1
|
Ali AA, Abo Dena AS, Fahmy T, El-Sherbiny IM, Sarhan A. Fabrication and preliminary characterization of conductive nanofillers-enhanced polymeric hydrogels for cardiac patch applications. Int J Biol Macromol 2025; 305:141177. [PMID: 39971078 DOI: 10.1016/j.ijbiomac.2025.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/25/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The development of conducting polymeric nanocomposites patches for cardiac tissue engineering has opened new possibilities for restoring the health of infarcted heart tissues. Herein, we report the fabrication of biocompatible and relatively cost-effective poly(vinyl alcohol)/alginate-based hydrogels patches modified with different conducting nanofillers such as silver nanoparticles, polyaniline nanofibers, copper oxide nanoleaves, and graphene oxide nanosheets. The impact of the different nanofiller materials on the molecular structure, charge transport mechanism and mechanical characteristics of the designed nanocomposites patches was investigated. In addition, some significant parameters of the nanocomposites were characterized such as swelling ability, antioxidant activity as well as hemocompatibility. Infrared spectroscopy results demonstrated the occurrence of different interactions between the included nanofillers and the polymer matrix depending on the type of the nanofiller. Moreover, conductivity measurements revealed that only the polyaniline nanofibers-modified nanocomposites hydrogels showed the highest conductivity compared to other counterparts. Mechanical characterization, antioxidant activity, swelling and hemocompatibility proved the suitability of the developed polyaniline nanofibers-modified nanocomposites hydrogels as potential candidates for successful application in cardiac tissue engineering.
Collapse
Affiliation(s)
- Asmaa A Ali
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ahmed S Abo Dena
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt; Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Tarek Fahmy
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Laboratories, Center for Materials Science, Zewail City of Science and Technology, 6 October City, 12578, Giza, Egypt.
| | - Afaf Sarhan
- Polymer Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt.
| |
Collapse
|
2
|
Li H, Yang K, Yang Y, Ding L, Li X. Natural deep eutectic solvents (NADES) in drug delivery systems: Characteristics, applications, and future perspectives. Int J Pharm 2025; 675:125509. [PMID: 40158761 DOI: 10.1016/j.ijpharm.2025.125509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Deep eutectic solvents (DESs) are a class of low-melting mixtures formed by the hydrogen-bond interactions between hydrogen bond acceptors (HBAs) and hydrogen bond donors (HBDs) in specific molar ratios. Their unique physicochemical properties enable DESs to significantly enhance drug solubility and permeability, while also serving as carriers to facilitate efficient drug delivery. A subclass of DESs, natural deep eutectic solvents (NADESs), is found in the metabolites of natural organisms, such as plants. With low toxicity and biodegradability, NADESs possess distinct advantages for applications in the pharmaceutical field.The therapeutic efficacy of drugs is often limited by imprecise release mechanisms, leading to the metabolism or degradation of a portion of the drug before it reaches the target site, thereby reducing its effectiveness. Moreover, many drugs exhibit poor solubility and stability, resulting in low efficiency during absorption and metabolism, which further diminishing their therapeutic impact. NADESs, with their excellent tunability and biocompatibility, have demonstrated great potential in drug delivery systems.This paper first provides an overview of the fundamental characteristics of NADESs, followed by a detailed summary of recent advancements and applications of NADESs across various administration routes, including transdermal, mucosal, and inhalation drug delivery. Finally, the paper explores the prospects of NADESs in novel drug delivery systems and proposes strategies for optimizing their performance to promote clinical applications.
Collapse
Affiliation(s)
- Hui Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Kaining Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yumin Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Liqin Ding
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Xiaoxia Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
3
|
Dong Y, Jaleh B, Ashrafi G, Kashfi M, Rhee KY. Mechanical properties of the hybrids of natural (alginate, collagen, chitin, cellulose, gelatin, chitosan, silk, and keratin) and synthetic electrospun nanofibers: A review. Int J Biol Macromol 2025:143742. [PMID: 40316122 DOI: 10.1016/j.ijbiomac.2025.143742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 04/09/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Owing to their excellent properties, natural polymers such as collagen, gelatin (GT), chitosan (CS), silk, and keratin have broad application prospects in biomedical engineering; however, their practical application is often limited by their poor mechanical strength and difficult desorption. At the same time, synthetic polymers such as polylactic acid (PLA), poly-glycolic acid (PGA), poly(lactide-co-glycolide) (PLGA), and poly-caprolactone (PCL) show good mechanical strength and biodegradability, but their unpredictable biocompatibility, toxicity, and inflammatory responses make them unsuitable for specific applications. Thus, hybrid materials combining natural and synthetic polymers may simultaneously exhibit excellent mechanical and biological properties, representing an attractive area of biomaterial research. Recently, the fabrication of hybrid nanofibers through electrospinning has attracted considerable interest because of the simplicity, inexpensiveness, and high efficiency of this method. This review summarizes the preparation details and properties of recently developed electrospun hybrid nanofibers and addresses the improvement in mechanical properties brought by combining natural and synthetic polymers.
Collapse
Affiliation(s)
- Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Babak Jaleh
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran.
| | - Ghazaleh Ashrafi
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Kashfi
- Department of Mechanical Engineering, Faculty of Engineering, Ayatollah Boroujerdi University, Boroujerd, Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering, Kyung Hee University, 17104 Yongin, Republic of Korea.
| |
Collapse
|
4
|
Liang S, Zhang J, Huang S, Lan X, Wang W, Tang Y. Functionalized Gelatin Electrospun Nanofibrous Membranes in Food Packaging: Modification Strategies for Fulfilling Evolving Functional Requirements. Polymers (Basel) 2025; 17:1066. [PMID: 40284331 PMCID: PMC12030516 DOI: 10.3390/polym17081066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Gelatin, known for its excellent biocompatibility, strong aggregative properties, and low cost, has been extensively investigated as a promising material for food packaging. Among various fabrication methods, electrospinning stands out due to its simplicity, cost-effectiveness, high process controllability, and ability to produce nanofiber membranes with enhanced properties. This review provides a comprehensive overview of the sources, properties, and applications of gelatin, along with the fundamental principles of electrospinning and its applications in food packaging. Additionally, the common types of electrospinning techniques used in food packaging are also covered. In recent years, increasing research efforts have focused on gelatin-based electrospun nanofiber membranes for food packaging applications. The functionalization of electrospinning gelatin-based nanofiber membrane was realized by incorporating various active substances or combining it with other techniques, fulfilling the new requirements of food packaging. In this review, gelatin-based electrospun nanofiber membranes for food packaging applications are overviewed, with a particular emphasis on various types of modifications for the membranes aimed at meeting diverse application demands. Finally, the future perspectives and challenges in the research of gelatin-based electrospun nanofiber membranes for food packaging are discussed.
Collapse
Affiliation(s)
- Shiyi Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jian Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shunfen Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingzi Lan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
5
|
Coppola F, Abdalrazeq M, Fratianni F, Ombra MN, Testa B, Zengin G, Ayala Zavala JF, Nazzaro F. Rosaceae Honey: Antimicrobial Activity and Prebiotic Properties. Antibiotics (Basel) 2025; 14:298. [PMID: 40149108 PMCID: PMC11939206 DOI: 10.3390/antibiotics14030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Flowering members of the globally diffused Rosaceae family include popular plants, such as apple, almond, and cherry, which play a fundamental role as honeybee nectariferous and polleniferous agents. Through the production of honey, these plants can also play an indirect role in the prevention and treatment of many diseases, including infections, fighting the occurrence of resistant microorganisms, and concurrently stimulating the growth of beneficial bacteria. Objectives: This study focused on the effect of some Rosaceae plants' honey, including hawthorn, cherry, raspberry, almond, and apple, against the pathogens Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Listeria monocytogenes, Pseudomonas aeruginosa, and Staphylococcus aureus. Results: Results demonstrated the honey's ability to impair swimming motility. A crystal violet test indicated that honey could inhibit the formation and stabilization of biofilms, with inhibition rates up to 59.43% for immature biofilms (showed by apple honey against A. baumannii) and 39.95% for sessile bacterial cells in mature biofilms (when we used cherry honey against S. aureus). In the test with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, cherry and apple honey were the most effective in inhibiting sessile cell metabolism honey in both immature (56.47% cherry honey vs. K. pneumoniae) and mature biofilms (54.36% apple honey vs. A. baumannii). Honey stimulated the growth of Lactobacillus bulgaricus, Lacticaseibacillus casei Shirota, Lactobacillus gasseri, Lacticaseibacillus plantarum, and Lacticaseibacillus rhamnosus; hawthorn, raspberry, and almond honey significantly increased the in vitro adhesion capacity of L. bulgaricus and L. casei Shirota. Tests with probiotic supernatants demonstrated honey's ability to inhibit the biofilm formation and metabolism of the pathogens. Conclusions: Our results encourage further studies to assess the potential application of Rosaceae honey for food preservation and in the health field, as it could fight the antimicrobial resistance of food and clinical pathogens, and potentially enhance the host's gut wellness. The use of honey for nanotechnological and biotechnological approaches could be suggested too.
Collapse
Affiliation(s)
- Francesca Coppola
- Institute of Food Science, CNR, Via Roma 64, 83100 Avellino, Italy; (F.C.); (F.F.); (M.N.O.)
- Department of Food Science, University Federico II, Via Università 100, Portici, 80055 Naples, Italy
| | - Manar Abdalrazeq
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus 00970, Palestine;
- Q Center, Biomedical Department, Global University College of Science and Health (GUCSH), Rawabi, Palestine
| | - Florinda Fratianni
- Institute of Food Science, CNR, Via Roma 64, 83100 Avellino, Italy; (F.C.); (F.F.); (M.N.O.)
| | - Maria Neve Ombra
- Institute of Food Science, CNR, Via Roma 64, 83100 Avellino, Italy; (F.C.); (F.F.); (M.N.O.)
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, 42250 Konya, Turkey;
| | - Jesus Fernando Ayala Zavala
- Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Col. La Victoria, Hermosillo 83304, Sonora, Mexico;
| | - Filomena Nazzaro
- Institute of Food Science, CNR, Via Roma 64, 83100 Avellino, Italy; (F.C.); (F.F.); (M.N.O.)
| |
Collapse
|
6
|
Yu H, Chen D, Lu W, Zhang C, Wang H, Peng Z, Jiang H, Xiao C. Characterization of polyvinyl alcohol/chitosan nanofibers loaded with royal jelly by blending electrospinning for potential wound dressings. Int J Biol Macromol 2025; 307:141977. [PMID: 40086322 DOI: 10.1016/j.ijbiomac.2025.141977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study aimed to fabricate a polyvinyl alcohol/chitosan (PVA/CS) nanofiber loaded with royal jelly (RJ) using blending electrospinning for potential wound dressings. The different PVA/CS ratios in electrospun nanofibers resulted in continuous nanofibers with an average diameter ranging from 219 to 299 nm. The FTIR spectra indicated that RJ was successfully incorporated into the nanofibers through hydrogen bonding with PVA/CS, which was further confirmed by the subsequent TGA experiments. Meanwhile, the RJ/PVA/CS nanofibers exhibited excellent water vapor permeability and hydrophilic properties. The encapsulation efficiency of RJ reached the maximum value of 89.00 %, while the cumulative release rate was up to 84.87 %. Furthermore, the RJ/PVA/CS nanofibers could inhibit the growth of Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). The optimal PVA/CS ratio was determined to be 7:3, achieving inhibition rates of 97.83 % for S. aureus and 72.08 % for E. coli, demonstrating an excellent antibacterial performance. Therefore, this study successfully fabricated a wound dressing nanofiber with potential antibacterial efficacy.
Collapse
Affiliation(s)
- Hongying Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Di Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenjing Lu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cen Zhang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Wang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhengju Peng
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Han Jiang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Chaogeng Xiao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China; Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Mahmod Z, Zulkifli MF, Masimen MAA, Ismail WIW, Sharifudin MA, Amin KAM. Investigating the efficacy of gellan gum hydrogel films infused with Acacia stingless bee honey in wound healing. Int J Biol Macromol 2025; 296:139753. [PMID: 39800021 DOI: 10.1016/j.ijbiomac.2025.139753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/16/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Effective wound healing requires biocompatible and functional wound dressings. This study explores the synergistic potential of gellan gum (GG), known for its exceptional gel-forming abilities, and acacia stingless bee honey (SBH), for its potent antioxidant properties, in developing advanced wound care solutions. GG hydrogel films incorporated with varying concentrations of SBH (v/v) at 10 % (GGSBH10), 15 % (GGSBH15), and 20 % (GGSBH20) were characterized. The incorporation of SBH into the GG matrix resulted in distinctive spectral peaks of ATR-FTIR associated with SBH, particularly evident in GGSBH20. Among the formulations, GGSBH20 demonstrated an impressive water vapor transmission rate of 1149 ± 11 g m-2 d-1 and a swelling ratio of 169 ± 7 %. Disk diffusion revealed that E. coli was susceptible to GGSBH. Cytotoxicity assessments (MTT and scratch assays) on 3 T3-L1 cells confirmed the biocompatibility of GGSBH, which showed no cytotoxic effects up to 72 h of incubation, and improved cell viability. Notably, GGSBH20 displayed the highest wound closure rate, significantly enhancing cell migration and proliferation. Overall, our findings underscore the promising healing properties of GG hydrogel films when enriched with acacia SBH, highlighting their potential as effective and innovative wound dressing materials.
Collapse
Affiliation(s)
- Zaleha Mahmod
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia
| | - Muhammad Faiz Zulkifli
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mohammad Asyraf Adhwa Masimen
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Wan Iryani Wan Ismail
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mohd Ariff Sharifudin
- Department of Orthopaedics, Traumatology and Rehabilitation, Faculty of Medicine, Universiti Sultan Zainal Abidin, Jalan Sultan Mahmud, Kuala Terengganu, Terengganu, Malaysia
| | - Khairul Anuar Mat Amin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia.
| |
Collapse
|
8
|
Zhang X, Wang Y, Xing W, Li L, Wu H, Wang H, Wang Z, Huang L, Tang J. In situ growth of ZIF-8 nanoparticles on pure chitosan nanofibrous membranes for efficient antimicrobial wound dressings. Int J Biol Macromol 2025; 297:139921. [PMID: 39818379 DOI: 10.1016/j.ijbiomac.2025.139921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/18/2025]
Abstract
Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing. Thermogravimetric and differential scanning calorimetry confirmed the complete removal of PEO. Morphological characterization of the nanofibrous membrane (C) revealed the formation of uniform, bead-free fibers with an average diameter of approximately 148 nm. SEM confirmed the uniform and continuous modification of zeolite imidazolium salt framework-8 (ZIF-8) nanoparticles on the surface of the composite fibrous membrane (C/ZIF). The experimental results showed that the removal of PEO and the incorporation of ZIF-8 significantly improved the rapid liquid absorption of the composite fiber membrane. Rapid uptake of up to 9.2 g/g of liquid in media of the characteristic pH of wound exudates. The results of the MTT assays demonstrated that the C/ZIF composite fiber membrane possesses excellent biocompatibility. The composite fiber membrane released Zn2+ in a stable and continuous manner and exhibited strong antimicrobial activity against Escherichia coli and Staphylococcus aureus. This study presents a novel approach for controlling wound exudation and preventing wound infections.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Wei Xing
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Leixuan Li
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Huiyi Wu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hanwen Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zilong Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Liu Q, Luo S, Peng J, Chang R. Electrospun Nanofibers from Plant Natural Products: A New Approach Toward Efficient Wound Healing. Int J Nanomedicine 2024; 19:13973-13990. [PMID: 39742091 PMCID: PMC11687314 DOI: 10.2147/ijn.s501970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/23/2024] [Indexed: 01/03/2025] Open
Abstract
Globally, wound care has become a significant burden on public health, with annual medical costs reaching billions of dollars, particularly for the long-term treatment of chronic wounds. Traditional treatments, such as gauze and bandages, often fail to provide an ideal healing environment due to their lack of effective biological activity. Consequently, researchers have increasingly focused on developing new dressings. Among these, electrospinning technology has garnered considerable attention for its ability to produce nano-scale fine fibers. This new type of dressing, with its unique physical and chemical properties-especially in enhancing breathability, increasing specific surface area, optimising porosity, and improving flexibility-demonstrates significant advantages in promoting wound healing, reducing the risk of infection, and improving overall healing outcomes. Additionally, the application of natural products from plants in electrospinning technology further enhances the effectiveness of dressings. These natural products not only exhibit good biocompatibility but are also rich in pharmacologically active ingredients, such as antibacterial, anti-inflammatory, and antioxidant compounds. They can serve as both the substrate for nanofibers and as bioactive components, effectively promoting cell proliferation and tissue regeneration, thereby accelerating wound healing and reducing the risk of complications. This article reviews the application of plant natural product nanofibers prepared by electrospinning technology in wound healing, focussing on the development and optimisation of these nanofibers, discussing the advantages and challenges of using plant natural products in this technology, and outlining future research directions and application prospects in this field.
Collapse
Affiliation(s)
- Qin Liu
- School of Government, Yunnan University, Kunming, 650504, People’s Republic of China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Shicui Luo
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Junjie Peng
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, 650500, People’s Republic of China
| | - Renjie Chang
- Digestive Endoscopy Center, Department of Spleen and Gastroenterology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, People’s Republic of China
| |
Collapse
|
10
|
Khosravi N, Zarabi M, Dehghan MM, Farzad-Mohajeri S, Aminianfar H, Shafie M, Shadmehri N, Houshmand P, Samiei N, Moosavi-Movahedi AA, Habibi-Rezaei M. Bioinspired wound dressing: Investigating coelomic fluid-enhanced chitosan/polyvinyl alcohol nanofibers. Int J Pharm 2024; 666:124765. [PMID: 39341384 DOI: 10.1016/j.ijpharm.2024.124765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/03/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The electrospun mats consisting of integrated coelomic fluid (CF) and chitosan (Chs) into polyvinyl alcohol (PVA) nanofibers were produced and evaluated for use as wound dressings. CF was obtained from earthworms (Eisenia andrei (Fetida)) using an electric shock method, while Chs was chemically produced from shrimp chitin and then characterized using titration, Fourier transform infrared (FT-IR) spectroscopy, and viscometry. The wound dressings with different CF contents were evaluated for their antibacterial, antioxidant, and cell viability properties. The dressings infused with CF showed significantly higher antibacterial and antioxidant activity, as well as improved cell viability compared to the control without CF. In vivo studies using adult Wistar albino rats showed that the Chs/PVA/CF wound dressings promoted wound healing and re-epithelialization. Moreover, histological examinations of the injuries coated with Chs/PVA/CF displayed improved re-epithelialization. These results suggest that the Chs/PVA/CF nanofiber has the potential for use as a wound dressing material.
Collapse
Affiliation(s)
- Nargess Khosravi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran; School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mahdi Zarabi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Mohammad Mehdi Dehghan
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Farzad-Mohajeri
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Aminianfar
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Maryam Shafie
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nima Shadmehri
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pouya Houshmand
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Nazanin Samiei
- Department of Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Akbar Moosavi-Movahedi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
| | | |
Collapse
|
11
|
Bahadori Zade M, Abdollahi S, Raoufi Z, Zare Asl H. Synergistic antibacterial and wound healing effects of chitosan nanofibers with ZnO nanoparticles and dual antibiotics. Int J Pharm 2024; 666:124767. [PMID: 39332456 DOI: 10.1016/j.ijpharm.2024.124767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
One concern that has been considered potentially fatal is bacterial infection. In addition to the development of biocompatible antibacterial dressings, the screening and combination of new antibiotics effective against antibiotic resistance are crucial. In this study, designing hemostasis electrospun composite nanofibers containing chitosan (CS), polyvinyl pyrrolidone (PVP) and Gelatin (G) as the major components of hydrogel and natural nanofibrillated sodium alginate (SA)/polyvinyl alcohol (PVA) and ZnO nanoparticles (ZnONPs) combination as the nanofiller ingredient, has been investigated which demonstrated significant potential for accelerating wound healing. The hydrogels were developed for the delivery of the amikacin and cefepime antibiotics, along with zinc oxide nanoparticles that were applied to an electrospun layer. Amikacin is a highly effective aminoglycoside antibiotic, particularly for hospital-acquired infections, but its use is limited due to its toxicity. By utilizing it in low concentrations in the form of nanofibers and combining it with cefepime, which exhibits synergistic effects, enhanced efficacy against bacterial pathogens is achieved while potentially minimizing cytotoxicity compared to individual antibiotics. This dressing demonstrated efficient drug release, flexibility, and good swelling properties, indicating its suitable mechanical properties for therapeutic applications. After applying the biocompatible hydrogel to wounds, a significant acceleration in wound closure was observed within 14 days compared to the control group. Furthermore, the notable antibiotic and anti-inflammatory properties underscore its effectiveness in wound healing, making it a promising candidate for medical applications.
Collapse
Affiliation(s)
- Mona Bahadori Zade
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Sajad Abdollahi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Zeinab Raoufi
- Department of Biology, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Hassan Zare Asl
- Department of Physics, Faculty of Basic Science, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| |
Collapse
|
12
|
Zhou Z, Li C, Zeng Y, Huang T, Jiang X, Yu DG, Wang K. Natural polymer nanofiber dressings for effective management of chronic diabetic wounds: A comprehensive review. Int J Biol Macromol 2024; 282:136688. [PMID: 39447788 DOI: 10.1016/j.ijbiomac.2024.136688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Diabetic wounds present a chronic challenge in effective treatment. Natural polymer nanofiber dressings have emerged as a promising solution due to their impressive biocompatibility, biodegradability, safety, high specific surface area, and resemblance to the extracellular matrix. These qualities make them ideal materials with excellent biological properties and cost-effectiveness. Additionally, they can effectively deliver therapeutic agents, enabling diverse treatment effects. This review offers a comprehensive overview of natural polymer-based nanofibers in diabetic wound dressings. It examines the characteristics and challenges associated with diabetic wounds and the role of natural polymers in facilitating wound healing. The review highlights the preparation, mechanism, and applications of various functional dressings composed of natural polymer nanofibers. Furthermore, it addresses the main challenges and future directions in utilizing natural polymer nanofibers for diabetic wound treatment, providing valuable insights into effective wound management for diabetic patients.
Collapse
Affiliation(s)
- Zhengqing Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Chaofei Li
- Department of General Surgery, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yue Zeng
- Department of Neurology, RuiJin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tianyue Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xuewen Jiang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ke Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| |
Collapse
|
13
|
Dou Y, Chen C, Cui A, Ning X, Wang X, Li J. Ultrasonic spraying quercetin chitosan nonwovens with antibacterial and deodorizing properties for sanitary napkin. Int J Biol Macromol 2024; 280:135932. [PMID: 39313055 DOI: 10.1016/j.ijbiomac.2024.135932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
With economic and social development, there is a growing focus on menstrual hygiene, and traditional sanitary napkins are no longer sufficient to meet women's needs. In this study, quercetin (QC) was efficiently and uniformly ultrasonic sprayed on thermally bonded chitosan nonwovens (CS) to prepare a multifunctional surface layer of sanitary napkins (QCX@CS). CS sprayed with 3 layers of QC (QC3@CS) exhibits excellent mechanical properties and high antibacterial rates against Escherichia coli (99.51 %) and Staphylococcus aureus (99.87 %), respectively. Besides, QC3@CS demonstrates strong free radical scavenging abilities, which have great potential to reduce the effects of reactive oxygen species on immune and metabolic functions during menstruation. QC3@CS demonstrates strong deodorizing abilities, with rates of 87.22 % for acetic acid and 90.88 % for ammonia, which could effectively eliminate the unpleasant odor associated with menstruation. Moreover, QC3@CS ensures excellent water absorption, anti-return properties, and cytocompatibility. This study may provide valuable insights into developing functional sanitary napkin materials based on natural extracts.
Collapse
Affiliation(s)
- Yuejie Dou
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University, Qingdao 266071, China
| | - Chuyang Chen
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University, Qingdao 266071, China
| | - Aihua Cui
- Weifang Yingke Marine Biological Material Co., Ltd, Weifang 262600, China
| | - Xin Ning
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University, Qingdao 266071, China; Shandong Engineering Research Center for Specialty Nonwoven Materials, Qingdao 266071, China.
| | - Xueqin Wang
- Shandong Tricol Marine Biological Technology Co., Ltd, Weifang 262600, China
| | - Jiwei Li
- College of Textiles and Clothing, Industrial Research Institute of Nonwovens and Technical Textiles, Qingdao University, Qingdao 266071, China; Shandong Engineering Research Center for Specialty Nonwoven Materials, Qingdao 266071, China.
| |
Collapse
|
14
|
Wang J, You C, Xu Y, Xie T, Wang Y. Research Advances in Electrospun Nanofiber Membranes for Non-Invasive Medical Applications. MICROMACHINES 2024; 15:1226. [PMID: 39459100 PMCID: PMC11509555 DOI: 10.3390/mi15101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
Non-invasive medical nanofiber technology, characterized by its high specific surface area, biocompatibility, and porosity, holds significant potential in various medical domains, including tissue repair and biosensing. It is increasingly becoming central to healthcare by offering safer and more efficient treatment options for contemporary medicine. Numerous studies have explored non-invasive medical nanofibers in recent years, yet a comprehensive overview of the field remains lacking. In this paper, we provide a comprehensive summary of the applications of electrospun nanofibers in non-invasive medical fields, considering multiple aspects and perspectives. Initially, we introduce electrospinning nanofibers. Subsequently, we detail their applications in non-invasive health, including health monitoring, personal protection, thermal regulation, and wound care, highlighting their critical role in improving human health. Lastly, this paper discusses the current challenges associated with electrospun nanofibers and offers insights into potential future development trajectories.
Collapse
Affiliation(s)
- Junhua Wang
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
- Henan Intelligent Manufacturing Equipment Engineering Technology Research Center, Luoyang 471003, China
- Henan Engineering Laboratory of Intelligent Numerical Control Equipment, Luoyang 471003, China
| | - Chongyang You
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
| | - Yanwei Xu
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
- Henan Intelligent Manufacturing Equipment Engineering Technology Research Center, Luoyang 471003, China
- Henan Engineering Laboratory of Intelligent Numerical Control Equipment, Luoyang 471003, China
| | - Tancheng Xie
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
- Henan Intelligent Manufacturing Equipment Engineering Technology Research Center, Luoyang 471003, China
- Henan Engineering Laboratory of Intelligent Numerical Control Equipment, Luoyang 471003, China
| | - Yi Wang
- Department of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
15
|
de la Mora-López DS, Madera-Santana TJ, Olivera-Castillo L, Castillo-Ortega MM, López-Cervantes J, Sánchez-Machado DI, Ayala-Zavala JF, Soto-Valdez H. Production and performance evaluation of chitosan/collagen/honey nanofibrous membranes for wound dressing applications. Int J Biol Macromol 2024; 275:133809. [PMID: 38996893 DOI: 10.1016/j.ijbiomac.2024.133809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Persistent bacterial infections are the leading risk factor that complicates the healing of chronic wounds. In this work, we formulate mixtures of polyvinyl alcohol (P), chitosan (CH), collagen (C), and honey (H) to produce nanofibrous membranes with healing properties. The honey effect at concentrations of 0 % (PCH and PCHC), 5 % (PCHC-5H), 10 % (PCHC-10H), and 15 % (PCHC-15H) on the physicochemical, antibacterial, and biological properties of the developed nanofibers was investigated. Morphological analysis by SEM demonstrated that PCH and PCHC nanofibers had a uniform and homogeneous distribution on their surfaces. However, the increase in honey content increased the fiber diameter (118.11-420.10) and drastically reduced the porosity of the membranes (15.79-92.62 nm). The addition of honey reduces the water vapor transmission rate (WVTR) and the adsorption properties of the membranes. Mechanical tests revealed that nanofibers were more flexible and elastic when honey was added, specifically the PCHC-15H nanofibers with the lowest modulus of elasticity (15 MPa) and the highest elongation at break (220 %). Also, honey significantly improved the antibacterial efficiency of the nanofibers, mainly PCHC-15H nanofibers, which presented the best bacterial reduction rates against Staphylococcus aureus (59.84 %), Pseudomonas aeruginosa (47.27 %), Escherichia coli (65.07 %), and Listeria monocytogenes (49.58 %). In vitro tests with cell cultures suggest that nanofibers were not cytotoxic and exhibited excellent biocompatibility with human fibroblasts (HFb) and keratinocytes (HaCaT), since all treatments showed higher or similar cell viability as opposed to the cell control. Based on the findings, PVA-chitosan-collagen-honey nanofibrous membranes have promise as an antibacterial dressing substitute.
Collapse
Affiliation(s)
- David Servín de la Mora-López
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico
| | - Tomás J Madera-Santana
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico.
| | - Leticia Olivera-Castillo
- Laboratorio de Nutrición Acuícola, Departamento Recursos del Mar, Centro de Investigación y de Estudios Avanzados del IPN-Unidad Mérida, Carr. Ant. a Progreso Km. 6, 97310 Mérida, Yucatán, Mexico
| | - María M Castillo-Ortega
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, 83000 Hermosillo, Sonora, Mexico
| | - Jaime López-Cervantes
- Departamento de Biotecnología y Ciencia de los Alimentos, Instituto Tecnológico de Sonora, 85000 Cd. Obregón, Sonora, Mexico.
| | - Dalia I Sánchez-Machado
- Departamento de Biotecnología y Ciencia de los Alimentos, Instituto Tecnológico de Sonora, 85000 Cd. Obregón, Sonora, Mexico
| | - Jesús F Ayala-Zavala
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico
| | - Herlinda Soto-Valdez
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C., 83304 Hermosillo, Sonora, Mexico
| |
Collapse
|
16
|
Gandini M, Cerullo A, Giusto G. Pectin-honey hydrogel to prevent laparotomy surgical site infection in horses: A pilot study. J Equine Vet Sci 2024; 139:105128. [PMID: 38852926 DOI: 10.1016/j.jevs.2024.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
Surgical site infection (SSI) is a common complication after celiotomy in horses, leading to increased morbidity and costs. Increased concern about antibiotic resistance justifies evaluation of alternative preventive approaches, such a Manuka honey which has displayed antimicrobial properties. Pectin-Honey Hydrogels (PHH), composed by Manuka honey and pectin provide a moist wound environment and microbial growth inhibition. The aim of the study was to evaluate the effectiveness of PHHs in preventing SSI in horses subjected to emergency laparotomy. Horses undergoing laparotomy were evaluated. Horses were randomly divided into two groups: Group 1 received PHH application onto the sutured linea alba before skin closure, while Group 2 received no treatment. Horses with postoperative antimicrobial administration or survival of less than 5 days were excluded. The incidence of SSIs was reported as percentages and compared between groups. Out of 44 horses enrolled in the study, only thirty-six were ultimately included. Exclusions occurred either due to death before 5 days postoperatively (2 horses) or the administration of postoperative antimicrobials (6 horses). The median length of hospitalization was 9 days (range 8-14 days). The overall occurrence of SSI was 19.4 %. One out of eighteen horses (5.5 %) in Group 1 and 6 out of 18 (33.3 %) horses in Group 2 developed SSI. Group 2 had an 8.5-fold increased risk of SSI (p = 0.035, OR = 8.5, 95 % CI. 0.9-80.07). No macroscopically visible adverse reactions were associated with PHH. PHH placed at the abdominal incision during surgery was safe and reduced the prevalence of SSI in horses.
Collapse
Affiliation(s)
- Marco Gandini
- Veterinary Teaching Hospital, Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Italy
| | - Anna Cerullo
- Veterinary Teaching Hospital, Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Italy
| | - Gessica Giusto
- Veterinary Teaching Hospital, Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Italy.
| |
Collapse
|
17
|
Lai X, Huang J, Huang S, Wang J, Zheng Y, Luo Y, Tang L, Gao B, Tang Y. Antibacterial and Osteogenic Dual-Functional Micronano Composite Scaffold Fabricated via Melt Electrowriting and Solution Electrospinning for Bone Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37707-37721. [PMID: 39001812 DOI: 10.1021/acsami.4c07400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
The utilization of micronano composite scaffolds has been extensively demonstrated to confer the superior advantages in bone repair compared to single nano- or micron-sized scaffolds. Nevertheless, the enhancement of bioactivities within these composite scaffolds remains challenging. In this study, we propose a novel approach to combine melt electrowriting (MEW) and solution electrospinning (SES) techniques for the fabrication of a composite scaffold incorporating hydroxyapatite (HAP), an osteogenic component, and roxithromycin (ROX), an antibacterial active component. Scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR) confirmed the hierarchical architecture of the nanofiber-microgrid within the scaffold, as well as the successful loading of HAP and ROX. The incorporation of HAP enhanced the water absorption capacity of the composite scaffold, thus promoting cell adhesion and proliferation, as well as osteogenic differentiation. Furthermore, ROX resulted in effective antibacterial capability without any observable cytotoxicity. Finally, the scaffolds were applied to a rat calvarial defect model, and the results demonstrated that the 20% HAP group exhibited superior new bone formation without causing adverse reactions. Therefore, our findings present a promising strategy for designing and fabricating bioactive scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Xiangjie Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Shunfen Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Jiyuan Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongsheng Zheng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuli Luo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Linjun Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Li Q, Chen R, Cui T, Bai Y, Hu J, Yu J, Wang G, Chen S. Robust Gradient Hydrogel-Loaded Nanofiber Fleshy Artificial Skin Via A Coupled Microfluidic Electrospinning-Reactive Coating Strategy. Adv Healthc Mater 2024; 13:e2304321. [PMID: 38490740 DOI: 10.1002/adhm.202304321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/02/2024] [Indexed: 03/17/2024]
Abstract
Skin regeneration attracts tremendous interest due to the important role of skin for human protection and beauty. Thus, methods allowing artificial skin to be carried out in a controllable fashion are potentially important for wound healing, which involves an intersection of materials, medicine, biology, and other disciplines. Herein, aiming at a new general methodology for fleshy materials, a new hydrogel-loaded hydrophobic-hydrophilic nanofiber fleshy artificial skin is designed and fabricated. The gradient hydrogel-loaded nanofiber artificial skin integrates both advantages of nanofiber and hydrogel, exhibiting fleshy feature (comparability to real skin in terms of appearance, texture, and function), excellent air permeability, compatibility, and good mechanical and antibacterial property. Interestingly, the efficient transport channels are formed throughout the hydrogel-loaded nanofiber structure, which is beneficial for water absorption and transfer. These advantages enable the establishment of a moist and favorable microenvironment; thus, greatly accelerating wound healing process. This work couples microfluidic electrospinning with reactive coating technique, which is in favor of material design and fabrication with controllable and uniform structures. The hydrogel-loaded nanofiber fleshy artificial skin shows comparability to real skin in terms of beauty, texture, and function, which would definitely provide new opportunities for the further optimization and upgrading of artificial skin.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P.R. China
| | - Rong Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P.R. China
| | - Tingting Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P.R. China
| | - Yuting Bai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P.R. China
| | - Jie Hu
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Jiafei Yu
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Gefei Wang
- Department of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210002, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, Nanjing, 210009, P.R. China
| |
Collapse
|
19
|
Ghiorghita CA, Platon IV, Lazar MM, Dinu MV, Aprotosoaie AC. Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydr Polym 2024; 334:122033. [PMID: 38553232 DOI: 10.1016/j.carbpol.2024.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/02/2024]
Abstract
Over the years, polysaccharides such as chitosan, alginate, hyaluronic acid, k-carrageenan, xanthan gum, carboxymethyl cellulose, pectin, and starch, alone or in combination with proteins and/or synthetic polymers, have been used to engineer an extensive portfolio of hydrogels with remarkable features. The application of polysaccharide-based hydrogels has the potential to alleviate challenges related to bioavailability, solubility, stability, and targeted delivery of phytocompounds, contributing to the development of innovative and efficient drug delivery systems and functional food formulations. This review highlights the current knowledge acquired on the preparation, features and applications of polysaccharide/phytocompounds hydrogel-based hybrid systems in wound management, drug delivery, functional foods, and food industry. The structural, functional, and biological requirements of polysaccharides and phytocompounds on the overall performance of such hybrid systems, and their impact on the application domains are also discussed.
Collapse
Affiliation(s)
- Claudiu-Augustin Ghiorghita
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Ioana-Victoria Platon
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Maria Marinela Lazar
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania
| | - Maria Valentina Dinu
- Department of Functional Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487, Iasi, Romania.
| | - Ana Clara Aprotosoaie
- "Grigore T. Popa" University of Medicine and Pharmacy, Universitatii Street 16, Iasi 700115, Romania
| |
Collapse
|
20
|
Wang K, Chen E, Lin X, Tian X, Wang L, Huang K, Skirtach AG, Tan M, Su W. Core-shell nanofibers based on microalgae proteins/alginate complexes for enhancing survivability of probiotics. Int J Biol Macromol 2024; 271:132461. [PMID: 38777024 DOI: 10.1016/j.ijbiomac.2024.132461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
In this study, a novel one-step coaxial electrospinning process is employed to fabricate shell-core structure fibers choosing Chlorella pyrenoidosa proteins (CP) as the core material. These nanofibers, serving as the wall material for probiotic encapsulation, aimed to enhance the stability and antioxidant activity of probiotics in food processing, storage, and gastrointestinal environments under sensitive conditions. Morphological analysis was used to explore the beads-on-a-string morphology and core-shell structure of the electrospun fibers. Probiotics were successfully encapsulated within the fibers (7.97 log CFU/g), exhibiting a well-oriented structure along the distributed fibers. Compared to free probiotics and uniaxial fibers loaded with probiotics, encapsulation within microalgae proteins/alginate core-shell structure nanofibers significantly enhanced the probiotic cells' tolerance to simulated gastrointestinal conditions (p < 0.05). Thermal analysis indicated that microalgae proteins/alginate core-shell structure nanofibers displayed superior thermal stability compared to uniaxial fibers. The introduction of CP resulted in a 50 % increase in the antioxidant capacity of probiotics-loaded microalgae proteins/alginate nanofibers compared to uniaxial alginate nanofibers, with minimal loss of viability (0.8 log CFU/g) after 28 days of storage at 4 °C. In summary, this dual-layer carrier holds immense potential in probiotic encapsulation and enhancing their resistance to harsh conditions.
Collapse
Affiliation(s)
- Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Entao Chen
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xiangsong Lin
- School of Medical Imageology, Wannan Medical College, Wuhu 241002, China.
| | - Xueying Tian
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Li Wang
- Institutes of Biomedical Sciences and the Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Kexin Huang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
21
|
Madadian E, Naseri E, Legault R, Ahmadi A. Development of 3D-Printable Albumin-Alginate Foam for Wound Dressing Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e1175-e1185. [PMID: 39359603 PMCID: PMC11442183 DOI: 10.1089/3dp.2022.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
In this article, a method to develop 3D printable hybrid sodium alginate and albumin foam, crosslinked with calcium chloride mist is introduced. Using this method, highly porous structures are produced without the need of further postprocessing (such as freeze drying). The proposed method is particularly beneficial in the development of wound dressing as the printed foams show excellent lift-off and water absorption properties. Compared with methods that use liquid crosslinker, the use of mist prevents the leaching of biocompounds into the liquid crosslinker. 3D printing technique was chosen to provide more versatility over the wound dressing geometry. Calcium chloride and rhodamine B were used as the crosslinking material and the model drug, respectively. Various biomaterial inks were prepared by different concentrations of sodium alginate and albumin, and the fabricated scaffolds were crosslinked in mist, liquid, or kept without crosslinking. The effects of biomaterial composition and the crosslinking density on the wound dressing properties were assessed through printability studies. The mist-crosslinked biomaterial ink composed of 1% (w/v) sodium alginate and 12% (w/v) albumin showed the superior printability. The fabricated scaffolds were also characterized through porosity, mechanical, degradation, and drug release tests. The mist-crosslinked scaffolds showed superior mechanical properties and provided relatively prolonged drug release.
Collapse
Affiliation(s)
- Elias Madadian
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
- Department of Mechanical Engineering, École de technologie supérieure, Montreal, Canada
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Emad Naseri
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
| | - Ryan Legault
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
| | - Ali Ahmadi
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, Canada
- Department of Mechanical Engineering, École de technologie supérieure, Montreal, Canada
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| |
Collapse
|
22
|
Yuan J, Wang S, Yang J, Schneider KH, Xie M, Chen Y, Zheng Z, Wang X, Zhao Z, Yu J, Li G, Kaplan DL. Recent advances in harnessing biological macromolecules for wound management: A review. Int J Biol Macromol 2024; 266:130989. [PMID: 38508560 DOI: 10.1016/j.ijbiomac.2024.130989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Wound dressings (WDs) are an essential component of wound management and serve as an artificial barrier to isolate the injured site from the external environment, thereby helping to prevent exogenous infections and supporting healing. However, maintaining a moist wound environment, providing protection from infection, good biocompatibility, and allowing for gas exchange, remain a challenge in device design. Functional wound dressings (FWDs) prepared from hybrid biological macromolecule-based materials can enhance efficacy of these systems for skin wound management. This review aims to provide an overview of the state-of-the-art FWDs within the field of wound management, with a specific focus on hybrid biomaterials, techniques, and applications developed over the past five years. In addition, we highlight the incorporation of biological macromolecules in WDs, the emergence of smart WDs, and discuss the existing challenges and future prospects for the development of advanced WDs.
Collapse
Affiliation(s)
- Jingxuan Yuan
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Shuo Wang
- School of Physical Education, Orthopaedic Institute, Soochow University, 50 Donghuan Rd, Suzhou 215006, Jiangsu, P.R. China
| | - Jie Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Karl H Schneider
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, 23 Spitalgasse, Austria
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, P.R. China
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Zhaozhu Zheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Xiaoqin Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yukchoi Rd, Hung Hom, Kowloon, Hong Kong.
| | - Jia Yu
- School of Physical Education, Orthopaedic Institute, Soochow University, 50 Donghuan Rd, Suzhou 215006, Jiangsu, P.R. China.
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Renai Rd, Suzhou 215123, P.R. China.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| |
Collapse
|
23
|
Chen Y, Shi J, Qiu H, You L, Xu P, Rao R, Wu M, Jia R. Characterization of Three Polysaccharide-Based Hydrogels Derived from Laminaria japonica and Their Hemostatic Properties. Mar Drugs 2024; 22:188. [PMID: 38667805 PMCID: PMC11051284 DOI: 10.3390/md22040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Three Laminaria japonica polysaccharides (LJPs) extracted via water extraction (LJP-W), acid extraction (LJP-A), and enzymatic extraction (LJP-E) were used as raw materials to be cross-linked with chitosan and polyvinyl alcohol to prepare hydrogels. Compared with conventional hydrogel systems, all three types of LJP-based polysaccharide hydrogels exhibited better swelling properties (14 times their original weight) and the absorption ability of simulated body fluid (first 2 h: 6-10%). They also demonstrated better rigidity and mechanical strength. Young's modulus of LJP-E was 4 times that of the blank. In terms of hemostatic properties, all three polysaccharide hydrogels did not show significant cytotoxic and hemolytic properties. The enzyme- and acid-extracted hydrogels (LJP-Gel-A and LJP-Gel-E) demonstrated better whole-blood coagulant ability compared with the water-extracted hydrogel (LJP-Gel-W), as evidenced by the whole blood coagulation index being half that of LJP-Gel-W. Additionally, the lactate dehydrogenase viabilities of LJP-Gel-A and LJP-Gel-E were significantly higher, at about four and three times those of water extraction, respectively. The above results suggested that LJP-Gel-A and LJP-Gel-E exhibited better blood coagulation capabilities than LJP-Gel-W, due to their enhanced platelet enrichment and adhesion properties. Consequently, these hydrogels are more conducive to promoting coagulation and have good potential for wound hemostasis.
Collapse
Affiliation(s)
| | | | | | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | | | | | | | | |
Collapse
|
24
|
Sankar S, Kodiveri Muthukaliannan G. Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: Phytocompounds loaded bionanomaterials as therapeutics. Saudi J Biol Sci 2024; 31:103963. [PMID: 38425782 PMCID: PMC10904202 DOI: 10.1016/j.sjbs.2024.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
In terms of the economics and public health, chronic wounds exert a significant detrimental impact on the health care system. Bacterial infections, which cause the formation of highly resistant biofilms that elude standard antibiotics, are the main cause of chronic, non-healing wounds. Numerous studies have shown that phytochemicals are effective in treating a variety of diseases, and traditional medicinal plants often include important chemical groups such alkaloids, phenolics, tannins, terpenes, steroids, flavonoids, glycosides, and fatty acids. These substances are essential for scavenging free radicals which helps in reducing inflammation, fending off infections, and hastening the healing of wounds. Bacterial species can survive in chronic wound conditions because biofilms employ quorum sensing as a communication technique which regulates the expression of virulence components. Fortunately, several phytochemicals have anti-QS characteristics that efficiently block QS pathways, prevent drug-resistant strains, and reduce biofilm development in chronic wounds. This review emphasizes the potential of phytocompounds as crucial agents for alleviating bacterial infections and promoting wound healing by reducing the inflammation in chronic wounds, exhibiting potential avenues for future therapeutic approaches to mitigate the healthcare burden provided by these challenging conditions.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
25
|
Sadeghi-Aghbash M, Rahimnejad M, Adeli H, Feizi F. Catecholamines polymerization crosslinking for alginate-based burn wound dressings developed with ciprofloxacin and zinc oxide interactions. Int J Biol Macromol 2024; 260:129400. [PMID: 38224799 DOI: 10.1016/j.ijbiomac.2024.129400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
There is an increasing demand for stable and durable wound dressings to treat burn injuries and infections. Bioactive electrospun nanofibrous mats with antibacterial properties are promising for wound dressing usage. Electrospinning of biopolymers for wound dressing applications needs post-spinning crosslinking to prevent mat dissolution in moist wound environments. Here, we prepared durable wound dressing by using the Dopamine (DA) polymerization crosslinking in Alginate (ALG)/Polyvinyl alcohol (PVA) nanofibrous mats, which are developed by Ciprofloxacin (CIP) and Zinc oxide (ZO). The nanofibrous mats were investigated by FESEM, FTIR, mechanical strength, water contact angle, degradation, degree of swelling, and WVTR tests. The analyses demonstrate the nanofibrous mats with uniform and unbranched fibers, with a hydrophilic nature, which was porous, durable, and stable. Also, it showed the CIP and ZO addition enhanced their durability by crosslinking reinforcement. In addition, the drug release and antibacterial assays demonstrated the pH-sensitive release with more drug release at higher pH (bacterial invasion) and impressive antibacterial activity (up to 99 %). In the burn wound model in rats, the ALG/PVA/DA/CIP/ZO nanofibrous mats displayed excellent wound healing ability in wound closure and tissue regeneration. Also, complete re-epithelization and remodeling and highest collagen synthesis in histological assessment.
Collapse
Affiliation(s)
- Mona Sadeghi-Aghbash
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran
| | - Mostafa Rahimnejad
- Biofuel and Renewable Energy Research Center, Chemical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran.
| | - Hassan Adeli
- Department of Chemical Engineering, Faculty of Engineering and Technology, University of Mazandaran, Babolsar, Iran.
| | - Farideh Feizi
- Department of Anatomical Sciences, School of Medicine, Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Mazandaran, Iran
| |
Collapse
|
26
|
Salehi N, Ghaee A, Moris H, Derhambakhsh S, Sharifloo MM, Safshekan F. Electrospun zein nanofibers loaded with curcumin as a wound dressing: enhancing properties with PSS and PDADMAC layers. Biomed Mater 2024; 19:025044. [PMID: 38364281 DOI: 10.1088/1748-605x/ad2a39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/16/2024] [Indexed: 02/18/2024]
Abstract
Development of wound dressings with enhanced therapeutic properties is of great interest in the modern healthcare. In this study, a zein-based nanofibrous wound dressing containing curcumin as a therapeutic agent was fabricated through electrospinning technique. In order to achieve desirable properties, such as antibacterial characteristics, reduced contact angle, and enhanced mechanical properties, the layer-by-layer technique was used for coating the surfaces of drug-loaded nanofibers by sequentially incorporating poly (sodium 4-styrene sulfonate) as a polyanion and poly (diallyldimethylammonium chloride) (PDADMAC) as a polycation. Various analyses, including scanning electron microscopy, Fourier transform infrared spectroscopy, drug release assessment., and mechanical tests were employed to assess the characteristics of the prepared wound dressings. Based on the results, coating with polyelectrolytes enhanced the Young's modulus and tensile strength of the electrospun mat from 1.34 MPa and 4.21 MPa to 1.88 MPa and 8.83 MPa, respectively. The coating also improved the controlled release of curcumin and antioxidant activity, while the outer layer, PDADMAC, exhibited antibacterial properties. The cell viability tests proved the appropriate biocompatibility of the prepared wound dressings. Moreover, our findings show that incorporation of the coating layers enhances cell migration and provides a favorable surface for cell attachment. According to the findings of this study, the fabricated nanofibrous wound dressing can be considered a promising and effective therapeutic intervention for wound management, facilitating the healing process.
Collapse
Affiliation(s)
- Nasrin Salehi
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Azadeh Ghaee
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hanieh Moris
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
- Department of Food Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Sara Derhambakhsh
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mehdi Mansour Sharifloo
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Farzaneh Safshekan
- Department of Mechanical Engineering, Ahrar Institute of Technology and Higher Education, Rasht, Iran
| |
Collapse
|
27
|
Yang B, Tang B, Wang Z, Feng F, Wang G, Zhao Z, Xue Z, Li J, Chen W. Solution blow spun bilayer chitosan/polylactic acid nanofibrous patch with antibacterial and anti-inflammatory properties for accelerating acne healing. Carbohydr Polym 2024; 326:121618. [PMID: 38142098 DOI: 10.1016/j.carbpol.2023.121618] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/25/2023]
Abstract
The quercetin (QC) loaded chitosan (CS) nanofibrous patch (CSQC) was designed and fabricated successfully by solution blow spinning (SBS). And it was employed to explore a functional double-layer nanofibrous patch (CSQC/PLA) with polylactic acid (PLA) for overcoming the resistance of acne-causing bacteria to antibiotics and local cutaneous irritation. The nanofibrous patch possessed a fluffy bilayer structure with good air permeability, which may be befitted from the SBS method. The 10 % QC loaded CSQC0.10/PLA had sustained release ability of QC for 24 h. A high free radical clearance rate (91.18 ± 2.26 %) and robust antibacterial activity against P. acnes (94.4 %) were achieved for CSQC0.10/PLA with excellent biocompatibility. Meanwhile, E. coli and S. aureus were also suppressed with 99.4 % and 99.2 %, respectively. Moreover, the expression of pro-inflammatory cytokines (IL-6 and TNF-α) was significantly reduced, conducive to acne healing. Therefore, the CSQC0.10/PLA bilayer nanofibrous patch designed here may shed some light on developing multifunctional materials for treating acne infectious wounds.
Collapse
Affiliation(s)
- Bingjie Yang
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Bangli Tang
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621000, China
| | - Zunyuan Wang
- Qingdao Xinwei Textile Development Co., Ltd, Qingdao 266071, China
| | - Fan Feng
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Guoxin Wang
- Qingdao Xinwei Textile Development Co., Ltd, Qingdao 266071, China
| | - Zhihui Zhao
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Zheng Xue
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China
| | - Jiwei Li
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China.
| | - Weichao Chen
- Laboratory for Manufacturing Low Carbon and Functionalized Textiles in the Universities of Shandong Province, College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
28
|
Latiyan S, Kumar TSS, Doble M. Functionally multifaceted alginate/curdlan/agarose-based bilayer fibro-porous dressings for addressing full-thickness diabetic wounds. BIOMATERIALS ADVANCES 2024; 157:213757. [PMID: 38198999 DOI: 10.1016/j.bioadv.2023.213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Full-thickness diabetic wounds are chronic injuries characterized by bleeding, excessive exude, and prolonged inflammation. Single-layer dressings fail to address their disturbed pathophysiology. Therefore, bilayer dressings with structural and compositional differences in each layer have gained attention. We hypothesized that natural polymer (alginate, curdlan, and agarose) based bilayer dressings with inherent healing properties could effectively resolve these issues. Hence, bilayer dressings were fabricated by electrospinning curdlan/agarose/ polyvinyl alcohol blend (top layer) on an alginate/agarose/polyvinyl alcohol-based lyophilized porous (bottom) layer. Ciprofloxacin was incorporated in both layers as a potential antibacterial drug. The bilayer dressing exhibited high swelling (~1300 %), biocompatibility (>90 % with NIH 3T3 and L929 mouse fibroblasts), and hemocompatibility (hemolysis <5 %). In vitro, scratch assay revealed a faster wound closure (~ 95-100 %) than control. Inhibition zone assay revealed antibacterial activity against Staphylococcus aureus and Escherichia coli. Real-time (in vitro) gene expression experiments performed using human THP-1 macrophages exhibited a significant increase in anti-inflammatory cytokines (4.51 fold in IL-10) and a decrease in pro-inflammatory cytokines (1.42 fold in IL-6) in comparison to lipopolysaccharide. Thus, fabricated dressings with high swelling, hemostatic, immunomodulatory, and antibacterial characteristics can serve as potential multifunctional and sustainable templates for healing full-thickness diabetic wounds.
Collapse
Affiliation(s)
- Sachin Latiyan
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India; Department of Cariology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
29
|
Sun X, Yang Y, Yu J, Wei Q, Ren X. Chitosan-based supramolecular aerogel with "skeletal structure" constructed in natural deep eutectic solvents for medical dressings. Int J Biol Macromol 2024; 254:127720. [PMID: 37913882 DOI: 10.1016/j.ijbiomac.2023.127720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Bacterial infection of wounds remains one of the major clinical challenges, calling for the urgent development of novel multifunctional biological dressings. In this study, we developed a chitosan-based supramolecular aerogel NADES/PVA/CS, constructed by hydrogen bonding between chitosan, a natural deep eutectic solvents and polyvinyl alcohol, as a novel wound dressing against bacterial infections. The effect of polyvinyl alcohol content and its incorporation within chitosan-based supramolecular aerogels were investigated. The results of antibacterial test and MTT assay showed that it has obvious inhibitory effect on Staphylococcus aureus and Escherichia coli, showing excellent biocompatibility and effectively promotes wound healing. The microstructure of chitosan-based supramolecular aerogel showed that by adjusting the addition amount of polyvinyl alcohol, it could exhibit a perfect skeleton-type 3D network structure, which also made it possess smaller density and larger porosity and exhibit excellent water absorption property, contributing to the wetting of wound surface. More importantly, chitosan-based supramolecular aerogel is an environment-friendly biomaterial, which has been verified by degradability experiment. In a word, these unique advantages provide a broad prospect for the medical application of chitosan-based supramolecular aerogel NADES/PVA/CS, and provide a new strategy for the construction of green polysaccharide medical materials.
Collapse
Affiliation(s)
- Xiangyu Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, China
| | - Yan Yang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, China
| | - Jiaming Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, China
| | - Qifeng Wei
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, China.
| | - Xiulian Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, China.
| |
Collapse
|
30
|
Hasnain M, Kanwal T, Rehman K, Rehman SRU, Aslam S, Roome T, Perveen S, Zaidi MB, Saifullah S, Yasmeen S, Hasan A, Shah MR. Microarray needles comprised of arginine-modified chitosan/PVA hydrogel for enhanced antibacterial and wound healing potential of curcumin. Int J Biol Macromol 2023; 253:126697. [PMID: 37673138 DOI: 10.1016/j.ijbiomac.2023.126697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Wound healing is a multifaceted and complex process that includes inflammation, hemostasis, remodeling, and granulation. Failures in any link may cause the healing process to be delayed. As a result, wound healing has always been a main research focus across the entire medical field, posing significant challenges and financial burdens. Hence, the current investigation focused on the design and development of arginine-modified chitosan/PVA hydrogel-based microneedles (MNs) as a curcumin (CUR) delivery system for improved wound healing and antibacterial activity. The substrate possesses exceptional swelling capabilities that allow tissue fluid from the wound to be absorbed, speeding up wound closure. The antibacterial activity of MNs was investigated against S. aureus and E. coli. The results revealed that the developed CUR-loaded MNs had increased antioxidant activity and sustained drug release behavior. Furthermore, after being loaded in the developed MNs, it revealed improved antibacterial activity of CUR. Wound healing potential was assessed by histopathological analysis and wound closure%. The observed results suggest that the CUR-loaded MNs greatly improved wound healing potential via tissue regeneration and collagen deposition, demonstrating the potential of developed MNs patches to be used as an effective carrier for wound healing in healthcare settings.
Collapse
Affiliation(s)
- Muhammad Hasnain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Tasmina Kanwal
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khadija Rehman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Syed Raza Ur Rehman
- Mechanical and Industrial Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center, Qatar University, 2713, Doha, Qatar.
| | - Shazmeen Aslam
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Talat Roome
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan; Molecular Pathology Section, Department of Pathology, Dow Diagnostic Reference and Research Laboratory, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Samina Perveen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, PR China
| | - Midhat Batool Zaidi
- Dow Institute for Advanced Biological and Animal Research, Dow International Medical College, Dow University of Health Sciences, Karachi 74200, Pakistan.
| | - Salim Saifullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Pakistan Forest Institute Peshawar, Pakistan
| | - Saira Yasmeen
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Anwarul Hasan
- Mechanical and Industrial Engineering, Qatar University, 2713, Doha, Qatar; Biomedical Research Center, Qatar University, 2713, Doha, Qatar
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
31
|
Mutlu B, Çiftçi F, Üstündağ CB, Çakır-Koç R. Lavandula stoechas extract incorporated polylactic acid nanofibrous mats as an antibacterial and cytocompatible wound dressing. Int J Biol Macromol 2023; 253:126932. [PMID: 37729996 DOI: 10.1016/j.ijbiomac.2023.126932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
In recent years, great efforts have been devoted to the design and production of bioactive wound dressings that promote skin regeneration and prevent infection. Many plant extracts and essential oils have been widely accepted in traditional medicine for a wide variety of medicinal purposes, especially wound healing. Over the past decade, many studies have focused on manufacturing and designing wound dressings containing plant compounds and extracts. In this study, Lavandula stoechas extract (LSE) (0.25 %, 0.5 %, and 1%wt) incorporated-polylactic acid (PLA) nanofibrous mats were successfully produced and characterized. Microstructural analysis by SEM revealed that the fiber diameter changed with the increase in the amount of LSE. Also, the nanofibrous mats were evaluated for their in vitro antibacterial, cytotoxicity, and wound healing properties for their use as a wound dressing material. According to the results of the disc diffusion test, PLA nanofibrous mats containing LSE %1 showed 9.65 ± 0.46 and 7.37 ± 0.03 inhibition zone (mm) against E. coli and S. aureus, respectively. According to the results of the in vitro wound healing assay, mats containing 0.5 % LSE showed better-wound closure activity compared to the control. Our results show that LSE-incorporated nanofibrous dressings can be an effective alternative with good antimicrobial activity.
Collapse
Affiliation(s)
- Betül Mutlu
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, İstanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkiye.
| | - Fatih Çiftçi
- Department of Biomedical Engineering, Fatih Sultan Mehmet Vakif University, Istanbul, Turkey
| | - Cem Bülent Üstündağ
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, İstanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkiye
| | - Rabia Çakır-Koç
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, 34220 Esenler, İstanbul, Turkey; Turkish Biotechnology Institute, Health Institutes of Turkey (TUSEB), İstanbul, Turkey; Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, Turkiye
| |
Collapse
|
32
|
Abdelhakeem E, Monir S, Teaima MHM, Rashwan KO, El-Nabarawi M. State-of-the-Art Review of Advanced Electrospun Nanofiber Composites for Enhanced Wound Healing. AAPS PharmSciTech 2023; 24:246. [PMID: 38030812 DOI: 10.1208/s12249-023-02702-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023] Open
Abstract
Wound healing is a complex biological process with four main phases: hemostasis, inflammation, proliferation, and remodeling. Current treatments such as cotton and gauze may delay the wound healing process which gives a demand for more innovative treatments. Nanofibers are nanoparticles that resemble the extracellular matrix of the skin and have a large specific surface area, high porosity, good mechanical properties, controllable morphology, and size. Nanofibers are generated by electrospinning method that utilizes high electric force. Electrospinning device composed of high voltage power source, syringe that contains polymer solution, needle, and collector to collect nanofibers. Many polymers can be used in nanofiber that can be from natural or from synthetic origin. As such, electrospun nanofibers are potential scaffolds for wound healing applications. This review discusses the advanced electrospun nanofiber morphologies used in wound healing that is prepared by modified electrospinning techniques.
Collapse
Affiliation(s)
- Eman Abdelhakeem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt.
| | - Sawsan Monir
- Production Sector, Semisolid Department, Nile Company for Pharmaceuticals and Chemical Industries, Cairo, Egypt
| | - Mahmoud H M Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| | - Kareem Omar Rashwan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza, Egypt
| | - Mohamed El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo, 11562, Egypt
| |
Collapse
|
33
|
Dou J, Ilina P, Cruz CD, Nurmi D, Vidarte PZ, Rissanen M, Tammela P, Vuorinen T. Willow Bark-Derived Material with Antibacterial and Antibiofilm Properties for Potential Wound Dressing Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16554-16567. [PMID: 37104679 PMCID: PMC10636761 DOI: 10.1021/acs.jafc.3c00849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023]
Abstract
Tree stems contain wood in addition to 10-20% bark, which remains one of the largest underutilized biomasses on earth. Unique macromolecules (like lignin, suberin, pectin, and tannin), extractives, and sclerenchyma fibers form the main part of the bark. Here, we perform detailed investigation of antibacterial and antibiofilm properties of bark-derived fiber bundles and discuss their potential application as wound dressing for treatment of infected chronic wounds. We show that the yarns containing at least 50% of willow bark fiber bundles significantly inhibit biofilm formation by wound-isolated Staphylococcus aureus strains. We then correlate antibacterial effects of the material to its chemical composition. Lignin plays the major role in antibacterial activity against planktonic bacteria [i.e., minimum inhibitory concentration (MIC) 1.25 mg/mL]. Acetone extract (unsaturated fatty acid-enriched) and tannin-like (dicarboxylic acid-enriched) substances inhibit both bacterial planktonic growth [MIC 1 and 3 mg/mL, respectively] and biofilm formation. The yarn lost its antibacterial activity once its surface lignin reached 20.1%, based on X-ray photoelectron spectroscopy. The proportion of fiber bundles at the fabricated yarn correlates positively with its surface lignin. Overall, this study paves the way to the use of bark-derived fiber bundles as a natural-based material for active (antibacterial and antibiofilm) wound dressings, upgrading this underappreciated bark residue from an energy source into high-value pharmaceutical use.
Collapse
Affiliation(s)
- Jinze Dou
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Polina Ilina
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Cristina D. Cruz
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Denise Nurmi
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Paula Zegarra Vidarte
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Marja Rissanen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| | - Päivi Tammela
- Drug
Research Program, Division of Pharmaceutical Biosciences, Faculty
of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Tapani Vuorinen
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
34
|
Liu Y, Huang S, Liang S, Lin P, Lai X, Lan X, Wang H, Tang Y, Gao B. Phase Change Material-Embedded Multifunctional Janus Nanofiber Dressing with Directional Moisture Transport, Controlled Release of Anti-Inflammatory Drugs, and Synergistic Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37909419 DOI: 10.1021/acsami.3c11903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Wound healing is a systematic and complex process that involves various intrinsic and extrinsic factors affecting different stages of wound repair. Therefore, multifunctional wound dressings that can modulate these factors to promote wound healing are in high demand. In this work, a multifunctional Janus electrospinning nanofiber dressing with antibacterial and anti-inflammatory properties, controlled release of drugs, and unidirectional water transport was prepared by depositing coaxial nanofibers on a hydrophilic poly(ε-caprolactone)@polydopamine-ε-polyl-lysine (PCL@PDA-ε-PL) nanofiber membrane. The coaxial nanofiber was loaded with the phase change material lauric acid (LA) in the shell layer and anti-inflammatory ibuprofen (IBU) in the core layer. Among them, LA with a melting point of 43 °C served as a phase change material to control the release of IBU. The phase transition of LA was induced by near-infrared (NIR) irradiation that triggered the photothermal properties of PDA. Moreover, the Janus nanofiber dressing exhibited synergistic antimicrobial properties for Escherichia coli and Staphylococcus aureus due to the photothermal properties of PDA and antibacterial ε-PL. The prepared Janus nanofiber dressing also exhibited anti-inflammatory activity and biocompatibility. In addition, the Janus nanofiber dressing had asymmetric wettability that enabled directional water transport, thereby draining excessive wound exudate. The water vapor transmission test indicated that the Janus nanofiber dressing had good air permeability. Finally, skin wound healing evaluation in rats confirmed its efficacy in promoting wound healing. Therefore, this strategy of designing and manufacturing a multifunctional Janus nanofiber dressing had great potential in wound healing applications.
Collapse
Affiliation(s)
- Yurong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shunfen Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Shiyi Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiangjie Lai
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xingzi Lan
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment; School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Han Wang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment; School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| |
Collapse
|
35
|
Pepi S, Paolino M, Saletti M, Venditti J, Talarico L, Andreassi M, Giuliani G, Caselli G, Artusi R, Cappelli A, Leone G, Magnani A, Rovati L. Ferulated Poly(vinyl alcohol) based hydrogels. Heliyon 2023; 9:e22330. [PMID: 38045211 PMCID: PMC10692910 DOI: 10.1016/j.heliyon.2023.e22330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
New graft copolymers were prepared by reaction of poly (vinyl alcohol) (PVA) with mono-imidazolide or bis-imidazolide derivatives of ferulic acid (FA) with the formation of ester bonds. The obtained graft copolymers, thanks to the crosslinking capability of FA, formed in water strong gels as verified by rheological analyses. The resulting hydrogels were characterized to evaluate their applicability as wound dressing. In this perspective, their capability to absorb and retain a large amount of fluid without dissolving was verified by swelling kinetics and Moisture Vapour Transmission Rate measurements. Their stability towards mechanical solicitations was assessed by quantifying elasticity, compliance, stress-relaxation, and adhesivity properties. The analyses pointed out that hydrogel PVA-FA2-3 obtained by feruloylation of PVA with bis-imidazole derivative of ferulic acid using an acylation agent/polymer molar ratio 0.03/1 resulted the best candidate for the foreseen application.
Collapse
Affiliation(s)
- Simone Pepi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Marco Paolino
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Mario Saletti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Jacopo Venditti
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Luigi Talarico
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Marco Andreassi
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | | | - Roberto Artusi
- Rottapharm Biotech, Via Valosa di Sopra 7, 20052, Monza, Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
| | - Gemma Leone
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | - Agnese Magnani
- Dipartimento di Biotecnologie, Chimica e Farmacia (Dipartimento di Eccellenza 2018-2022), Università Degli Studi di Siena, Via A. Moro 2, 53100, Siena, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via G. Giusti 9, 50121, Firenze, Italy
| | - Lucio Rovati
- Rottapharm Biotech, Via Valosa di Sopra 7, 20052, Monza, Italy
| |
Collapse
|
36
|
Fahma F, Firmanda A, Cabral J, Pletzer D, Fisher J, Mahadik B, Arnata IW, Sartika D, Wulandari A. Three-Dimensional Printed Cellulose for Wound Dressing Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1015-1035. [PMID: 37886399 PMCID: PMC10599445 DOI: 10.1089/3dp.2021.0327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Wounds are skin tissue damage due to trauma. Many factors inhibit the wound healing phase (hemostasis, inflammation, proliferation, and alteration), such as oxygenation, contamination/infection, age, effects of injury, sex hormones, stress, diabetes, obesity, drugs, alcoholism, smoking, nutrition, hemostasis, debridement, and closing time. Cellulose is the most abundant biopolymer in nature which is promising as the main matrix of wound dressings because of its good structure and mechanical stability, moisturizes the area around the wound, absorbs excess exudate, can form elastic gels with the characteristics of bio-responsiveness, biocompatibility, low toxicity, biodegradability, and structural similarity with the extracellular matrix (ECM). The addition of active ingredients as a model drug helps accelerate wound healing through antimicrobial and antioxidant mechanisms. Three-dimensional (3D) bioprinting technology can print cellulose as a bioink to produce wound dressings with complex structures mimicking ECM. The 3D printed cellulose-based wound dressings are a promising application in modern wound care. This article reviews the use of 3D printed cellulose as an ideal wound dressing and their properties, including mechanical properties, permeability aspect, absorption ability, ability to retain and provide moisture, biodegradation, antimicrobial property, and biocompatibility. The applications of 3D printed cellulose in the management of chronic wounds, burns, and painful wounds are also discussed.
Collapse
Affiliation(s)
- Farah Fahma
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Jaydee Cabral
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - John Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, Indonesia
| | - Anting Wulandari
- Department of Agroindustrial Technology, Faculty of Agroindustrial Technology, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
37
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
38
|
Kumar M, Keshwania P, Chopra S, Mahmood S, Bhatia A. Therapeutic Potential of Nanocarrier-Mediated Delivery of Phytoconstituents for Wound Healing: Their Current Status and Future Perspective. AAPS PharmSciTech 2023; 24:155. [PMID: 37468691 DOI: 10.1208/s12249-023-02616-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023] Open
Abstract
The treatment of wounds is a serious problem all over the world and imposes a huge financial burden on each and every nation. For a long time, researchers have explored wound dressing that speeds up wound healing. Traditional wound dressing does not respond effectively to the wound-healing process as expected. Therapeutic active derived from plant extracts and extracted bioactive components have been employed in various regions of the globe since ancient times for the purpose of illness, prevention, and therapy. About 200 years ago, most medical treatments were based on herbal remedies. Especially in the West, the usage of herbal treatments began to wane in the 1960s as a result of the rise of allopathic medicine. In recent years, however, there has been a resurgence of interest in and demand for herbal medicines for a number of reasons, including claims about their efficacy, shifting consumer preferences toward natural medicines, high costs and negative side effects of modern medicines, and advancements in herbal medicines brought about by scientific research and technological innovation. The exploration of medicinal plants and their typical uses could potentially result in advanced pharmaceuticals that exhibit reduced adverse effects. This review aims to present an overview of the utilization of nanocarriers in plant-based therapeutics, including its current status, recent advancements, challenges, and future prospects. The objective is to equip researchers with a comprehensive understanding of the historical background, current state, and potential future developments in this emerging field. In light of this, the advantages of nanocarriers based delivery of natural wound healing treatments have been discussed, with a focus on nanofibers, nanoparticles, nano-emulsion, and nanogels.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India
| | - Puja Keshwania
- Department of Microbiology, Maharishi Markandeshwar Institute of Medical Sciences and Research, Mullana, Ambala, Haryana, 133207, India
| | - Shruti Chopra
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, 151001, Punjab, India.
| |
Collapse
|
39
|
Yasin SNN, Said Z, Halib N, Rahman ZA, Mokhzani NI. Polymer-Based Hydrogel Loaded with Honey in Drug Delivery System for Wound Healing Applications. Polymers (Basel) 2023; 15:3085. [PMID: 37514474 PMCID: PMC10383286 DOI: 10.3390/polym15143085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 07/30/2023] Open
Abstract
Excellent wound dressings should have crucial components, including high porosity, non-toxicity, high water absorption, and the ability to retain a humid environment in the wound area and facilitate wound healing. Unfortunately, current wound dressings hamper the healing process, with poor antibacterial, anti-inflammatory, and antioxidant activity, frequent dressing changes, low biodegradability, and poor mechanical properties. Hydrogels are crosslinked polymer chains with three-dimensional (3D) networks that have been applicable as wound dressings. They could retain a humid environment on the wound site, provide a protective barrier against pathogenic infections, and provide pain relief. Hydrogel can be obtained from natural, synthetic, or hybrid polymers. Honey is a natural substance that has demonstrated several therapeutic efficacies, including anti-inflammatory, antibacterial, and antioxidant activity, which makes it beneficial for wound treatment. Honey-based hydrogel wound dressings demonstrated excellent characteristics, including good biodegradability and biocompatibility, stimulated cell proliferation and reepithelization, inhibited bacterial growth, and accelerated wound healing. This review aimed to demonstrate the potential of honey-based hydrogel in wound healing applications and complement the studies accessible regarding implementing honey-based hydrogel dressing for wound healing.
Collapse
Affiliation(s)
- Siti Nor Najihah Yasin
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Zulfahmi Said
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Nadia Halib
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Zulaiha A Rahman
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| | - Noor Izzati Mokhzani
- Department of Basic Sciences and Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Tower B, Persiaran MPAJ, Jalan Pandan Utama, Pandan Indah, Kuala Lumpur 55100, Malaysia
| |
Collapse
|
40
|
Wang Y, Wang X, Zhou D, Xia X, Zhou H, Wang Y, Ke H. Preparation and Characterization of Polycaprolactone (PCL) Antimicrobial Wound Dressing Loaded with Pomegranate Peel Extract. ACS OMEGA 2023; 8:20323-20331. [PMID: 37332800 PMCID: PMC10268609 DOI: 10.1021/acsomega.2c08180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/10/2023] [Indexed: 06/20/2023]
Abstract
In recent years, medicinal plant extracts have received remarkable attention due to their wound-healing properties. In this study, polycaprolactone (PCL) electrospun nanofiber membranes incorporated with different concentrations of pomegranate peel extract (PPE) were prepared. The results of the SEM and FTIR experiments demonstrated that the morphology of nanofiber is smooth, fine, and bead-free, and the PPE was well introduced into the nanofiber membranes. Moreover, the outcomes of the mechanical property tests demonstrated that the nanofiber membrane made of PCL and loaded with PPE exhibited remarkable mechanical characteristics, indicating that it could fulfill the essential mechanical requisites for wound dressings. The findings of the in vitro drug release investigations indicated that PPE was instantly released within 20 h and subsequently released gradually over an extended period by the composite nanofiber membranes. Meanwhile, the DPPH radical scavenging test confirmed that the nanofiber membranes loaded with PPE exhibited significant antioxidant properties. Antimicrobial experiments showed higher PPE loading, and the nanofiber membranes showed higher antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans. The results of the cellular experiments showed that the composite nanofiber membranes were nontoxic and promoted the proliferation of L929 cells. In summary, electrospun nanofiber membranes loaded with PPE can be used as a wound dressing.
Collapse
Affiliation(s)
- Yize Wang
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Xianzhu Wang
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Dan Zhou
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Xin Xia
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Huimin Zhou
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Ying Wang
- College
of Textile and Clothing, XinJiang University, Wulumuqi 830046, China
| | - Huizhen Ke
- College
of Fashion and Art Engineering, Minjiang
University, Fuzhou, Fujian 350108, China
| |
Collapse
|
41
|
Stan D, Codrici E, Enciu AM, Olewnik-Kruszkowska E, Gavril G, Ruta LL, Moldovan C, Brincoveanu O, Bocancia-Mateescu LA, Mirica AC, Stan D, Tanase C. Exploring the Impact of Alginate-PVA Ratio and the Addition of Bioactive Substances on the Performance of Hybrid Hydrogel Membranes as Potential Wound Dressings. Gels 2023; 9:476. [PMID: 37367146 DOI: 10.3390/gels9060476] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Healthcare professionals face an ongoing challenge in managing both acute and chronic wounds, given the potential impact on patients' quality of life and the limited availability of expensive treatment options. Hydrogel wound dressings offer a promising solution for effective wound care due to their affordability, ease of use, and ability to incorporate bioactive substances that enhance the wound healing process. Our study aimed to develop and evaluate hybrid hydrogel membranes enriched with bioactive components such as collagen and hyaluronic acid. We utilized both natural and synthetic polymers and employed a scalable, non-toxic, and environmentally friendly production process. We conducted extensive testing, including an in vitro assessment of moisture content, moisture uptake, swelling rate, gel fraction, biodegradation, water vapor transmission rate, protein denaturation, and protein adsorption. We evaluated the biocompatibility of the hydrogel membranes through cellular assays and performed instrumental tests using scanning electron microscopy and rheological analysis. Our findings demonstrate that the biohybrid hydrogel membranes exhibit cumulative properties with a favorable swelling ratio, optimal permeation properties, and good biocompatibility, all achieved with minimal concentrations of bioactive agents.
Collapse
Affiliation(s)
- Diana Stan
- DDS Diagnostic, 031427 Bucharest, Romania
- Doctoral School of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| | - Elena Codrici
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| | - Ana-Maria Enciu
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ewa Olewnik-Kruszkowska
- Department of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Georgiana Gavril
- Department of Bioinformatics, National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | | | - Carmen Moldovan
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania
| | - Oana Brincoveanu
- National Institute for R&D in Microtechnology, 077190 Bucharest, Romania
- Research Institute of the University of Bucharest, 060102 Bucharest, Romania
| | | | | | - Dana Stan
- DDS Diagnostic, 031427 Bucharest, Romania
| | - Cristiana Tanase
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
- Department of Cell Biology and Clinical Biochemistry, Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania
| |
Collapse
|
42
|
Liu S, Wu G, Wang W, Wang H, Gao Y, Yang X. In Situ Electrospinning of "Dry-Wet" Conversion Nanofiber Dressings for Wound Healing. Mar Drugs 2023; 21:md21040241. [PMID: 37103380 PMCID: PMC10144117 DOI: 10.3390/md21040241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
Rapid wound dressings provide an excellent solution strategy for the treatment of wounds in emergency situations. In this study, aqueous solvent-based PVA/SF/SA/GelMA nanofiber dressings fabricated by a handheld electrospinning device could deposit quickly and directly on the wound, perfectly fitting wounds with various sizes. Using an aqueous solvent overcame the disadvantage of using the current organic solvents as the medium for rapid wound dressings. The porous dressings had excellent air permeability to ensure smooth gas exchange at the wound site. The distribution range of the tensile strength of the dressings was 9-12 Kpa, and the tensile strain was between 60-80%, providing sufficient mechanical support during wound healing. The dressings could absorb 4-8 times their own weight in solution and could rapidly absorb wound exudates from wet wounds. The nanofibers formed ionic crosslinked hydrogel after absorbing exudates, maintaining the moist condition. It formed a hydrogel-nanofiber composite structure with un-gelled nanofibers and combined the photocrosslinking network to maintain a stable structure at the wound location. The in vitro cell culture assay indicated that the dressings had excellent cell cytocompatibility, and the addition of SF contributed to cell proliferation and wound healing. The in situ deposited nanofiber dressings had excellent potential in the urgent treatment of emergency wounds.
Collapse
Affiliation(s)
- Shanfei Liu
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Guilin Wu
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Wen Wang
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Heng Wang
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Yingjun Gao
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Xuhong Yang
- National Engineering Laboratory for Modern Silk, Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| |
Collapse
|
43
|
Bal-Öztürk A, Torkay G, İdil N, Özkahraman B, Özbaş Z. Gellan gum/guar gum films incorporated with honey as potential wound dressings. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
44
|
Cao Y, Cong H, Yu B, Shen Y. A review on the synthesis and development of alginate hydrogels for wound therapy. J Mater Chem B 2023; 11:2801-2829. [PMID: 36916313 DOI: 10.1039/d2tb02808e] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Convenient and low-cost dressings can reduce the difficulty of wound treatment. Alginate gel dressings have the advantages of low cost and safe usage, and they have obvious potential for development in biomedical materials. Alginate gel dressings are currently a research area of great interest owing to their versatility, intelligent, and their application attempts in treating complex wounds. We present a detailed summary of the preparation of alginate hydrogels and a study of their performance improvement. Herein, we summarize the various applications of alginate hydrogels. The research focuses in this area mainly include designing multifunctional dressings for the treatment of various wounds and fabricating specialized dressings to assist physicians in the treatment of complex wounds (TOC). This review gives an outlook for future directions in the field of alginate hydrogel dressings. We hope to attract more research interest and studies in alginate hydrogel dressings, thus contributing to the creation of low-cost and highly effective wound treatment materials.
Collapse
Affiliation(s)
- Yang Cao
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
45
|
Yi N, Wang M, Song L, Feng F, Li J, Xie R, Zhao Z, Chen W. Highly hygroscopicity and antioxidant nanofibrous dressing base on alginate for accelerating wound healing. Colloids Surf B Biointerfaces 2023; 225:113240. [PMID: 36889107 DOI: 10.1016/j.colsurfb.2023.113240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
The removal of bacterium and free radicals is important for wound healing. Therefore, it is necessary to prepare biological dressings with antibacterial and antioxidant properties. In this study, high-performance calcium alginate/carbon polymer dots/forsythin composite nanofibrous membrane (CA/CPDs/FT) was explored under the influence of carbon polymer dots and forsythin. The addition of carbon polymer dots improved the nanofiber morphology and therefore enhanced the mechanical strength of the composite membrane. Moreover, CA/CPDs/FT membranes displayed satisfactory antibacterial and antioxidant properties because of the natural properties of forsythin. Meanwhile, outstanding hygroscopicity over 700% was also obtained for the composite membrane. In vitro and in vivo experiments showed that the CA/CPDs/FT nanofibrous membrane could prevent the invasion of bacteria, scavenge free radicals, and promote wound healing. Moreover, its good hygroscopicity and antioxidation characteristics were friendly for the clinical application of high-exudate wounds.
Collapse
Affiliation(s)
- Na Yi
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Mengyue Wang
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Li Song
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Fan Feng
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiwei Li
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Ruyi Xie
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Zhihui Zhao
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| | - Weichao Chen
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
46
|
Jiang Z, Shi Y, Chen X, Xu Z, Wang S. Preparation of combined hydrogel solution that is suitable to control the emission of odor pollutants from brownfield site and its control effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36979-36992. [PMID: 36564682 DOI: 10.1007/s11356-022-24869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Odor pollution caused by brownfield site has attracted increasing attention. However, to date, fewer suitable materials can be used to control the emission of odor pollutant from brownfield site during remediation. This study prepared a kind of combined hydrogel solution based on sodium alginate and carboxymethyl cellulose sodium (CHS-SC) and tested the possibility of its membrane in controlling the emission of three odor pollutants (trichloroethylene, dimethyl disulfide, and p-xylene) from polluted soil. Our results showed that CHS-SC membrane could effectively control the emission of three odor pollutants from polluted soil. Comparatively, CHS-SC membrane had higher control rates for three odor pollutants at high ambient temperature (32 °C), short storage time of CHS-SC (5 days, 25 °C), and low odor pollutant concentration (2 ml/kg soil) than at low ambient temperature (2 °C), long storage time of CHS-SC (10 d, 25 °C), and high odor pollutant concentration (4 ml/kg soil), respectively. CHS-SC membrane was degraded by 79.23% after 150 days in soil and slightly changed soil bacterial community, indicating that it had good biodegradability and environmental friendliness. In addition, CHS-SC cost was the lowest among the products with similar function. This study shows that CHS-SC is effective in short-timely controlling the emission of odor pollutants from brownfield site.
Collapse
Affiliation(s)
- Zhen Jiang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yifan Shi
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaochun Chen
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongjun Xu
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuguang Wang
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
47
|
PDDA/Honey Antibacterial Nanofiber Composites for Diabetic Wound-Healing: Preparation, Characterization, and In Vivo Studies. Gels 2023; 9:gels9030173. [PMID: 36975623 PMCID: PMC10047982 DOI: 10.3390/gels9030173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In this paper, Poly (diallyldimethylammonium chloride) (PDDA)/honey nanofiber wound dressing composites were prepared and their effects on the diabetic wound-healing was evaluated using in vivo experiments. The release of effective compounds and the solubility of nanofibers were controlled through the crosslinking process by glutaraldehyde. The crosslinked nanofibers (crosslinking time was 3 h) showed an absorption capacity at a maximum value of 989.54%. Interestingly, the resultant composites were able to prevent 99.9% of Staphylococcus aureus and Escherichia coli bacteria. Furthermore, effective compounds were continuously released from nanofibers for up to 125 h. In vivo evaluation indicated that the use of PDDA/honey (40/60) significantly enhanced wound-healing. On the day 14th, the average healing rate for samples covered by conventional gauze bandage, PDDA, PDDA/honey (50/50), and PDDA/honey (40/60) were 46.8 ± 0.2, 59.4 ± 0.1, 81.7 ± 0.3, and 94.3 ± 0.2, respectively. The prepared nanofibers accelerated the wound-healing process and reduced the acute and chronic inflammation. Hence, our PDDA/honey wound dressing composites open up new future treatment options for diabetic wound diseases.
Collapse
|
48
|
Brites A, Ferreira M, Bom S, Grenho L, Claudio R, Gomes PS, Fernandes MH, Marto J, Santos C. Fabrication of antibacterial and biocompatible 3D printed Manuka-Gelatin based patch for wound healing applications. Int J Pharm 2023; 632:122541. [PMID: 36566824 DOI: 10.1016/j.ijpharm.2022.122541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Development of multifunctional 3D patches with appropriate antibacterial and biocompatible properties is needed to deal with wound care regeneration. Combining gelatin-based hydrogel with a well-known natural antibacterial honey (Manuka honey, MH) in a 3D patch can provide improved printability and at the same time provide favourable biological effects that may be useful in regenerative wound treatment. In this study, an antibacterial Manuka-Gelatin 3D patches was developed by an extrusion-based printing process, with controlled porosity, high shape fidelity, and structural stability. It was demonstrated the antibacterial activity of Manuka-Gelatin 3D patches against both gram-positive bacteria (S. epidermidis and S. aureus) and gram-negative (E. coli), common in wound infection. The 3D Manuka-Gelatin base patches demonstrated antibacterial activity, and moreover enhanced the proliferation of human dermal fibroblasts and human epidermal keratinocytes, and promotion of angiogenesis. Moreover, the ease of printing achieved by the addition of honey, coupled with the interesting biological response obtained, makes this 3D patch a good candidate for wound healing applications.
Collapse
Affiliation(s)
- Ana Brites
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049 001 Lisboa, Portugal
| | - Marta Ferreira
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal
| | - Sara Bom
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal
| | - Liliana Grenho
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Ricardo Claudio
- ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro S Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Maria H Fernandes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; LAQV/REQUIMTE, U. Porto, Porto 4160-007, Portugal
| | - Joana Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
| | - Catarina Santos
- CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049 001 Lisboa, Portugal; ESTSetúbal, CDP2T, Instituto Politécnico de Setúbal, Campus do IPS-Estefanilha, 2910-761 Setúbal, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisboa, Portugal.
| |
Collapse
|
49
|
Mavrokefalou E, Monou PK, Tzetzis D, Bouropoulos N, Vizirianakis IS, Fatouros DG. Preparation and in vitro evaluation of electrospun sodium alginate fiber films for wound healing applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
50
|
Oxidized sodium alginate cross-linked calcium alginate/antarctic krill protein composite fiber for improving strength and water resistance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|