1
|
Lin ZH, Phan SNC, Tran DNH, Lu MK, Lin TY. Anti-inflammatory and anticancer effects of polysaccharides from Antrodia cinnamomea : A review. J Chin Med Assoc 2025; 88:1-11. [PMID: 39467830 DOI: 10.1097/jcma.0000000000001186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
Antrodia cinnamomea ( Ac ), also known as "Niu-Chang-Chih" in Chinese, is a valuable fungus that has been widely used as medicine and food among indigenous people in Taiwan. Ac is rich in polysaccharides ( Ac -PS), making it a promising candidate for adjunctive therapy in cancer and inflammation conditions. There are two types of Ac -PS: general (non-sulfated) PS ( Ac -GPS) and sulfated PS ( Ac -SPS). This review highlights that both Ac -GPS and Ac -SPS possess immunomodulatory, anti-inflammatory, and anticancer properties. Each type influences interleukin signaling pathways to exert its anti-inflammatory effects. Ac -GPS is particularly effective in alleviating inflammation in the brain and liver, while Ac -SPS shows its efficacy in macrophage models. Both Ac -GSP and Ac -SPS have demonstrated anticancer effects supported by in vitro and in vivo studies, primarily through inducing apoptosis in various cancer cell lines. They may also synergize with chemotherapy and exhibit antiangiogenic properties. Notably, Ac -SPS appears to have superior anticancer efficacy, potentially due to its sulfate groups. Furthermore, Ac -SPS has been more extensively studied in terms of its mechanisms and effects on lung cancer compared with Ac -GPS, highlighting its significance in cancer research. In addition, Ac -SPS is often reported for its ability to activate macrophage-mediated responses. Clinically, Ac -GPS has been used as an adjunctive therapy for advanced lung cancer, as noted in recent reports. However, given the numerous studies emphasizing its anticancer mechanisms, Ac -SPS may exhibit greater efficacy, warranting further investigation. This review concludes that Ac -derived Ac -GPS or Ac -SPS have the potential to be developed into functional health supplements or adjunctive therapies, providing dual benefits of anti-inflammatory and anticancer effects.
Collapse
Affiliation(s)
- Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Sang-Nguyen-Cao Phan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Faculty of Traditional Medicine, University of Health Sciences, Vietnam National University, Ho Chi Minh, Vietnam
| | - Diem-Ngoc-Hong Tran
- Faculty of Traditional Medicine, University of Health Sciences, Vietnam National University, Ho Chi Minh, Vietnam
| | - Mei-Kuang Lu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan, ROC
| |
Collapse
|
2
|
Lin ZH, Lo HC, Chang CC, Lu MK, Tseng AJ, Chao CH, Chao CH, Lin TY. Sulfated polysaccharide from Antrodia cinnamomea mycelium cultured with zinc sulfate stimulates M1 polarization of macrophages through AKT/mTOR pathways. Int J Biol Macromol 2024; 279:135548. [PMID: 39270905 DOI: 10.1016/j.ijbiomac.2024.135548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Antrodia cinnamomea-derived sulfated polysaccharides (Ac-SPSs) have health benefits, but their yield is low. This study explores a strategy to increase Ac-SPS yield and elucidates the biofunctions of Ac-SPS. For this, A. cinnamomea mycelia were treated with zinc sulfate (ZnSO4) administered at 1, 10, and 100 μM. Firstly, functional assay indicated that ZnSO4 increases the Ac-SPS yield by 20 %-30 % compared with the control treatment. ZnSO4 engenders a population of middle-molecular-weight (~200 kDa) Ac-SPSs. Ac-SPS (ASZ-10) from A. cinnamomea treated with 10 μM ZnSO4 exhibits the best anti-proliferation ability against lung cancer A549 cells. Co-treatment of ASZ-10 does not inhibit lipopolysaccharide-induced inflammation but does induce M1-related markers of macrophage RAW264.7 cells. Secondly, immunomodulatory properties showed that ASZ-10 increases the expression of CD80+ and CD86+ in M-CSF-stimulated bone-marrow-derived macrophages. ASZ-10 induces M1 polarization through up-regulation of the AKT/mTOR pathway as confirmed by AKT and mTOR inhibitors eliminating ASZ-10-induced M1-like markers of macrophages. Through systemic chemical and functional analysis, this study shows that trace amounts (10 μM) of ZnSO4 increase Ac-SPS yield and it reveals that ASZ-10 exhibits anti-cancer activity and acts as a stimulator for M1 macrophages by stimulation of AKT and mTOR.
Collapse
Affiliation(s)
- Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan
| | - Hung-Chih Lo
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Chia-Chuan Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Kuang Lu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan
| | - Chi-Hsein Chao
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Fan JH, Xiong LQ, Huang W, Hong JQ, Guo HK, Wong KH, Cheung PCK, Yang QQ, Zhang BB. Exopolysaccharides produced by Antrodia cinnamomea using microparticle-enhanced cultivation: Optimization, primary structure and antibacterial property. Int J Biol Macromol 2024; 259:128872. [PMID: 38154720 DOI: 10.1016/j.ijbiomac.2023.128872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/04/2023] [Accepted: 12/16/2023] [Indexed: 12/30/2023]
Abstract
Microparticle-enhanced cultivation was used to enhance the production of exopolysaccharides (EPSs) from Antrodia cinnamomea. The structure and antibacterial activity of two EPSs produced by A. cinnamomea treated with Al2O3 [EPS-Al (crude) and EPS-Al-p (purified)] and without Al2O3 [EPS-C (crude) and EPS-C-p (purified)] were compared. It was observed that the addition of 4 g/L Al2O3 at 0 h resulted in the highest EPS yield of 1.46 g/L, possible attributed to the enhanced permeability of the cell membrane. The structural analysis revealed that EPS-C-p and EPS-Al-p had different structures. EPS-C-p was hyperbranched and spherical with a Mw of 10.8 kDa, while EPS-Al-p was irregular and linear with a Mw of 12.5 kDa. The proportion of Man in EPS-Al-p decreased, while those of Gal and Glc increased when compared to EPS-C-p. The total molar ratios of 6-Glcp and 4-Glcp in EPS-Al-p are 1.45 times that of EPS-C-p. Moreover, EPSs could alter bacterial cell morphology, causing intracellular substance leakage and growth inhibition, with EPS-Al having a stronger antibacterial activity than EPS-C. In conclusion, A. cinnamomea treated with Al2O3 could produce more EPSs, changing monosaccharide composition and glycosidic linkage profile, which could exert stronger antibacterial activity than that produced by untreated A. cinnamomea.
Collapse
Affiliation(s)
- Jia-Hui Fan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China; Xingning NO.1 Middle School, Meizhou 514523, Guangdong, PR China
| | - Lin-Qiang Xiong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Wei Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Jia-Qi Hong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Huang-Kai Guo
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Qiong-Qiong Yang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China
| | - Bo-Bo Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, PR China.
| |
Collapse
|
4
|
Noorbakhsh Varnosfaderani SM, Ebrahimzadeh F, Akbari Oryani M, Khalili S, Almasi F, Mosaddeghi Heris R, Payandeh Z, Li C, Nabi Afjadi M, Alagheband Bahrami A. Potential promising anticancer applications of β-glucans: a review. Biosci Rep 2024; 44:BSR20231686. [PMID: 38088444 PMCID: PMC10776902 DOI: 10.1042/bsr20231686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024] Open
Abstract
β-Glucans are valuable functional polysaccharides distributed in nature, especially in the cell walls of fungi, yeasts, bacteria, and cereals. The unique features of β-glucans, such as water solubility, viscosity, molecular weight, and so on, have rendered them to be broadly applied in various food systems as well as in medicine to improve human health. Moreover, inhibition of cancer development could be achieved by an increase in immune system activity via β-glucans. β-glucans, which are part of a class of naturally occurring substances known as biological response modifiers (BRMs), have also shown evidence of being anti-tumorogenic, anti-cytotoxic, and anti-mutagenic. These properties make them attractive candidates for use as pharmaceutical health promoters. Along these lines, they could activate particular proteins or receptors, like lactosylceramide (LacCer), Dickin-1, complement receptor 3 (CR3), scavenge receptors (SR), and the toll-like receptor (TLR). This would cause the release of cytokines, which would then activate other antitumor immune cells, like macrophages stimulating neutrophils and monocytes. These cells are biased toward pro-inflammatory cytokine synthesis and phagocytosis enhancing the elicited immunological responses. So, to consider the importance of β-glucans, the present review introduces the structure characteristics, biological activity, and antitumor functions of fungal β-glucans, as well as their application.
Collapse
Affiliation(s)
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | | | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Chen Li
- Department of Biology, Chemistry, Pharmacy, Free University of Berlin, Berlin, Germany
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Armina Alagheband Bahrami
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran
| |
Collapse
|
5
|
Lin ZH, Lu MK, Lo HC, Chang CC, Tseng AJ, Chao CH, Lin TY. ZnF3, a sulfated polysaccharide from Antrodia cinnamomea, inhibits lung cancer cells via induction of apoptosis and activation of M1-like macrophage-induced cell death. Int J Biol Macromol 2023; 238:124144. [PMID: 36958446 DOI: 10.1016/j.ijbiomac.2023.124144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Sulfated polysaccharides (Ac-SPSs) of Antrodia cinnamomea present anti-cancer activity. However, the anti-cancer mechanism of Ac-SPSs is not fully understood and remains largely unexplored. In this study, we identify an Ac-SPS with 7.9 kDa, noted ZnF3, and aim to examine the dual anti-cancer functions of ZnF3 on inhibiting cancer cells and activating macrophages. A biological study shows that ZnF3 inhibits lung cancer cells by inducing subG1 population and apoptosis. ZnF3 downregulates the expression of TGFβ receptor in lung cancer cells. In parallel, ZnF3 activates macrophages via induction of TNF-α and IL-6 secretion, NO production and phagocytosis. ZnF3 activates AKT/mTOR pathway and induces M1 type macrophage polarization. Cancer cells co-cultured with ZnF3-stimulated macrophages, leading to inhibition of lung cancer cells. This study demonstrates that ZnF3 not only directly inhibits cancer cells but also activates macrophages-mediated cytotoxic effect on cancer cells. Moreover, ZnF3 may be a supplement for suppressing lung cancer cells.
Collapse
Affiliation(s)
- Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan
| | - Mei-Kuang Lu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, 252 Wu-Hsing St., Taipei 110, Taiwan
| | - Hung-Chih Lo
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan
| | | | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, 155 Li-Nung St., Sec. 2, Shipai, Beitou, Taipei 112, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
6
|
Lu MK, Chao CH, Chang TY, Cheng MC, Hsu YC, Chang CC. A branched 2-O sulfated 1,3-/1,4-galactoglucan from Antrodia cinnamomea exhibits moderate antiproliferative and anti-inflammatory activities. Int J Biol Macromol 2023; 241:124559. [PMID: 37100312 DOI: 10.1016/j.ijbiomac.2023.124559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
A sulfated galactoglucan (3-SS) was discovered in Antrodia cinnamomea with antiproliferative and anti-inflammatory activities. Chemical identification of 3-SS resulted in the determination of a partial repeat unit as a 2-O sulfated 1,3-/1,4-linked galactoglucan with a two-residual 1,6-O-β-Glc branch on the 3-O position of a Glc. by monosaccharide analysis and 1D and 2D NMR spectroscopy. The anti-inflammation effects of 3-SS on RAW264.7 macrophage cells, such as IL-6 inhibition, restoration of LPS-induced IκB protein degradation, and inhibited LPS-induced TGFRII protein degradation, were confirmed to occur via AKT, ERK1/2, and p-38. In addition, 3-SS impaired the proliferation of H1975 lung cancer cells through EGFR/ERK/slug signaling. This is the first finding of 2-O sulfated 1,3-/1,4-galactoglucan with 1,6-β-Glc branches with dual functions of anti-inflammatory and antiproliferative activities.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC; Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan, ROC; Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Tsu-Yuan Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Ming-Che Cheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Chi Hsu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan, ROC
| | - Chia-Chuan Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
7
|
Xu X, Duan X, Wang S, Zhang Y, Gao Y, Xu X, Yeerkenbieke G, Zhou J, Li J. Special issue "The advance of solid tumor research in China": Discoidin domain receptor 2 promotes colorectal cancer metastasis by regulating epithelial mesenchymal transition via activating AKT signaling. Int J Cancer 2022; 152:51-65. [PMID: 35904852 DOI: 10.1002/ijc.34227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/06/2022]
Abstract
Tumor metastasis is one of the main reasons for the high mortality rate associated with colorectal cancer (CRC). However, its underlying mechanisms have not been fully understood. Here, we reported that the expression of discoidin domain receptor 2 (DDR2) was significantly upregulated in CRC tissues compared with that in normal adjacent tissues. The expression level of DDR2 was negatively associated with prognosis of CRC patients. Therefore, DDR2 may play an oncogenic role in CRC development. Furthermore, DDR2 induced epithelial mesenchymal transition in CRC cells and regulated their invasive and metastatic capacity in vitro and in vivo. Mechanistically, increased DDR2 expression level activated the AKT/GSK-3β/Slug signaling pathway. In conclusion, these findings showed that DDR2 promoted CRC metastasis and DDR2 inhibition might represent an effective therapeutic strategy for local advanced and metastatic CRC treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaoxiao Xu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Xiaofan Duan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Shunli Wang
- Tongji University School of Medicine, Shanghai, China.,Department of Pathology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yumei Zhang
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Yuan Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Xiaolin Xu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Gaoshaer Yeerkenbieke
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Jiuli Zhou
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Jin Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Lu MK, Chang CC, Chao CH, Hsu YC. Structural changes, and anti-inflammatory, anti-cancer potential of polysaccharides from multiple processing of Rehmannia glutinosa. Int J Biol Macromol 2022; 206:621-632. [PMID: 35217089 DOI: 10.1016/j.ijbiomac.2022.02.112] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 12/31/2022]
Abstract
Polysaccharides play important roles in the bioactivities of Rehmannia glutinosa. This study examined the physiochemical structure and biological activity of the polysaccharides of R. glutinosa during nine steps of processing. Characteristic study showed galactose, glucose, and fructose were the major sugars in the polysaccharides. The percentage of the high-molecular weight polysaccharide increased after processing. In addition, polysaccharides from repeated steam and dry processing of R. glutinosa can effectively increase the anti-inflammatory activity. Secretions of tumor necrosis factor (TNF-α), interleukin (IL)-6, and transforming growth factor (TGF)β after lipopolysaccharide (LPS) stimulation were detected in RAW264.7 macrophages because of its anti-inflammatory activity. RG-B9, a polysaccharide of the ninth steam and dry processing, showed the strongest inhibitory activity on bacterial LPS-induced macrophage IL-6 and TGFβ production. Mechanically, RG-B9 down-regulated the phosphorylation of AKT/ERK. The anti-inflammation of RG-B9 involved AKT/ERK/JNK signaling. In addition, RG-B9 inhibited the viability of lung cancer cells via EGFR/AKT signaling.
Collapse
Affiliation(s)
- Mei-Kuang Lu
- National Research Institute of Chinese Medicine, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, 252 Wu-Hsing St., Taipei 110, Taiwan.
| | - Chia-Chuan Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Hsein Chao
- National Research Institute of Chinese Medicine, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| | - Yu-Chi Hsu
- National Research Institute of Chinese Medicine, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan
| |
Collapse
|
9
|
Chen R, Xu J, Wu W, Wen Y, Lu S, El-Seedi HR, Zhao C. Structure–immunomodulatory activity relationships of dietary polysaccharides. Curr Res Food Sci 2022; 5:1330-1341. [PMID: 36082139 PMCID: PMC9445227 DOI: 10.1016/j.crfs.2022.08.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Polysaccharides are usually composed of more than ten monosaccharide units, which are connected by linear or branched glycosidic bonds. The immunomodulatory effect of natural polysaccharides is one of the most important bioactive function. In this review, molecular weight, monosaccharide (including galactose, mannose, rhamnogalacturonan-I arabinogalactan and uronic acid), functional groups (namely sulfate, selenium, and acetyl groups), types of glycoside bond connection (including β-1,3-D-glucosyl, α-1,4-D-glucosyl, β-1,4-D-glucosyl, α-1,6-D-glucosyl, β-1,4-D-mannosyl, and β-1,4-D-Xylopyranosyl), conformation and the branching degrees are systematically identified as their contribution to the immunostimulatory activity of polysaccharides. At present, studies on the structure-activity relationships of polysaccharides are limited due to their low purity and high heterogeneity. However, it is an important step in providing useful guidance for dietary supplements with polysaccharides. The chemical structures and the process of immune responses induced are necessary to be discussed. Polysaccharides may bind with the cell surface receptors to modulate immune responses. This review mainly discusses the structure-activity relationship of dietary polysaccharides. Structure - activity relationships of polysaccharides with immune-enhancing effect are proposed. Polysaccharides with the higher molecular weight are helpful to improve immunity. Higer galactose, mannose, rhamnogalacturonan-I, arabinogalacta,n and uronic acid contents have immunoregulation.
Collapse
Affiliation(s)
- Ruoxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxi Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Suyue Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 574, 751 23, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Corresponding author.No.15 Shangxiadian Rd, Fuzhou, 350002, China
| |
Collapse
|
10
|
An P, Zhang LJ, Peng W, Chen YY, Liu QP, Luan X, Zhang H. Natural products are an important source for proteasome regulating agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153799. [PMID: 34715511 DOI: 10.1016/j.phymed.2021.153799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Natural medicines have a long history in the prevention and treatment of various diseases in East Asian region, especially in China. Modern research has proved that the pharmacological effects of numerous natural medicines involve the participation of ubiquitin proteasome system (UPS). UPS can degrade the unwanted and damaged proteins widely distributed in the nucleus and cytoplasm of various eukaryotes. PURPOSE The objective of the present study was to review and discuss the regulatory effects of natural products and extracts on proteasome components, which may help to find new proteasome regulators for drug development and clinical applications. METHODS The related information was compiled using the major scientific databases, such as CNKI, Elsevier, ScienceDirect, PubMed, SpringerLink, Wiley Online, and GeenMedical. The keywords "natural product" and "proteasome" were applied to extract the literature. Nature derived extracts, compounds and their derivatives involved in proteasome regulation were included, and the publications related to synthetic proteasome agents were excluded. RESULTS The pharmacological effects of more than 80 natural products and extracts derived from phytomedicines related to the proteasome regulation were reviewed. These natural products were classified according to their chemical properties. We also summarized some laws of action of natural products as proteasome regulators in the treatment of diseases, and listed the action characteristics of the typical natural products. CONCLUSION Natural products derived from nature can induce the degradation of damaged proteins through UPS or act as regulators to directly regulate the activity of proteasome. But few proteasome modulators are applied clinically. Summary of known rules for proteasome modulators will contribute to discover, modify and synthesize more proteasome modulators for clinical applications.
Collapse
Affiliation(s)
- Pei An
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Li-Jun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Wei Peng
- School of pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yu-Ying Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Pudong New Area, Shanghai 201203, China.
| |
Collapse
|
11
|
Vetvicka V, Teplyakova TV, Shintyapina AB, Korolenko TA. Effects of Medicinal Fungi-Derived β-Glucan on Tumor Progression. J Fungi (Basel) 2021; 7:250. [PMID: 33806255 PMCID: PMC8065548 DOI: 10.3390/jof7040250] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
β-Glucans have been studied in animal species, from earthworms to humans. They form a heterogenous group of glucose polymers found in fungi, plants, bacteria, and seaweed. β-Glucans have slowly emerged as an important target for the recognition of pathogens. In the current review, we highlight the major roles of mushroom-derived β-glucans on cancer progression.
Collapse
Affiliation(s)
- Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 630117, USA
| | - Tamara V. Teplyakova
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo, 630559 Novosibirsk, Russia;
| | - Alexandra B. Shintyapina
- Federal Research Center of Fundamental and Translational Medicine, Federal State Budget Scientific Institution, 630117 Novosibirsk, Russia;
| | - Tatiana A. Korolenko
- Laboratory of Experimental Models of Neurodegeneration, Scientific Research Institute of Neurosciences and Medicine, Federal State Budgetary Scientific Institution, 4 Timakov St., 630117 Novosibirsk, Russia;
| |
Collapse
|
12
|
Antitumor effect of soluble β-glucan as an immune stimulant. Int J Biol Macromol 2021; 179:116-124. [PMID: 33667560 DOI: 10.1016/j.ijbiomac.2021.02.207] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/27/2021] [Indexed: 12/15/2022]
Abstract
β-glucans are linear polysaccharides of d-glucose monomers linked through β-glycosidic bonds and are widely present in nature. Different sources lead to their structural differences. β-glucan has long been acknowledged to be a safe and functional component. Its biological activities include lipid-lowering, hypoglycemic, antitumor and immune regulation etc. A large number of studies have shown that soluble β-glucan can bind to their receptors on the surface of immune cells, activates the pro-inflammatory response of innate immune cells, and enhances the host's antitumor defense. A variety of soluble β-glucans have been widely used in clinical antitumor studies as an immunostimulant to treat the cancer patient. In this paper, we reviewed the molecular structure, antitumor immune activities, structure-activity relationship and clinical trials of soluble β-glucans in order to provide the overall scene of β-glucans as immunostimulant to fight the cancer.
Collapse
|
13
|
Lin TY, Lu MK, Tseng AJ, Chao CH. Effects of sterol-type elicitors on biochemical characterization of polysaccharides from Antrodia cinnamomea. Int J Biol Macromol 2020; 162:1476-1483. [DOI: 10.1016/j.ijbiomac.2020.07.201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/23/2022]
|
14
|
Qiu WL, Tseng AJ, Hsu HY, Hsu WH, Lin ZH, Hua WJ, Lin TY. Fucoidan increased the sensitivity to gefitinib in lung cancer cells correlates with reduction of TGFβ-mediated Slug expression. Int J Biol Macromol 2020; 153:796-805. [DOI: 10.1016/j.ijbiomac.2020.03.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022]
|
15
|
Long H, Hu CT, Weng CF. Antrodia Cinnamomea Prolongs Survival in a Patient with Small Cell Lung Cancer. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E640. [PMID: 31561410 PMCID: PMC6843373 DOI: 10.3390/medicina55100640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 12/14/2022]
Abstract
Introduction: Antrodia cinnamomea (AC) is an extremely rare medicinal fungus native to forested regions of Taiwan. It possesses numerous biological activities, especially anti-tumor effects shown in various in vitro cancer cells and in vivo animal models. However, there are few clinical reports about AC as a treatment for cancer patients. This report attempts to demonstrate the therapeutic effect of dish-cultured AC (DAC) on a small cell lung cancer (SCLC) patient taken orally for an extended duration. Patient concerns: An 88-year-old male with a history of diabetes mellitus and hypertension visited the outpatient department with the symptoms of dyspnea and a cough for two weeks. After a diagnosis of SCLC, the patient declined both chemotherapy and radiotherapy because of the side effects and only accepted supportive care without additional therapy. Diagnosis: Limited-stage SCLC (T4N2M1a, stage IV) after the chest radiograph, computed tomography-guided biopsy, and pathological diagnosis. Interventions: The patient was prescribed DAC with an increasing dosage, from 5 g/d up to 10 g/d DAC, for six months, without radiation or chemotherapy treatment. Outcomes: DAC caused the tumor to shrink substantially. Surprisingly, the patient survived for 32 months without relapse after six months of DAC treatment. Laboratory examinations indicated that the patient's health had improved significantly, reverting to near normal levels. Notably, he had a good quality of life with a high Barthel index score. Unfortunately, this patient died of septic shock caused by acute cholangitis. Conclusion: DAC may exert an anti-cancer effect, which can lead to tumor regression. This is supposed to be achieved by the combined DAC's immunomodulatory, anti-angiogenic, anti-metastatic, anti-proliferative, and pro-apoptotic effects mediated through multiple signaling pathways. We propose that DAC can be used as a complementary medicine to prolong the life expectancy and improve the life quality of SCLC patients.
Collapse
Affiliation(s)
- Huei Long
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan.
| | - Chi-Tan Hu
- Research Centre for Hepatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97002, Taiwan.
- School of Medicine, Tzu Chi University, Hualien 97002, Taiwan.
| | - Ching-Feng Weng
- Department of Basic Medical Science, Center for Transitional Medicine, Xiamen Medical College, Xiamen 361023, China.
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Department of Food Science, National Kinmen University, Kinmen 89250, Taiwan.
| |
Collapse
|
16
|
Wang C, Zhang W, Wong JH, Ng T, Ye X. Diversity of potentially exploitable pharmacological activities of the highly prized edible medicinal fungus Antrodia camphorata. Appl Microbiol Biotechnol 2019; 103:7843-7867. [PMID: 31407039 DOI: 10.1007/s00253-019-10016-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
Antrodia camphorata, also known as A. cinnamomea, is a precious medicinal basidiomycete fungus endemic to Taiwan. This article summarizes the recent advances in research on the multifarious pharmacological effects of A. camphorata. The mushroom exhibits anticancer activity toward a large variety of cancers including breast, cervical, ovarian, prostate, bladder, colorectal, pancreatic, liver, and lung cancers; melanoma; leukemia; lymphoma; neuroblastoma; and glioblastoma. Other activities encompass antiinflammatory, antiatopic dermatitis, anticachexia, immunoregulatory, antiobesity, antidiabetic, antihyperlipidemic, antiatherosclerotic, antihypertensive, antiplatelet, antioxidative, antiphotodamaging, hepatoprotective, renoprotective, neuroprotective, testis protecting, antiasthmatic, osteogenic, osteoprotective, antiviral, antibacterial, and wound healing activities. This review aims to provide a reference for further development and utilization of this highly prized mushroom.
Collapse
Affiliation(s)
- Caicheng Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Weiwei Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tzibun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiujuan Ye
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China. .,Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|