1
|
He J, Xi J, Han B, Xiao Q, Guo D, Huang S. Chiral stationary phase based on chitosan Schiff base derivatives for enantioseparation. Carbohydr Polym 2025; 359:123590. [PMID: 40306794 DOI: 10.1016/j.carbpol.2025.123590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025]
Abstract
Chitosan derivatives play an important role in the field of enantioseparation due to their favorable chiral recognition properties. However, the preparation of chitosan derivatives with good chiral separation properties and organic solvent tolerance still needs further exploration. Herein, we report the synthesis of two types of chitosan Schiff bases via condensation reactions between chitosan and halogenated benzaldehydes, and subsequently modified with methyl-substituted phenylcarbamates, resulting in four chitosan-3,6-bis(phenylcarbamate)-2-Schiff base derivatives with high substitution degree. Thereafter, four chiral stationary phases were prepared by coating the chitosan derivatives onto aminopropyl silica gel and assessed for their enantioseparation performance using 20 chiral compounds via high-performance liquid chromatography. Findings show that the best chiral stationary phase recognizes 19 chiral compounds and provides a baseline separation of 10 chiral compounds, including a pharmaceutical intermediate ethyl mandelate (maximum resolution: 4.18) and aromatic amide-type chiral drugs. Based on the strong interaction of molecular forces in the structure of chitosan-3,6-bis(phenylcarbamate)-2-Schiff base derivatives, the chiral stationary phases based on chitosan Schiff base derivatives are tolerant to ethyl acetate and acetone. Furthermore, electronic circular dichroism analysis revealed that substituents at the C2, C3, and C6 positions significantly influenced the secondary structure of chitosan derivatives, and thus correlating with their enantioselectivity.
Collapse
Affiliation(s)
- Jing He
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jiangbo Xi
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Bowen Han
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China
| | - Qi Xiao
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China
| | - Dandan Guo
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China
| | - Shaohua Huang
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China; Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Wang Q, Tang S, Guo F, Feng Y, Li Y, Gong M, Zhang Y, Zhang C, Mei L, Wang Y, Zhang D, Su W, Yuan C. Injectable CuS-loaded carboxymethyl and sulfonated chitosan hydrogel with antibacterial and self-healing properties promoting periodontal tissue regeneration. Int J Biol Macromol 2025; 310:143205. [PMID: 40246111 DOI: 10.1016/j.ijbiomac.2025.143205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Periodontitis is a chronic infectious disease caused by bacteria, characterized by progressive destruction of periodontal soft and hard tissues, ultimately leading to tooth loss. To treat periodontitis, this study combined the advantages of nanoparticles and hydrogels, and successfully developed an injectable aldehyde-functionalized PF127, carboxymethyl and sulfonated chitosan hydrogel doped with copper sulfide nanoparticles (CuS/PCS). The CuS/PCS hydrogel was synthesized through a dynamic Schiff base reaction. The injectable hydrogel forms a gel in situ after injection into deep periodontal pockets, achieving high antibacterial activity without causing bacterial resistance. The CuS/PCS hydrogel exhibited good biocompatibility, maintained cell viability, promoted stem cell proliferation, and demonstrated significant antimicrobial activity. In the rat periodontitis model, the CuS/PCS hydrogel effectively reduced inflammation and bone loss, and promoted periodontal tissue regeneration. These results suggest that CuS/PCS hydrogel could be a promising biomaterial for the treatment of periodontitis.
Collapse
Affiliation(s)
- Qingao Wang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Shang Tang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Fangze Guo
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Yunqi Feng
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Yabo Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Mengqing Gong
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Yu Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Caiyi Zhang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Li Mei
- School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Youbin Wang
- School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Daishuo Zhang
- School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Wen Su
- School of Stomatology, Qingdao University, Qingdao 266023, China.
| | - Changqing Yuan
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266023, China.
| |
Collapse
|
3
|
Chu B, Huang Y, Chen Y, Wang S, Li X. A chondroitin sulfate/chitosan composite coating for anticoagulation on cardiovascular implants. Int J Biol Macromol 2025; 307:142345. [PMID: 40118418 DOI: 10.1016/j.ijbiomac.2025.142345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/28/2025] [Accepted: 03/19/2025] [Indexed: 03/23/2025]
Abstract
Developing durable anticoagulant coatings for cardiovascular implants remains a major research challenge. Heparin, the current gold-standard anticoagulant, faces challenges due to rapid elution from coated surfaces. This article reports a new heparin-alternative anticoagulant coating system engineered through rational design of a dual-functional chondroitin sulfate derivative (methacrylated/aldehyde-modified chondroitin sulfate, CSMAO) and sulfonated chitosan (SCS). The hierarchical architecture was constructed via sequential layer-by-layer (LbL) assembly on polydopamine (PDA)-functionalized 316 L stainless steel substrates. The material characterization methods included Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS). The grafting rate of glycidyl methacrylate was 20.05 %, with an aldehyde substitution degree of 48.61 %, and the sulfonation degree of SCS reached 46.96 %. The composite coating exhibited excellent biocompatibility and anticoagulant properties. Coagulation profiling indicated comparable extrinsic pathway regulation to that of heparin controls along with superior intrinsic pathway inhibition (P < 0.01). This rationally designed coating system shows translational promise for improving the hemocompatibility of cardiovascular implants.
Collapse
Affiliation(s)
- Bin Chu
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, PR China; Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China.
| | - Yibin Huang
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, PR China
| | - Yifan Chen
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, PR China
| | - Song Wang
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China.
| | - Xiaoli Li
- Key Laboratory of Biomedical Materials and Implant Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, PR China.
| |
Collapse
|
4
|
Duymaz D, Kebabci AO, Kizilel S. Harnessing the immunomodulatory potential of chitosan and its derivatives for advanced biomedical applications. Int J Biol Macromol 2025; 307:142055. [PMID: 40090654 DOI: 10.1016/j.ijbiomac.2025.142055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/21/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The success of biomaterial applications in medicine, particularly in tissue engineering, relies on achieving a balance between promoting tissue regeneration and controlling the immune response. Due to its natural origin, high biocompatibility, and versatility, chitosan has emerged as a promising biomaterial especially for immunomodulation purposes. Immunomodulation, refers to the deliberate alteration of the immune system's activity to achieve a desired therapeutic effect either by enhancing or suppressing the function of specific immune cells, signaling pathways, or cytokine production. This modulation opens up the unlimited possibilities for the use of biomaterials, especially about the use of natural polymers such as chitosan. Although numerous chitosan-based immunoregulatory strategies have been demonstrated over the past two decades, the lack of in-depth exploration hinders the full potential of strategies that include chitosan and its derivatives in biomedical applications. Thus, in this review, the possible immunomodulatory effects of chitosan, chitosan derivatives and their potential combined with various agents and therapies are investigated in detail. Moreover, this report includes agents for localized immune response control, chitosan-based strategies with complementary immunomodulatory properties to create synergistic effects that will influence the success of cell therapies for enhanced tissue acceptance and regeneration. Finally, the challenges and outlook of chitosan-based therapies as a powerful tool for improving immunomodulatory applications are discussed for paving the way for further studies.
Collapse
Affiliation(s)
- Doğukan Duymaz
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Aybaran O Kebabci
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye
| | - Seda Kizilel
- Chemical and Biological Engineering, Koç University, Sariyer, İstanbul, Turkiye.
| |
Collapse
|
5
|
Hashemi SS, Niknam Z, Mojtaba Zebarjad S, Mehrabani D, Jalli R, Saeedi Moghadam M, Behroozi R, Zare S, Jamhiri I, Derakhshanfar A, Moayedi J, Nazempour M, Rasouli-Nia A, Karimi-Busheri F, Khonakdar HA. Tracking the healing effect of human Wharton's jelly stem cells labeled with superparamagnetic iron oxide nanoparticles seeded onto polyvinyl alcohol/chitosan/carbon nanotubes in burn wounds by MRI and Prussian blue staining. Biomed Mater 2025; 20:025037. [PMID: 39681069 DOI: 10.1088/1748-605x/ad9fc6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Regenerative medicine through the application of tissue engineering and cell transplantation has provided a new door for wound healing. In this study, the healing effect of human Wharton's jelly stem cells (WJSCs) labeled with superparamagnetic iron oxide nanoparticles (SPIONs) seeded onto polyvinyl alcohol/chitosan/carbon nanotubes (PVA/CS/CNTs) in burn wounds was investigated by performing magnetic resonance imaging (MRI) and Prussian blue staining. Human WJSCs were prepared from umbilical cord and characterized. PVA/CS/CNTs were fabricated via electrospinning. Forty-eight rats were divided into four groups. The control group underwent a third-degree burn injury and was left untreated. The second group received silver sulfadiazine after burn induction, the third group was treated with PVA/CS/CNTs after burn wounds, and the fourth group received WJSCs labeled with SPIONs seeded onto PVA/CS/CNTs following burn injury. Tensile strength was investigated, real-time polymerase chain reaction was used to evaluate apoptosis, and Prussian blue staining and MRI were performed to trace labeled cells. The mesenchymal properties of WJSCs were characterized. Histologically, healing was observed as complete granulation occurred and epithelial tissues were formed in the absence of inflammatory cells, with increased expression of Bcl-2 and a decrease in Bax genes in the fourth group. Internalization of SPIONs within WJSCs was confirmed by Prussian blue staining and MRI on day 14. WJSCs labeled with SPIONs seeded onto PVA/CS/CNTs could successfully participate in the healing of burn wounds and could be easily tracked by MRI as a noninvasive method, providing a new door in regenerative medicine for burn wounds.
Collapse
Affiliation(s)
- Seyedeh-Sara Hashemi
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Niknam
- Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran
| | | | - Davood Mehrabani
- Burn and Wound Healing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Reza Jalli
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Saeedi Moghadam
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rezvan Behroozi
- Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Jamhiri
- Stem Cell Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Derakhshanfar
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Diagnostic Laboratory Sciences and Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Javad Moayedi
- Comparative and Experimental Medicine Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehra Nazempour
- Department of Biomedical and Tissue Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Aghdass Rasouli-Nia
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Feridoun Karimi-Busheri
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
6
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
7
|
Pandey A, Rath G, Chawala R, Goyal AK. A comprehensive review on liraglutide and novel nanocarrier-based systems for the effective delivery of liraglutide. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03918-1. [PMID: 40014122 DOI: 10.1007/s00210-025-03918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) analogs are synthetic derivatives of the natural incretin hormone GLP-1, which plays a crucial role in glucose metabolism. These analogs mimic the function of endogenous GLP-1 by stimulating insulin secretion, suppressing glucagon release, delaying gastric emptying, and promoting satiety, making them effective for managing type 2 diabetes mellitus (T2DM) and obesity. Liraglutide, a glucagon-like peptide-1 (GLP-1) analog, has gained considerable attention for its potential in treating type 2 diabetes mellitus, obesity, and cardiovascular disorders. However, its therapeutic application is significantly hindered by poor absorption, a short biological half-life, and unintended off-target effects, necessitating advanced drug delivery strategies. To address these challenges, various nanocarrier-based systems-such as nanofibers, liposomes, polymeric nanoparticles, exosomes, hydrogels, and lipid nanoparticles-have been explored. These nanocarriers facilitate site-specific and sustained release of liraglutide, improving its bioavailability and therapeutic efficacy. This article provides a comprehensive overview of liraglutide's pharmacological properties, preclinical studies, and the potential of different nanocarrier-based approaches in optimizing its delivery for enhanced clinical outcomes.
Collapse
Affiliation(s)
- Ajay Pandey
- Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Ruchi Chawala
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India, 221005
| | - Amit Kumar Goyal
- Department of Pharmacy, School of Chemical Sciences, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
8
|
Pérez-Pacheco Y, Tylkowski B, García-Valls R. Chitosan Micro/Nanocapsules in Action: Linking Design, Production, and Therapeutic Application. Molecules 2025; 30:252. [PMID: 39860124 PMCID: PMC11767700 DOI: 10.3390/molecules30020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
pH sensitivity of chitosan allows for precise phase transitions in acidic environments, controlling swelling and shrinking, making chitosan suitable for drug delivery systems. pH transitions are modulated by the presence of cross-linkers by the functionalization of the chitosan chain. This review relays a summary of chitosan functionalization and tailoring to optimize drug release. The potential to customize chitosan for different environments and therapeutic uses introduces opportunities for drug encapsulation and release. The focus on improving drug encapsulation and sustained release in specific tissues is an advanced interpretation, reflecting the evolving role of chitosan in achieving targeted and more efficient therapeutic outcomes. This review describes strategies to improve solubility and stability and ensure the controlled release of encapsulated drugs. The discussion on optimizing factors like cross-linking density, particle size, and pH for controlled drug release introduces a deeper understanding of how to achieve specific therapeutic effects. These strategies represent a refined approach to designing chitosan-based systems, pushing the boundaries of sustained release technologies and offering new avenues for precise drug delivery profiles.
Collapse
Affiliation(s)
- Yaride Pérez-Pacheco
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (Y.P.-P.); (B.T.)
| | - Bartosz Tylkowski
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (Y.P.-P.); (B.T.)
- Eurecat, Centre Tecnològic de Catalunya, Chemical Technologies Unit, Marcel_lí Domingo s/n, 43007 Tarragona, Spain
- Faculty of Health Science, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Sklodowskiej Curie 9, 85-094 Bydgoszcz, Poland
| | - Ricard García-Valls
- Department of Chemical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (Y.P.-P.); (B.T.)
| |
Collapse
|
9
|
Sanjaykumar SG, Malviya R, Srivastava S, Ahmad I, Uniyal P, Singh B, Nisar N. Chitosan-Peptide Composites for Tissue Engineering Applications: Advances in Treatment Strategies. Curr Protein Pept Sci 2025; 26:185-200. [PMID: 39350425 DOI: 10.2174/0113892037323136240910052119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 04/09/2025]
Abstract
One of the most well-known instances of an interdisciplinary subject is tissue engineering, where experts from many backgrounds collaborate to address important health issues and improve people's quality of life. Many researchers are interested in using chitosan and its derivatives as an alternative to fabricating scaffold engineering and skin grafts in tissue because of its natural abundance, affordability, biodegradability, biocompatibility, and wound healing properties. Nanomaterials based on peptides can provide cells with the essential biological cues required to promote cellular adhesion and are easily fabricated. Due to such worthy properties of chitosan and peptide, they find their application in tissue engineering and regeneration processes. The implementation of hybrids of chitosan and peptide is increasing in the field of tissue engineering and scaffolding for improved cellular adherence and bioactivity. This review covers the individual applications of peptide and chitosan in tissue engineering and further discusses the role of their conjugates in the same. Here, the recent findings are also discussed, along with studies involving the use of these hybrids in tissue engineering applications.
Collapse
Affiliation(s)
- Swati Gupta Sanjaykumar
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| | - Bhupinder Singh
- Department of Law, Sharda University, Greater Noida, U.P., India
| | - Nazima Nisar
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
10
|
Dedman CJ, Chauhan N, González-Lanchas A, Baldreki C, Dowle AA, Larson TR, Lee RBY, Rickaby REM. Exploring proteins within the coccolith matrix. Sci Rep 2024; 14:31821. [PMID: 39738514 PMCID: PMC11685980 DOI: 10.1038/s41598-024-83052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Coccolithophores comprise a major component of the oceanic carbon cycle. These unicellular algae produce ornate structures made of calcium carbonate, termed coccoliths, representing ~ 50% of calcite production in the open ocean. The exact molecular mechanisms which direct and control coccolith formation are unknown. In this study, we report on the presence and functional features of proteins within the coccoliths produced by a range of model coccolithophore species including: the globally abundant and well-studied Gephyrocapsa huxleyi (formerly Emiliania huxleyi) and related Gephyrocapsa oceanica, as well as the larger and more heavily calcified Coccolithus braarudii. Protein features were compared between species and against biomineralisation proteins previously identified in other marine calcifying organisms. Notably, several protein features were consistently seen across the examined coccolithophore species, including the cell signalling 14-3-3 domain, chromosome segregation SMC ATPase domain, as well as proteins involved in protein processing and protease inhibition. The copper-binding cupredoxin domain was observed in both Gephyrocapsa species, as well as other marine calcifiers, suggestive of a requirement of Cu in biomineralisation. Building consensus with existing work, we highlight the pentapeptide repeat as a feature which is associated with the coccolith matrix, being identified in all three examined species, and propose that this structural motif may play a role in controlling coccolith growth. This preliminary study provides insight towards the functional diversity of calcification machinery in coccolithophores and presents a number of candidates for future research towards understanding the biochemical controls which direct coccolithogenesis.
Collapse
Affiliation(s)
- Craig J Dedman
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK.
- School of Geography, Earth and Environmental Sciences, Portland Square, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Nishant Chauhan
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Alba González-Lanchas
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| | - Chloë Baldreki
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Adam A Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Tony R Larson
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Renee B Y Lee
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6UB, UK
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| |
Collapse
|
11
|
Karimian-Shaddel A, Dadashi H, Mashinchian M, Mohabbat A, Nazemiyeh AR, Vandghanooni S, Eskandani M. Codelivery of metformin and methotrexate with optimized chitosan nanoparticles for synergistic triple-negative breast cancer therapy in vivo. Int J Pharm 2024; 667:124897. [PMID: 39489387 DOI: 10.1016/j.ijpharm.2024.124897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The development of effective therapeutic strategies for triple-negative breast cancer (TNBC), an aggressive subtype with limited treatment options, remains a critical challenge. This study aimed to design and evaluate a combination therapy using chitosan nanoparticles (Cs NPs) loaded with metformin (Met) and methotrexate (MTX) as a promising approach for TNBC management. The Cs NPs exhibited an average size of 78.8 ± 25.84 nm for blank Cs NPs, 84.50 ± 22.54 nm for Met-Cs NPs, and 86.70 ± 30.90 nm for MTX-Cs NPs, with positive surface charges of 26.40 ± 1.40 mV, 28.20 ± 1.60 mV, and 14.30 ± 2.40 mV, respectively. The drug encapsulation efficiency was 88.56 ± 2.26 % for Met-Cs NPs and 97.03 ± 0.52 % for MTX-Cs NPs. The cellular uptake studies demonstrated a time-dependent increase in the accumulation of Shikonin-labeled Cs NPs in 4T1 cells. The cytotoxicity assays revealed that Met-Cs NPs and MTX-Cs NPs exhibited significantly lower IC50 values (19.85 μg/mL and 103.2 ng/mL, respectively) compared to the plain drugs at 48 h. The combination of Met-/MTX-Cs NPs showed a synergistic cytotoxic effect, inducing 50 % cell death at 15.233 μg/mL of Met and 0.166 μg/mL of MTX. In vivo studies using a 4T1 xenograft mouse model demonstrated that the combination of Met-/MTX-Cs NPs resulted in a 100 % reduction in initial tumor volume, compared to a 40 % decrease with the free drug combination. The tumor growth inhibition was 70.45 % for the Met-/MTX-Cs NPs group, significantly higher than the 33.86 % observed in the free drug combination group. The findings of this study highlight the potential of the Met-/MTX-Cs NPs combination as a novel and effective therapeutic approach for TNBC management. The enhanced therapeutic efficacy, improved safety profile, and the ability to modulate key signaling pathways make this nanoparticle-based combination therapy a promising candidate for further clinical investigation.
Collapse
Affiliation(s)
- Alireza Karimian-Shaddel
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Dadashi
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Mashinchian
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aria Mohabbat
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Reza Nazemiyeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Jarmila P, Veronika M, Peter M. Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles. Int J Pharm X 2024; 8:100281. [PMID: 39297017 PMCID: PMC11408389 DOI: 10.1016/j.ijpx.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.
Collapse
Affiliation(s)
- Prieložná Jarmila
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikušová Veronika
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikuš Peter
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
13
|
Sajjadi M, Nasrollahzadeh M, Ghafuri H. Functionalized chitosan-inspired (nano)materials containing sulfonic acid groups: Synthesis and application. Carbohydr Polym 2024; 343:122443. [PMID: 39174086 DOI: 10.1016/j.carbpol.2024.122443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nature-inspired chitosan (CS) materials show a high potential for the design/fabrication of sustainable heterogeneous (nano)materials with extraordinary structural/physical features, such as superior biodegradability/biocompatibility, simplicity of chemical modification, environmental safety, high availability, cost-effectiveness, high electrochemical activity, good film-forming ability, and antioxidant, antimicrobial/antibacterial, and anticoagulant activities. Industrialization and growth of industrial wastes or by-products induce an increasing demand for the development of clean, low-cost, and renewable natural systems to minimize or eliminate the utilization of environmentally toxic compounds. The preparation of novel heterogeneous functionalized polysaccharide-inspired bio(nano)materials via chemical modifications of natural CS to improve its physicochemical/biochemical properties has recently become tremendously attractive for many researchers. The most abundantly available and cost-effective functionalized CS-inspired (nano)materials are considerably valuable in terms of the economic aspects of production of (nano)catalysts, (nano)hydrogels, (nano)composite/blend membranes, and thus their commercialization. In this respect, the preparation of functionalized CS-inspired (nano)materials containing -SO3H groups has been represented as a valid alternative to the homogenous unmodified biomaterials for various applications. Sulfonated derivatives of CS-inspired (nano)materials may possess huge surface areas, catalytic activity, adsorption, and biological/biomedical properties. This review article is aimed at the investigation of different methods and potential applications of sulfonated CS-inspired (nano)materials in catalysis, fuel cells, adsorption of ions, membranes, and biological applications.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
14
|
Mu L, Wu L, Wu S, Ye Q, Zhong Z. Progress in chitin/chitosan and their derivatives for biomedical applications: Where we stand. Carbohydr Polym 2024; 343:122233. [PMID: 39174074 DOI: 10.1016/j.carbpol.2024.122233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 08/24/2024]
Abstract
Chitin and its deacetylated form, chitosan, have demonstrated remarkable versatility in the realm of biomaterials. Their exceptional biocompatibility, antibacterial properties, pro- and anticoagulant characteristics, robust antioxidant capacity, and anti-inflammatory potential make them highly sought-after in various applications. This review delves into the mechanisms underlying chitin/chitosan's biological activity and provides a comprehensive overview of their derivatives in fields such as tissue engineering, hemostasis, wound healing, drug delivery, and hemoperfusion. However, despite the wealth of studies on chitin/chitosan, there exists a notable trend of homogeneity in research, which could hinder the comprehensive development of these biomaterials. This review, taking a clinician's perspective, identifies current research gaps and medical challenges yet to be addressed, aiming to pave the way for a more sustainable future in chitin/chitosan research and application.
Collapse
Affiliation(s)
- Lanxin Mu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China; Southwest Hospital of Third Military Medical University (Army Medical University), Department of Plastic Surgery, Chongqing 400038, China
| | - Liqin Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Shuangquan Wu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan 430071, China.
| |
Collapse
|
15
|
Ahmaditabar P, Mahmoodi M, Taheri RA, Asefnejad A. Preparation and in vitro evaluation of tissue plasminogen activator-loaded nanoliposomes with anticoagulant coating. Biochim Biophys Acta Gen Subj 2024; 1868:130704. [PMID: 39178920 DOI: 10.1016/j.bbagen.2024.130704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
The clinical efficacy of tissue plasminogen activator (tPA) is limited by its lack of specific delivery, requiring large therapeutic doses that increase the risk of intracerebral hemorrhage, bleeding at the surgical site, and patient mortality after angioplasty. To address these limitations, this study aimed to develop a chitosan polysulfate (CsPs)-coated liposomal formulation for the sustained release of tPA. The CsPs-coated liposomes containing tPA (Liposome-tPA/CsPs) were fabricated using the thin-film hydration technique and their properties were compared to tPA-encapsulated nanoliposomes without a coating layer (Liposome-tPA). Liposome-tPA/CsPs showed a quasi-spherical morphology with a hydrodynamic diameter of 110 nm, while Liposome-tPA had a diameter of 80 nm. The thermal analysis showed that the degradation temperature and glass transition temperature (Tg) of Liposome-tPA/CsPs were higher than that of tPA alone, indicating improved temperature stability. The in vitro release study demonstrated a slow and sustained release of tPA from the Liposome-tPA/CsPs, with a concentration of 0.02 mg/ml at 1 h and 0.23 mg/ml at 180 h. The CsPs coating layer enhanced the antibacterial and antioxidant activity of the nanoliposomes. Liposome-tPA/CsPs exhibited higher cell viability compared to Liposome-tPA. It also achieved a higher percentage of thrombolysis, with complete clot dissolution observed after 3 h of treatment. These findings suggest that the Liposome-tPA/CsPs can be a promising approach to overcome the limitations associated with the systemic administration of tPA, potentially enhancing its clinical efficacy while reducing the risk of adverse events.
Collapse
Affiliation(s)
- Parvin Ahmaditabar
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, Iran; Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ramezan Ali Taheri
- Department of Biology, Faculty of Sciences, University of Tehran, Tehran, Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
16
|
He X, Peng L, Zhou L, Liu H, Hao Y, Li Y, Lv Z, Zeng B, Guo X, Guo R. A biphasic drug-releasing microneedle with ROS scavenging and angiogenesis for the treatment of diabetic ulcers. Acta Biomater 2024; 189:270-285. [PMID: 39362454 DOI: 10.1016/j.actbio.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Diabetic ulcers are one of the common complications in diabetic patients. Delayed wound healing is associated with persistent pro-inflammatory M1 polarization, reduced angiogenesis and increased reactive oxygen species (ROS) in the microenvironment. Wound healing consists of multiple phases and therefore requires treatment tailored to each phase. In this study, a biphasic drug-releasing microneedle (MN) was fabricated to achieve early ROS scavenging and late accelerated angiogenesis to promote wound healing. Vascular endothelial growth factor (VEGF) was first encapsulated in methacryloylated sulfonated chitosan (SCSMA) microspheres (V@MP), and then V@MP was loaded into hyaluronic acid (HA) microneedles along with cerium dioxide nanoparticles (CONPs). Rapid dissolution of HA rapidly releases the CONPs to clear ROS, whereas the V@MP stays in the wound. SCSMA slow degradation prolongs the release of VEGF, thereby promoting angiogenesis. In vitro and in vivo studies have shown that this biphasic drug-releasing smart microneedle improves cell proliferation and migration, effectively scavenges ROS, promotes angiogenesis and tissue regeneration, and synergistically promotes M2 macrophage polarization. It provides a new delivery mode for nano-enzymes and growth factors that could be multifunctional and synergistic in the treatment of diabetic ulcers. STATEMENT OF SIGNIFICANCE: In our study, we present a microneedle (V@MP/C@MN) that can release drugs biphasically, which showed good repair ability in diabetic ulcer model. Large amounts of CONPs were rapidly released to alleviate oxidative stress during the inflammation of the wound, and V@MP stayed in the wound for a long period of time to release VEGF and promote angiogenesis in the late stage of wound healing. The results indicated that V@MP/C@MN could promote cell proliferation and migration, effectively scavenge ROS, promote angiogenesis and tissue regeneration, and synergistically promote M2 macrophage polarization, which could play a multifunctional and synergistic role in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Xinyue He
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Lianghong Peng
- Department of Ophthalmology, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Liming Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Huiling Liu
- Head Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Amsterdam, De Boelelaan 1117, the Netherlands
| | - Yifan Hao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuhan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zijin Lv
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Baohui Zeng
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China.
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
17
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Chitosan Derivatives: Preparation, Properties and Applications in Pharmacy and Medicine. Gels 2024; 10:701. [PMID: 39590057 PMCID: PMC11593520 DOI: 10.3390/gels10110701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Chitosan (CS) derivatives have been extensively investigated to enhance the physicochemical and biological properties of CS, such as its solubility, biocompatibility, and bioactivity, which are required in various areas of pharmacy and medicine. The present work emphasizes the ongoing research and development in this field, suggesting that the further exploration of CS derivatives could lead to innovative solutions that benefit society. The physicochemical properties, biological activities, methods of preparation, advantages, limitations, intended application areas, and realized practical implementations of particular CS derivatives are summarized and discussed herein. Despite the numerous promising attributes of CS derivatives as reported in this paper, however, challenges like target selectivity, standardization (purity, chitosan structural variability), and cost-effectiveness still need addressing for widespread implementation, especially in drug delivery. Therefore, basic research studies still prevail in CS drug delivery systems. However, for specific applications such as wound healing and tissue engineering, implementations of CS derivatives in practice are found to be more frequent. To obtain a more complex view of the topic, information from the scientific papers reviewed is supplemented with information from actual patents and clinical studies. Both basic research advances and the most successful and important medical implementations of CS derivatives are discussed concerning further challenges and future perspectives.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia; (D.Ž.); (V.M.)
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia; (D.Ž.); (V.M.)
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Faculty of Pharmacy, Toxicological and Antidoping Center, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
18
|
Lan J, Wu Y, Chen J, Wang P, Chen H, Huang J, Lu D, Lin C, Ma X, Cao S. Enhancing plant fiber antibacterial and antiviral performance through synergistic action of amino and sulfonic acid groups. Carbohydr Polym 2024; 342:122384. [PMID: 39048195 DOI: 10.1016/j.carbpol.2024.122384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
As the most abundant renewable resource, cellulose fibers are potential candidates for use in health-protective clothing. Herein, we demonstrate a novel strategy for preparing cellulose fiber with prominent antibacterial and antiviral performance by the synergistic effect of amino groups and sulfonic acid groups. Specifically, guanylated chitosan oligosaccharide (GCOS) and N-sulfopropyl chitosan oligosaccharide (SCOS) were synthesized and chemically grafted onto cellulose fibers (CFs) to endow the fibers with antibacterial and antiviral properties. Moreover, a compounding strategy was applied to make the fibers with simultaneously high antibacterial and antiviral activity, especially in short contact time. The bacteriostatic rate (against S. aureus: 95.81 %, against E. coli: 92.07 %, 1 h) of the compounded fibers improved substantially when a few GCOS-CFs were mixed with SCOS-CFs; especially, it was much higher than both the individual GCOS-CFs and SCOS-CFs. By contrast, the improvement of the antiviral properties was less dramatic; however, even a few SCOS-CFs was mixed, the antiviral properties increased pronouncedly. Although the electrostatic interaction between SCOS and GCOS can make the SCOS-GCOS mixture lose some extent of antibacterial activity, the long chains of cellulose restrain the electrostatic interaction between sulfonic and amino groups, leading to their synergistic action and eventually superior antibacterial and antiviral effects.
Collapse
Affiliation(s)
- Jinxin Lan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yao Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jiazhen Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peng Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Hubei, Wuhan 430068, China
| | - Hui Chen
- Fujian Fynex Textile Science and Technology Co. Ltd., Quanzhou, Fujian 362200, China
| | - Jinfeng Huang
- Fujian Fynex Textile Science and Technology Co. Ltd., Quanzhou, Fujian 362200, China
| | - Dongdong Lu
- Key Lab for Sport Shoes Upper Materials, Fujian Huafeng New Material Co. Ltd., Putian 351164, China
| | - Changmei Lin
- College of Environmental and Biological Engineering, Putian University, Putian, Fujian 351100, China
| | - Xiaojuan Ma
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China..
| | - Shilin Cao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China..
| |
Collapse
|
19
|
Elnaggar EM, Abusaif MS, Abdel-Baky YM, Ragab A, Omer AM, Ibrahim I, Ammar YA. Insight into divergent chemical modifications of chitosan biopolymer: Review. Int J Biol Macromol 2024; 277:134347. [PMID: 39094872 DOI: 10.1016/j.ijbiomac.2024.134347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Chitosan is used in many applications due to its biodegradability, biocompatibility, nontoxicity, nonadhesiveness, and film-forming capabilities. Chitosan has antibacterial and antifungal activities, which are two of its other desirable attributes. However, chitosan can only dissolve in acidic liquids (1-3 % acetic acid), limiting its practical application. The hydroxyl and amino functional groups in the chitosan backbone are essential for chemical modification, which is a viable alternative for overcoming this obstacle. So, N- or O-, and N, O-substituted chitosan may yield derivatives with increased water solubility, biocompatibility, biodegradability, and bio-evaluation. In the same manner, the physicochemical properties of chitosan, including its mechanical and thermal properties, can be improved by cross-linking reactions. This review provides an overview of chitosan, including its origins and their solubility. Also, the review extend and discuss in details most of all chemical reactions that happened on the amino group, hydroxyl group, or both amino group and hydroxyl group to create modified chitosan-based organic materials. Finally, the problems that still need to be solved and probable future areas for study are discussed.
Collapse
Affiliation(s)
- Elsayed M Elnaggar
- Department of Chemistry, College of Sciences, University of Bisha, P.O. Box 344, Bisha 61922, Saudi Arabia
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, 11884 Nasr City, Cairo, Egypt.
| | - Yasser M Abdel-Baky
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ahmed Ragab
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, 11884 Nasr City, Cairo, Egypt; Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia.
| | - Ahmed M Omer
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Islam Ibrahim
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, 11884 Nasr City, Cairo, Egypt; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, USA
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (boys), Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| |
Collapse
|
20
|
Abdulsalam RA, Ijabadeniyi OA, Sabiu S. Fatty acid-modified chitosan and nanoencapsulation of essential oils: A snapshot of applications. Carbohydr Res 2024; 542:109196. [PMID: 38936268 DOI: 10.1016/j.carres.2024.109196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Chitosan (CS) and its modification with fatty acid (FA) in addition to the nanoencapsulation with essential oils (EOs) have emerged as promising approaches with diverse applications, particularly in food and fruit preservation. This review aims to curate data on the prospects of CS modified with FA as nanostructures, serving as carriers for EOs and its application in the preservation of fruits. A narrative review with no restricted period was used for the general overview of CS and strategies for its modification with FA. Report on CS modified with FA and nanoencapsulation with EO and their applications were appraised. The prospects of CS modified with FA and EO nanoencapsulation in food and fruit preservation were outlined. Most chitosan-fatty acid (CS-FA) studies have found relevance in water, medical and pharmaceutical industries, with few studies on food preservation. CS-FA formulation with EOs shows substantial potential in preserving fruits and will significantly impact the food industry in the future by extending the shelf life of fruits and reducing food waste.
Collapse
Affiliation(s)
- Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Oluwatosin Ademola Ijabadeniyi
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P.O. Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
21
|
Wang L, Pang Y, Su Z, Xin M, Li M, Mao Y. Synthesis of N-isonicotinic sulfonate chitosan and its antibiofilm activity against E. coli and S.aureus. Carbohydr Res 2024; 542:109194. [PMID: 38897018 DOI: 10.1016/j.carres.2024.109194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
N-(sodium 2-hydroxypropylsulfonate) chitosan (HSCS), N-sulfonate chitosan (SCS) and N-isonicotinic sulfonate chitosan (ISCS) were prepared. The structures of the prepared chitosan derivatives were characterized by nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and elemental analysis (EA). Antibacterial and antibiofilm activities of these chitosan derivatives were evaluated in vitro. The minimum inhibitory concentration (MIC) of HSCS and SCS against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were 0.625 mg/mL and 0.156 mg/mL, respectively. ISCS exhibited MIC values of 0.313 mg/mL and 0.078 mg/mL against E. coli and S. aureus, respectively. ISCS demonstrated superior antibacterial and antibiofilm properties compared to SCS and HSCS. These findings suggest that the incorporation of a pyridine structure into sulfonate chitosan enhances its antibacterial and antibiofilm activities, and the prepared ISCS has a promising application prospect for controlling the reproduction of microorganisms in the field of food packaging.
Collapse
Affiliation(s)
- Lin Wang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Xiamen, 361021, PR China
| | - Yu Pang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Xiamen, 361021, PR China
| | - Zhongwen Su
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Xiamen, 361021, PR China
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Xiamen, 361021, PR China.
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Xiamen, 361021, PR China.
| | - Yangfan Mao
- The Instrumental Analysis Center, Huaqiao University, Xiamen, 361021, PR China
| |
Collapse
|
22
|
Alizadeh S, Ameri Z, Daemi H, Pezeshki-Modaress M. Sulfated polysaccharide as biomimetic biopolymers for tissue engineering scaffolds fabrication: Challenges and opportunities. Carbohydr Polym 2024; 336:122124. [PMID: 38670755 DOI: 10.1016/j.carbpol.2024.122124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Sulfated polysaccharides play important roles in tissue engineering applications because of their high growth factor preservation ability and their native-like biological features. There are different sulfated polysaccharides based on different repeating units in the carbohydrate backbone, the position of the sulfate group, and the sulfation degree of the polysaccharide. These led to various sulfated polymers with different negative charge densities and resultant structure-property relationships. Since numerous reports are presented related to sulfated polysaccharide applications in tissue engineering, it is crucial to review the role of effective physicochemical and biological parameters in their usage; as well as their structure-property relationships. Within this review, we focused on the effect of naturally occurring and synthetic sulfated polysaccharides in tissue engineering applications reported in the last years, highlighting the challenges of the scaffold fabrication process, the position, and the degree of sulfate on biomedical activity. Additionally, we discussed their use in numerous in vitro and in vivo model systems.
Collapse
Affiliation(s)
- Sanaz Alizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ameri
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cells and Regenerative Medicine Innovation Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamad Pezeshki-Modaress
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Zubair M, Hussain A, Shahzad S, Arshad M, Ullah A. Emerging trends and challenges in polysaccharide derived materials for wound care applications: A review. Int J Biol Macromol 2024; 270:132048. [PMID: 38704062 DOI: 10.1016/j.ijbiomac.2024.132048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Polysaccharides are favourable and promising biopolymers for wound care applications due to their abundant natural availability, low cost and excellent biocompatibility. They possess different functional groups, such as carboxylic, hydroxyl and amino, and can easily be modified to obtain the desirable properties and various forms. This review systematically analyses the recent progress in polysaccharides derived materials for wound care applications, emphasizing the most commonly used cellulose, chitosan, alginate, starch, dextran and hyaluronic acid derived materials. The distinctive attributes of each polysaccharide derived wound care material are discussed in detail, along with their different forms, i.e., films, membranes, sponges, nanoemulsions, nanofibers, scaffolds, nanocomposites and hydrogels. The processing methods to develop polysaccharides derived wound care materials are also summarized. In the end, challenges related to polysaccharides derived materials in wound care management are listed, and suggestions are given to expand their utilization in the future to compete with conventional wound healing materials.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Punjab, Pakistan
| | - Sohail Shahzad
- Department of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Muhammad Arshad
- Clean Technologies and Applied Research, Northern Alberta Institute of Technology, Edmonton, Alberta T5G 2R1, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, Lab# 540, South Academic Building University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
24
|
Yang Z, Zhang Y, Chen Y, Fu L, Sun Y, Yang Z, Cui T, Wang J, Wan Y. In situ densification and heparin immobilization of bacterial cellulose vascular patch for potential vascular applications. Int J Biol Macromol 2024; 270:132181. [PMID: 38740155 DOI: 10.1016/j.ijbiomac.2024.132181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Nowadays, developing vascular grafts (e.g., vascular patches and tubular grafts) is challenging. Bacterial cellulose (BC) with 3D fibrous network has been widely investigated for vascular applications. In this work, different from BC vascular patch cultured with the routine culture medium, dopamine (DA)-containing culture medium is employed to in situ synthesize dense BC fibrous structure with significantly increased fiber diameter and density. Simultaneously, BC fibers are modified by DA during in situ synthesis process. Then DA on BC fibers can self-polymerize into polydopamine (PDA) accompanied with the removal of bacteria in NaOH solution, obtaining PDA-modified dense BC (PDBC) vascular patch. Heparin (Hep) is subsequently covalently immobilized on PDBC fibers to form Hep-immobilized PDBC (Hep@PDBC) vascular patch. The obtained results indicate that Hep@PDBC vascular patch exhibits remarkable tensile and burst strength due to its dense fibrous structure. More importantly, compared with BC and PDBC vascular patches, Hep@PDBC vascular patch not only displays reduced platelet adhesion and improved anticoagulation activity, but also promotes the proliferation, adhesion, spreading, and protein expression of human umbilical vein endothelial cells, contributing to the endothelialization process. The combined strategy of in situ densification and Hep immobilization provides a feasible guidance for the construction of BC-based vascular patches.
Collapse
Affiliation(s)
- Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yichuan Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yuqin Chen
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Ling Fu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yanan Sun
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Zhengzhao Yang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Teng Cui
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Jie Wang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China.
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
25
|
Luo P, Liu W, Ye Z, Zhang Y, Zhang Z, Yi J, Zeng R, Yang S, Tu M. 26SCS-Loaded SilMA/Col Composite Sponge with Well-Arranged Layers Promotes Angiogenesis-Based Diabetic Wound Repair by Mediating Macrophage Inflammatory Response. Molecules 2024; 29:1832. [PMID: 38675654 PMCID: PMC11053466 DOI: 10.3390/molecules29081832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic wound healing is a significant clinical challenge because abnormal immune cells in the wound cause chronic inflammation and impair tissue regeneration. Therefore, regulating the behavior and function of macrophages may be conducive to improving treatment outcomes in diabetic wounds. Herein, sulfated chitosan (26SCS)-containing composite sponges (26SCS-SilMA/Col-330) with well-arranged layers and high porosity were constructed based on collagen and silk fibroin, aiming to induce an appropriate inflammatory response and promote angiogenesis. The results indicated that the ordered topological structure of composite sponges could trigger the pro-inflammatory response of Mφs in the early stage, and rapid release of 26SCS in the early and middle stages (within the concentration range of 1-3 mg/mL) induced a positive inflammatory response; initiated the pro-inflammatory reaction of Mφs within 3 days; shifted M1 Mφs to the M2 phenotype within 3-7 days; and significantly up-regulated the expression of two typical angiogenic growth factors, namely VEGF and PDGF-BB, on day 7, leading to rapid HUVEC migration and angiogenesis. In vivo data also demonstrated that on the 14th day after surgery, the 26SCS-SilMA/Col-330-implanted areas exhibited less inflammation, faster re-epithelialization, more abundant collagen deposition and a greater number of blood vessels in the skin tissue. The composite sponges with higher 26SCS contents (the (5.0) 26SCS-SilMA/Col-330 and the (7.5) 26SCS-SilMA/Col-330) could better orchestrate the phenotype and function of Mφs and facilitate wound healing. These findings highlight that the 26SCS-SilMA/Col-330 sponges developed in this work might have great potential as a novel dressing for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Pin Luo
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Wei Liu
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Zhangyao Ye
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Yuyu Zhang
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Zekun Zhang
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Jing Yi
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Rong Zeng
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Shenyu Yang
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Huangpu Road 601, Guangzhou 510632, China; (P.L.); (W.L.); (Z.Y.); (Y.Z.); (Z.Z.); (J.Y.); (R.Z.); (S.Y.)
- Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, China
| |
Collapse
|
26
|
Ciarlantini C, Francolini I, Silvestro I, Mariano A, d'Abusco AS, Piozzi A. Design of bioactive and biomimetic scaffolds based on chitosan-alginate polyelectrolyte complexes for tissue engineering. Carbohydr Polym 2024; 327:121684. [PMID: 38171693 DOI: 10.1016/j.carbpol.2023.121684] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024]
Abstract
The replacement and regeneration of biological tissues by fabricating three-dimensional functionalized constructs that can improve material interaction with cells is an important challenge of tissue engineering. In this study, bioactive and biomimetic scaffolds based on chitosan-alginate polyelectrolyte complexes (PECs) were fabricated by freeze-drying method and then crosslinked with CaCl2. Various chitosan-alginate (CS-AL) molar ratios were used to obtain PECs with different structural and mechanical properties. The CS1-AL2.3 scaffold showed to possess the best mechanical properties (8 MPa) and good pore morphology with an average size of 100-150 μm. After the crosslinking process, a less porous structure but with higher elastic modulus (30 MPa) was obtained. To make matrix bioactive and biomimetic, the CS1-AL2.3 system was first functionalized with 3,4-dihydroxyhydrocinnamic acid (HCAF) and then with PySO3 or Heparin to introduce groups/molecules mimicking the extracellular matrix. While the antioxidant properties of the scaffolds containing HCAF improved by 3 orders of magnitude, compared to the non-functionalized matrix, the introduction of sulfonic groups into the bioactive scaffold made the structure more porous and hydrophilic with respect to the heparinized one also favoring the penetration and proliferation of fibroblasts into the scaffold. These results indicate the potential of these novel systems for tissue engineering.
Collapse
Affiliation(s)
- Clarissa Ciarlantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Ilaria Silvestro
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
27
|
Wang YM, Shen JT. Chitosan-based promising scaffolds for the construction of tailored nanosystems against osteoporosis: Current status and future prospects. J Appl Biomater Funct Mater 2024; 22:22808000241266487. [PMID: 39129376 DOI: 10.1177/22808000241266487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Despite advancements in therapeutic techniques, restoring bone tissue after damage remains a challenging task. Tissue engineering or targeted drug delivery solutions aim to meet the pressing clinical demand for treatment alternatives by creating substitute materials that imitate the structural and biological characteristics of healthy tissue. Polymers derived from natural sources typically exhibit enhanced biological compatibility and bioactivity when compared to manufactured polymers. Chitosan is a unique polysaccharide derived from chitin through deacetylation, offering biodegradability, biocompatibility, and antibacterial activity. Its cationic charge sets it apart from other polymers, making it a valuable resource for various applications. Modifications such as thiolation, alkylation, acetylation, or hydrophilic group incorporation can enhance chitosan's swelling behavior, cross-linking, adhesion, permeation, controllable drug release, enzyme inhibition, and antioxidative properties. Chitosan scaffolds possess considerable potential for utilization in several biological applications. An intriguing application is its use in the areas of drug distribution and bone tissue engineering. Due to their excellent biocompatibility and lack of toxicity, they are an optimal material for this particular usage. This article provides a comprehensive analysis of osteoporosis, including its pathophysiology, current treatment options, the utilization of natural polymers in disease management, and the potential use of chitosan scaffolds for drug delivery systems aimed at treating the condition.
Collapse
Affiliation(s)
- Ya-Ming Wang
- Department of Endocrine, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| | - Jiang-Tao Shen
- Department of Orthopedics, Shengzhou People's Hospital (Shengzhou Branch of the First Affiliated Hospital of Zhejiang University School of Medicine, the Shengzhou Hospital of Shaoxing University), Shengzhou, Zhejiang, China
| |
Collapse
|
28
|
Wei C, Yang X, Li Y, Wang L, Xing S, Qiao C, Li Y, Wang S, Zheng J, Dong Q. N-lauric-O-carboxymethyl chitosan: Synthesis, characterization and application as a pH-responsive carrier for curcumin particles. Int J Biol Macromol 2024; 256:128421. [PMID: 38013085 DOI: 10.1016/j.ijbiomac.2023.128421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
A pH-responsive amphiphilic chitosan derivative, N-lauric-O-carboxymethyl chitosan (LA-CMCh), is synthesized. Its molecular structures are characterized by FTIR, 1H NMR, and XRD methods. The influencing factors are investigated, including the amount of lauric acid (LA), carboxymethyl chitosan (CMCh), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS), and their molar ratio, reaction time, and reaction temperature on the substitution. The degrees of substitution (DS) of the lauric groups on the -NH2 groups are calculated based on the integrated data of 1H NMR spectra. The optimum reaction condition is obtained as a reaction time of 6 h, a reaction temperature of 80 °C, and a molar ratio of lauric acid to O-carboxymethyl chitosan to N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride to N-hydroxysuccinimide of 1:3:4.5:4.5, respectively. The crystallinity and initial decomposition temperature of LA-CMCh decrease, but the maximum decomposition temperature increases. The crystallinity is reduced due to the introduction of LA and the degree of hydrogen bonding among LA-CMCh molecules. LA-CMCh could self-aggregate into particles, which size and critical aggregation concentration depend on the degree of substitution and medium pH. LA-CMCh aggregates could load curcumin up to 21.70 %, and continuously release curcumin for >200 min. LA-CMCh shows nontoxicity to fibroblast HFF-1 cells and good antibacterial activity against S. aureus and E. coli, indicating that it could be used as an oil-soluble-drug carrier.
Collapse
Affiliation(s)
- Chunyan Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Xiaodeng Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Yong Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Ling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Congde Qiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Shoujuan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Jialin Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; School of Chemistry and Chemical Engineering, University of Jinan, Ji'nan 250353, China
| | - Qiaoyan Dong
- Technology Center of Shandong Fangyan Biological Technology Co., LTD, 250021 Ji'nan, China
| |
Collapse
|
29
|
Almajidi YQ, Gupta J, Sheri FS, Zabibah RS, Faisal A, Ruzibayev A, Adil M, Saadh MJ, Jawad MJ, Alsaikhan F, Narmani A, Farhood B. Advances in chitosan-based hydrogels for pharmaceutical and biomedical applications: A comprehensive review. Int J Biol Macromol 2023; 253:127278. [PMID: 37806412 DOI: 10.1016/j.ijbiomac.2023.127278] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
The treatment of diseases, such as cancer, is one of the most significant issues correlated with human beings health. Hydrogels (HGs) prepared from biocompatible and biodegradable materials, especially biopolymers, have been effectively employed for the sort of pharmaceutical and biomedical applications, including drug delivery systems, biosensors, and tissue engineering. Chitosan (CS), one of the most abundant bio-polysaccharide derived from chitin, is an efficient biomaterial in the prognosis, diagnosis, and treatment of diseases. CS-based HGs possess some potential advantages, like high values of bioactive encapsulation, efficient drug delivery to a target site, sustained drug release, good biocompatibility and biodegradability, high serum stability, non-immunogenicity, etc., which made them practical and useful for pharmaceutical and biomedical applications. In this review, we summarize recent achievements and advances associated with CS-based HGs for drug delivery, regenerative medicine, disease detection and therapy.
Collapse
Affiliation(s)
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura Pin Code 281406, U.P., India
| | - Fatime Satar Sheri
- College of Dentistry, National University of Science and Technology, Dhi Qar, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Akbarali Ruzibayev
- Department of Food Products Technology, Tashkent Institute of Chemical Technology, Navoi street 32, 100011 Tashkent City, Uzbekistan
| | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
30
|
Dediu Botezatu AV, Apetrei RM, Costea Nour IF, Barbu V, Grigore-Gurgu L, Botez F, Dinica RM, Furdui B, Cârâc G. Synthesis and characterization of novel chitosan derivatives (containing dipyridinium quaternary salts) with antimicrobial potential. Carbohydr Res 2023; 534:108964. [PMID: 37925873 DOI: 10.1016/j.carres.2023.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
Chitosan derivatives are versatile materials, biocompatible and biodegradable, that can be tailor-made to suit specific biomedical applications. In this study, two N-heterocyclic salts (N,N'-diphenacyl-[4,4'-dipyridinium] dibromide (DP) and N,N'-diphenacyl-1,2-bis-(4-pyridinium)ethane dibromide (DPE)) were used for chitosan functionalization to enhance its antimicrobial potential. Physico-chemical characterization of the newly synthesized derivatives (Ch-DP and Ch-DPE) was performed by elemental analysis, spectrometry (UV-Vis, FTIR), electrochemistry (OCP, CV), and electron microscopy (SEM) proving that the highest degree of functionalization was obtained for Ch-DP. The antimicrobial effect of chitosan functionalization was further tested in terms of its interaction with Listeria monocytogenes Scott A, and Staphylococcus aureus ATCC 25923, as Gram-positive bacteria and Escherichia coli ATCC 25922, as Gram-negative bacterium, respectively, showing that the Ch-DP had a good inhibitory activity compared with Ch-DPE.
Collapse
Affiliation(s)
- Andreea Veronica Dediu Botezatu
- (")Dunarea de Jos" University of Galati, Faculty of Science and Environment, Department of Chemistry, Physics and Environment, Domneasca Street 111, 800201, Galati, Romania.
| | - Roxana-Mihaela Apetrei
- (")Dunarea de Jos" University of Galati, Faculty of Science and Environment, Department of Chemistry, Physics and Environment, Domneasca Street 111, 800201, Galati, Romania; "Dunarea de Jos" University of Galai, Rexdan Research Infrastructure, George Coșbuc Bdv. 98, 800385, Galati, Romania.
| | - Iuliana Florina Costea Nour
- (")Dunarea de Jos" University of Galati, Faculty of Science and Environment, Department of Chemistry, Physics and Environment, Domneasca Street 111, 800201, Galati, Romania.
| | - Vasilica Barbu
- ('')Dunarea de Jos" University of Galati, Faculty of Food Science and Engineering, Domneasca Street 111, 800201, Galati, Romania.
| | - Leontina Grigore-Gurgu
- ('')Dunarea de Jos" University of Galati, Faculty of Food Science and Engineering, Domneasca Street 111, 800201, Galati, Romania.
| | - Florina Botez
- University of Bucharest, Faculty of Biology, Department of Systems Ecology, Splaiul Independenţei no. 91-95, District 5, 050095, Bucharest, Romania.
| | - Rodica Mihaela Dinica
- (")Dunarea de Jos" University of Galati, Faculty of Science and Environment, Department of Chemistry, Physics and Environment, Domneasca Street 111, 800201, Galati, Romania.
| | - Bianca Furdui
- (")Dunarea de Jos" University of Galati, Faculty of Science and Environment, Department of Chemistry, Physics and Environment, Domneasca Street 111, 800201, Galati, Romania.
| | - Geta Cârâc
- (")Dunarea de Jos" University of Galati, Faculty of Science and Environment, Department of Chemistry, Physics and Environment, Domneasca Street 111, 800201, Galati, Romania.
| |
Collapse
|
31
|
Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications. Carbohydr Polym 2023; 321:121318. [PMID: 37739510 DOI: 10.1016/j.carbpol.2023.121318] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
The attention to polymer-based biomaterials, for instance, chitosan and its derivatives, as well as the techniques for using them in numerous scientific domains, is continuously rising. Chitosan is a decomposable naturally occurring polymeric material that is mostly obtained from seafood waste. Because of its special ecofriendly, biocompatible, non- toxic nature as well as antimicrobial properties, chitosan-based materials have received a lot of interest in the field of biomedical applications. The reactivity of chitosan is mainly because of the amino and hydroxyl groups in its composition, which makes it further fascinating for various uses, including biosensing, textile finishing, antimicrobial wound dressing, tissue engineering, bioimaging, gene, DNA and drug delivery and as a coating material for medical implants. This study is an overview of the different types of chitosan-based materials which now a days have been fabricated by applying different techniques and modifications that include etherification, esterification, crosslinking, graft copolymerization and o-acetylation etc. for hydroxyl groups' processes and acetylation, quaternization, Schiff's base reaction, and grafting for amino groups' reactions. Furthermore, this overview summarizes the literature from recent years related to the important applications of chitosan-based materials (i.e., thin films, nanocomposites or nanoparticles, sponges and hydrogels) in different biomedical applications.
Collapse
Affiliation(s)
- Yasir Iqbal
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Faisal Irfan
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Muhammad Zubair
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
32
|
Wang Z, Xu Z, Yang X, Li M, Yip RCS, Li Y, Chen H. Current application and modification strategy of marine polysaccharides in tissue regeneration: A review. BIOMATERIALS ADVANCES 2023; 154:213580. [PMID: 37634336 DOI: 10.1016/j.bioadv.2023.213580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/29/2023]
Abstract
Marine polysaccharides (MPs) are exceptional bioactive materials that possess unique biochemical mechanisms and pharmacological stability, making them ideal for various tissue engineering applications. Certain MPs, including agarose, alginate, carrageenan, chitosan, and glucan have been successfully employed as biological scaffolds in animal studies. As carriers of signaling molecules, scaffolds can enhance the adhesion, growth, and differentiation of somatic cells, thereby significantly improving the tissue regeneration process. However, the biological benefits of pure MPs composite scaffold are limited. Therefore, physical, chemical, enzyme modification and other methods are employed to expand its efficacy. Chemically, the structural properties of MPs scaffolds can be altered through modifications to functional groups or molecular weight reduction, thereby enhancing their biological activities. Physically, MPs hydrogels and sponges emulate the natural extracellular matrix, creating a more conducive environment for tissue repair. The porosity and high permeability of MPs membranes and nanomaterials expedite wound healing. This review explores the distinctive properties and applications of select MPs in tissue regeneration, highlighting their structural versatility and biological applicability. Additionally, we provide a brief overview of common modification strategies employed for MP scaffolds. In conclusion, MPs have significant potential and are expected to be a novel regenerative material for tissue engineering.
Collapse
Affiliation(s)
- Zhaokun Wang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Zhiwen Xu
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Xuan Yang
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Man Li
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China.
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Yuanyuan Li
- Department of Food Science, Cornell University, Stocking Hall, Ithaca, NY 14853, USA.
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
33
|
Du Y, Chen X, Li L, Zheng H, Yang A, Li H, Lv G. Benzeneboronic-alginate/quaternized chitosan-catechol powder with rapid self-gelation, wet adhesion, biodegradation and antibacterial activity for non-compressible hemorrhage control. Carbohydr Polym 2023; 318:121049. [PMID: 37479426 DOI: 10.1016/j.carbpol.2023.121049] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 07/23/2023]
Abstract
Although hemostatic powders have excellent adaptability for irregular and inaccessible wounds, their hemostasis for continuous bleeding or bleeding wounds of non-compressible organs remains a critical challenge. Herein, a series of benzeneboronic acid-modified sodium alginate/catechol-modified quaternized chitosan (SA-BA/QCS-C, SBQCC) powders is developed by borate ester crosslinking for non-compressible hemorrhage control. SBQCC powders possess remarkable tissue adhesion, rapid self-gelation, good cytocompatibility and antibacterial activity against S. aureus and E. coil. The blood coagulation assays show that SBQCC powders display excellent blood clotting ability due to the synergistic effect of SA-BA and QCS-C. The SBQCC2 powder with the SA-BA to QCS-C mass ratio of 5 to 3 has the greatest effect on the blood-clotting rate. Upon depositing SBQCC2 powder to bleeding wounds of rabbit liver, the powder can absorb a large amount of blood and form a stable hydrogel physical barrier at the bleeding wounds in situ to achieve non-pressing rapid hemostasis. The SBQCC2 powder also has good biocompatibility and can be degraded in vivo. Altogether, the SBQCC powders can be a promising candidate for rapid hemostasis, and these findings may provide a new perspective for improving the hemostatic efficiency of the hemostatic powder in biomedical fields.
Collapse
Affiliation(s)
- Yan Du
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Xingtao Chen
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lin Li
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Heng Zheng
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Aiping Yang
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Hong Li
- College of Physics, Sichuan University, Chengdu 610065, China.
| | - Guoyu Lv
- College of Physics, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
34
|
Verma D, Okhawilai M, Goh KL, Thakur VK, Senthilkumar N, Sharma M, Uyama H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. ENVIRONMENTAL RESEARCH 2023; 235:116580. [PMID: 37474094 DOI: 10.1016/j.envres.2023.116580] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
Functionalized chitosan nanocomposites have been studied for wound dressing applications due to their excellent antibacterial and anti-fungal properties. Polysaccharides show excellent antibacterial and drug-release properties and can be utilized for wound healing. In this article, we comprise distinct approaches for chitosan functionalization, such as photosensitizers, dendrimers, graft copolymerization, quaternization, acylation, carboxyalkylation, phosphorylation, sulfation, and thiolation. The current review article has also discussed brief insights on chitosan nanoparticle processing for biomedical applications, including wound dressings. The chitosan nanoparticle preparation technologies have been discussed, focusing on wound dressings owing to their targeted and controlled drug release behavior. The future directions of chitosan research include; a) finding an effective solution for chronic wounds, which are unable to heal completely; b) providing effective wound healing solutions for diabetic wounds and venous leg ulcers; c) to better understanding the wound healing mechanism with such materials which can help provide the optimum solution for wound dressing; d) to provide an improved treatment option for wound healing.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Kheng Lim Goh
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK; Newcastle University in Singapore, 567739, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohit Sharma
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
35
|
Prado HJ, Matulewicz MC, Ciancia M. Naturally and Chemically Sulfated Polysaccharides in Drug Delivery Systems. ADVANCED PHARMACY 2023:135-196. [DOI: 10.2174/9789815049428123010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Sulfated polysaccharides have always attracted much attention in food,
cosmetic and pharmaceutical industries. These polysaccharides can be obtained from
natural sources such as seaweeds (agarans, carrageenans, fucoidans, mannans and
ulvans), or animal tissues (glucosaminoglycans). In the last few years, several neutral
or cationic polysaccharides have been sulfated by chemical methods and anionic or
amphoteric derivatives were obtained, respectively, for drug delivery and other
biomedical applications. An important characteristic of sulfated polysaccharides in this
field is that they can associate with cationic drugs generating polyelectrolyte-drug
complexes, or with cationic polymers to form interpolyelectrolyte complexes, with
hydrogel properties that expand even more their applications. The aims of this chapter
are to present the structural characteristics of these polysaccharides, to describe the
methods of sulfation applied and to review extensively and discuss developments in
their use or their role in interpolyelectrolyte complexes in drug delivery platforms. A
variety of pharmaceutical dosage forms which were developed and administered by
multiple routes (oral, transdermal, ophthalmic, and pulmonary, among others) to treat
diverse pathologies were considered. Different IPECs were formed employing these sulfated polysaccharides as the anionic component. The most widely investigated is κ-carrageenan. Chitosan is usually employed as a cationic polyelectrolyte, with a variety
of sulfated polysaccharides, besides the applications of chemically sulfated chitosan.
Although chemical sulfation is often carried out in neutral polysaccharides and, to a
less extent, in cationic ones, examples of oversulfation of naturally sulfated fucoidan
have been found which improve its drug binding capacity and biological properties.
Collapse
Affiliation(s)
- Héctor J. Prado
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - María C. Matulewicz
- CONICET-Universidad de Buenos Aires. Centro de Investigación de Hidratos de Carbono
(CIHIDECAR), Ciudad Universitaria-Pabellón 2, C1428EGA, Buenos Aires, Argentina
| | - Marina Ciancia
- Universidad de Buenos Aires, Facultad de Agronomía, Departamento de Biología Aplicada y
Alimentos, Cátedra de Química de Biomoléculas. Av. San Martín, 4453, C1417DSE Buenos Aires,
Argentina
| |
Collapse
|
36
|
Kumar A, Yadav S, Pramanik J, Sivamaruthi BS, Jayeoye TJ, Prajapati BG, Chaiyasut C. Chitosan-Based Composites: Development and Perspective in Food Preservation and Biomedical Applications. Polymers (Basel) 2023; 15:3150. [PMID: 37571044 PMCID: PMC10421092 DOI: 10.3390/polym15153150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
Chitin, which may be the second-most common polymer after cellulose, is the raw material of chitosan. Chitosan has been infused with various plant extracts and subsidiary polymers to improve its biological and physiological properties. Chitosan's physicochemical properties are enhanced by blending, making them potential candidates that can be utilized in multifunctional areas, including food processing, nutraceuticals, food quality monitoring, food packaging, and storage. Chitosan-based biomaterials are biocompatible, biodegradable, low toxic, mucoadhesive, and regulate chemical release. Therefore, they are used in the biomedical field. The present manuscript highlights the application of chitosan-based composites in the food and biomedical industries.
Collapse
Affiliation(s)
- Akash Kumar
- Department of Food Technology, SRM University, Sonipat 131029, India
- MM Institute of Hotel Management, Maharishi Markandeshwar (Deemed to be University), Mullana 133207, India
| | - Sangeeta Yadav
- Department of Food Technology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Jhilam Pramanik
- Department of Food Technology, William Carey University, Shillong 793019, India
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope John Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, India
| | - Chaiyavat Chaiyasut
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
37
|
Drozd N, Lunkov A, Shagdarova B, Il’ina A, Varlamov V. New N-Methylimidazole-Functionalized Chitosan Derivatives: Hemocompatibility and Antibacterial Properties. Biomimetics (Basel) 2023; 8:302. [PMID: 37504190 PMCID: PMC10807654 DOI: 10.3390/biomimetics8030302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023] Open
Abstract
Novel imidazole derivatives of the low molecular weight chitosan N-(2-hydroxypropyl)-1H-1,2,3-triazol-4-yl)methyl)-1-methyl-1H-imidazol-3-ium chitosan chloride (NMIC) were synthesized using copper-catalyzed azide-alkyne cycloaddition (CuAAC). The degrees of substitution (DSs) for the new derivatives were 18-76%. All chitosan derivatives (2000 µg/mL) were completely soluble in water. The antimicrobial activity of the new compounds against E. coli and S. epidermidis was studied. The effect of chitosan derivatives on blood and its components was studied. NMIC samples (DS 34-76%) at a concentration <10 μg/mL had no effect on blood and plasma coagulation. Chitosan derivatives (DS 18-76%) at concentrations of ≥83 μg/mL in blood and ≥116.3 μg/mL in plasma resulted in a prolongation of the clotting time of blood and plasma, positively related to the DS. At concentrations up to 9.1 μg/mL, NMIC did not independently provoke platelet aggregation. The degree of erythrocyte hemolysis upon contact with NMIC samples (2.5-2500 μg/mL) was below 4%. The inhibition of blood/plasma coagulation indicates the promising use of the studied samples to modify the surface of medical materials in order to achieve thromboresistance.
Collapse
Affiliation(s)
- Natalia Drozd
- National Medical Center for Hematology, 4, Novoi Zykovsky Prospect, Moscow 125167, Russia
| | - Alexey Lunkov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russia; (A.L.); (B.S.); (A.I.); (V.V.)
| | - Balzhima Shagdarova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russia; (A.L.); (B.S.); (A.I.); (V.V.)
| | - Alla Il’ina
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russia; (A.L.); (B.S.); (A.I.); (V.V.)
| | - Valery Varlamov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect, 33, Build. 2, Moscow 119071, Russia; (A.L.); (B.S.); (A.I.); (V.V.)
| |
Collapse
|
38
|
Ejaz S, Ali SMA, Zarif B, Shahid R, Ihsan A, Noor T, Imran M. Surface engineering of chitosan nanosystems and the impact of functionalized groups on the permeability of model drug across intestinal tissue. Int J Biol Macromol 2023; 242:124777. [PMID: 37169055 DOI: 10.1016/j.ijbiomac.2023.124777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Surface attributes of nanocarriers are crucial to determine their fate in the gastrointestinal (GI) tract. Herein, we have functionalized chitosan with biochemical moieties including rhamnolipid (RL), curcumin (Cur) and mannose (M). FTIR spectra of functionalized chitosan nanocarriers (FCNCs) demonstrated successful conjugation of M, Cur and RL. The functional moieties influenced the entrapment of model drug i.e., coumarin-6 (C6) in FCNCs with payload-hosting and non-leaching behavior i.e., >91 ± 2.5 % with negligible cumulative release of <2 % for 5 h in KREB, which was further verified in the simulated gastric and intestinal fluids. Consequently, substantial difference in the size and zeta potential was observed for FCNCs with different biochemical moieties. Scanning electron microscopy and atomic force microscopy of FCNCs displayed well-dispersed and spherical morphology. In addition, in vitro cytotoxicity results of FCNCs confirmed their hemocompatibility. In the ex-vivo rat intestinal models, FCNCs displayed a time-dependent-phenomenon in cellular-uptake and adherence. However, apparent-permeability-coefficient and flux values were in the order of C6-RL-FCNCs > C6-M-FCNCs > C6-Cur-FCNCs = C6-CNCs > Free-C6. Furthermore, the transepithelial electrical resistance revealed the FCNCs mediated recovery of membrane-integrity with reversible tight junctions opening. Thus, FCNCs have the potential to overcome the poor solubility and/or permeability issues of active pharmaceutical ingredients and transform the impact of functionalized-nanomedicines in the biomedical industry.
Collapse
Affiliation(s)
- Sadaf Ejaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Syed Muhammad Afroz Ali
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Bina Zarif
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ramla Shahid
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan
| | - Ayesha Ihsan
- Nanobiotechnology Group, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| |
Collapse
|
39
|
Carpa R, Farkas A, Dobrota C, Butiuc-Keul A. Double-Network Chitosan-Based Hydrogels with Improved Mechanical, Conductive, Antimicrobial, and Antibiofouling Properties. Gels 2023; 9:gels9040278. [PMID: 37102890 PMCID: PMC10137542 DOI: 10.3390/gels9040278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In recent years, the antimicrobial activity of chitosan-based hydrogels has been at the forefront of research in wound healing and the prevention of medical device contamination. Anti-infective therapy is a serious challenge given the increasing prevalence of bacterial resistance to antibiotics as well as their ability to form biofilms. Unfortunately, hydrogel resistance and biocompatibility do not always meet the demands of biomedical applications. As a result, the development of double-network hydrogels could be a solution to these issues. This review discusses the most recent techniques for creating double-network chitosan-based hydrogels with improved structural and functional properties. The applications of these hydrogels are also discussed in terms of tissue recovery after injuries, wound infection prevention, and biofouling of medical devices and surfaces for pharmaceutical and medical applications.
Collapse
Affiliation(s)
- Rahela Carpa
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Anca Farkas
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Centre for Systems Biology, Biodiversity and Bioresource, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Cristina Dobrota
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babeș-Bolyai University, 30 Fântânele Street, 400294 Cluj-Napoca, Romania
| | - Anca Butiuc-Keul
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania; (R.C.); (C.D.); (A.B.-K.)
- Centre for Systems Biology, Biodiversity and Bioresource, Babeș-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania
| |
Collapse
|
40
|
Gopal J, Muthu M, Pushparaj SSC, Sivanesan I. Anti-COVID-19 Credentials of Chitosan Composites and Derivatives: Future Scope? Antibiotics (Basel) 2023; 12:665. [PMID: 37107027 PMCID: PMC10135369 DOI: 10.3390/antibiotics12040665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Chitosan derivatives and composites are the next generation polymers for biomedical applications. With their humble origins from the second most abundant naturally available polymer chitin, chitosan is currently one of the most promising polymer systems, with wide biological applications. This current review gives a bird's eye view of the antimicrobial applications of chitosan composites and derivatives. The antiviral activity and the mechanisms behind the inhibitory activity of these components have been reviewed. Specifically, the anti-COVID-19 aspects of chitosan composites and their derivatives have been compiled from the existing scattered reports and presented. Defeating COVID-19 is the battle of this century, and the chitosan derivative-based combat strategies naturally become very attractive. The challenges ahead and future recommendations have been addressed.
Collapse
Affiliation(s)
- Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
41
|
Wang C, Zhang Q, Hou G, Wang C, Yan H. Sustained release of EGF/bFGF growth factors achieved by mussel-inspired core−shell nanofibers with hemostatic and anti-inflammatory effects for promoting wound healing. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
42
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses 2023; 15:647. [PMID: 36992356 PMCID: PMC10054433 DOI: 10.3390/v15030647] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
43
|
Petroni S, Tagliaro I, Antonini C, D’Arienzo M, Orsini SF, Mano JF, Brancato V, Borges J, Cipolla L. Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Mar Drugs 2023; 21:md21030147. [PMID: 36976196 PMCID: PMC10059909 DOI: 10.3390/md21030147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Chitosan is a marine-origin polysaccharide obtained from the deacetylation of chitin, the main component of crustaceans’ exoskeleton, and the second most abundant in nature. Although this biopolymer has received limited attention for several decades right after its discovery, since the new millennium chitosan has emerged owing to its physicochemical, structural and biological properties, multifunctionalities and applications in several sectors. This review aims at providing an overview of chitosan properties, chemical functionalization, and the innovative biomaterials obtained thereof. Firstly, the chemical functionalization of chitosan backbone in the amino and hydroxyl groups will be addressed. Then, the review will focus on the bottom-up strategies to process a wide array of chitosan-based biomaterials. In particular, the preparation of chitosan-based hydrogels, organic–inorganic hybrids, layer-by-layer assemblies, (bio)inks and their use in the biomedical field will be covered aiming to elucidate and inspire the community to keep on exploring the unique features and properties imparted by chitosan to develop advanced biomedical devices. Given the wide body of literature that has appeared in past years, this review is far from being exhaustive. Selected works in the last 10 years will be considered.
Collapse
Affiliation(s)
- Simona Petroni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | | | - Sara Fernanda Orsini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milano, Italy
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Virginia Brancato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - João Borges
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
- Correspondence: (J.B.); (L.C.); Tel.: +351-234372585 (J.B.); +39-0264483460 (L.C.)
| |
Collapse
|
44
|
The Nanostructure of Alkyl-Sulfonate Ionic Liquids: Two 1-Alkyl-3-methylimidazolium Alkyl-Sulfonate Homologous Series. Molecules 2023; 28:molecules28052094. [PMID: 36903339 PMCID: PMC10004415 DOI: 10.3390/molecules28052094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
The functionalization of polymers with sulfonate groups has many important uses, ranging from biomedical applications to detergency properties used in oil-recovery processes. In this work, several ionic liquids (ILs) combining 1-alkyl-3-methylimidazolium cations [CnC1im]+ (4 ≤ n ≤ 8) with alkyl-sulfonate anions [CmSO3]- (4 ≤ m ≤ 8) have been studied using molecular dynamics simulations, totalizing nine ionic liquids belonging to two homologous series. The radial distribution functions, structure factors, aggregation analyses, and spatial distribution functions reveal that the increase in aliphatic chain length induces no significant change in the structure of the polar network of the ILs. However, for imidazolium cations and sulfonate anions with shorter alkyl chains, the nonpolar organization is conditioned by the forces acting on the polar domains, namely, electrostatic interactions and hydrogen bonding.
Collapse
|
45
|
Chitosan-Based Nanoparticles as Effective Drug Delivery Systems-A review. Molecules 2023; 28:molecules28041963. [PMID: 36838951 PMCID: PMC9959713 DOI: 10.3390/molecules28041963] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Chitosan-based nanoparticles (chitosan-based nanocomposites; chitosan nanoparticles; ChNPs) are promising materials that are receiving a lot of attention in the last decades. ChNPs have great potential as nanocarriers. They are able to encapsulate drugs as well as active compounds and deliver them to a specific place in the body providing a controlled release. In the article, an overview has been made of the most frequently used preparation methods, and the developed applications in medicine. The presentation of the most important information concerning ChNPs, especially chitosan's properties in drug delivery systems (DDS), as well as the method of NPs production was quoted. Additionally, the specification and classification of the NPs' morphological features determined their application together with the methods of attaching drugs to NPs. The latest scientific reports of the DDS using ChNPs administered orally, through the eye, on the skin and transdermally were taken into account.
Collapse
|
46
|
Liu X, Liao W, Xia W. Recent advances in chitosan based bioactive materials for food preservation. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
47
|
Laser thrombolysis and in vitro release kinetics of tPA encapsulated in chitosan polysulfate-coated nanoliposome. Carbohydr Polym 2023; 299:120225. [PMID: 36876826 DOI: 10.1016/j.carbpol.2022.120225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
A major challenge in managing coronary artery disease is to find an effective thrombolytic therapy with minimal side effects. Laser thrombolysis is a practical procedure to remove the thrombus from inside blocked arteries, although it can cause embolism and re-occlusion of the vessel. The present study aimed to design a liposome drug delivery system for the controlled release of tissue plasminogen activator (tPA) and delivery of drug system into the thrombus by Nd:YAG laser at a wavelength of 532 nm for the treatment of arterial occlusive diseases. In this study, tPA encapsulated into the chitosan polysulfate-coated liposome (Lip/PSCS-tPA) was fabricated by a thin-film hydration technique. The particle size of Lip/tPA and Lip/PSCS-tPA was 88 and 100 nm, respectively. The release rate of tPA from Lip/PSCS-tPA was measured to be 35 % and 66 % after 24 h and 72 h, respectively. Thrombolysis through the delivery of Lip/PSCS-tPA into the thrombus during the laser irradiation was higher compared to irradiated thrombus without the nanoliposomes. The expression of IL-10 and TNF-α genes was studied by RT-PCR. The level of TNF-α for Lip/PSCS-tPA was lower than that of tPA, which can lead to improved cardiac function. Also, in this study, the thrombus dissolution process was studied using a rat model. After 4 h, the thrombus area in the femoral vein was significantly lower for groups treated with Lip/PSCS-tPA (5 %) compared to the groups treated with tPA alone (45 %). Thus, according to our results, the combination of Lip/PSCS-tPA and laser thrombolysis can be introduced as an appropriate technique for accelerating thrombolysis.
Collapse
|
48
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
49
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for drug delivery and wound management: a review. Expert Opin Drug Deliv 2022; 19:1664-1695. [PMID: 36440488 DOI: 10.1080/17425247.2022.2152791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Polysaccharide-based hydrogels (PBHs) offer several advantages over their synthetic counterparts. Their natural origin contributes to their nontoxicity, high biocompatibility, and in vivo biodegradability. Their properties can be tuned finely to obtain hydrogels with desired mechanical, structural, and chemical properties. AREAS COVERED Such versatile characteristics have potentiated the use of PBHs for the delivery of drugs, vaccines, protein and peptide therapeutics, genes, cells, probiotics, bacteriophages, and other therapeutic agents. Recent advances in hydrogel-based formulations such as nanogels, microgels, microneedles, hydrogel beads, nanocarrier-loaded hydrogels, and complexation hydrogels have enabled the precise delivery of a wide range of therapeutics. This review aims to give a holistic overview of hydrogels in the delivery of a variety of therapeutics through different routes. EXPERT OPINION PBHs have been used to enable the oral delivery of vaccines and other biologicals, thereby allowing self-administration of life-saving vaccines during public health emergencies. There is a lack of commercialized wound dressings for the treatment of chronic wounds. PBH-based wound dressings, especially those based on chitosan and loaded with actives and growth factors, have the potential to help in the long-term treatment of such wounds. Recent developments in the 3D printing of hydrogels can enable the quick and large-scale production of drug-loaded hydrogels.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai School of Pharmacy and Technology Management, Mumbai, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Nagpur, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Vinita Kale
- Department of Pharmaceutics, Guru Nanak College of Pharmacy, Nagpur, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai, India
| |
Collapse
|
50
|
Cheng W, Qiao T, Xue C, Yang H, Huang Y, Ma Y, Nan H, Li H, Lin H. Computation of Binding Energy of MCS and GO-Grafted MCS with Waterborne Epoxy Resin Using Density Functional Theory Method: Investigating the Corrosion Resistance of the Composite Coatings. ACS OMEGA 2022; 7:40374-40386. [PMID: 36385868 PMCID: PMC9647884 DOI: 10.1021/acsomega.2c05375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/06/2022] [Indexed: 06/13/2023]
Abstract
In order to overcome the problems of poor corrosion resistance and low hydrophobicity of water-based coatings. Two corrosion-inhibiting materials, graphene oxide (GO) and modified chitosan (MCS), were added to the coatings to obtain a new type of coating with comprehensive properties. The composite material formed by PVA cross-linked waterborne epoxy resin was named "substrate". The density functional theory (DFT) calculation was used to explore the binding ability of MCS and GO-grafted MCS to the substrate, respectively. The results showed that the complex cross-linked network structure formed by the grafting of GO and MCS not only improved the intermolecular interaction force but also improved the binding ability to the substrate, and the coating is denser, effectively delaying the erosion to the coating by the corrosive medium. The composite coating exhibited excellent dual functional properties of hydrophobicity and corrosion resistance at the coating-metal interface, and a stronger protective effect was formed upon the steel plate. Studies showed that this composite coating has good hydrophobic properties. (The contact angle of the composite waterborne coating reaches 87°.) It also has low self-corrosion current (0.28/cm-2) and high corrosion voltage (-0.45 V). The maximum inhibition efficiency of the coating is 99.97%.
Collapse
Affiliation(s)
- Wenjie Cheng
- Key
Laboratory of Qinghai Province for Light Alloy, Qinghai High Performance
Light Metal Alloy and Deep Processing Engineering Technology Research
Center, Qinghai University, Xining810016, China
| | - Tianxiao Qiao
- Key
Laboratory of Qinghai Province for Light Alloy, Qinghai High Performance
Light Metal Alloy and Deep Processing Engineering Technology Research
Center, Qinghai University, Xining810016, China
| | - Caihong Xue
- Key
Laboratory of Qinghai Province for Light Alloy, Qinghai High Performance
Light Metal Alloy and Deep Processing Engineering Technology Research
Center, Qinghai University, Xining810016, China
| | - Hao Yang
- Key
Laboratory of Qinghai Province for Light Alloy, Qinghai High Performance
Light Metal Alloy and Deep Processing Engineering Technology Research
Center, Qinghai University, Xining810016, China
| | - Yong Huang
- Qinghai
Provincial Key Laboratory of Hydrogeology and Geothermal Geology, Xining810008, China
- Qinghai
Survey Institute of Hydrogeology and Engineering & Environmental
Geology, Xining810008, China
| | - Yuehua Ma
- Qinghai
Provincial Key Laboratory of Hydrogeology and Geothermal Geology, Xining810008, China
- Qinghai
Survey Institute of Hydrogeology and Engineering & Environmental
Geology, Xining810008, China
| | - Hui Nan
- Key
Laboratory of Qinghai Province for Light Alloy, Qinghai High Performance
Light Metal Alloy and Deep Processing Engineering Technology Research
Center, Qinghai University, Xining810016, China
| | - Heqi Li
- School
of Materials Science and Engineering, Harbin
Institute of Technology, Harbin150080, China
| | - Hong Lin
- Key
Laboratory of New Ceramics & Fine Processing, School of Materials
Science and Engineering, Tsinghua University, Beijing100084, China
| |
Collapse
|