1
|
da Silva Milhorini S, Rutckeviski R, Centa A, Ribeiro Smiderle F, Zavadinack M, Rosado FR, Iacomini M. Different molecular weight fucogalactans from Macrocybe titans mushroom promote distinct effect on breast cancer cell death. Carbohydr Polym 2025; 354:123318. [PMID: 39978922 DOI: 10.1016/j.carbpol.2025.123318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/22/2025]
Abstract
There is an incessant search for new therapies against cancer, able to unite effectiveness with specificity, leading to higher survival rates and lower deleterious effects. Herein, two fucogalactans (F-1 and F-2), isolated from Macrocybe titans, showed a (1 → 6)-linked α-D-Galp main chain partially substituted at O-2 by non-reducing end units of α-L-Fucp, with different Mw, being F-2 > 20 times higher than F-1. Both fucogalactans induced cell cycle arrest of MDA-MB-231 cells in G1 phase after 120 h of treatment. However, only F2 resulted in increased apoptosis and necrosis. For the MCF-7 cell line, no changes in the cell cycle and cell death were observed at 120 h. The non-tumoral cell line (VERO) was not affected. The results confirmed that polysaccharides with different Mw may have distinct effects and therefore this is an important feature to be considered on investigating anti-cancer treatments.
Collapse
Affiliation(s)
- Shayane da Silva Milhorini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CEP, 81531-980 Curitiba, PR, Brazil.
| | - Renata Rutckeviski
- Faculdades Pequeno Príncipe, CEP, 80230-020 Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, CEP, 80240-020 Curitiba, PR, Brazil
| | - Ariana Centa
- Universidade Alto Vale do Rio do Peixe, CEP, 89500-000 Caçador, SC, Brazil
| | - Fhernanda Ribeiro Smiderle
- Faculdades Pequeno Príncipe, CEP, 80230-020 Curitiba, PR, Brazil; Instituto de Pesquisa Pelé Pequeno Príncipe, CEP, 80240-020 Curitiba, PR, Brazil
| | - Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CEP, 81531-980 Curitiba, PR, Brazil
| | - Fábio Rogério Rosado
- Department of Biosciences, Federal University of Parana, CEP, 85950-000 Palotina, PR, Brazil
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Parana, CEP, 81531-980 Curitiba, PR, Brazil
| |
Collapse
|
2
|
Zhang Y, Zhang X, Jin X, Li Z, Li L, Zhu Y, Kong F, Wang D. Structural characterization of polysaccharide isolated from Inonotus hispidus and its anti-obesity effect based on regulation of the interleukin-17-mediated inflammatory response. Int J Biol Macromol 2025; 291:138975. [PMID: 39706397 DOI: 10.1016/j.ijbiomac.2024.138975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
A heteropolysaccharide (IHP3) with a molecular weight of 22.0 kDa was isolated from Inonotus hispidus (Bull.: Fr.) P. Karst using column chromatography purification from water extraction. Its backbone was predominantly composed of →6)-α-D-Galp-(1→, →2,6)-α-D-Galp-(1→,→6)-α-D-O-Me-Galp-(1→, →3)-α-D-Manp-(1→, and →3,4,6) -β-D-Galp-(1→ residues, branched at C2 of partial α-D-Galp, or C3 and C4 of β-D-Galp, and terminated by α-D-Manp, and α-L-Fucp. In high-fat diet (HFD)-fed obese mice, IHP3 effectively suppressed body weight and plasma glucose gain, decreased fat accumulation, ameliorated lipid metabolism, and protected liver function from HFD-induced damage. Combining the analysis of gut microbiota metabolomics, hepatic proteomics and biochemical detection revealed, IHP3 significantly altered cecum fecal metabolite abundances, inhibited the phosphorylation of peroxisome proliferator-activated receptor gamma, and promoted the browning of white adipose tissue and the activation of brown adipose tissue. These changes collectively contributed to alleviating obesity symptoms by suppressing the interleukin (IL)-17-mediated inflammatory response in obese mice. Therefore, these findings suggest that IHP3 could be a potential candidate for the development of anti-obesity drugs.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Xin Zhang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China; Shenyang Agricultural University, Shenyang 110866, China.
| | - Xinghui Jin
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Zhige Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| | - Yanfeng Zhu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118, China; School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
3
|
Lalhmangaihzuala S, Vanlaldinpuia K, Khiangte V, Laldinpuii Z, Liana T, Lalhriatpuia C, Pachuau Z. Therapeutic applications of carbohydrate-based compounds: a sweet solution for medical advancement. Mol Divers 2024; 28:4553-4579. [PMID: 38554170 DOI: 10.1007/s11030-024-10810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/10/2024] [Indexed: 04/01/2024]
Abstract
Carbohydrates, one of the most abundant biomolecules found in nature, have been seen traditionally as a dietary component of foods. Recent findings, however, have unveiled their medicinal potential in the form of carbohydrates-derived drugs. Their remarkable structural diversity, high optical purity, bioavailability, low toxicity and the presence of multiple functional groups have positioned them as a valuable scaffold and an exciting frontier in contemporary therapeutics. At present, more than 170 carbohydrates-based therapeutics have been granted approval by varying regulatory agencies such as United States Food and Drug Administration (FDA), Japan Pharmaceuticals and Medical Devices Agency (PMDA), Chinese National Medical Products Administration (NMPA), and the European Medicines Agency (EMA). This article explores an overview of the fascinating potential and impact of carbohydrate-derived compounds as pharmacological agents and drug delivery vehicles.
Collapse
Affiliation(s)
- Samson Lalhmangaihzuala
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Khiangte Vanlaldinpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India.
| | - Vanlalngaihawma Khiangte
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Zathang Laldinpuii
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| | - Thanhming Liana
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Chhakchhuak Lalhriatpuia
- Department of Chemistry, Pachhunga University College, Mizoram University, Aizawl, Mizoram, 796001, India
| | - Zodinpuia Pachuau
- Department of Chemistry, Mizoram University, Tanhril, Aizawl, Mizoram, 796004, India
| |
Collapse
|
4
|
Zhang L, Yan M, Liu C. A comprehensive review of secondary metabolites from the genus Agrocybe: Biological activities and pharmacological implications. Mycology 2023; 15:162-179. [PMID: 38813473 PMCID: PMC11132692 DOI: 10.1080/21501203.2023.2292994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/06/2023] [Indexed: 05/31/2024] Open
Abstract
The genus Agrocybe, situated within the Strophariaceae family, class Agaricomycetes, and phylum Basidiomycota, encompasses a myriad of species exhibiting significant biological activities. This review presents an integrative overview of the secondary metabolites derived from Agrocybe species, elucidating their respective biological activities and potential pharmacological applications. The metabolites under scrutiny encompass a diverse array of biological macromolecules, specifically polysaccharides and lectins, as well as a diverse group of 80 documented small molecular chemical constituents, classified into sterols, sesquiterpenes, volatile compounds, polyenes, and other compounds, their manifesting anti-inflammatory, anticancer, antioxidant, hepatoprotective, antimicrobial, and antidiabetic activities, these metabolites, in which polysaccharides exhibit abundant activities, underscore the potential of the Agrocybe genus as a valuable source of biologically active natural products. The present review emphasises the need for escalated research into Agrocybe, including investigations into the biosynthetic pathways of these metabolites, which could foster the development of novel pharmaceutical therapies to address various health challenges.
Collapse
Affiliation(s)
- Liqiu Zhang
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, China
| | - Meixia Yan
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Chen SK, Li YH, Wang X, Guo YQ, Song XX, Nie SP, Yin JY. Evaluation of the "Relative Ordered Structure of Hericium erinaceus Polysaccharide" from Different Origins: Based on Similarity and Dissimilarity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17886-17898. [PMID: 37955257 DOI: 10.1021/acs.jafc.3c04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Polysaccharides are organic compounds widely distributed in nature, but structural order and disorder remain a formidable problem. In this study, based on the theoretical framework of the "relative ordered structure of polysaccharide" proposed in our previous work, the structural order of Hericium erinaceus polysaccharides from different regions was evaluated by FT-IR, methylation analysis, and 1H NMR spectroscopy combined with chemometric methods. The results of principal component analysis and heatmap cluster analysis revealed that 18-subfractions exhibit four different structural types with representative glycoside linkage types: fucogalactoglucan, glucofucogalactan, fucoglucan, and glucan. The main chain of heteroglucans often consists of β-(1 → 6)-Glcp, β-(1 → 4)-Glcp, and β-(1 → 3)-Glcp residues, which are predominantly substituted at the O-3 and O-6 positions. The main chain structure of heterogalactans is α-(1 → 6)-Galp residues, which may be replaced by Fucp and Galp residues at O-2. Overall, our findings demonstrate the validity of the "relative ordered structure of polysaccharide" in Hericium erectus polysaccharides and simplify the complexity of polysaccharide structures.
Collapse
Affiliation(s)
- Shi-Kang Chen
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Yu-Hao Li
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Xin Wang
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Yu-Qing Guo
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Xiao-Xiao Song
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| | - Jun-Yi Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi Province 330047, China
| |
Collapse
|
6
|
Zhou A, Cheng H, Liu H, Li L, Chen Z, Chen S, Wang C, Wang D. Neuroprotection of low-molecular-weight galactan obtained from Cantharellus cibarius Fr. against Alzheimer's disease. Carbohydr Polym 2023; 316:121033. [PMID: 37321728 DOI: 10.1016/j.carbpol.2023.121033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
The large molecular weight of polysaccharides limits their absorption and utilization by organisms, affecting their biological activities. In this study, we purified α-1,6-galactan from Cantharellus cibarius Fr. (chanterelle) and reduced its molecular weight from approximately 20 kDa to 5 kDa (named CCP) to increase its solubility and absorption. In APP/PS1 mice, CCP improved both spatial and non-spatial memory loss in Alzheimer's disease (AD) mice, as confirmed by the Morris water maze, step-down, step-through, and novel object recognition tests, and dampened the deposition of amyloid-β plaques, as assessed by immunohistochemical analysis. Proteomic analysis suggested that the neuroprotective effects of CCP are related to anti-neuroinflammation. Immunofluorescence analysis and western blotting confirmed that CCP attenuated AD-like symptoms partly by inhibiting neuroinflammation, which was related to the blocking of complement component 3. Our study provides theoretical support and experimental evidence for the future application of chanterelle-extracted polysaccharides in AD treatment, promoting the modern development of traditional medicines originating from natural polysaccharides.
Collapse
Affiliation(s)
- Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Haoyu Cheng
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Zhiyuan Chen
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Shanshan Chen
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
7
|
Zhu Z, Huang R, Huang A, Wang J, Liu W, Wu S, Chen M, Chen M, Xie Y, Jiao C, Zhang J, Wu Q, Ding Y. Polysaccharide from Agrocybe cylindracea prevents diet-induced obesity through inhibiting inflammation mediated by gut microbiota and associated metabolites. Int J Biol Macromol 2022; 209:1430-1438. [PMID: 35460750 DOI: 10.1016/j.ijbiomac.2022.04.107] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022]
Abstract
Polysaccharide from Agrocybe cylindracea (ACP) has been demonstrated with various health benefits, but its anti-obesity effect and underlying mechanisms remain poorly understood. This study aimed to investigate the beneficial effects of ACP in high-fat diet (HFD)-induced obese mice by targeting gut microbiota and metabolites. 9-week ACP supplementation in HFD-fed mice reduced body weight, adipose accumulation, impaired insulin resistance, lipid levels, and liver injuries, which were negatively correlated to the pro-inflammatory factors, particularly tumor necrosis factor-alpha (TNF-α) and interleukin- 6 (IL-6). Moreover, ACP not only restored HFD-induced gut disorder, as indicated by the depletion of Desulfovibrio and Oscillibacter and the enrichment of the Bacteroides, Parabacteroides, Butyricimonas, and Dubosiella, but also positively regulated gut metabolites such as solavetivone and N-acetylneuraminic acid. Spearman's correlation analysis revealed that the ACP-altered microbes and metabolites were highly correlated with inflammation-related indexes. Notably, ACP greatly lowered the obesity-related TNF-α- and IL-6-levels partially by reducing Desulfovibrio and increasing Parabacteroides abundances, together with the associated decrease of solavetivone level. These findings suggest that ACP may be used as a prebiotic agent to prevent diet-induced obesity, and target-specific microbiota and metabolites may have unique therapeutic promise for inflammation-related diseases.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Rui Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Aohuan Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Liu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Shujian Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Mengfei Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Moutong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou 510700, China
| | - Chunwei Jiao
- Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou 510700, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China; Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China.
| |
Collapse
|
8
|
Edible Mushrooms for Sustainable and Healthy Human Food: Nutritional and Medicinal Attributes. SUSTAINABILITY 2022. [DOI: 10.3390/su14094941] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Global food production faces many challenges, including climate change, a water crisis, land degradation, and desertification. These challenges require research into non-traditional sources of human foods. Edible mushrooms are considered an important next-generation healthy food source. Edible mushrooms are rich in proteins, dietary fiber, vitamins, minerals, and other bioactive components (alkaloids, lactones, polysaccharides, polyphenolic compounds, sesquiterpenes, sterols, and terpenoids). Several bioactive ingredients can be extracted from edible mushrooms and incorporated into health-promoting supplements. It has been suggested that several human diseases can be treated with extracts from edible mushrooms, as these extracts have biological effects including anticancer, antidiabetic, antiviral, antioxidant, hepatoprotective, immune-potentiating, and hypo-cholesterolemic influences. The current study focuses on sustainable approaches for handling edible mushrooms and their secondary metabolites, including biofortification. Comparisons between edible and poisonous mushrooms, as well as the common species of edible mushrooms and their different bioactive ingredients, are crucial. Nutritional values and the health benefits of edible mushrooms, as well as different biomedical applications, have been also emphasized. Further research is needed to explore the economic sustainability of different medicinal mushroom bioactive compound extracts and their potential applications against emerging diseases such as COVID-19. New approaches such as nano-biofortification are also needed to supply edible mushrooms with essential nutrients and/or to increase their bioactive ingredients.
Collapse
|
9
|
dos Santos Varjão MT, Duarte AWF, Rosa LH, Alexandre-Moreira MS, de Queiroz AC. Leishmanicidal activity of fungal bioproducts: A systematic review. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Biologically active polysaccharide from edible mushrooms: A review. Int J Biol Macromol 2021; 172:408-417. [PMID: 33465360 DOI: 10.1016/j.ijbiomac.2021.01.081] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/16/2020] [Accepted: 01/12/2021] [Indexed: 02/04/2023]
Abstract
Mushrooms are renewable natural gift for humankind, furnished with unique taste, flavor and medicinal properties. For the last few decades study of mushroom polysaccharides has become a matter of great interest to the researchers for their immunomodulating, antimicrobial, antioxidant, anticancer, and antitumor properties. Molecular mass, branching configuration, conformation of polysaccharides and chemical modification are the major factors influencing their biological activities. The mechanism of action of mushroom polysaccharides is to stimulate T-cells, B-cells, natural killer cells, and macrophage dependent immune responses via binding to receptors like the toll-like receptor-2, dectin-1. The present review offers summarized and significant information about the structural and biological properties of mushroom polysaccharides, and their potential for development of therapeutic materials.
Collapse
|
11
|
Liu X, Wu X, Tan H, Xie B, Deng Y. Large inverted repeats identified by intra-specific comparison of mitochondrial genomes provide insights into the evolution of Agrocybe aegerita. Comput Struct Biotechnol J 2020; 18:2424-2437. [PMID: 33005305 PMCID: PMC7508693 DOI: 10.1016/j.csbj.2020.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022] Open
Abstract
Genomic structure and content of Agrocybe aegerita mitochondrial DNA contain essential information regarding the evolution of this gourmet mushroom. In this study, eight isolates of A. aegerita were sequenced and assembled into complete mitochondrial genomes. The mtDNA of the isolate Ag0067 contained two genotypes, both of which were quadripartite architecture consisting of two identical inverted repeats, separated by a small single-copy region and a large single-copy region. The only difference was opposite directions of the small single-copy region. The mtDNAs ranged from 116,329 bp to 134,035 bp, harboring two large identical inverted repeats. Genes of plasmid-origin were present in regions flanked by inverted repeat ID2. Most of the core genes evolved at a relatively low rate, whereas five tRNA genes located in corresponding regions of Ag0002:1-14000 and Ag0002:50001-61000 showed higher diversity. A long fragment inversion (10 Kb) was suggested to have occurred during the differentiation of two main clades, leading to two different gene orders. The number and distribution of the introns varied greatly among the A. aegerita mtDNAs. Fast invasion of short insertions likely resulted in the diversity of introns as well as other non-coding regions, increasing the variation of the mtDNAs. We raised a model about the evolution of the large repeats to explain the unusual features of A. aegerita mtDNAs. This study constructed quadripartite architecture of A. aegerita mtDNAs analogous to chloroplast DNA, proposed an interconversion model of the divergent mitochondrial genotypes with large inverted repeats. The findings could increase our knowledge of fungal evolution.
Collapse
Affiliation(s)
- Xinrui Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoping Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hao Tan
- Mushroom Research Center, Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610000, China
- School of Bioengineering, Jiangnan University, Wuxi 214062, China
| | - Baogui Xie
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Youjin Deng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
12
|
Epiphanies of well-known and newly discovered macromolecular carbohydrates – A review. Int J Biol Macromol 2020; 156:51-66. [DOI: 10.1016/j.ijbiomac.2020.04.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/08/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
|
13
|
Kwofie SK, Broni E, Dankwa B, Enninful KS, Kwarko GB, Darko L, Durvasula R, Kempaiah P, Rathi B, Miller Iii WA, Yaya A, Wilson MD. Outwitting an Old Neglected Nemesis: A Review on Leveraging Integrated Data-Driven Approaches to Aid in Unraveling of Leishmanicides of Therapeutic Potential. Curr Top Med Chem 2020; 20:349-366. [PMID: 31994465 DOI: 10.2174/1568026620666200128160454] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/20/2019] [Accepted: 09/12/2019] [Indexed: 11/22/2022]
Abstract
The global prevalence of leishmaniasis has increased with skyrocketed mortality in the past decade. The causative agent of leishmaniasis is Leishmania species, which infects populations in almost all the continents. Prevailing treatment regimens are consistently inefficient with reported side effects, toxicity and drug resistance. This review complements existing ones by discussing the current state of treatment options, therapeutic bottlenecks including chemoresistance and toxicity, as well as drug targets. It further highlights innovative applications of nanotherapeutics-based formulations, inhibitory potential of leishmanicides, anti-microbial peptides and organometallic compounds on leishmanial species. Moreover, it provides essential insights into recent machine learning-based models that have been used to predict novel leishmanicides and also discusses other new models that could be adopted to develop fast, efficient, robust and novel algorithms to aid in unraveling the next generation of anti-leishmanial drugs. A plethora of enriched functional genomic, proteomic, structural biology, high throughput bioassay and drug-related datasets are currently warehoused in both general and leishmania-specific databases. The warehoused datasets are essential inputs for training and testing algorithms to augment the prediction of biotherapeutic entities. In addition, we demonstrate how pharmacoinformatics techniques including ligand-, structure- and pharmacophore-based virtual screening approaches have been utilized to screen ligand libraries against both modeled and experimentally solved 3D structures of essential drug targets. In the era of data-driven decision-making, we believe that highlighting intricately linked topical issues relevant to leishmanial drug discovery offers a one-stop-shop opportunity to decipher critical literature with the potential to unlock implicit breakthroughs.
Collapse
Affiliation(s)
- Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana.,West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana.,Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Bismark Dankwa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| | - Kweku S Enninful
- Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| | - Gabriel B Kwarko
- West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra, Ghana
| | - Louis Darko
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, PMB LG 77, Legon, Accra, Ghana
| | - Ravi Durvasula
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States
| | - Brijesh Rathi
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, 110007, India
| | - Whelton A Miller Iii
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Chemistry, Physics, & Engineering, Lincoln University, Lincoln University, PA 19352, United States.,Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Abu Yaya
- Department of Materials Science and Engineering, College of Basic & Applied Sciences, University of Ghana, Legon, Ghana
| | - Michael D Wilson
- Department of Medicine, Loyola University Chicago, Loyola University Medical Center, Maywood, IL 60153, United States.,Department of Parasitology, Noguchi Memorial Institute for Medical Research (NMIMR), College of Health Sciences (CHS), University of Ghana, Legon, Accra, Ghana
| |
Collapse
|