1
|
Hu Q, Huang G, Huang H. Extraction, structure, activity and application of konjac glucomannan. ULTRASONICS SONOCHEMISTRY 2025; 116:107315. [PMID: 40117876 PMCID: PMC11979519 DOI: 10.1016/j.ultsonch.2025.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Accepted: 03/16/2025] [Indexed: 03/23/2025]
Abstract
Konjac is a perennial herbaceous plant from the Araceae family's Amorphophallus genus. It has high nutritional, health, and pharmacological values. It contains various bioactive components, the most notable of which is konjac glucomannan, which has several biological roles, including efficiently fighting diabetes, exerting prebiotic activity, containing antioxidant capacity, modulating immunological function, and demonstrating anti-cancer potential. Currently, the konjac glucomannan (KGM) research mainly focuses on packaging film, gel characteristics, efficacy, and evaluation. However, the extraction, underlying portrayal, derivatization, and action of KGM are seldom detailed. Herein, the utilization of konjac as an unrefined substance was surveyed, meaning to give extensive and orderly recombinant data on the extraction, decontamination, structure, natural movement, derivatization, and use of KGM to provide a full play to the interesting gelatinate, biocompatibility, high viscosity and other properties of KGM. It provided a theoretical basis for further developing the konjac glucomannan food industry, pharmaceutical field, and other fields.
Collapse
Affiliation(s)
- Qiurui Hu
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| | - Hualiang Huang
- School of Chemistry and Environmental Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Wuhan Institute of Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Chen Y, Chen Y, Jiang L, Wang J, Zhang W. Investigating binding mechanism between coconut globulin and tannic acid mediated by atmospheric cold plasma: Protein structure and stability. Food Chem 2025; 464:141670. [PMID: 39432945 DOI: 10.1016/j.foodchem.2024.141670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/14/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024]
Abstract
Physical methods present promising avenues for inducing covalent modifications of proteins by polyphenols, circumventing the safety and sustainability issues associated with traditional approaches. This study sought to enhance the physicochemical properties of coconut globulin (CG) by facilitating covalent cross-linking with tannic acid (TA) through atmospheric cold plasma (ACP). The ACP treatment effectively transitioned the interaction between CG and TA from non-covalent to covalent in a voltage-dependent manner at pH 6.0, resulting in structural modifications of CG. The treatment with TA enhanced the spherical structure of CG, with a reduction in particle size from 474 to 384 nm. This size reduction was further amplified by the exposure of charged groups induced by ACP treatment. Consequently, the solubility, surface hydrophobicity, and viscosity of ACP-treated CG-TA increased, leading to an elevated denaturation temperature and enhanced physical stability. These results suggest a viable approach to improving the suboptimal physicochemical properties of plant proteins.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yile Chen
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lianzhou Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; International Research Center for High Value Processing of Tropical Specialty Protein Resources, Hainan University, Haikou 570228, China
| | - Jiamei Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan, Institute for Food Control, Haikou 570228, China; International Research Center for High Value Processing of Tropical Specialty Protein Resources, Hainan University, Haikou 570228, China.
| |
Collapse
|
3
|
Wang Y, Huang Z, Zhou T, Li C, Sun Y, Pang J. Progress of research on aroma absorption mechanism and aroma fixation pathway of jasmine green tea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9111-9127. [PMID: 38877788 DOI: 10.1002/jsfa.13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
This overview summarizes the latest research progress on the aroma absorption mechanism and aroma fixation pathway of jasmine green tea, and discusses in depth the aroma absorption mechanism of green tea, the aroma release mechanism of jasmine flowers, as well as the absorption and fixation mechanism of the aroma components of jasmine green tea in the process of scenting, to provide a theoretical basis for the improvement of the quality of jasmine green tea and the innovation of processing technology. It was found that the aroma absorption mechanism of jasmine green tea is mainly associated with both physical and chemical adsorption, aroma release in jasmine involves the phenylpropanoid/benzoin biosynthetic pathway, β-glycosidase enzymes interpreting putative glycosidic groups, and heat shock proteins (HSPs) as molecular chaperones to prevent stress damage in postharvest flowers due to high temperatures and to promote the release of aroma components, and so forth. The preparation of aroma-protein nano-complexes, heat stress microcapsules, and the spraying of polymeric substances - β-cyclodextrin are three examples of aroma-fixing pathways. This overview also summarizes the problems and future development trends of the current research and proposes the method of loading benzyl acetate, the main aroma component of jasmine, through konjac glucomannan (KGM)-based gel to solve the problem of volatile aroma and difficult-to-fix aroma, which provides a reference for the sustainable development of the jasmine green tea industry. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yueguang Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zifeng Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taoyi Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Charlie Li
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, USA
| | - Yilan Sun
- Department of Oral and maxillofacial Head and neck Oncology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Li S, Ren Y, Hou Y, Zhan Q, Jin P, Zheng Y, Wu Z. Polysaccharide-Based Composite Films: Promising Biodegradable Food Packaging Materials. Foods 2024; 13:3674. [PMID: 39594092 PMCID: PMC11593711 DOI: 10.3390/foods13223674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
With growing concerns about environmental protection and sustainable development, the development of new biodegradable food packaging materials has become a significant focus for the future of food packaging. Polysaccharides, such as cellulose, chitosan, and starch, are considered ideal biodegradable packaging materials due to their wide availability, good biocompatibility, and biodegradability. These materials have garnered extensive attention from researchers in food packaging, leading to considerable advancements in the application of polysaccharide-based food packaging films, coatings, aerogels, and other forms. Therefore, this review focuses on the application of polysaccharide-based packaging films in food storage and preservation and discusses their preparation methods, application progress, challenges, and future development directions. Through an in-depth analysis of the existing literature, this review aims to provide sustainable and environmentally friendly solutions for the food packaging industry.
Collapse
Affiliation(s)
- Shengzi Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| | - Yu Ren
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| | - Yujie Hou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
- College of Food Science and Engineering, South China University of Technology, Tianhe District, Guangzhou 510640, China
| | - Peng Jin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| | - Zhengguo Wu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China (Q.Z.)
| |
Collapse
|
5
|
Zhuang K, Shu X, Xie W. Konjac glucomannan-based composite materials: Construction, biomedical applications, and prospects. Carbohydr Polym 2024; 344:122503. [PMID: 39218541 DOI: 10.1016/j.carbpol.2024.122503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Konjac glucomannan (KGM) as an emerging natural polymer has attracted increasing interests owing to its film-forming properties, excellent gelation, non-toxic characteristics, strong adhesion, good biocompatibility, and easy biodegradability. Benefiting from these superior performances, KGM has been widely applied in the construction of multiple composite materials to further improve their intrinsic performances (e.g., mechanical strength and properties). Up to now, KGM-based composite materials have obtained widespread applications in diverse fields, especially in the field of biomedical. Therefore, a timely review of relevant research progresses is important for promoting the development of KGM-based composite materials. Innovatively, firstly, this review briefly introduced the structure properties and functions of KGMs based on the unique perspective of the biomedical field. Then, the latest advances on the preparation and properties of KGM-based composite materials (i.e., gels, microspheres, films, nanofibers, nanoparticles, etc.) were comprehensively summarized. Finally, the promising applications of KGM-based composite materials in the field of biomedical are comprehensively summarized and discussed, involving drug delivery, wound healing, tissue engineering, antibacterial, tumor treatment, etc. Impressively, the remaining challenges and opportunities in this promising field were put forward. This review can provide a reference for guiding and promoting the design and biomedical applications of KGM-based composites.
Collapse
Affiliation(s)
- Kejin Zhuang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Agro-products Processing and Quality Safety of Heilongjiang Province, Daqing, China; National Coarse Cereals Engineering Research Center, Daqing, China.
| | - Xin Shu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wenjing Xie
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
6
|
Świerczyńska M, Kudzin MH, Chruściel JJ. Poly(lactide)-Based Materials Modified with Biomolecules: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5184. [PMID: 39517460 PMCID: PMC11546716 DOI: 10.3390/ma17215184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Poly(lactic acid) (PLA) is characterized by unique features, e.g., it is environmentally friendly, biocompatible, has good thermomechanical properties, and is readily available and biodegradable. Due to the increasing pollution of the environment, PLA is a promising alternative that can potentially replace petroleum-derived polymers. Different biodegradable polymers have numerous biomedical applications and are used as packaging materials. Because the pure form of PLA is delicate, brittle, and is characterized by a slow degradation rate and a low thermal resistance and crystallization rate, these disadvantages limit the range of applications of this polymer. However, the properties of PLA can be improved by chemical or physical modification, e.g., with biomolecules. The subject of this review is the modification of PLA properties with three classes of biomolecules: polysaccharides, proteins, and nucleic acids. A quite extensive description of the most promising strategies leading to improvement of the bioactivity of PLA, through modification with these biomolecules, is presented in this review. Thus, this article deals mainly with a presentation of the major developments and research results concerning PLA-based materials modified with different biomolecules (described in the world literature during the last decades), with a focus on such methods as blending, copolymerization, or composites fabrication. The biomedical and unique biological applications of PLA-based materials, especially modified with polysaccharides and proteins, are reviewed, taking into account the growing interest and great practical potential of these new biodegradable biomaterials.
Collapse
Affiliation(s)
- Małgorzata Świerczyńska
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Łódź, Poland
| | - Marcin H. Kudzin
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| | - Jerzy J. Chruściel
- Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), 19/27 Marii Skłodowskiej-Curie Str., 90-570 Łódź, Poland; (M.Ś.); (M.H.K.)
- Circular Economy Center (BCG), Environmental Protection Engineering Research Group, Łukasiewicz Research Network—Lodz Institute of Technology (ŁIT), Brzezińska 5/15, 92-103 Łódź, Poland
| |
Collapse
|
7
|
Kaczmarek-Szczepańska B, Zasada L, D'Amora U, Pałubicka A, Michno A, Ronowska A, Wekwejt M. Bioactivation of Konjac Glucomannan Films by Tannic Acid and Gluconolactone Addition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46102-46112. [PMID: 39163280 PMCID: PMC11378156 DOI: 10.1021/acsami.4c09909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Wound healing is a dynamic process that requires an optimal extracellular environment, as well as an accurate synchronization between various cell types. Over the past few years, great efforts have been devoted to developing novel approaches for treating and managing burn injuries, sepsis, and chronic or accidental skin injuries. Multifunctional smart-polymer-based dressings represent a promising approach to support natural healing and address several problems plaguing partially healed injuries, including severe inflammation, scarring, and wound infection. Naturally derived compounds offer unique advantages such as minimal toxicity, cost-effectiveness, and outstanding biocompatibility along with potential anti-inflammatory and antimicrobial activity. Herein, the main driving idea of the work was the design and development of konjac glucomannan d-glucono-1,5-lactone (KG) films bioactivated by tannic acid and d-glucono-1,5-lactone (GL) addition. Our analysis, using attenuated total reflectance-Fourier transform infrared, atomic force microscopy, and surface energy measurements demonstrated that tannic acid (TA) clearly interacted with the KG matrix, acting as its cross-linker, whereas GL was embedded within the polymer structure. All developed films maintained a moist environment, which represents a pivotal property for wound dressing. Hemocompatibility experiments showed that all tested films exhibited no hemolytic impact on human erythrocytes. Moreover, the presence of TA and GL enhanced the metabolic and energetic activity in human dermal fibroblasts, as indicated by the MTT assay, showing results exceeding 150%. Finally, all films demonstrated high antibacterial properties as they significantly reduced the multiplication rate of both Staphylococcus aureus and Escherichia coli in bacterial broth and created the inhibition zones for S. aureus in agar plates. These remarkable outcomes make the KG/TA/GL film promising candidates for wound healing applications.
Collapse
Affiliation(s)
- Beata Kaczmarek-Szczepańska
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Lidia Zasada
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 11, 87-100 Torun, Poland
| | - Ugo D'Amora
- Institute of Polymers, Composites and Biomaterials, National Research Council, v.le J.F. Kennedy 54, Mostra d'OLtremare Pad. 20, 80125 Naples, Italy
| | - Anna Pałubicka
- Department of Laboratory Diagnostics and Microbiology with Blood Bank, Specialist Hospital in Kościerzyna, Alojzego Piechowskiego 36, 83-400 Kościerzyna, Poland
| | - Anna Michno
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| | - Marcin Wekwejt
- Department of Biomaterials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-229 Gdańsk, Poland
- Laboratory for Biomaterials and Bioengineering (CRC-Tier I), Dept Min-Met-Materials Eng & Regenerative Medicine, CHU de Quebec, Laval University, Quebec City, Quebec G1 V 0A6, Canada
| |
Collapse
|
8
|
Yin J, Li Y, Zhong W, Li K, Xu J, Zeng X, Chen H, Pang J, Wu C. Effect of konjac glucomannan-based preservation pads on quality changes in refrigerated large yellow croaker (Pseudosciaena crocea). Int J Biol Macromol 2024; 276:133752. [PMID: 38986984 DOI: 10.1016/j.ijbiomac.2024.133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The purpose of this study was to evaluate the preservation effects of konjac glucomannan (KGM)/oregano essential oil (OEO) Pickering emulsion-based pads (K/OPE pads) on large yellow croaker (Pseudosciaena crocea) fillets stored at 4 °C. The K/OPE pads were fabricated using a freeze-drying technique. The homogeneous distribution of the OEO Pickering emulsions in the KGM matrix was observed using scanning electron microscopy. Fourier transform infrared spectroscopy confirmed that the OEO emulsions were encapsulated in the KGM and there was hydrogen bonding interaction between them. Compared with the KGM pads, the K/OPE pad groups demonstrated enhanced antioxidant and antimicrobial properties. When the content of OPE was increased from 20 % to 40 %, the antioxidant performance of the K/OPE pads increased from 48.09 % ± 0.03 % to 86.65 % ± 0.02 % and the inhibition range of Escherichia coli and Staphylococcus aureus increased to 13.84 ± 0.81 and 16.87 ± 1.53 mm, respectively. At the same time, K/OPE pads were more effective in inhibiting the formation of total volatile alkaline nitrogen and the production of thiobarbituric acid-reactive substances, thereby helping in reducing water loss and maintaining the muscle tissue structure of fish fillets for a longer storage time. Consequently, these K/OPE40 pads extended the shelf life of the fish fillets by an additional 4 days and delayed spoilage during refrigerated storage. The findings suggest that the K/OPE pads can effectively safeguard the quality of refrigerated large yellow croaker fillets, presenting their potential as an active packaging material in the fish preservation industry.
Collapse
Affiliation(s)
- Jing Yin
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yaoling Li
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China
| | - Weiquan Zhong
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Kehao Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jingting Xu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xingxing Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongbin Chen
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China.
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
9
|
Chen Z, Tian W, Qin X, Wang H, Tan L, Liu X. Chitosan/oxidized Konjac Glucomannan films incorporated with Zanthoxylum Bungeanum essential oil: A novel approach for extending the shelf life of meat. Int J Biol Macromol 2024; 262:129683. [PMID: 38296664 DOI: 10.1016/j.ijbiomac.2024.129683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
In this study, a novel edible composite film was prepared by chitosan, konjac glucomannan oxidized with ozone for 60 min (OKGM), and Zanthoxylum Bungeanum essential oil (ZEO). The chitosan/OKGM film was fortified with ZEO to assess the physical properties, structure, antioxidant and antibacterial abilities, and pork preservation systematically. Compared to the control group, the addition of 1 % ZEO increased tensile strength by 18.92 % and decreased water solubility, water vapor permeability, and moisture content by 10.05 %, 6.60 %, and 1.03 %, respectively. However, the treatment with ZEO (1.5 % and 2 %) decreased mechanical properties and increased the water vapor permeability. The ultraviolet barrier, antioxidant, and antibacterial abilities of composite films were enhanced by increasing the ZEO addition. Moreover, the COZ-1 film was used to protect the freshness of pork with slow-release behavior of ZEO. The results showed that addition of ZEO significantly decreased the pH value, total viable count, redness, total volatile basic nitrogen, and thiobarbituric acid and increased the hardness of pork after preservation for 10 days. Therefore, the chitosan/OKGM loaded with ZEO film can potentially be used as food packaging, providing new ideas for the research on active packaging materials.
Collapse
Affiliation(s)
- Zhaojun Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China
| | - Wenke Tian
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoli Qin
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hui Wang
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China
| | - Lulin Tan
- Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550000, China
| | - Xiong Liu
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
10
|
Priya S, Choudhari M, Tomar Y, Desai VM, Innani S, Dubey SK, Singhvi G. Exploring polysaccharide-based bio-adhesive topical film as a potential platform for wound dressing application: A review. Carbohydr Polym 2024; 327:121655. [PMID: 38171676 DOI: 10.1016/j.carbpol.2023.121655] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Wound dressings act as a physical barrier between the wound site and the external environment, preventing additional harm; choosing suitable wound dressings is essential for the healing process. Polysaccharide biopolymers have demonstrated encouraging findings and therapeutic prospects in recent decades about wound therapy. Additionally, polysaccharides have bioactive qualities like anti-inflammatory, antibacterial, and antioxidant capabilities that can help the process of healing. Due to their excellent tissue adhesion, swelling, water absorption, bactericidal, and immune-regulating properties, polysaccharide-based bio-adhesive films have recently been investigated as intriguing alternatives in wound management. These films also mimic the structure of the skin and stimulate the regeneration of the skin. This review presented several design standards and functions of suitable bio-adhesive films for the healing of wounds. Additionally, the most recent developments in the use of bio-adhesive films as wound dressings based on polysaccharides, including hyaluronic acid, chondroitin sulfate, dextran, alginate, chitosan, cellulose, konjac glucomannan, gellan gum, xanthan gum, pectin, guar gum, heparin, arabinogalactans, carrageen, and tragacanth gum, are thoroughly discussed. Lastly, to create a road map for the function of polysaccharide-based bio-adhesive films in advanced wound care, their clinical performances and future challenges in making bio-adhesive films by three-dimensional bioprinting are summarized.
Collapse
Affiliation(s)
- Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Manisha Choudhari
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Yashika Tomar
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vaibhavi Meghraj Desai
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | - Srinath Innani
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India
| | | | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
11
|
Fu X, Chang X, Xu S, Xu H, Ge S, Xie Y, Wang R, Xu Y, Luo Z, Shan Y, Ding S. Development of a chitosan/pectin-based multi-active food packaging with both UV and microbial defense functions for effectively preserving of strawberry. Int J Biol Macromol 2024; 254:127968. [PMID: 37944717 DOI: 10.1016/j.ijbiomac.2023.127968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Multi-active food packaging was prepared for strawberry fruit preservation where epigallocatechin gallate (EGCG)-containing pectin matrix and natamycin (NATA)-containing chitosan (CS) matrix were utilized to complete LBL electrostatic self-assembly. The results showed that the physicochemical properties of the multi-active packaging were closely related to the addition of NATA and EGCG. It was found that NATA and EGCG were embedded in the CS/pectin matrix through intermolecular hydrogen bonding interactions. The CN/PE 15 % multi-active films prepared based on the spectral stacking theory formed a barrier to UV light in the outer layer, exhibited excellent NATA protection under UV light exposure conditions at different times, and provided long-lasting and sustained bacterial inhibition in the inner layer. In addition, the CN/PE 15 % multi-active packaging extended the shelf life of strawberry at room temperature compared with the control samples. In conclusion, the developed CN/PE 15 % packaging provided potential applications for multi-active food packaging materials.
Collapse
Affiliation(s)
- Xincheng Fu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xia Chang
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Saiqing Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haishan Xu
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shuai Ge
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Xie
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310000, China
| | - Yang Shan
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Shenghua Ding
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China; DongTing Laboratory, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
12
|
Mao YH, Wang M, Yuan Y, Yan JK, Peng Y, Xu G, Weng X. Konjac Glucomannan Counteracted the Side Effects of Excessive Exercise on Gut Microbiome, Endurance, and Strength in an Overtraining Mice Model. Nutrients 2023; 15:4206. [PMID: 37836491 PMCID: PMC10574454 DOI: 10.3390/nu15194206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Excessive exercise without adequate rest can lead to overtraining syndrome, which manifests a series of side effects, including fatigue, gut dysbiosis, and decremental sports performance. Konjac glucomannan (KGM) is a plant polysaccharide with numerous health-improving effects, but few studies reported its effects on the gut microbiome, endurance, and strength in an overtraining model. This study assessed the effect of KGM on gut microbiome, endurance, and strength in mice with excessive exercise. Three doses of KGM (1.25, 2.50, and 5.00 mg/mL) were administrated in drinking water to mice during 42 days of a treadmill overtraining program. The results showed that excessive exercise induced a significant microbial shift compared with the control group, while a high dose (5.00 mg/mL) of KGM maintained the microbial composition. The proportion of Sutterella in feces was significantly increased in the excessive exercise group, while the moderate dose (2.50 mg/mL) of KGM dramatically increased the relative abundance of Lactobacillus and SCFA production in feces. Additionally, the moderate dose and high dose of KGM counteracted the negative effects of excessive exercise on strength or/and endurance (43.14% and 39.94% increase through a moderate dose of KGM, Bonferroni corrected p < 0.05, compared with the excessive exercise group). Therefore, it suggests that KGM could prevent overtraining and improve sports performance in animal models.
Collapse
Affiliation(s)
- Yu-Heng Mao
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China (Y.Y.); (Y.P.); (G.X.)
| | - Minghan Wang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China (Y.Y.); (Y.P.); (G.X.)
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China (Y.Y.); (Y.P.); (G.X.)
| | - Jing-Kun Yan
- Engineering Research Center of Health Food Design & Nutrition Regulation, Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China;
| | - Yanqun Peng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China (Y.Y.); (Y.P.); (G.X.)
| | - Guoqin Xu
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China (Y.Y.); (Y.P.); (G.X.)
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou 510500, China (Y.Y.); (Y.P.); (G.X.)
| |
Collapse
|
13
|
Waresindo WX, Priyanto A, Sihombing YA, Hapidin DA, Edikresnha D, Aimon AH, Suciati T, Khairurrijal K. Konjac glucomannan-based hydrogels with health-promoting effects for potential edible electronics applications: A mini-review. Int J Biol Macromol 2023; 248:125888. [PMID: 37473898 DOI: 10.1016/j.ijbiomac.2023.125888] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Konjac glucomannan (KGM), a dietary fiber hydrocolloid polysaccharide isolated from Amorphophallus konjac tubers, has potential applications in various fields. However, the use of KGM-based hydrogels has mainly focused on the food, biomedical, and water treatment industries. KGM possesses several health benefits and could be a promising candidate for use in edible electronics. This paper presents the first review of KGM-based hydrogels as edible electronics and their potential health benefits. The paper initially focuses on the health-promoting effects of KGM-based hydrogels, such as prebiotic effects, antiobesity, antioxidant, and antibacterial properties. Then, it discusses the feasible design strategies for KGM-based hydrogels as edible electronics, considering their flexibility, mechanical properties, response to stimuli, degradability aspects, their role as electronic device components, and the retention period of the devices. Finally, this review outlines future directions for developing KGM-based hydrogels for use in edible electronics.
Collapse
Affiliation(s)
- William Xaveriano Waresindo
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Aan Priyanto
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Yuan Alfinsyah Sihombing
- Doctoral Program of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Dian Ahmad Hapidin
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Dhewa Edikresnha
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; University Center of Excellence - Nutraceutical, Bioscience, and Biotechnology Research Center, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Akfiny Hasdi Aimon
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Tri Suciati
- Department of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia
| | - Khairurrijal Khairurrijal
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; University Center of Excellence - Nutraceutical, Bioscience, and Biotechnology Research Center, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132, Indonesia; Department of Physics, Faculty of Sciences, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Lampung 35365, Indonesia.
| |
Collapse
|
14
|
Borbolla-Jiménez FV, Peña-Corona SI, Farah SJ, Jiménez-Valdés MT, Pineda-Pérez E, Romero-Montero A, Del Prado-Audelo ML, Bernal-Chávez SA, Magaña JJ, Leyva-Gómez G. Films for Wound Healing Fabricated Using a Solvent Casting Technique. Pharmaceutics 2023; 15:1914. [PMID: 37514100 PMCID: PMC10384592 DOI: 10.3390/pharmaceutics15071914] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Wound healing is a complex process that involves restoring the structure of damaged tissues through four phases: hemostasis, inflammation, proliferation, and remodeling. Wound dressings are the most common treatment used to cover wounds, reduce infection risk and the loss of physiological fluids, and enhance wound healing. Despite there being several types of wound dressings based on different materials and fabricated through various techniques, polymeric films have been widely employed due to their biocompatibility and low immunogenicity. Furthermore, they are non-invasive, easy to apply, allow gas exchange, and can be transparent. Among different methods for designing polymeric films, solvent casting represents a reliable, preferable, and highly used technique due to its easygoing and relatively low-cost procedure compared to sophisticated methods such as spin coating, microfluidic spinning, or 3D printing. Therefore, this review focuses on the polymeric dressings obtained using this technique, emphasizing the critical manufacturing factors related to pharmaceuticals, specifically discussing the formulation variables necessary to create wound dressings that demonstrate effective performance.
Collapse
Affiliation(s)
- Fabiola V Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sonia J Farah
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - María Teresa Jiménez-Valdés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Emiliano Pineda-Pérez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Sergio Alberto Bernal-Chávez
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Ex-Hda. de Sta. Catarina Mártir, Cholula 72820, Puebla, Mexico
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico
- Tecnologico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
15
|
Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel) 2023; 12:antiox12040787. [PMID: 37107164 DOI: 10.3390/antiox12040787] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
Collapse
|
16
|
Structure, Merits, Gel Formation, Gel Preparation and Functions of Konjac Glucomannan and Its Application in Aquatic Food Preservation. Foods 2023; 12:foods12061215. [PMID: 36981142 PMCID: PMC10048453 DOI: 10.3390/foods12061215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
Konjac glucomannan (KGM) is a natural polysaccharide extracted from konjac tubers that has a topological structure composed of glucose and mannose. KGM can be used as a gel carrier to load active molecules in food preservation. The three-dimensional gel network structure based on KGM provides good protection for the loaded active molecules and allows for sustained release, thus enhancing the antioxidant and antimicrobial activities of these molecules. KGM loaded with various active molecules has been used in aquatic foods preservation, with great potential for different food preservation applications. This review summarizes recent advances in KGM, including: (i) structural characterization, (ii) the formation mechanism, (iii) preparation methods, (iv) functional properties and (v) the preservation of aquatic food.
Collapse
|
17
|
Ahmad N. In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings. Pharmaceutics 2022; 15:42. [PMID: 36678671 PMCID: PMC9864730 DOI: 10.3390/pharmaceutics15010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic wound management represents a major challenge in the healthcare sector owing to its delayed wound-healing process progression and huge financial burden. In this regard, wound dressings provide an appropriate platform for facilitating wound healing for several decades. However, adherent traditional wound dressings do not provide effective wound healing for highly exudating chronic wounds and need the development of newer and innovative wound dressings to facilitate accelerated wound healing. In addition, these dressings need frequent changing, resulting in more pain and discomfort. In order to overcome these issues, a wide range of affordable and innovative modern wound dressings have been developed and explored recently to accelerate and improve the wound healing process. However, a comprehensive understanding of various in vitro and in vivo characterization methods being utilized for the evaluation of different modern wound dressings is lacking. In this context, an overview of modern dressings and their complete in vitro and in vivo characterization methods for wound healing assessment is provided in this review. Herein, various emerging modern wound dressings with advantages and challenges have also been reviewed. Furthermore, different in vitro wound healing assays and in vivo wound models being utilized for the evaluation of wound healing progression and wound healing rate using wound dressings are discussed in detail. Finally, a summary of modern wound dressings with challenges and the future outlook is highlighted.
Collapse
Affiliation(s)
- Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| |
Collapse
|
18
|
Li Y, Liu Y, Campos de Souza S, Chao T, Dong L, Sun G, Wang C, Niu Y. Differential Foreign Body Reactions between Branched and Linear Glucomannan Scaffolds. J Funct Biomater 2022; 13:293. [PMID: 36547553 PMCID: PMC9781890 DOI: 10.3390/jfb13040293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The extent and patterns of foreign body reaction (FBR) influence the function and feasibility of biomaterials. Polysaccharides, as an important biomaterial category, have received increasing attention in diverse biomaterials design and biomedical applications due to their excellent polymeric and biocompatible characteristics. Their biological effects are usually associated with their monosaccharide composition or functional groups, yet the contribution of their glycan structure is still unknown. Herein, two glucomannans, similar in composition and molecular weight with differences in glycan structure, linear-chain (Konjac glucomannan, KGM), and branched-chain (Bletilla striata polysaccharide, BSP), were adopted to explore the host-biomaterials interaction. After acetyl modification, these polysaccharides were fabricated into electrospun scaffolds to reduce the impacts derived from the physical properties and surface morphology. According to a systematic study of their biological effects on immune cells and host response in a subcutaneous implantation model in vivo, it was revealed that acetyl KGM (acKGM) scaffolds caused a stronger FBR than acetyl BSP materials. Additionally, acKGM could stimulate macrophages to release pro-inflammatory cytokines, suggesting the influence of sugar chain arrangement on FBR and providing clues for the fine regulation of immune response and novel biomaterials design.
Collapse
Affiliation(s)
- Yuwei Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
| | - Yu Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
| | - Senio Campos de Souza
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
| | - Tzuwei Chao
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR 999078, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
- Zhuhai UM Science & Technology Research Institute (ZUMRI), Hengqin, Zhuhai 519031, China
| | - Yiming Niu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Science, University of Macau, Taipa, Macau SAR 999078, China
| |
Collapse
|
19
|
Mu R, Bu N, Pang J, Wang L, Zhang Y. Recent Trends of Microfluidics in Food Science and Technology: Fabrications and Applications. Foods 2022; 11:3727. [PMID: 36429319 PMCID: PMC9689895 DOI: 10.3390/foods11223727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The development of novel materials with microstructures is now a trend in food science and technology. These microscale materials may be applied across all steps in food manufacturing, from raw materials to the final food products, as well as in the packaging, transport, and storage processes. Microfluidics is an advanced technology for controlling fluids in a microscale channel (1~100 μm), which integrates engineering, physics, chemistry, nanotechnology, etc. This technology allows unit operations to occur in devices that are closer in size to the expected structural elements. Therefore, microfluidics is considered a promising technology to develop micro/nanostructures for delivery purposes to improve the quality and safety of foods. This review concentrates on the recent developments of microfluidic systems and their novel applications in food science and technology, including microfibers/films via microfluidic spinning technology for food packaging, droplet microfluidics for food micro-/nanoemulsifications and encapsulations, etc.
Collapse
Affiliation(s)
- Ruojun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Nitong Bu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Lin Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yue Zhang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
20
|
Zhang W, Rhim JW. Recent progress in konjac glucomannan-based active food packaging films and property enhancement strategies. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Advanced konjac glucomannan-based films in food packaging: Classification, preparation, formation mechanism and function. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Savencu I, Iurian S, Porfire A, Bogdan C, Tomuță I. Review of advances in polymeric wound dressing films. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Zhou N, Zheng S, Xie W, Cao G, Wang L, Pang J. Konjac glucomannan: A review of structure, physicochemical properties, and wound dressing applications. J Appl Polym Sci 2021. [DOI: 10.1002/app.51780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Zhou
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Shengxuan Zheng
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Wanzhen Xie
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Guoyu Cao
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Lin Wang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| | - Jie Pang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou China
| |
Collapse
|
24
|
Enhanced functional properties of chitosan films incorporated with curcumin-loaded hollow graphitic carbon nitride nanoparticles for bananas preservation. Food Chem 2021; 366:130539. [PMID: 34284191 DOI: 10.1016/j.foodchem.2021.130539] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023]
Abstract
The exploration of novel functional packaging films is of great scientific and technological interest. Herein, a novel chitosan/hollow g-C3N4/curcumin (CS-HCNS-Cur) biocomposite films was successful fabricated with integrated functions of slow release, antimicrobial activity and food freshness preservation. CS-HCNS-Cur films take the advantages of the excellent thermal stability and slow-release ability of HCNS to curcumin. Among the characterizations including scanning electron microscopy, transmission electron microscope, atomic force microscopy, fourier transform infrared spectroscopy, mechanical properties and the rheological properties measurements confirmed the successful fabrication of CS-HCNS-Cur films. The averaged water contact angle and water vapor permeability of this film were 105.83° and 105.03 × 10-5 g·mm (m2·h·kPa)-1, respectively. This film showed pH-responsive and slow-release ability. Moreover, this film can effectively store bananas for 10 days. Therefore, CS-HCNS-Cur films have promising potential for applications in functional food packaging.
Collapse
|
25
|
Ni Y, Shi S, Li M, Zhang L, Yang C, Du T, Wang S, Nie H, Sun J, Zhang W, Wang J. Visible light responsive, self-activated bionanocomposite films with sustained antimicrobial activity for food packaging. Food Chem 2021; 362:130201. [PMID: 34090044 DOI: 10.1016/j.foodchem.2021.130201] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
The research on a new type of low-cost, less-loss and adjustable sustained antibacterial activity food packaging films with self-activation ability and great industrialization potentiality is of great scientific and technological interest. Herein, a novel chitosan/negatively charged graphitic carbon nitride self-activation bionanocomposite films was prepared by one-step electrostatic self-assembly. First, the antibacterial efficiency of this film could reach to 99.8 ± 0.26% against E. coli and 99.9 ± 0.04% against S. aureus through self-activated under visible light. Second, this film can effectively extend the shelf life of tangerines to 24 days. Hemolysis and cell experiment test proved that this film was safe and nontoxic. Finally, negatively charged graphitic carbon nitride with low-cost can improve the mechanical, thermal and hydrophobic properties of neat chitosan films. This work can provide a new pathway for the preparation of low-cost packaging films with excellent visible light responsive property and sustainable antibacterial activity.
Collapse
Affiliation(s)
- Yongsheng Ni
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuo Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chengyuan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongqing Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
26
|
Ni Y, Sun J, Wang J. Enhanced antimicrobial activity of konjac glucomannan nanocomposite films for food packaging. Carbohydr Polym 2021; 267:118215. [PMID: 34119169 DOI: 10.1016/j.carbpol.2021.118215] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/19/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2023]
Abstract
This paper aims at providing a new strategy for developing konjac glucomannan-based antibacterial films with excellent performances. Here, novel nanocomposite films based on photodynamic and photothermal synergism strategy were developed by incorporating graphite carbon nitride nanosheets/MoS2 nanodots (CNMo) into konjac glucomannan (KGM) matrix. Scanning electron microscope, transmission electron microscope, high resolution transmission, high angle annular dark field and element mapping confirmed the successful fabrication of CNMo. The steady and dynamic rheological behavior as well as the good stability of film-forming solution showed that the intermolecular hydrogen bonding was formed. The influences of CNMo content on the structural, mechanical and thermal properties as well as hydrophobicity of KGM films were investigated. This film has a broad-spectrum antibacterial activity. It could prolong the shelf life of cherry tomatoes. Moreover, hemolysis and cells experiment confirm that this film is safe. This strategy is expected to broaden the application of antibacterial packaging.
Collapse
Affiliation(s)
- Yongsheng Ni
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
27
|
Polysaccharide based films and coatings for food packaging: Effect of added polyphenols. Food Chem 2021; 359:129871. [PMID: 34023728 DOI: 10.1016/j.foodchem.2021.129871] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/24/2021] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
There has been keen interest in developing biodegradable food packaging materials using polysaccharides. Plant polyphenols are natural antioxidants with many health effects. Different types of plant extracts rich in polyphenols have been formulated into polysaccharide based films and coatings for food packaging. The packaging increases the shelf life of food products by decreasing the quality loss due to oxidation and microbiological growth. The release of polyphenols from the films is modulated. Polysaccharide films incorporated with certain types of polyphenols can be used to indicate the freshness of animal based products. To formulate films with desirable mechanical and barrier properties, addition levels and types of plant extracts, plasticisers and composite polysaccharide materials used should be optimized. The potential of polysaccharide based films with added polyphenols to stop the SARS-CoV-2 transmission through food supply chain is discussed. Polysaccharide based films fortified with polyphenol extracts are multifunctional with potential for active and intelligent packaging.
Collapse
|
28
|
Controlled bacteriostasis of tea polyphenol loaded ultrahigh molecular weight polyethylene with high crosslink density and oxidation resistance for total joint replacement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112040. [PMID: 33947540 DOI: 10.1016/j.msec.2021.112040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
To avoid catastrophic bacterial infection in prosthesis failure, ultrahigh molecular weight polyethylene (UHMWPE), a common bearing material of artificial joints, has been formulated with antibiotics to eliminate bacteria locally at the implant site. However, the pressing issues regarding cytotoxic effects and evolution of drug resistant bacteria necessitates the development of bio-friendly bacteriostat with long bacteriostatic efficacy. Herein, tea polyphenol extracted from nature source was introduced in UHMWPE as a biogenic antimicrobial. Controlled antimicrobial activity was achieved by chemical crosslinking to regulate the release of the tea polyphenol. In addition, the crosslinking efficiency of UHMWPE blends with high loaded tea polyphenol was significantly improved in comparison to radiation crosslinking. The immobilized tea polyphenols also enhanced the oxidation stability of the UHMWPE, which is essential to prolong the service life in vivo and the storage time in vitro. The blends presented good biocompatibility, despite cell repellent on the highly crosslinked surface. Chemically crosslinked tea polyphenol/UHMWPE exhibited feasible properties for total joint implants, which is promising for clinical application.
Collapse
|
29
|
Zhou N, Wang L, You P, Wang L, Mu R, Pang J. Preparation of pH-sensitive food packaging film based on konjac glucomannan and hydroxypropyl methyl cellulose incorporated with mulberry extract. Int J Biol Macromol 2021; 172:515-523. [PMID: 33476614 DOI: 10.1016/j.ijbiomac.2021.01.047] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022]
Abstract
A pH-sensitive food packaging film was prepared based on konjac glucomannan (KGM) and hydroxypropyl methyl cellulose (HPMC) incorporated with mulberry extracts2 (MBE). FT-IR and XRD analysis revealed that there are good molecular interactions among the three components. The incorporation of MBE into KGM and HPMC (KH) films can significantly improve the mechanical properties and UV resistance. Notably, the KH-MBE-20% film almost completely blocked UV light in the range of 200-600 nm. The best antioxidant and antibacterial properties were obtained when the addition of MBE in the composite film was 20%. In addition, KH-MBE film has good responsiveness to buffers with pH range from 2 to 12. In visual monitoring experiments using the film on fresh fish, the color of the KH-MBE film changed from purple to gray to yellow as the freshness of the fish decreased, and the KH-MBE-20% film had the best color stability. Therefore, intelligent packaging of KH-MBE film has potential applications in real-time monitoring of fish freshness.
Collapse
Affiliation(s)
- Ning Zhou
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Lin Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peiqiong You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liangyu Wang
- Fuqing Branch of Fujian Normal University, Fuqing, Fujian 350300, China
| | - RuoJun Mu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, Fujian 350002, China.; State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, Fujian 361100, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
30
|
Wang L, Lin L, Guo Y, Long J, Mu RJ, Pang J. Enhanced functional properties of nanocomposite film incorporated with EGCG-loaded dialdehyde glucomannan/gelatin matrix for food packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105863] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Sun J, Jiang H, Wu H, Tong C, Pang J, Wu C. Multifunctional bionanocomposite films based on konjac glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105942] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Kang H, Guan L, An K, Tian D. Preparation and physicochemical properties of konjac glucomannan ibuprofen ester as a polysaccharide-drug conjugate. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1821709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Huiting Kang
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
| | - Lianxiong Guan
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
| | - Kai An
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
| | - Dating Tian
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi, People’s Republic of China
- Key Laboratory of Biologic Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi, People’s Republic of China
| |
Collapse
|
33
|
Huang TW, Lu HT, Ho YC, Lu KY, Wang P, Mi FL. A smart and active film with tunable drug release and color change abilities for detection and inhibition of bacterial growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111396. [PMID: 33255001 DOI: 10.1016/j.msec.2020.111396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/03/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance has become a global issue and thus the development of natural products/biomedical materials composites with antibacterial activities is urgently needed. When acute wounds develop into chronic wounds, the wound environments become alkaline. As long as infections occur, the wound pH further increases, making the wounds difficult to heal. Besides, bacterial growth in poultry, meat, fish and seafood products is usually reflected in a marked increase of pH values. Herein, smart, stimuli responsive self-assembled multilayer and complex film were constructed through the formation of hydrogen bonds and hydrophobic interactions between hydroxypropyl methylcellulose (HPMC) and epigallocatechin-3-gallate (EGCG), thereby greatly reducing the hydrophilicity of HPMC and offering enhanced mechanical strength, superior free radical scavenging capability, and improved water vapor and light barrier properties. The EGCG/HPMC complex film was able to control EGCG release by tuning pH or temperature of the release medium. Furthermore, incorporation of CuS nanoparticles into the film allowed it to triggers EGCG release in an on-demand fashion under near-infrared (NIR) exposure. Bacterial growth in glucose-free nutrient broth medium caused pH to rise (near pH 8.0), leading to transformation of EGCG from phenol type to phenolate ion and then quinone, allowing for spontaneous generation of H2O2 to kill bacteria. The complex films changed their color in response to bacterial growth because EGCG transformed from phenol type to quinone type under alkaline condition. The green synthesized EGCG/HPMC complex films can be used as a colorimetric pH indicator and an antibacterial material for wound dressing and food packaging applications.
Collapse
Affiliation(s)
- Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Hsien-Tsung Lu
- Department of orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of orthopedics, School of Medicine, College of Medicine, Taipei Medical University, 11031, Taiwan
| | - Yi-Cheng Ho
- Department of Bioagricultural Science, National Chiayi University, Chiayi 60004, Taiwan
| | - Kun-Ying Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Pan Wang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei City 11031, Taiwan
| | - Fwu-Long Mi
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
34
|
Preparation and characterization of multifunctional konjac glucomannan/carboxymethyl chitosan biocomposite films incorporated with epigallocatechin gallate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105756] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Novel synthesis of mussel inspired and Fe3+ induced pH-sensitive hydrogels: Adhesion, injectable, shapeable, temperature properties, release behavior and rheological characterization. Carbohydr Polym 2020; 236:116045. [DOI: 10.1016/j.carbpol.2020.116045] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022]
|
36
|
Lin W, Ni Y, Pang J. Size effect-inspired fabrication of konjac glucomannan/polycaprolactone fiber films for antibacterial food packaging. Int J Biol Macromol 2020; 149:853-860. [DOI: 10.1016/j.ijbiomac.2020.01.242] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 01/15/2023]
|
37
|
Du XY, Li Q, Wu G, Chen S. Multifunctional Micro/Nanoscale Fibers Based on Microfluidic Spinning Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903733. [PMID: 31573714 DOI: 10.1002/adma.201903733] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/24/2019] [Indexed: 05/28/2023]
Abstract
Superfine multifunctional micro/nanoscale fibrous materials with high surface area and ordered structure have attracted intensive attention for widespread applications in recent years. Microfluidic spinning technology (MST) has emerged as a powerful and versatile platform because of its various advantages such as high surface-area-to-volume ratio, effective heat transfer, and enhanced reaction rate. The resultant well-defined micro/nanoscale fibers exhibit controllable compositions, advanced structures, and new physical/chemical properties. The latest developments and achievements in microfluidic spun fiber materials are summarized in terms of the underlying preparation principles, geometric configurations, and functionalization. Variously architected structures and shapes by MST, including cylindrical, grooved, flat, anisotropic, hollow, core-shell, Janus, heterogeneous, helical, and knotted fibers, are emphasized. In particular, fiber-spinning chemistry in MST for achieving functionalization of fiber materials by in situ chemical reactions inside fibers is introduced. Additionally, the applications of the fabricated functional fibers are highlighted in sensors, microactuators, photoelectric devices, flexible electronics, tissue engineering, drug delivery, and water collection. Finally, recent progress, challenges, and future perspectives are discussed.
Collapse
Affiliation(s)
- Xiang-Yun Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Guan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
38
|
Robust microfluidic construction of konjac glucomannan-based micro-films for active food packaging. Int J Biol Macromol 2019; 137:982-991. [DOI: 10.1016/j.ijbiomac.2019.07.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 12/16/2022]
|
39
|
Lin W, Ni Y, Pang J. Microfluidic spinning of poly (methyl methacrylate)/konjac glucomannan active food packaging films based on hydrophilic/hydrophobic strategy. Carbohydr Polym 2019; 222:114986. [PMID: 31320090 DOI: 10.1016/j.carbpol.2019.114986] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Here, inspired by the hydrophilic/hydrophobic theory, a novel konjac glucomannan/poly (methyl methacrylate)/chlorogenic acid (KGM/PMMA/CGA) food packaging film was successfully fabricated via microfluidic spinning technology (MST). The results of fourier transform infrared spectroscopy and x-ray diffraction confirmed the formation of hydrogen bonds in the films, which lead to the enhanced mechanical properties. Thermogravimetric analysis and differential scanning calorimetry showed excellent thermal stability of the films. Water vapor permeability (1.47 × 10-5 ± 0.11 g/(m⋅h⋅kPa)) and water contact angle (89.2°) measurement proved that the films were hydrophobic. The good swelling degree (85.18 ± 15.65%) indicated film's potentials in releasing CGA. More importantly, KGM played a key role in the antibacterial activities against Staphylococcus aureus (8.5 ± 3.5 mm) and Escherichia coli (6.5 ± 2.1 mm) by utilizing its hydrophilicity. Thus, our present work may provide a new idea for constructing active food packaging films with significant performances based on hydrophilic/hydrophobic strategy.
Collapse
Affiliation(s)
- Wanmei Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongsheng Ni
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|