as alternative encapsulation materials, as they have superior properties like high surface area, porosity, and tunable surface chemistry to entrap BCs. This reduces the crystallinity (especially for the lipophilic ones) and particle size, and in turn, increases solubilization and bioavailability. Also, loading BCs into the porous matrix can protect them against environmental stresses such as light, heat, oxygen, and pH. This review introduces polysaccharide-based porous biopolymers for improving the bioaccessibility/bioavailability of bioactive food compounds and discusses their recent applications in the food industry. First, bioaccessibility and bioavailability are described with a special emphasis on the factors affecting them. Then, porous biopolymer fabrication methods, including supercritical carbon dioxide (SC-CO2 ) drying, freeze-drying, and electrospinning and electrospraying, are thoroughly discussed. Finally, common polysaccharide-based biopolymers (i.e., starch, nanocellulose, alginate, and pectin) used for generating porous materials are reviewed, and their current and potential future food applications are critically discussed.
Collapse
Affiliation(s)
- Ali Ubeyitogullari
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA.,Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Safoura Ahmadzadeh
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Gurshagan Kandhola
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA.,Materials Science and Engineering Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
29
|
Teo SH, Chee CY, Fahmi MZ, Wibawa Sakti SC, Lee HV. Review of Functional Aspects of Nanocellulose-Based Pickering Emulsifier for Non-Toxic Application and Its Colloid Stabilization Mechanism. Molecules 2022; 27:7170. [PMID: 36363998 PMCID: PMC9657650 DOI: 10.3390/molecules27217170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 07/27/2023] Open
Abstract
In the past few years, the research on particle-stabilized emulsion (Pickering emulsion) has mainly focused on the usage of inorganic particles with well-defined shapes, narrow size distributions, and chemical tunability of the surfaces such as silica, alumina, and clay. However, the presence of incompatibility of some inorganic particles that are non-safe to humans and the ecosystem and their poor sustainability has led to a shift towards the development of materials of biological origin. For this reason, nano-dimensional cellulose (nanocellulose) derived from natural plants is suitable for use as a Pickering material for liquid interface stabilization for various non-toxic product formulations (e.g., the food and beverage, cosmetic, personal care, hygiene, pharmaceutical, and biomedical fields). However, the current understanding of nanocellulose-stabilized Pickering emulsion still lacks consistency in terms of the structural, self-assembly, and physio-chemical properties of nanocellulose towards the stabilization between liquid and oil interfaces. Thus, this review aims to provide a comprehensive study of the behavior of nanocellulose-based particles and their ability as a Pickering functionality to stabilize emulsion droplets. Extensive discussion on the characteristics of nanocelluloses, morphology, and preparation methods that can potentially be applied as Pickering emulsifiers in a different range of emulsions is provided. Nanocellulose's surface modification for the purpose of altering its characteristics and provoking multifunctional roles for high-grade non-toxic applications is discussed. Subsequently, the water-oil stabilization mechanism and the criteria for effective emulsion stabilization are summarized in this review. Lastly, we discuss the toxicity profile and risk assessment guidelines for the whole life cycle of nanocellulose from the fresh feedstock to the end-life of the product.
Collapse
Affiliation(s)
- Shao Hui Teo
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching Yern Chee
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Satya Candra Wibawa Sakti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| | - Hwei Voon Lee
- Nanotechnology & Catalysis Research Center (NANOCAT), Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Campus C, Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
30
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Jha NK, Gupta G, Devkota HP, Prasher P, Chellappan DK, Dua K. A sojourn into therapeutic and nutraceutical potential of curcumin and its novel drug delivery system: Current achievements and future perspectives. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 149:944-962. [DOI: 10.1016/j.sajb.2022.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
31
|
Li J, Cheng MM, Yang CX, Zhang YQ, Li DQ. Regenerated cellulose-stabilized pickering emulsion for sustained release of Imidacloprid. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Cuevas-Gómez AP, González-Magallanes B, Arroyo-Maya IJ, Gutiérrez-López GF, Cornejo-Mazón M, Hernández-Sánchez H. Squalene-Rich Amaranth Oil Pickering Emulsions Stabilized by Native α-Lactalbumin Nanoparticles. Foods 2022; 11:1998. [PMID: 35885241 PMCID: PMC9323371 DOI: 10.3390/foods11141998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
The stabilization of Pickering emulsions by nanoparticles has drawn great interest in the field of food science and technology. In this study, α-Lactalbumin nanoparticles prepared by the desolvation and cross-linking method from protein solutions with initial pH values of 9 and 11 were used to stabilize squalene-rich amaranth oil Pickering o/w emulsions. The effect of different concentrations of nanoparticles on the size, size distribution, ζ potential, and emulsion stability was evaluated using dynamic light scattering, electron microscopy, and light backscattering. Dependence of the emulsions' droplet size on the nanoparticle concentration was observed, and the critical coverage ratio was reached when 5-10% nanoparticles concentration was used. Our findings suggest that α-LA nanoparticles at a 10% concentration can be used as novel stabilizers for Pickering emulsions to provide protection for beneficial lipophilic bioactive compounds. This is the first time that native α-LA nanoparticles have been used as stabilizers of Pickering emulsions.
Collapse
Affiliation(s)
- Andrea P. Cuevas-Gómez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico; (A.P.C.-G.); (B.G.-M.); (G.F.G.-L.)
| | - Berenice González-Magallanes
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico; (A.P.C.-G.); (B.G.-M.); (G.F.G.-L.)
| | - Izlia J. Arroyo-Maya
- División de Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Cuajimalpa, Mexico City C.P. 05348, Mexico
| | - Gustavo F. Gutiérrez-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico; (A.P.C.-G.); (B.G.-M.); (G.F.G.-L.)
| | - Maribel Cornejo-Mazón
- Departamento de Biofísica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 11340, Mexico;
| | - Humberto Hernández-Sánchez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City C.P. 07738, Mexico; (A.P.C.-G.); (B.G.-M.); (G.F.G.-L.)
| |
Collapse
|
33
|
Zhang L, Chen DL, Wang XF, Xu L, Qian JY, He XD. Enzymatically modified quinoa starch based pickering emulsion as carrier for curcumin: Rheological properties, protection effect and in vitro digestion study. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
34
|
Wang J, Zhang K, Zhang L, Song Z, Shang S, Liu H, Wang D. Preparation and stabilization of Pickering emulsions by cationic cellulose nanocrystals synthesized from deep eutectic solvent. Int J Biol Macromol 2022; 209:1900-1913. [PMID: 35487379 DOI: 10.1016/j.ijbiomac.2022.04.164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
In this work, short rod-like cationic cellulose nanocrystals (AH-CNCs) were prepared by sodium periodate oxidation combined with deep eutectic solvent method. The effects of different content AH-CNCs on the properties of the emulsion were studied. With the increase of AH-CNCs content, the diameter of emulsion droplets decreased and the stabilization time prolonged. The electrostatic attraction between the negative charge accumulated at the oil-water interface and AH-CNCs with positive charge improved the stability of the emulsion. Then, the rheological properties showed the interaction of nanocellulose in the continuous phase increased the viscosity of the emulsion. In addition, the droplet diameter of emulsion of 120 s was smaller at different ultrasonic time, the particle size distribution of emulsion changed from monodisperse to polydisperse with the increase of oil volume, the salt concentration had little effect on the droplet size of emulsion, and the preparation of emulsion under acidic conditions was more stable.
Collapse
Affiliation(s)
- Jin Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Kaitao Zhang
- Fiber and Particle Engineering Research Unit University of Oulu, P.O. Box 4300, FI-90014 Oulu, Finland
| | - Lei Zhang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Zhanqian Song
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Shibin Shang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China
| | - Dan Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, Key and Open Lab. of Forest Chemical Engineering, SFA, National Engineering Lab. for Biomass Chemical Utilization, Nanjing 210042, Jiangsu Province, China.
| |
Collapse
|
35
|
Inhibition of Staphylococcus aureus α-Hemolysin Production Using Nanocurcumin Capped Au@ZnO Nanocomposite. Bioinorg Chem Appl 2022; 2022:2663812. [PMID: 35669460 PMCID: PMC9167132 DOI: 10.1155/2022/2663812] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/17/2021] [Accepted: 05/16/2022] [Indexed: 12/27/2022] Open
Abstract
Nanoparticles of gold with zinc oxide (Au@ZnO NPs) were prepared by laser ablation and then capped with curcumin nanoparticles (Cur-Au@ZnO NPs). The synthesized NPs were characterized using different techniques, including transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), UV-visible spectroscopy, and X-ray diffraction. In addition, the ability of NPs as a promising antibacterial agent was tested against Staphylococcus aureus through the agar well diffusion method and AO/EtBr staining assay. The results showed that the prepared nanoparticles (Cur-Au@ZnO) served as an antibacterial agent and can destroy the bacterial cells by losing the cell wall integrity and penetrating the cytoplasmic membrane. Moreover, the findings confirmed the role of the formed NPs in attenuation of the adherence and invasion of S. aureus to rat embryonic fibroblast (REF) cells. Furthermore, the activity of Cur-Au@ZnO NPs against the S. aureus α-hemolysin toxin was evaluated using the western blot technique, using human alveolar epithelial cells (A549), and through histopathology examination in a mouse model. In conclusion, the built Cur-Au@ZnO NPs can be used as a potential antibacterial agent and an inhibitor of α-hemolysin toxin secreted by S. aureus. These NPs may offer a new strategy in combating pathogen infections and in the future for biomedical and pharmaceutical applications.
Collapse
|
36
|
Preparation and characterization of steroid and umbelliferone-based hetero-bifunctional poly(ε-caprolactone)s for potential drug delivery systems: antimicrobial and anticancer activities. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Li W, Jiao B, Li S, Faisal S, Shi A, Fu W, Chen Y, Wang Q. Recent Advances on Pickering Emulsions Stabilized by Diverse Edible Particles: Stability Mechanism and Applications. Front Nutr 2022; 9:864943. [PMID: 35600821 PMCID: PMC9121063 DOI: 10.3389/fnut.2022.864943] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023] Open
Abstract
Pickering emulsions, which are stabilized by particles, have gained considerable attention recently because of their extreme stability and functionality. A food-grade particle is preferred by the food or pharmaceutical industries because of their noteworthy natural benefits (renewable resources, ease of preparation, excellent biocompatibility, and unique interfacial properties). Different edible particles are reported by recent publications with distinct shapes resulting from the inherent properties of raw materials and fabrication methods. Furthermore, they possess distinct interfacial properties and functionalities. Therefore, this review provides a comprehensive overview of the recent advances in the stabilization of Pickering emulsions using diverse food-grade particles, as well as their possible applications in the food industry.
Collapse
Affiliation(s)
- Wei Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Sisheng Li
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Shah Faisal
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Weiming Fu
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yiying Chen
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agriculture Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
38
|
Pérez‐Salas JL, Medina‐Torres L, Rocha‐Guzmán NE, Calderas F, González‐Laredo RF, Bernad‐Bernad MJ, Moreno‐Jiménez MR, Gallegos‐Infante JA. A Water in Oil Gelled Emulsion as a Topical Release Vehicle for Curcumin. STARCH-STARKE 2022. [DOI: 10.1002/star.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Juan Luis Pérez‐Salas
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - Luis Medina‐Torres
- Facultad de Química Universidad Nacional Autónoma de México Ciudad de México 04510 México
| | - Nuria Elizabeth Rocha‐Guzmán
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - F. Calderas
- Facultad de Estudios Superiores‐Zaragoza Batalla 5 de mayo s/n Colonia Ejército de Oriente Iztapalapa Universidad Nacional Autónoma de México Ciudad de México 09230 México
| | - Rubén Francisco González‐Laredo
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | | | - Martha Rocío Moreno‐Jiménez
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| | - José Alberto Gallegos‐Infante
- UPIDET. Blvd. Felipe Pescador 1830 Ote. Nueva Vizcaya 34080 Victoria de Durango TecNM/Instituto Tecnológico de Durango Durango México
| |
Collapse
|
39
|
Cellulose nanocrystal (CNC)-stabilized Pickering emulsion for improved curcumin storage stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Bahrami A, Delshadi R, Cacciotti I, Faridi Esfanjani A, Rezaei A, Tarhan O, Lee CC, Assadpour E, Tomas M, Vahapoglu B, Capanoglu Guven E, Williams L, Jafari SM. Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Adv Colloid Interface Sci 2022; 302:102622. [PMID: 35248971 DOI: 10.1016/j.cis.2022.102622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023]
Abstract
The incorporation of antibiotics and bioactive compounds into non-toxic nanoparticles has been popularly used to produce effective antimicrobial nanocarriers against foodborne pathogens. These systems can protect antimicrobials against harsh environments, control their release, and increase their antimicrobial activities; however, their functions can be decreased by some major barriers. Intracellular localization of bacteria protects them from the host immune system and antimicrobial agents. Also, bacteria can cause constant infection by nestling in professional phagocytic cells. In the last years, surface functionalization of nanocarriers by passive and active modification methods has been applied for their protection against clearance from the blood, increasing both circulation time and uptake by target cells. For achieving this objective, different functional agents such as specifically targeted peptides internalize ligands, saccharide ligands, or even therapeutic molecules (e.g., antibodies or enzymes) are used. In this review, techniques for functionalizing the surface of antimicrobial-loaded nanocarriers have been described. This article offers a comprehensive review of the potential of functional nanoparticles to increase the performance of antimicrobials against foodborne pathogens through targeting delivery.
Collapse
|
41
|
Li Z, Jiang X, Liu H, Yao Z, Liu A, Ming L. Evaluation of Hydrophilic and Hydrophobic Silica Particles on the Release Kinetics of Essential Oil Pickering Emulsions. ACS OMEGA 2022; 7:8651-8664. [PMID: 35309467 PMCID: PMC8928567 DOI: 10.1021/acsomega.1c06666] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/18/2022] [Indexed: 05/04/2023]
Abstract
Colloidal particle-stabilized emulsions have recently gained increasing interest as delivery systems for essential oils. Despite the use of silica particles in food and pharmaceutical applications, the formation and release of hydrophilic and hydrophobic silica particle-stabilized emulsions are still not well studied. Thus, in this study, the structures of hydrophilic (A200, A380, 244FP, and 3150) and hydrophobic (R202 and R106) silica were deeply characterized using the solid state, contact angle, and other properties that could affect the formation of emulsions. Following that, Mosla chinensis essential oil emulsions were stabilized with different types of silica, and their characteristics, particularly their release behavior, were studied. Fick's second law was used to investigate the mechanism of release. Additionally, six mathematical models were employed to assess the experimental data of release: zero-order, first-order, Higuchi, Hixson-Crowell, Peppas, and Page models. The release mechanism of essential oils demonstrated that diffusion was the dominant mechanism, and the fitting results for the release kinetics confirmed that the release profiles were governed by the Higuchi model. The contact angle and specific surface area were the key properties that affect the release of essential oils from emulsions. Hydrophilic A200 was found to be capable of delivering essential oils more efficiently, and silica particles could be extended to achieve the controlled release of bioactives. This study showed that understanding the impact of silica particles on the release behavior provided the basis for modulating and mapping material properties to optimize the performance of emulsion products.
Collapse
|
42
|
Tian X, Wu M, Wang Z, Zhang J, Lu P. A high-stable soybean-oil-based epoxy acrylate emulsion stabilized by silanized nanocrystalline cellulose as a sustainable paper coating for enhanced water vapor barrier. J Colloid Interface Sci 2022; 610:1043-1056. [PMID: 34872721 DOI: 10.1016/j.jcis.2021.11.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023]
Abstract
Soybean-oil-based polymer is a promising bio-based water barrier coating on paper packaging but the application is challenged due to its poor water dispersibility. In this present study, 3-aminopropyltriethoxysilane (APTES) modified nanocrystalline cellulose (NCC) was used to implement a stable dispersion of acrylated epoxidized soybean oil (AESO) in water and thus synergistically improved the water vapor barrier properties after coating on paper. APTES-NCC was successfully prepared, and displayed a better interface compatibility with AESO through the Michael addition reaction. Compared with NCC, APTES-NCC displayed an improved hydrophobicity and wettability with AESO, with an increase of contact angle from 38.0° to 76.4°, and a decrease of interfacial tension from 91.5 ± 3.5 mN/m to 82.9 ± 1.8 mN/m. As an emulsifier, APTES-NCC can be more effectively adsorbed on the oil-water interface to form a more stable emulsion than NCC, with a decrease of AESO droplets size from 4.8 µm to 3.1 µm, and a remarkable improvement in static and centrifugal stability. In rheological measurement, the APTES-NCC/AESO emulsion showed a wider linear viscoelastic region (3.4%), better viscoelasticity and thermal curing properties than that of NCC/AESO emulsion, which further explained that the stability of APTES-NCC/AESO emulsion were improved. Therefore, APTES-NCC/AESO emulsion as a coating on paper cured into a continuous barrier film can effectively improve the water vapor barrier properties of paper, and the water vapor transmission rate (WVTR) of paper can be reduced from 1392.8 g/m2•24 h (NCC/AESO emulsion-coated) to 1286.3 g/m2 24 h (APTES-NCC/AESO emulsion-coated), both are significantly lower than that of base paper (1926.7 g/m2•24 h). CLSM testing showed that APTES-NCC could interact effectively with AESO to forming a tight barrier on paper surface and at the same time, sealing the pores inside the paper to resist water vapor penetration. The high-stable AESO emulsion prepared by APTES-NCC is expected to facilitate the utilization of NCC and AESO as a value-added material in making sustainable barrier packaging.
Collapse
Affiliation(s)
- Xuwang Tian
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Min Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhiwei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Jian Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China; Liaoning Key Laboratory of Pulp and Papermaking Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Peng Lu
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China.
| |
Collapse
|
43
|
Nanotechnology in aquaculture: Applications, perspectives and regulatory challenges. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Tavasoli S, Liu Q, Jafari SM. Development of Pickering emulsions stabilized by hybrid biopolymeric particles/nanoparticles for nutraceutical delivery. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107280] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Hussain Y, Alam W, Ullah H, Dacrema M, Daglia M, Khan H, Arciola CR. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics (Basel) 2022; 11:322. [PMID: 35326785 PMCID: PMC8944843 DOI: 10.3390/antibiotics11030322] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Curcumin is a bioactive compound that is extracted from Curcuma longa and that is known for its antimicrobial properties. Curcuminoids are the main constituents of curcumin that exhibit antioxidant properties. It has a broad spectrum of antibacterial actions against a wide range of bacteria, even those resistant to antibiotics. Curcumin has been shown to be effective against the microorganisms that are responsible for surgical infections and implant-related bone infections, primarily Staphylococcus aureus and Escherichia coli. The efficacy of curcumin against Helicobacter pylori and Mycobacterium tuberculosis, alone or in combination with other classic antibiotics, is one of its most promising antibacterial effects. Curcumin is known to have antifungal action against numerous fungi that are responsible for a variety of infections, including dermatophytosis. Candidemia and candidiasis caused by Candida species have also been reported to be treated using curcumin. Life-threatening diseases and infections caused by viruses can be counteracted by curcumin, recognizing its antiviral potential. In combination therapy with other phytochemicals, curcumin shows synergistic effects, and this approach appears to be suitable for the eradication of antibiotic-resistant microbes and promising for achieving co-loaded antimicrobial pro-regenerative coatings for orthopedic implant biomaterials. Poor water solubility, low bioavailability, and rapid degradation are the main disadvantages of curcumin. The use of nanotechnologies for the delivery of curcumin could increase the prospects for its clinical application, mainly in orthopedics and other surgical scenarios. Curcumin-loaded nanoparticles revealed antimicrobial properties against S. aureus in periprosthetic joint infections.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China;
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
| | - Marco Dacrema
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (M.D.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carla Renata Arciola
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 14, 40136 Bologna, Italy
| |
Collapse
|
46
|
Deng C, Seidi F, Yong Q, Jin X, Li C, Zhang X, Han J, Liu Y, Huang Y, Wang Y, Yuan Z, Xiao H. Antiviral/antibacterial biodegradable cellulose nonwovens as environmentally friendly and bioprotective materials with potential to minimize microplastic pollution. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127391. [PMID: 34879581 PMCID: PMC8482584 DOI: 10.1016/j.jhazmat.2021.127391] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/20/2021] [Accepted: 09/28/2021] [Indexed: 05/23/2023]
Abstract
Personal protective equipment (PPE) such as face masks is vital in battling the COVID-19 crisis, but the dominant polypropylene-based PPE are lack of antiviral/antibacterial activities and environmental friendliness, and have hazardous impact on the soil and aquatic ecosystems. The work presented herein focused on developing biodegradable, antiviral, and antibacterial cellulose nonwovens (AVAB-CNWs) as a multi-functional bioprotective layer for better protection against coronavirus SARS-CoV-2 and addressing environmental concerns raised by the piling of COVID-19 related wastes. Both guanidine-based polymer and neomycin sulfate (NEO) were reactive-modified and covalently grafted onto the surface of cellulose nonwovens, thereby conferring outstanding antiviral and antibacterial activities to the nonwovens without deteriorating the microstructure and biodegradability. Through adjusting the grafting amount of active components and selecting appropriate reagents for pretreatment, the antimicrobial activity and hydrophobicity for self-cleaning of the nonwovens can be tuned. More importantly, we demonstrated for the first time that such multi-functional nonwovens are capable of inactivating SARS-CoV-2 instantly, leading to high virucidal activity (> 99.35%), which is unachievable by conventional masks used nowadays. Meanwhile, the robust breathability and biodegradability of AVAB-CNWs were well maintained. The applications of the as-prepared nonwovens as high-performance textile can be readily extended to other areas in the fight against COVID-19.
Collapse
Affiliation(s)
- Chao Deng
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiangyu Jin
- Engineering Research Center of Technical Textiles, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xing Zhang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jingquan Han
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB, Canada E3B 5A3.
| |
Collapse
|
47
|
Mishra PK, Pavelek O, Rasticova M, Mishra H, Ekielski A. Nanocellulose-Based Biomedical Scaffolds in Future Bioeconomy: A Techno-Legal Assessment of the State-of-the-Art. Front Bioeng Biotechnol 2022; 9:789603. [PMID: 35223812 PMCID: PMC8873513 DOI: 10.3389/fbioe.2021.789603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Nanocellulose is a broader term used for nano-scaled cellulosic crystal and/or fibrils of plant or animal origin. Where bacterial nanocellulose was immediately accepted in biomedicine due to its “cleaner” nature, the plant-based nanocellulose has seen several roadblocks. This manuscript assesses the technological aspects (chemistry of cellulose, nanocellulose producing methods, its purity, and biological properties including toxicity and suggested applications in final drug formulation) along with legal aspects in REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) regulation by the European Union, EMA (European Medicine Agency). The botanical biomass processing methods leading to the nanoscale impurity (lignin and others) on nanocellulose surface, along with surface modification with harsh acid treatments are found to be two major sources of “impurity” in botanical biomass derived nanocellulose. The status of nanocellulose under the light of REACH regulation along with EMA has been covered. The provided information can be directly used by material and biomedical scientists while developing new nanocellulose production strategies as well as formulation design for European markets.
Collapse
Affiliation(s)
- Pawan Kumar Mishra
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
- *Correspondence: Pawan Kumar Mishra,
| | - Ondrej Pavelek
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Martina Rasticova
- Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Harshita Mishra
- Smart Society Research Team, Faculty of Business and Economics, Mendel University in Brno, Brno, Czechia
| | - Adam Ekielski
- Department of Production Engineering, Warsaw University Of Life Sciences, Warsaw, Poland
| |
Collapse
|
48
|
Cuomo F, Iacovino S, Sacco P, De Leonardis A, Ceglie A, Lopez F. Progress in Colloid Delivery Systems for Protection and Delivery of Phenolic Bioactive Compounds: Two Study Cases-Hydroxytyrosol and Curcumin. Molecules 2022; 27:921. [PMID: 35164186 PMCID: PMC8839332 DOI: 10.3390/molecules27030921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Insufficient intake of beneficial food components into the human body is a major issue for many people. Among the strategies proposed to overcome this complication, colloid systems have been proven to offer successful solutions in many cases. The scientific community agrees that the production of colloid delivery systems is a good way to adequately protect and deliver nutritional components. In this review, we present the recent advances on bioactive phenolic compounds delivery mediated by colloid systems. As we are aware that this field is constantly evolving, we have focused our attention on the progress made in recent years in this specific field. To achieve this goal, structural and dynamic aspects of different colloid delivery systems, and the various interactions with two bioactive constituents, are presented and discussed. The choice of the appropriate delivery system for a given molecule depends on whether the drug is incorporated in an aqueous or hydrophobic environment. With this in mind, the aim of this evaluation was focused on two case studies, one representative of hydrophobic phenolic compounds and the other of hydrophilic ones. In particular, hydroxytyrosol was selected as a bioactive phenol with a hydrophilic character, while curcumin was selected as typical representative hydrophobic molecules.
Collapse
Affiliation(s)
- Francesca Cuomo
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.C.); (S.I.); (A.D.L.)
| | - Silvio Iacovino
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.C.); (S.I.); (A.D.L.)
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy;
| | - Antonella De Leonardis
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.C.); (S.I.); (A.D.L.)
| | - Andrea Ceglie
- Department of Chemistry “Ugo Schiff”, Center for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Francesco Lopez
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and Center for Colloid and Surface Science (CSGI), University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (F.C.); (S.I.); (A.D.L.)
| |
Collapse
|
49
|
Tian Y, Jia D, Dirican M, Cui M, Fang D, Yan C, Xie J, Liu Y, Li C, Fu J, Liu H, Chen G, Zhang X, Tao J. Highly Soluble and Stable, High Release Rate Nanocellulose Codrug Delivery System of Curcumin and AuNPs for Dual Chemo-Photothermal Therapy. Biomacromolecules 2022; 23:960-971. [PMID: 35029369 DOI: 10.1021/acs.biomac.1c01367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As a natural antitumor drug, curcumin (CUR) has received increasing attention from researchers and patients due to its various medicinal properties. However, currently CUR is still restricted due to its low and stand-alone therapeutic effects that seriously limit its clinical application. Here, by using cellulose nanocrystals (CNCs) as a nanocarrier to load CUR and AuNPs simultaneously, we developed a hybrid nanoparticle as a codrug delivery system to enhance the low and stand-alone therapeutic effects of CUR. Aided with the encapsulation of β-cyclodextrin (βCD), both the solubility and the stability of CUR are greatly enhanced (solubility increased from 0.89 to 131.7 μg/mL). Owing to the unique rod-like morphology of CNCs, the system exhibits an outstanding loading capacity of 31.4 μg/mg. Under the heat effects of coloaded AuNPs, the system demonstrates a high release rate of 77.63%. Finally, with CNC as a bridge nanocarrier, all aforementioned functions were integrated into one hybrid nanoparticle. The all-in-one integration ensures CUR to have enhanced therapeutic effects and enables the delivery system to exhibit combined chemo-photothermal therapy outcomes. This work presents a significant step toward CUR's clinical application and provides a new strategy for effective and integrative treatment of tumor disease.
Collapse
Affiliation(s)
- Yan Tian
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongmei Jia
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mahmut Dirican
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Meng Cui
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongjun Fang
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chaoyi Yan
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Jingyi Xie
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunxing Li
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Junjun Fu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.,Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials, Bengbu, Anhui 233010, China
| | - Gang Chen
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301, United States
| | - Jinsong Tao
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.,Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials, Bengbu, Anhui 233010, China
| |
Collapse
|
50
|
SOGUT ECE, SEYDIM ATIFCAN. Starch and whey protein isolate films including an aroma compound stabilized by nanocellulose. AN ACAD BRAS CIENC 2022; 94:e20211232. [DOI: 10.1590/0001-3765202220211232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/20/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- ECE SOGUT
- Department of Food Engineering, Turkey
| | | |
Collapse
|