1
|
Kurd F, Fathi M, Shahedi M, Soltanizadeh N. Fabrication and characterization of multifunctional bioactive aerogel pads as superabsorbent - Case study: Meat preservation. Food Res Int 2025; 209:116268. [PMID: 40253189 DOI: 10.1016/j.foodres.2025.116268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
In this study cellulose nanofibrils (CNFs)/poly vinyl alcohol (PVA) aerogels were produced and the effect of the concentration of CNF/PVA on porosity, density, pore size, water absorption, water vapor absorption, and mechanical properties were studied. CNFs were developed using peanut shells as agricultural waste. Curcumin (CUR) was incorporated into the aerogel matrix at different concentrations (30 %, 40 %, and 50 %). The best bioactive aerogel pad was selected based on its encapsulation efficiency (80.57 ± 0.29 %), loading capacity (22.85 ± 0.22 %), and antioxidant properties (74.14 ± 0.31 %). The aerogels loaded with CUR were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The bioactive aerogel pads showed antibacterial properties against Staphylococcus aureus. The cumulative release (65 %) of CUR from the aerogel matrix for 8 days, indicates a sustained release in meat-simulated media, which is suitable for increasing the shelf life of meat. The kinetics of the release showed that the Ritger-Peppas and Peppas-Sahlin models are the best models for the meat-simulated media. The storage results indicated that the package containing the aerogels loaded with CUR could increase the shelf life of meat from 6 to 8 days compared to the package containing the aerogels without CUR and the control package. Finally, this research provides a suitable strategy in the field of food packaging to produce multifunctional antimicrobial pads based on biodegradable agricultural waste.
Collapse
Affiliation(s)
- Forouzan Kurd
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Mohammad Shahedi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Nafiseh Soltanizadeh
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| |
Collapse
|
2
|
Techawinyutham L, Sundaram RS, Suyambulingam I, Mo-On S, Srisuk R, Divakaran D, Rangappa SM, Siengchin S. Rice husk biowaste derived microcrystalline cellulose reinforced sustainable green composites: A comprehensive characterization for lightweight applications. Int J Biol Macromol 2025; 299:140153. [PMID: 39848380 DOI: 10.1016/j.ijbiomac.2025.140153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
This study addresses the issue of waste generation within the food industry, focusing on the conversion of rice husk waste into value-added products. The investigation involves a comprehensive characterization of microcrystalline cellulose extracted from the rice husk and reinforcing them in bio-epoxy resin to determine its feasibility in producing ecofriendly products. The dried rice husk waste was made to undergo a series of treatments, including alkali, acid hydrolysis, and bleaching for extracting high purity microcrystalline cellulose. Physio-chemical, morphological, thermal, and spectroscopy analyses were performed on rice husk microcrystalline cellulose (RHMCC), revealing a high cellulose content (94.39 %), favourable crystallinity (77.8 %), low density (1.571 g/cm3), and substantial thermal stability (299.14 °C). Additionally, the surface roughness of rice husk microcrystalline cellulose supports its suitability as a bio-filler material in the production of environmentally friendly composites. The rice husk microcrystalline cellulose was added to bio-epoxy polymer at different weight percentages (0, 2.5, 5, 7.5, and 10 %), and mechanical and spectroscopy characteristics were evaluated using ASTM standards. Fractographical morphology was also examined in the fractured sample to disclose cellulose bonding behaviour, void forms, filler agglomeration, and fracture behaviour. This research contributes in reducing waste in food industry and promoting sustainable ecofriendly products to the society.
Collapse
Affiliation(s)
- Laongdaw Techawinyutham
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand; Natural Composites Research Group Lab, Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand.
| | - Raja Soma Sundaram
- Department of Mechanical Engineering, Noorul Islam Centre for Higher Education, Kumaracoil, Kanyakumari, Tamil Nadu 629180, India
| | - Indran Suyambulingam
- Sophisticated Testing and Instrumentation Centre (STIC), Department of Mechanical Engineering, Alliance School of Applied Engineering, Alliance University, Bengaluru 562106, Karnataka, India.
| | - Supichaya Mo-On
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Rapeeporn Srisuk
- Natural Composites Research Group Lab, Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Divya Divakaran
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, Tamil Nadu, India
| | - Sanjay Mavinkere Rangappa
- Natural Composites Research Group Lab, Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| | - Suchart Siengchin
- Natural Composites Research Group Lab, Department of Mechanical and Process Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand
| |
Collapse
|
3
|
Yu R, M N P, Zhai JG, Song JI. High-throughput extraction of cellulose nanofibers from Imperata cylindrica grass for advanced bio composites. Int J Biol Macromol 2025; 284:138111. [PMID: 39608541 DOI: 10.1016/j.ijbiomac.2024.138111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
Extracting high-quality cellulose nanofibers (CNFs) with superior yield and purity particularly due to the cost and efficiency limitations inherent in current extraction methods. In this study, we present a novel and cost-effective approach for extracting cellulose nanofibers (ECNFs) from naturally available Imperata cylindrica grass using an optimized chemical process. This process involves tailoring adjusting acid-base ratios and bleaching conditions to successfully extract CNFs with a uniform diameter (90 nm), length (11 μm), high crystallinity (71.64 %), and a small average crystal size (2.06 nm). These characteristics were confirmed using Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses. To evaluate the potential of ECNFs in enhancing polymer mechanical properties, ECNFs-reinforced chitosan (CS) composite films were fabricated via a simple solution casting process. The addition of 2 wt% ECNFs significantly improved the Young's modulus by 402 % (reaching 1.37 GPa) and the tensile strength by 748 % (reaching 16.77 MPa) compared to pristine CS films (0.27 GPa and 1.98 MPa), underscoring their effectiveness as reinforcement agents. Furthermore, to expand the functionality of the CS composites, cost-effective graphene nanoplatelets (GNPs) were incorporated. These hybrid ECNFs/CS/GNP composites exhibited remarkable improvements in thermal stability, flame retardancy, and electromagnetic interference (EMI) shielding compared to pure CS films. In conclusion, this study presents a facile and cost-effective method for extracting high-quality CNFs. The ECNFs-reinforced CS composites demonstrate superior mechanical properties, while the incorporation of GNPs further enhances their functionality by improving thermal stability, reducing flammability, and providing effective EMI shielding. These findings could facilitate the development of high-performance green composites with diverse applications across various industries.
Collapse
Affiliation(s)
- Ruiwen Yu
- Department of Smart Manufacturing Engineering, Changwon National University, Uichang-gu, Changwon 51140, Gyeongsangnam-do, Republic of Korea
| | - Prabhakar M N
- Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University, Uichang-gu, Changwon 51140, Gyeongsangnam-do, Republic of Korea.
| | - Jian-Guang Zhai
- School of Material Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Jung-Il Song
- Research Institute of Mechatronics, Department of Mechanical Engineering, Changwon National University, Uichang-gu, Changwon 51140, Gyeongsangnam-do, Republic of Korea.
| |
Collapse
|
4
|
Mbisana M, Keroletswe N, Nareetsile F, Mogopodi D, Chibua I. Nanocellulose composites: synthesis, properties, and applications to wastewater treatment. CELLULOSE 2024; 31:10651-10678. [DOI: 10.1007/s10570-024-06268-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 01/06/2025]
Abstract
AbstractThe growing worldwide environmental and water pollution challenges require the use of renewable biomass-based materials to purify water systems. The remarkable qualities of nanocellulose (NC) and its eco-friendliness make it a desirable material for this purpose. Hence, many investigations have been conducted on the optimization of NC-based materials for water purification. This review presents the first examination of the progress made in creating emerging NC composites using molecularly imprinted polymers (MIPs), metal organic frameworks (MOFs), and aluminosilicates. MIPs, MOFs, and aluminosilicates endow NC composites with stability, multifunctionality, and extended reusability. The applications of these composites to wastewater treatment, such as the removal of toxic heavy metals, dyes, pharmaceuticals, and microorganisms are discussed. Finally, the economic viability, challenges, and future perspectives of these emerging NC composites and their applications are discussed. The research gaps demonstrated in this review will enable the exploration of new areas of study on functionalised NC composites, leading to enhanced industrial applications. Moreover, the utilisation of NC composites with suitably modified components results in multifunctional adsorbents that have great potential for effectively eliminating many contaminants simultaneously.
Collapse
|
5
|
Salgado P, Aedo E, Vidal G. Green Synthesis of Fe 2O 3 Nanoparticles Using Eucalyptus globulus Leaf Extract on Pinus radiata Sawdust for Cationic Dye Adsorption. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1832. [PMID: 39591072 PMCID: PMC11597417 DOI: 10.3390/nano14221832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
The present study reports the synthesis of Fe2O3 nanoparticles on Pinus radiata sawdust (Fe2O3@PS) using a Eucalyptus globulus leaf extract. The morphology and structure of Fe2O3@PS were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis diffuse reflectance. The adsorption capacity of the system was evaluated by testing its ability to remove the Rhodamine B (RhB) dye. The optimization of the system was carried out using the Plackett-Burman design (PBD) and the response surface methodology (steepest ascent and the Box-Behnken design), which provided information on the main parameters affecting the adsorption process. The PBD results showed that the most important parameters for the removal of RhB using Fe2O3@PS were the removal time, the RhB concentration, and the initial pH of the system. The reusability of Fe2O3@PS under optimal conditions was tested and it was found to maintain its efficiency after five cycles of use. The efficiency and rate of RhB removal observed at pH values near 7.0 were found to be predominantly influenced by electrostatic interactions. In contrast, the analyses conducted at pH values near 8.3 exhibited reduced influence from electrostatic attractions, with π-π interactions and hydrogen bonds emerging as dominant forces. At pH values exceeding 8.3, all potential interactions between RhB and Fe2O3@PS exhibited diminished strength. This research provides valuable information on the formation of eco-friendly nanoparticles immobilized on a forest residue such as sawdust, which can effectively remove organic pollutants like RhB. This contributes to the valorization of resources and the search for solutions to water pollution.
Collapse
Affiliation(s)
- Pablo Salgado
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (P.S.); (E.A.)
| | - Eduardo Aedo
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile; (P.S.); (E.A.)
| | - Gladys Vidal
- Grupo de Ingeniería y Biotecnología Ambiental (GIBA-UDEC), Facultad de Ciencias Ambientales, Universidad de Concepción, Concepción 4070386, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), Agencia Nacional de Investigación y Desarrollo (ANID) Fondap Center, Victoria 1295, Concepción 4070411, Chile
| |
Collapse
|
6
|
Pradhan D, Jaiswal S, Tiwari BK, Jaiswal AK. Choline chloride - oxalic acid dihydrate deep eutectic solvent pretreatment of Barley straw for production of cellulose nanofibers. Int J Biol Macromol 2024; 281:136213. [PMID: 39368590 DOI: 10.1016/j.ijbiomac.2024.136213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
This study investigates the production of cellulose nanofibers (CNF) from Barley straw using ultrasound-assisted deep eutectic solvent (US-DES) treatment for biomass fractionation and subsequent high-intensity ultrasonication (HIUS) for nano-fibrillation. Two deep eutectic solvents (DES), synthesized from choline chloride (ChCl) and oxalic acid dihydrate (OAD) at 1:1 and 2:1 M ratio, achieved solubilisation of over 80 % of lignin and hemicellulose under optimal conditions. The purification of these DES-treated materials resulted in cellulose with a purity >88 %. CNFs, characterized by a size of <100 nm, a polydispersity index under 0.5, and a zeta potential lower than -30 mV, were successfully isolated through a combination of wet grinding and HIUS treatment. SEM and XRD results showed the formation of a network of interconnected fibres with a Type I cellulose structure. This research highlights Barley straw's potential as a sustainable source of high-value CNF from agricultural waste.
Collapse
Affiliation(s)
- Dileswar Pradhan
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| | - Swarna Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| | | | - Amit K Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| |
Collapse
|
7
|
Güven Ö, Şensoy İ. Effect of fibers on starch structural changes during hydrothermal treatment: multiscale analyses, and evaluation of dilution effects on starch digestibility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5724-5734. [PMID: 38380826 DOI: 10.1002/jsfa.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/22/2023] [Accepted: 02/21/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Dietary fibers (DFs) may influence the structural, nutritional and techno-functional properties of starch within food systems. Moreover, DFs have favorable effects on the digestive system and potentially a lower glycemic index. These potential benefits may change depending on DF type. Starch processed in the presence of soluble and insoluble fibers can undergo different structural and functional changes, and the present study investigated the effects of short-chain and long-chain inulin and cellulose on the structural and digestive properties of wheat starch. RESULTS The combined use of differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) provided insights into the structural changes in starch and inulin at different levels. Short-chain and long-chain inulin had higher water retention capacity and a potential to limit starch gelatinization. The FTIR results revealed an interaction between starch and inulin. Scanning electron microscopy analysis showed morphological changes in starch and inulin after the hydrothermal treatment. Cellulose fiber was not affected by the hydrothermal treatment and had no influence on starch behavior. The structural differences observed through XRD, FTIR and scanning electron microscopy analyses between starch with and without inulin fibers did not significantly impact starch digestibility, except for the dilution effect caused by adding DFs. CONCLUSION The present study highlights the importance of utilizing different analytical tools to assess changes in food samples at different scales. Although short-chain and long-chain inulin could potentially limit starch gelatinization, the duration of the heat treatment (90 °C for 10 min) was sufficient to ensure complete starch gelatinization. The dilution effect caused by adding fibers was the primary reason for the effect on starch digestibility. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Özge Güven
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| | - İlkay Şensoy
- Department of Food Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
8
|
Chevalier RC, Almeida NA, de Oliveira Rocha L, Cunha RL. Antimicrobial potential of oregano essential oil vehiculated in Pickering cellulose nanofibers-stabilized emulsions. Int J Biol Macromol 2024; 275:133457. [PMID: 38945335 DOI: 10.1016/j.ijbiomac.2024.133457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Essential oils show several biological properties, such as antimicrobial activity, but have limitations regarding their availability and stability. To maximize their antimicrobial effect and protection against environmental conditions, Pickering-type emulsions were used to vehiculate oregano essential oil (OEO) using cellulose nanofibers (CNF) as emulsion stabilizer. Enzymatic hydrolysis was used to produce CNF from a food industry waste (cassava peel), obtaining an environmentally sustainable emulsion stabilizer. It was evaluated how the different properties of the nanofibers affected the stability of the emulsions. Furthermore, the composition of the dispersed phase was varied (different ratios of OEO and sunflower oil-SO) in view of the target application in biodegradable active coatings. Even at very low concentration (0.01 % w/w), CNF was able to form kinetically stable emulsions with small droplet sizes using oil mixtures (OEO + SO). The stabilization mechanism was not purely Pickering, as there was a reduction in interfacial tension. Excellent antimicrobial activity was observed against bacteria and the fungus Alternaria alternata, demonstrating the ability to apply these emulsions in active systems such as coatings and films. An improvement in the stability of emulsions was observed when using a mixture of oils, which is extremely advantageous considering costs and stability to heat treatments, since the desired antimicrobial activity is maintained for the final application.
Collapse
Affiliation(s)
- Raquel Costa Chevalier
- Laboratory of Process Engineering (LEP), Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Naara Aparecida Almeida
- Food Microbiology Laboratory I, Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Liliana de Oliveira Rocha
- Food Microbiology Laboratory I, Department of Food Science and Nutrition, School of Food Engineering (FEA), University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| | - Rosiane Lopes Cunha
- Laboratory of Process Engineering (LEP), Department of Food Engineering and Technology (DETA), School of Food Engineering (FEA), University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil.
| |
Collapse
|
9
|
Gómez-García R, Sousa SC, Ramos ÓL, Campos DA, Aguilar CN, Madureira AR, Pintado M. Obtention and Characterization of Microcrystalline Cellulose from Industrial Melon Residues Following a Biorefinery Approach. Molecules 2024; 29:3285. [PMID: 39064864 PMCID: PMC11279406 DOI: 10.3390/molecules29143285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Residual melon by-products were explored for the first time as a bioresource of microcrystalline cellulose (MCC) obtention. Two alkaline extraction methods were employed, the traditional (4.5% NaOH, 2 h, 80 °C) and a thermo-alkaline in the autoclave (2% NaOH, 1 h, 100 °C), obtaining a yield of MCC ranging from 4.76 to 9.15% and 2.32 to 3.29%, respectively. The final MCCs were characterized for their chemical groups by Fourier-transform infrared spectroscopy (FTIR), crystallinity with X-ray diffraction, and morphology analyzed by scanning electron microscope (SEM). FTIR spectra showed that the traditional protocol allows for a more effective hemicellulose and lignin removal from the melon residues than the thermo-alkaline process. The degree of crystallinity of MCC ranged from 51.51 to 61.94% and 54.80 to 55.07% for the thermo-alkaline and traditional processes, respectively. The peaks detected in X-ray diffraction patterns indicated the presence of Type I cellulose. SEM analysis revealed microcrystals with rough surfaces and great porosity, which could remark their high-water absorption capacity and drug-carrier capacities. Thus, these findings could respond to the need to valorize industrial melon by-products as raw materials for MCC obtention with potential applications as biodegradable materials.
Collapse
Affiliation(s)
- Ricardo Gómez-García
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
- CIICYT—Centro de Investigación e Innovación Científica y Tecnológica, Unidad Camporredondo, Autonomous University of Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Sérgio C. Sousa
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Óscar L. Ramos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Débora A. Campos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Cristóbal N. Aguilar
- BBG-DIA—Bioprocesses and Bioproducts Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, Saltillo 25730, Coahuila, Mexico
| | - Ana R. Madureira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (R.G.-G.)
| |
Collapse
|
10
|
Salgado P, Rubilar O, Salazar C, Márquez K, Vidal G. In Situ Synthesis of Cu 2O Nanoparticles Using Eucalyptus globulus Extract to Remove a Dye via Advanced Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1087. [PMID: 38998692 PMCID: PMC11243407 DOI: 10.3390/nano14131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Water pollution, particularly from organic contaminants like dyes, is a pressing issue, prompting exploration into advanced oxidation processes (AOPs) as potential solutions. This study focuses on synthesizing Cu2O on cellulose-based fabric using Eucalyptus globulus leaf extracts. The resulting catalysts effectively degraded methylene blue through photocatalysis under LED visible light and heterogeneous Fenton-like reactions with H2O2, demonstrating reusability. Mechanistic insights were gained through analyses of the extracts before and after Cu2O synthesis, revealing the role of phenolic compounds and reducing sugars in nanoparticle formation. Cu2O nanoparticles on cellulose-based fabric were characterized in terms of their morphology, structure, and bandgap via SEM-EDS, XRD, Raman, FTIR, UV-Vis DRS, and TGA. The degradation of methylene blue was pH-dependent; photocatalysis was more efficient at neutral pH due to hydroxyl and superoxide radical production, while Fenton-like reactions showed greater efficiency at acidic pH, primarily generating hydroxyl radicals. Cu2O used in Fenton-like reactions exhibited lower reusability compared to photocatalysis, suggesting deterioration. This research not only advances understanding of catalytic processes but also holds promise for sustainable water treatment solutions, contributing to environmental protection and resource conservation.
Collapse
Affiliation(s)
- Pablo Salgado
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Claudio Salazar
- Centro de Investigación de Polímeros Avanzados (CIPA), Concepción 4051381, Chile
| | - Katherine Márquez
- Centro de Estudios en Alimentos Procesados (CEAP), Campus Lircay, Talca 3460000, Chile
| | - Gladys Vidal
- Grupo de Ingeniería y Biotecnología Ambiental (GIBA-UDEC), Facultad de Ciencias Ambientales, Universidad de Concepción, Concepción 4070386, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción 4070411, Chile
| |
Collapse
|
11
|
An N, Li K, Wang Y, Shen W, Huang X, Xu S, Wu L, Huang H. Biodegradable bio-film based on Cordyceps militaris and metal-organic frameworks for fruit preservation. Int J Biol Macromol 2024; 262:130095. [PMID: 38346621 DOI: 10.1016/j.ijbiomac.2024.130095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
In this study, Cordyceps militaris matrix was employed for the first time to fabricate a biodegradable food packaging. Carmine and Ag@CuBTC were introduced to cross-link with mycelium and were uniformly dispersed within the matrix to enhance the water resistance, antimicrobial, and antioxidant properties of the bio-films. The bio-film displayed high biodegradability, with nearly 100 % degradation achieved after three weeks. The bio-film exhibited exceptional resistance to oxidation (49.30 % DPPH and 93.94 % ABTS•+), as well as effective inhibitory capabilities against E. coli and S. aureus, respectively. The composite film maintained a high CO2/O2 selective permeability, which was advantageous for mitigating fruit metabolism and extending shelf life. Simultaneously, food preservation experiments confirmed that these bio-films can decelerate the spoilage of fruits and effectively prolong the shelf-life of food. The experimental findings indicated that the prepared Bio-R-Ag@Cu film held promise as an environmentally friendly biodegradable material for food packaging.
Collapse
Affiliation(s)
- Nan An
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ke Li
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ying Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Weijian Shen
- Animal, Plant and Food Inspection Center of Nanjing Customs District, Nanjing 210023, China
| | - Xingxu Huang
- International Research Center of Synthetic Biology, Nanjing Normal University, Nanjing 210023, China
| | - Shiqi Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
12
|
Mirzaee N, Nikzad M, Battisti R, Araghi A. Isolation of cellulose nanofibers from rapeseed straw via chlorine-free purification method and its application as reinforcing agent in carboxymethyl cellulose-based films. Int J Biol Macromol 2023; 251:126405. [PMID: 37597636 DOI: 10.1016/j.ijbiomac.2023.126405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
In this study, cellulose nanofibers (CNFs) were successfully isolated from rapeseed straw (RS) whose valorization has been rarely investigated to date. A combined bleaching method without chlorine was applied for the purification of cellulose fibers, previously unexplored for RS. Chemical composition analysis and Fourier-transform infrared spectroscopy (FTIR) indicated that the purification method eliminated hemicellulose and reduced lignin content from 24.4 % to 1.8 %. The isolation of CNFs was performed using sulfuric acid hydrolysis under different acid concentrations (55 and 60 % v/v) and hydrolysis times (15, 30, and 45 min). The isolated CNFs were characterized by FTIR, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The formation of CNFs was confirmed by a significant increase in crystallinity index from 46.45 % of RS to >79.41 % of CNFs, depending on acid concentration and isolation duration. Carboxymethyl cellulose (CMC) films with different contents of CNFs were prepared by casting method. The mechanical properties and cytotoxicity of the prepared films were investigated. The CNFs obtained from RS via a chlorine-free purification method showed promising results for their usage as reinforcement in CMC matrix and film fabrication for various applications such as transdermal medicine and food packaging.
Collapse
Affiliation(s)
- Narges Mirzaee
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Maryam Nikzad
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Rodrigo Battisti
- Federal Institute of Education, Science and Technology of Santa Catarina, Criciúma Campus, 88813-600, Brazil
| | - Atefeh Araghi
- Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
13
|
Palechor-Trochez JJ, Chantre-López AR, Argote-Ortiz E, Villada-Castillo HS, Solanilla-Duque JF. Effect of the Addition of Fique Bagasse Cellulose Nanoparticles on the Mechanical and Structural Properties of Plastic Flexible Films from Cassava Starch. Polymers (Basel) 2023; 15:4003. [PMID: 37836052 PMCID: PMC10575439 DOI: 10.3390/polym15194003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 10/15/2023] Open
Abstract
One of the activities most representative of the agricultural sector in Colombia is the production of biodegradable fique fiber. The efficiency of the defiberization process of the fique leaves is very low since a mere 4% of the total weight of the leaf (cabuya) is used and marketed. The remaining 96%, composed of fique juice and bagasse, is considered to be waste and discarded, impacting the environment. The aim of this work was to study fique bagasse as a source of cellulose nanoparticles (CNCs). CNCs were obtained by acid hydrolysis and added at 10% to films made from cassava thermoplastic starch (TPS) by the casting method. Structural changes in the CNCs, TPS, and their mixtures were characterized by FTIR-ATR and their morphology and particle size by SEM and TEM microscopy, respectively. Thermal properties were analyzed using DSC and TGA, along with their effect on mechanical properties. Changes in the FTIR spectra indicated that the chemical method adequately removed hemicellulose and lignin from the fiber surface of fique bagasse. The CNCs showed a diameter and length of 7.5 ± 3.9 and 52.7 ± 18.1 nm, respectively, and TPS 10% CNC obtained an increase in mechanical strength of 116%. The obtainment of CNCs from lignocellulosic materials can thus be viewed as a favorable option for the subsequent reinforcement of a polymeric matrix.
Collapse
Affiliation(s)
- Jhon Jairo Palechor-Trochez
- Faculty of Agrarian Sciences, Universidad del Cauca, Popayán 190003, Cauca, Colombia; (A.R.C.-L.); (E.A.-O.); (H.S.V.-C.)
| | | | | | | | | |
Collapse
|
14
|
Nieto N, Porte J, Saurel D, Djuandhi L, Sharma N, Lopez-Urionabarrenechea A, Palomares V, Rojo T. Use of Hydrothermal Carbonization to Improve the Performance of Biowaste-Derived Hard Carbons in Sodium Ion-Batteries. CHEMSUSCHEM 2023:e202301053. [PMID: 37532675 DOI: 10.1002/cssc.202301053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023]
Abstract
Over the last years, hard carbon (HC) has been the most promising anode material for sodium-ion batteries due to its low voltage plateau, low cost and sustainability. In this study, biomass waste (spent coffee grounds, sunflower seed shells and rose stems) was investigated as potential material for hard carbon preparation combining a two-step method consisting of on hydrothermal carbonization (HTC), to remove the inorganic impurities and increase the carbon content, and a subsequent pyrolysis process. The use of HTC as pretreatment prior to pyrolysis improves the specific capacity in all the materials compared to the ones directly pyrolyzed by more than 100 % at high C-rates. The obtained capacity ranging between 210 and 280 mAh g-1 at C/15 is similar to the values reported in literature for biomass-based hard carbons. Overall, HC obtained from sunflower seed shell performs better than that obtained from the other precursors with an initial Coulombic efficiency (ICE) of 76 % and capacities of 120 mAh g-1 during 1000 cycles at C with a high capacity retention of 86-93 %.
Collapse
Affiliation(s)
- Nekane Nieto
- Organic and Inorganic Chemistry Department, Science and Technology Faculty, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| | - Julien Porte
- Chemical and Environmental Engineering Department, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Damien Saurel
- Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA) Parque Tecnológico de Álava, Albert Einstein 48, 01510, Miñano, Spain
| | - Lisa Djuandhi
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Neeraj Sharma
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexander Lopez-Urionabarrenechea
- Chemical and Environmental Engineering Department, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo 1, 48013, Bilbao, Spain
| | - Verónica Palomares
- Organic and Inorganic Chemistry Department, Science and Technology Faculty, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940, Leioa, Spain
| | - Teófilo Rojo
- Organic and Inorganic Chemistry Department, Science and Technology Faculty, University of the Basque Country UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
| |
Collapse
|
15
|
Sun Q, Feng S, Li G, Qi Y, Hu C. Influence of Different Treatments on the Structure and Conversion of Silicon Species in Rice Straw to Tetraethyl Orthosilicate (TEOS). ChemistryOpen 2023; 12:e202300111. [PMID: 37551028 PMCID: PMC10407258 DOI: 10.1002/open.202300111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Indexed: 08/09/2023] Open
Abstract
The production of tetraethyl orthosilicate (TEOS) from biomass provides a new way for TEOS production and biomass valorization. In this study, rice straw was treated using different fractionation methods, and the content, state, and reactivity of Si in the treated samples were investigated. It was found that acid treatment and ethanol extraction kept most Si in the biomass, while alkali treatment caused significant Si loss. Si was mainly present in the SiOx , Si-O-C, and Si-O-Si states in the surface of raw rice straw, cellulose and Klason lignin. The results showed that the Si-O-Si state in rice straw was beneficial for the formation of TEOS. The removal of lipids from rice straw facilitated the production of TEOS, giving the highest TEOS yield of 76.2 %. In contrast, the production of TEOS from other samples became difficult; the simultaneous conversion of the three organic components of rice straw also facilitated the production of TEOS.
Collapse
Affiliation(s)
- Qianxin Sun
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Shanshan Feng
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Guiying Li
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Yue Qi
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| | - Changwei Hu
- Ministry of EducationCollege of ChemistrySichuan UniversityChengduSichuan610064P. R. China
| |
Collapse
|
16
|
Akamo DO, Kumar N, Li Y, Pekol C, Li K, Goswami M, Hirschey J, LaClair TJ, Keffer DJ, Rios O, Gluesenkamp KR. Stabilization of low-cost phase change materials for thermal energy storage applications. iScience 2023; 26:107175. [PMID: 37426345 PMCID: PMC10329044 DOI: 10.1016/j.isci.2023.107175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Sodium sulfate decahydrate (Na2SO4.10H2O, SSD), a low-cost phase change material (PCM), can store thermal energy. However, phase separation and unstable energy storage capacity (ESC) limit its use. To address these concerns, eight polymer additives-sodium polyacrylate (SPA), carboxymethyl cellulose (CMC), Fumed silica (SiO2), potassium polyacrylate (PPA), cellulose nanofiber (CNF), hydroxyethyl cellulose (HEC), dextran sulfate sodium (DSS), and poly(sodium 4-styrenesulfonate) (PSS)-were used to explore several stabilization mechanisms. The ESC of PCMs deteriorated when thickeners, SPA, PPA, and CNF, were added. DSS-modified PCMs exhibited greater stability up to 150 cycles. Rheology measurements indicated that DSS did not impact SSD viscosity significantly during stabilization. Dynamic light scattering showed that DSS reduces SSD particle size and electrostatically suspends salt particles in a stable homogeneous solution, avoiding phase separation. This study proposes a promising method to improve the thermal stability of salt hydrate PCMs by utilizing polyelectrolyte-salt hydrate mixture for thermal energy storage applications.
Collapse
Affiliation(s)
- Damilola O. Akamo
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
- Buildings and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Navin Kumar
- Building Energy Efficiency Group, Gas Technology Institute, Des Plaines, IL 60018, USA
| | - Yuzhan Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100081, China
| | - Collin Pekol
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Kai Li
- Buildings and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Monojoy Goswami
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Jason Hirschey
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Tim J. LaClair
- Building Energy Science Group, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - David J. Keffer
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Orlando Rios
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
- Materials Science and Engineering Department, University of Tennessee, Knoxville, TN 37996, USA
| | - Kyle R. Gluesenkamp
- Buildings and Transportation Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| |
Collapse
|
17
|
Debnath B, Duarah P, Purkait MK. Microwave-assisted quick synthesis of microcrystalline cellulose from black tea waste (Camellia sinensis) and characterization. Int J Biol Macromol 2023:125354. [PMID: 37321438 DOI: 10.1016/j.ijbiomac.2023.125354] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Tea wastes generated in the industries during tea production processes show excellent potential to be used as a renewable, abundant, and cheap source for the extraction of microcrystalline cellulose. In the current work, MCC was isolated from black tea waste through microwave heating instead of using conventional heating and avoiding the traditional acid hydrolysis method. Microwave increased the reaction speed significantly and resulted in very quick delignification and bleaching of black tea waste to isolate MCC in white powdered form. FTIR, XRD, FESEM, and TGA analysis were then carried out to investigate the chemical functionality, crystallinity, morphology, and thermal properties, respectively, of the synthesized tea waste MCC. The characterization results demonstrated that cellulose with a short rough fibrous structure having an average particle size of around 23 μm was extracted. The results of FTIR and XRD demonstrated unequivocally that all amorphous non-cellulosic compounds had been eliminated. The microwave-extracted black tea waste MCC showed 89.77 % crystallinity and good thermal properties, indicating that it could be a promising filler material for preparing polymer composites. Therefore, microwave-assisted delignification and bleaching can be used as a suitable, energy-efficient, time-saving and low-cost method for extracting MCC from the black tea waste produced in tea factories.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Prangan Duarah
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
18
|
Study on the Preparation and Properties of Jute Microcrystalline Cellulose Membrane. Molecules 2023; 28:molecules28041783. [PMID: 36838771 PMCID: PMC9967143 DOI: 10.3390/molecules28041783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The preparation and performance control of the cellulose membrane are one of the hot topics in the environmentally friendly separation membrane field. In this study, microcrystalline cellulose (MCC) was prepared by microwave-assisted acidic hydrolysis of cellulose obtained from jute, followed by the use of a mixture of N-methylmorpholine-N-oxide and water as a solvent to obtain the homogeneous casting liquid, which was scraped and subsequently immersed in the coagulation bath to form a smooth and dense cellulose membrane. During membrane formation, the crystal structure of MCC changed from type I to type II, but the chemical structure remained unchanged. The mechanical strength and separation performance of the membrane were related to the content of MCC in the casting liquid. When the content of MCC was about 7%, the tensile strength of the membrane reached a maximum value of 13.49 MPa, and the corresponding elongation at break was 68.12%. The water flux (J) and rejection rate (R) for the bovine serum albumin were 19.51 L/(m2·h) and 95.37%, respectively, under an optimized pressure of 0.2 MPa. In addition, the coagulation bath had a significant effect on the membrane separation performance, and J and R were positively and negatively correlated with the polarity of the coagulation bath. Among them, it was note-worthy that J and R of membrane formed in ethanol were 33.95 L/(m2·h) and 91.43%, separately. Compared with water as a coagulation bath, J was increased by 74% at the situation and R was roughly equivalent, showing better separation performance. More importantly, the relationship between the structure and separation performances has also been studied preliminarily. This work provides certain guidance for the preparation of high-performance MCC membranes.
Collapse
|
19
|
Yang X, Li L, Zhao W, Wang M, Yang W, Tian Y, Zheng R, Deng S, Mu Y, Zhu X. Characteristics and Functional Application of Cellulose Fibers Extracted from Cow Dung Wastes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:648. [PMID: 36676384 PMCID: PMC9866732 DOI: 10.3390/ma16020648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The widespread use of petroleum-based products has led to increasing environmental and ecological problems, while the extraction and application of various natural cellulose fibers have received increasing attention. This research focuses on the extraction of cellulose fibers from cow dung using different treatments: hot water, hydrogen peroxide (H2O2), sodium hydroxide (NaOH) and potassium hydroxide (KOH) boilings, as well as a selection of the best quality cow dung fibers for papermaking with quality control. The study's objective is to find a sustainable method to extract as much material as possible from renewable biomass feedstock. The results show that the best extraction rate is obtained by KOH boiling with 42% cellulose fibers extracted. Corresponding handmade paper has a burst index of 2.48 KPam2/g, a tear index of 4.83 mNm2/g and a tensile index of 26.72 Nm/g. This project expands the sources of natural cellulose fibers to an eco-friendly and sustainable one and opens up new applications for cow dung.
Collapse
Affiliation(s)
- Xiangjun Yang
- School of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Lu Li
- School of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wuyun Zhao
- School of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengyang Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Wanxia Yang
- School of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhang Tian
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Ruizhe Zheng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Shuhang Deng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Yongsong Mu
- Huarui Agricultural Company, Zhangye 734500, China
| | - Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
20
|
Lima AR, Cristofoli NL, Rosa da Costa AM, Saraiva JA, Vieira MC. Comparative study of the production of cellulose nanofibers from agro-industrial waste streams of Salicornia ramosissima by acid and enzymatic treatment. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
Debnath B, Duarah P, Haldar D, Purkait MK. Improving the properties of corn starch films for application as packaging material via reinforcement with microcrystalline cellulose synthesized from elephant grass. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
22
|
Amantes BP, Melo RP, Marques MDFV. Polyamide‐6/cellulose nanocomposites: Influence of fiber treatment and screw rotation on nanofibrillation of jute during extrusion process. J Appl Polym Sci 2022. [DOI: 10.1002/app.53245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bruno P. Amantes
- Laboratório de Catálise para Polimerização, Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Renato P. Melo
- Laboratório de Catálise para Polimerização, Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| | - Maria de Fátima Vieira Marques
- Laboratório de Catálise para Polimerização, Instituto de Macromoléculas Professora Eloisa Mano Universidade Federal do Rio de Janeiro Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
23
|
Gutiérrez-Lopez D, Carreño-de-León MDC, Solache-Ríos MJ, Gomora-Hernandez JC, Ventura-Cruz S, Flores-Alamo N. Kinetic and thermodynamic study on acid hydrolysis of corn cob, rose stem, and pineapple crown. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2129620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | - Marcos Jose Solache-Ríos
- Departamento de Química, Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de México, México
| | - Julio Cesar Gomora-Hernandez
- División de Ingeniería Ambiental, Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Tianguistenco, Carretera Tenango, Santiago Tilapa, Estado de México, México
| | - Sagnite Ventura-Cruz
- División de Ingeniería Ambiental, Tecnológico Nacional de México/Tecnológico de Estudios Superiores de Tianguistenco, Carretera Tenango, Santiago Tilapa, Estado de México, México
| | | |
Collapse
|
24
|
Wang J, Han X, Zhang C, Liu K, Duan G. Source of Nanocellulose and Its Application in Nanocomposite Packaging Material: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183158. [PMID: 36144946 PMCID: PMC9502214 DOI: 10.3390/nano12183158] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2022] [Accepted: 09/04/2022] [Indexed: 05/12/2023]
Abstract
Food packaging nowadays is not only essential to preserve food from being contaminated and damaged, but also to comply with science develop and technology advances. New functional packaging materials with degradable features will become a hot spot in the future. By far, plastic is the most common packaging material, but plastic waste has caused immeasurable damage to the environment. Cellulose known as a kind of material with large output, wide range sources, and biodegradable features has gotten more and more attention. Cellulose-based materials possess better degradability compared with traditional packaging materials. With such advantages above, cellulose was gradually introduced into packaging field. It is vital to make packaging materials achieve protection, storage, transportation, market, and other functions in the circulation process. In addition, it satisfied the practical value such as convenient sale and environmental protection, reduced cost and maximized sales profit. This review introduces the cellulose resource and its application in composite packaging materials, antibacterial active packaging materials, and intelligent packaging materials. Subsequently, sustainable packaging and its improvement for packaging applications were introduced. Finally, the future challenges and possible solution were provided for future development of cellulose-based composite packaging materials.
Collapse
Affiliation(s)
- Jingwen Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoshuai Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| | - Kunming Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (X.H.); (C.Z.); (G.D.)
| |
Collapse
|
25
|
Influence of hemicellulose content and cellulose crystal change on cellulose nanofibers properties. Int J Biol Macromol 2022; 213:780-790. [PMID: 35690158 DOI: 10.1016/j.ijbiomac.2022.06.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/25/2022] [Accepted: 06/05/2022] [Indexed: 01/09/2023]
Abstract
This study aimed to evaluate the properties of cellulose nanofibers (CNFs) with different hemicellulose contents and cellulose II polymorphs. A link was found between these polysaccharides and the properties of CNFs. A decrease in crystallinity (from 69 to 63%) and changes in the crystalline structure of cellulose subjected to an alkaline environment were observed, promoting the partial conversion of cellulose I to cellulose II (from 2 to 42%) and preventing CNFs production at NaOH concentrations higher than 5%. Most treatments showed pseudoplastic fluid behavior, except for the 10% NaOH treatment over 2 h, which showed Newtonian fluid behavior. The quality index of the reference CNFs (TEMPO-oxidized) was the highest (80 ± 3), followed by that of the 5% NaOH-treated (68 ± 3 and 22% energy savings compared to the untreated sample), and the untreated (63 ± 3) samples; and the 10% NaOH treatments had quality indices of 51 ± 3 and 32 ± 1, respectively.
Collapse
|
26
|
Isolation and Properties of Cellulose Nanocrystals Fabricated by Ammonium Persulfate Oxidation from Sansevieria trifasciata Fibers. FIBERS 2022. [DOI: 10.3390/fib10070061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cellulose nanocrystals (CNCs) were successfully prepared from Sansevieria trifasciata fibers (STFs) via ammonium persulfate (APS) oxidation in this study. The influences of the APS concentration (1.1, 1.5, and 1.9 M) and oxidation temperature (60, 70, and 80 °C) on the characteristics of CNCs were studied. The resulting CNCs were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The TEM observations revealed that the rod-like CNCs possessed average length and diameter ranges of 96 to 211 nm and 5 to 13 nm, respectively, which led to an aspect ratio range of 16–19. The optimum conditions for maximum crystallinity were achieved at an oxidation temperature of 70 °C, a reaction time of 16 h, and an APS concentration of 1.5 M. All CNCs exhibited lower thermal stability compared to the STFs. The CNCs could be produced from the STFs through the APS oxidation process and showed potential as nanocomposite reinforcement materials.
Collapse
|
27
|
López-R M, Barrios Y, Perez LD, Soto C, Sierra C. Metal-Organic Framework (MOFs) tethered to cotton fibers display antimicrobial activity against relevant nosocomial bacteria. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Optimization of Hemp Bast Microfiber Production Using Response Surface Modelling. Processes (Basel) 2022. [DOI: 10.3390/pr10061150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Non-wood biomass is particularly attractive as a cellulose source because of the lower lignin content. However, optimal cellulose extraction conditions are required as lignin content varies between plant sources. Further, the use of organic acids in place of harsh mineral acids is of interest in “greening” the cellulose production process. This study sought to establish optimum parameters for the extraction of cellulose microfibers (CMFs) from hemp (Cannabis sativa) biomass, using maleic and formic acids. Hemp fibers were pre-treated in NaOH (4 wt%) and aqueous chlorite in acetate buffer before ultrasonic treatment to break down bundles. The CMFs produced were compared with those generated from sulfuric acid hydrolysis. Response surface methodology (RSM) was used to determine combinations of three processing conditions, including acid concentration (45–64%), hydrolysis time (30–90 min), and temperature (45–65 °C). A central composite design (RSM-CCD) model with 21 experimental runs was optimized using MODDE 13.1 software. The model suitably described the data (R2 = 0.99; R2adj = 0.96). Microfibers with an average width of 6.91 µm, crystallinity range 40–75%, and good thermal stability were produced. Crystallinity was influenced by all three factors. The optimal crystallinity predicted by the model was 83.21%, which could be achieved using formic acid 62 wt% formic acid, 36 min hydrolysis time, and 47 °C hydrolysis temperature. These conditions resulted in a crystallinity degree of 82%. These data suggest formic acid can be used as an alternative to sulfuric acid for synthesis of cellulose microfibers from biodegradable hemp waste fibers.
Collapse
|
29
|
Rizwan M, Gilani SR, Durrani AI, Naseem S. Kinetic model studies of controlled nutrient release and swelling behavior of combo hydrogel using Acer platanoides cellulose. J Taiwan Inst Chem Eng 2022; 131:104137. [DOI: 10.1016/j.jtice.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Debnath B, Haldar D, Purkait MK. A critical review on the techniques used for the synthesis and applications of crystalline cellulose derived from agricultural wastes and forest residues. Carbohydr Polym 2021; 273:118537. [PMID: 34560949 DOI: 10.1016/j.carbpol.2021.118537] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 12/20/2022]
Abstract
In order to meet the growing energy crisis of the 21st century, the utilization of bio-based materials has become a field of high research endeavour. In view of that, the present review paper is focused on different techniques that are frequently explored for the synthesis of value-added crystalline derivatives of cellulose like MCC and NCC from agricultural wastes and forest residues. Moreover, a comparative analysis between thermochemical and biochemical methods is carried out for such valorization of biomass considering the mechanism involved with various reactions. Further, a critical analysis is performed on various individual techniques specifically used for the applications of MCC and NCC in different fields including environmental, polymer industry, pharmaceutical and other emerging sectors. This article will assist the readers not only to explore new biomass sources but also provides an in-depth insight on various green and cost-effective methods for sustainable production of crystalline cellulose.
Collapse
Affiliation(s)
- Banhisikha Debnath
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
31
|
Wang L, Cui Q, Pan S, Li Y, Jin Y, Yang H, Li T, Zhang Q. Facile isolation of cellulose nanofibers from soybean residue. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
32
|
Dominic C D M, Dos Santos Rosa D, Camani PH, Kumar AS, K V N, Begum PMS, Dinakaran D, John E, Baby D, Thomas MM, Joy JM, Parameswaranpillai J, Saeb MR. Thermoplastic starch nanocomposites using cellulose-rich Chrysopogon zizanioides nanofibers. Int J Biol Macromol 2021; 191:572-583. [PMID: 34582904 DOI: 10.1016/j.ijbiomac.2021.09.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Green thermoplastic starch (TPS) nanocomposite films aided by cellulose nanofibers (CNFs) from Chrysopogon zizanioides roots were developed and characterized. When compared to other lignocellulosic fibers, Chrysopogon zizanioides roots revealed exceptionally high cellulose content (~48%). CNFs were separated using an environmentally friendly acid isolation technique that included three stages: (i) alkali treatment; (ii) bleaching; and (iii) mild acid hydrolysis using oxalic acid in an autoclave. Following that, green nanocomposite films were made from potato starch using the solution casting process, by which we used glycerol (30 wt%) to make thermoplastic starch. Then, cellulose nanofibers in different concentrations (0, 1, 2, 3, 4 wt%) were added to the thermoplastic starch matrix. The isolated CNFs had diameters in the range of 17-27 nm. Besides, these nanostructures presented a very high crystallinity index (~65%), thereby enhanced the thermal stability. TPS/CNF green nanocomposites containing 3 wt% CNFs had exceptional tensile strength (~161%), tensile modulus (~167%), thermal stability, and crystallinity. As a result, nanocomposite films made of starch and cellulose nanofibers (3 wt%) extracted from Chrysopogon zizanioides roots would be alternatives for sustainable packaging. It can be concluded that Chrysopogon zizanioides roots have high potential for polymer industry.
Collapse
Affiliation(s)
- Midhun Dominic C D
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India.
| | - Derval Dos Santos Rosa
- Universidade Federal do ABC, Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS), CEP 09090-400 Santo André, SP, Brazil
| | - Paulo Henrique Camani
- Universidade Federal do ABC, Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas (CECS), CEP 09090-400 Santo André, SP, Brazil
| | - Athira S Kumar
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Neenu K V
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin-682022, India
| | - P M Sabura Begum
- Department of Applied Chemistry, Cochin University of Science and Technology (CUSAT), Kerala Pin-682022, India
| | - Divya Dinakaran
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Effina John
- Department of Chemistry, St. Albert's College (Autonomous), Kochi, Kerala Pin-682018, India
| | - Donna Baby
- Department of Chemistry, St. Peter's College, Kolenchery, Kerala Pin-682311, India
| | - Meenu Mariya Thomas
- Department of Chemistry, Morning Star Home Science College, Angamaly, Kerala Pin-683585, India
| | - Jaison M Joy
- Department of Chemistry, Sacred Heart College (Autonomous), Kochi, Kerala Pin-682013, India
| | - Jyotishkumar Parameswaranpillai
- School of Biosciences, Mar Athanasios College for Advanced Studies Tiruvalla (MACFAST), Pathanamthitta, Kerala Pin-689101, India
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
33
|
Low DYS, Supramaniam J, Abd Rahim AHB, Tang SY, Leo BF. Morphological, thermal, and mechanical properties of natural rubber reinforced with cellulose nanofibers from oil palm empty fruit bunch. J RUBBER RES 2021. [DOI: 10.1007/s42464-021-00126-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Cárdenas-Barboza LC, Paredes-Córdoba AC, Serna-Cock L, Guancha-Chalapud M, Torres-León C. Quality of Physalis peruviana fruits coated with pectin and pectin reinforced with nanocellulose from P. peruviana calyces. Heliyon 2021; 7:e07988. [PMID: 34568603 PMCID: PMC8449181 DOI: 10.1016/j.heliyon.2021.e07988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/04/2021] [Accepted: 09/10/2021] [Indexed: 11/25/2022] Open
Abstract
Physalis peruviana is marketed without its calyx, which generates byproducts and a decrease in the shelf life of these fruits. The aim of this study was to evaluate the effect of edible pectin-coatings reinforced with nanocellulose from calyx on the physical-chemical and physiological parameters of P. peruviana fruits during refrigerated storage (5 °C) for ten days. The nanocellulose extraction was carried out using a combined extraction method (chemical procedures and ultrasound radiation). The characterization of the fibers showed that the maximum degradation temperatures ranged between 300 and 311 °C. The SEM analysis revealed the presence of fibers after the chemical treatment. The removal of lignin and hemicellulose was validated using Fourier Transform Infra Red (FTIR) spectroscopy. The results showed that the fruits treated with pectin and pectin reinforced with nanocellulose at 0.5 % (w/w) had an adequate visual appearance and showed a minor color change (ΔE of 19.04 and 21.04, respectively) and the highest retention of L∗ during storage. Although the addition of nanocellulose at 0.5% presented the lowest respiratory rate (29.60 mgCO2/kg h), the treatment with pectin offered the least weight loss and showed the highest firmness retention at the end of storage. Thus, the edible pectin-coating may be useful for improving the postharvest quality and storage life of fresh P. peruviana fruit. Nanocellulose from P. peruviana calyces can be used under the concept of a circular economy; although, its use as a reinforcement of pectin showed some limitations.
Collapse
Affiliation(s)
- Liceth Carolina Cárdenas-Barboza
- School of Engineering and Administration. Universidad Nacional de Colombia, Street 32 Chapinero, 763533, Palmira, Valle del Cauca, Colombia
| | - Andrey Camilo Paredes-Córdoba
- School of Engineering and Administration. Universidad Nacional de Colombia, Street 32 Chapinero, 763533, Palmira, Valle del Cauca, Colombia
| | - Liliana Serna-Cock
- School of Engineering and Administration. Universidad Nacional de Colombia, Street 32 Chapinero, 763533, Palmira, Valle del Cauca, Colombia
| | - Marcelo Guancha-Chalapud
- National Center for Technical Assistance to Industry (ASTIN), Servicio Nacional de Aprendizaje - SENA, 760004, Cali, Valle del Cauca, Colombia
| | - Cristian Torres-León
- Research Center and Ethnobiological Garden, Universidad Autónoma de Coahuila, 27480, Viesca, Coahuila, Mexico
| |
Collapse
|
35
|
Comparative FT-IR Prospecting for Cellulose in Stems of Some Fiber Plants: Flax, Velvet Leaf, Hemp and Jute. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188570] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plant fibers are sustainable sources of materials for many industries, and can be obtained from a variety of plants. Cellulose is the main constituent of plant-based fibers, and its properties give the characteristics of the fibers obtained. Detailed characterization of cellulosic fibers is often performed after lengthy extraction procedures, while fast screening might bring the benefit of quick qualitative assessment of unprocessed stems. The aim of this research was to define some marker spectral regions that could serve for fast, preliminary qualitative characterization of unprocessed stems from some textile plants through a practical and minimally invasive method without lengthy extraction procedures. This could serve as a screening method for sorting raw materials by providing an accurate overall fingerprint of chemical composition. For this purpose, we conducted comparative Fourier Transform Infrared Spectroscopy (FT-IR) prospecting for quality markers in stems of flax (Linum usitatissimum L.), velvet leaf (Abutilon theophrasti Medik.), hemp (Cannabis sativa L.) and jute (Corchorus olitorius L.). Analysis confirmed the presence of major components in the stems of the studied plants. Fingerprint regions for cellulose signals were attributed to bands at 1420–1428 cm−1 assigned to the crystalline region and 896–898 cm−1 assigned to the amorphous region of cellulose. The optimization of characterization methods for raw materials is important and can find immediate practical applications.
Collapse
|
36
|
Jiang X, Li Y, Tang X, Jiang J, He Q, Xiong Z, Zheng H. Biopolymer-based flocculants: a review of recent technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46934-46963. [PMID: 34263401 PMCID: PMC8279699 DOI: 10.1007/s11356-021-15299-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Biopolymer-based flocculants have become a potential substitute for inorganic coagulants and synthetic organic flocculants due to their wide natural reserves, environmental friendliness, easy natural degradation, and high material safety. In recent years, with more and more attention to clean technologies, a lot of researches on the modification and application of biopolymer-based flocculants have been carried out. The present paper reviews the latest important information about the base materials of biopolymer-based flocculants, including chitosan, starch, cellulose, and lignin etc. This review also highlights the various modification methods of these base materials according to reaction types in detail. Via the recent researches, the flocculation mechanisms of biopolymer-based flocculants, such as adsorption, bridging, charge neutralization, net trapping, and sweeping, as well as, some other special mechanisms are comprehensively summarized. This paper also focuses on the water treatment conditions, the removal efficiency, and advantages of biopolymer-based flocculants in applications. Further, this review sheds light on the future perspectives of biopolymer-based flocculants, which may make progress in the sources of base materials, modification processes, multi-function, and deepening application researches. We believe that this review can guide the further researches and developments of biopolymer-based flocculants in the future, to develop them with a higher efficiency, a lower cost, more safety, and multi-function for more diversified applications. Graphical abstract.
Collapse
Affiliation(s)
- Xincheng Jiang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Yisen Li
- Digital Chongqing Big Data Application Development Co., Ltd, Chongqing, 400000, People's Republic of China
| | - Xiaohui Tang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Junyi Jiang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Qiang He
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Zikang Xiong
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| | - Huaili Zheng
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, 400044, People's Republic of China.
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
37
|
Ventura-Cruz S, Tecante A. Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106771] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
John MJ, Dyanti N, Mokhena T, Agbakoba V, Sithole B. Design and Development of Cellulosic Bionanocomposites from Forestry Waste Residues for 3D Printing Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3462. [PMID: 34206651 PMCID: PMC8269467 DOI: 10.3390/ma14133462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 01/21/2023]
Abstract
This paper deals with the development of cellulose nanofibres (CNFs) reinforced biopolymers for use in packaging applications. Cellulose nanofibres were extracted from sawdust by a combination of chemical and mechanical treatments. The extracted cellulose nanofibres were chemically modified (fCNFs) and characterised by Fourier Transform Infrared Spectroscopy (FTIR). Bionanocomposites were prepared from biopolymers polylactic acid/polybutylene succinate (PLA/PBS) and cellulose nanofibres by compounding in a twin-screw extruder followed by injection moulding. The developed bionanocomposites were subjected to mechanical and thermal characterisation. As part of product development, CNF-biopolymer pellets were also extruded into filaments which were then 3D printed into prototypes. This work is a successful demonstration of conversion of waste residues into value-added products, which is aligned to the principles of circular economy and sustainable development.
Collapse
Affiliation(s)
- Maya Jacob John
- Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research (CSIR), Pretoria P.O. Box 395, South Africa; (N.D.); (T.M.); (V.A.)
- Department of Chemistry, Nelson Mandela University, Port Elizabeth P.O. Box 77000, South Africa
| | - Nokuzola Dyanti
- Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research (CSIR), Pretoria P.O. Box 395, South Africa; (N.D.); (T.M.); (V.A.)
- Department of Chemistry, Nelson Mandela University, Port Elizabeth P.O. Box 77000, South Africa
| | - Teboho Mokhena
- Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research (CSIR), Pretoria P.O. Box 395, South Africa; (N.D.); (T.M.); (V.A.)
| | - Victor Agbakoba
- Centre for Nanostructures and Advanced Materials, Council for Scientific and Industrial Research (CSIR), Pretoria P.O. Box 395, South Africa; (N.D.); (T.M.); (V.A.)
- Department of Chemistry, Nelson Mandela University, Port Elizabeth P.O. Box 77000, South Africa
| | - Bruce Sithole
- Biorefinery Industry Development Facility (BIDF), Council for Scientific and Industrial Research (CSIR), Durban P.O. Box 59081, South Africa;
| |
Collapse
|
39
|
Muscle-inspired double-network hydrogels with robust mechanical property, biocompatibility and ionic conductivity. Carbohydr Polym 2021; 262:117936. [PMID: 33838813 DOI: 10.1016/j.carbpol.2021.117936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Accepted: 03/10/2021] [Indexed: 12/13/2022]
Abstract
Inspired by muscle architectures, double network hydrogels with hierarchically aligned structures were fabricated, where cross-linked cellulose nanofiber (CNF)/chitosan hydrogel threads obtained by interfacial polyelectrolyte complexation spinning were collected in alignment as the first network, while isotropic poly(acrylamide-co-acrylic acid) (PAM-AA) served as the second network. After further cross-linking using Fe3+, the hydrogel showed an outstanding mechanical performance, owing to effective energy dissipation of the oriented asymmetric double networks. The average strength and elongation-at-break of PAM-AA/CNF/Fe3+ hydrogel were 11 MPa and 480 % respectively, which the strength was comparative to that of biological tissues. The aligned CNFs in the hydrogels provided probable ion transport channels, contributing to the high ionic conductivity, which was up to 0.022 S/cm when the content of LiCl was 1.5 %. Together with superior biocompatibility, the well-ordered hydrogel showed a promising potential in biological applications, such as artificial soft tissue materials and muscle-like sensors for human motion monitoring.
Collapse
|
40
|
Picot-Allain MCN, Emmambux MN. Isolation, Characterization, and Application of Nanocellulose from Agro-industrial By-products: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Ahmad Khorairi ANS, Sofian-Seng NS, Othaman R, Abdul Rahman H, Mohd Razali NS, Lim SJ, Wan Mustapha WA. A Review on Agro-industrial Waste as Cellulose and Nanocellulose Source and Their Potentials in Food Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Noor-Soffalina Sofian-Seng
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Rizafizah Othaman
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Hafeedza Abdul Rahman
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Noorul Syuhada Mohd Razali
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Wan Aida Wan Mustapha
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| |
Collapse
|
42
|
Felgueiras C, Azoia NG, Gonçalves C, Gama M, Dourado F. Trends on the Cellulose-Based Textiles: Raw Materials and Technologies. Front Bioeng Biotechnol 2021; 9:608826. [PMID: 33869148 PMCID: PMC8044815 DOI: 10.3389/fbioe.2021.608826] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 01/10/2023] Open
Abstract
There is an emerging environmental awareness and social concern regarding the environmental impact of the textile industry, highlighting the growing need for developing green and sustainable approaches throughout this industry's supply chain. Upstream, due to population growth and the rise in consumption of textile fibers, new sustainable raw materials and processes must be found. Cellulose presents unique structural features, being the most important and available renewable resource for textiles. The physical and chemical modification reactions yielding fibers are of high commercial importance today. Recently developed technologies allow the production of filaments with the strongest tensile performance without dissolution or any other harmful and complex chemical processes. Fibers without solvents are thus on the verge of commercialization. In this review, the technologies for the production of cellulose-based textiles, their surface modification and the recent trends on sustainable cellulose sources, such as bacterial nanocellulose, are discussed. The life cycle assessment of several cellulose fiber production methods is also discussed.
Collapse
Affiliation(s)
| | - Nuno G Azoia
- CeNTI-Centre for Nanotechnology and Smart Materials, Vila Nova de Famalicão, Portugal
| | - Cidália Gonçalves
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Miguel Gama
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Fernando Dourado
- Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
43
|
Jin T, Yan L, Liu W, Liu S, Liu C, Zheng L. Preparation and physicochemical/antimicrobial characteristics of asparagus cellulose films containing quercetin. FOOD SCIENCE AND HUMAN WELLNESS 2021. [DOI: 10.1016/j.fshw.2021.02.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Hazrati KZ, Sapuan SM, Zuhri MYM, Jumaidin R. Extraction and Characterization of Potential Biodegradable Materials Based on Dioscorea hispida Tubers. Polymers (Basel) 2021; 13:polym13040584. [PMID: 33672030 PMCID: PMC7919467 DOI: 10.3390/polym13040584] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
This study was driven by the stringent environmental legislation concerning the consumption and utilization of eco-friendly materials. Within this context, this paper aimed to examine the characteristics of starch and fibres from the Dioscorea hispida tuber plant to explore their potential as renewable materials. The extraction of the Dioscorea hispida starch and Dioscorea hispida fibres was carried out and the chemical composition, physical, thermal, morphological properties, and crystallinity were studied. The chemical composition investigations revealed that the Dioscorea hispida starch (DHS) has a low moisture t (9.45%) and starch content (37.62%) compared to cassava, corn, sugar palm, and arrowroot starches. Meanwhile, the Dioscorea hispida fibres (DHF) are significantly low in hemicellulose (4.36%), cellulose (5.63%), and lignin (2.79%) compared to cassava, corn hull and sugar palm. In this investigation the chemical, physical, morphological and thermal properties of the Dioscorea hispida fibre and Dioscorea hispida starch were examined by chemical composition investigation, scanning electron microscopy (SEM), particle size distribution, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), and Fourier transform infrared (FTIR), respectively. It was found that Dioscorea hispida waste is promising alternative biomass and sustainable material with excellent potential as a renewable filler material for food packaging applications.
Collapse
Affiliation(s)
- K. Z. Hazrati
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.Z.H.); (M.Y.M.Z.)
- German Malaysian Institute, Jalan Ilmiah, Taman Universiti, Kajang 43000, Selangor, Malaysia
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.Z.H.); (M.Y.M.Z.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +60-3-9769-1788
| | - M. Y. M. Zuhri
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.Z.H.); (M.Y.M.Z.)
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - R. Jumaidin
- Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia;
| |
Collapse
|
45
|
Yadav C, Saini A, Zhang W, You X, Chauhan I, Mohanty P, Li X. Plant-based nanocellulose: A review of routine and recent preparation methods with current progress in its applications as rheology modifier and 3D bioprinting. Int J Biol Macromol 2020; 166:1586-1616. [PMID: 33186649 DOI: 10.1016/j.ijbiomac.2020.11.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
"Nanocellulose" have captivated the topical sphere of sturdily escalating market for sustainable materials. The review focuses on the comprehensive understanding of the distinct surface chemistry and functionalities pertaining to the renovation of macro-cellulose at nanodimensional scale to provide an intuition of their processing-structure-function prospective. The abundant availability, cost effectiveness and diverse properties associated with plant-based resources have great economical perspective for developing sustainable cellulose nanomaterials. Hence, emphasis has been given on nanocellulose types obtained from plant-based sources. An overarching goal is to provide the recent advancement in the preparation routes of nanocellulose. Considering the excellent shear thinning/thixotropic/gel-like behavior, the review provids an assemblage of publications specifically dealing with its application as rheology modifier with emphasis on its use as bioink for 3D bioprinting for various biomedical applications. Altogether, this review has been oriented in a way to collocate a collective data starting from the historical perspective of cellulose discovery to modern cellulosic chemistry and its renovation as nanocellulose with recent technological hype for broad spanning applications.
Collapse
Affiliation(s)
- Chandravati Yadav
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Arun Saini
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Wenbo Zhang
- Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry & Technology, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Xiangyu You
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China
| | - Indu Chauhan
- Department of Biotechnology, Dr B. R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
| | - Paritosh Mohanty
- Functional Materials Laboratory, Department of Chemistry, IIT Roorkee, Roorkee 247667, Uttarakhand, India
| | - Xinping Li
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
46
|
Kalpana V, Perarasu V. Analysis on cellulose extraction from hybrid biomass for improved crystallinity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Johnson A, He JL, Kong F, Huang YC, Thomas S, Lin HTV, Kong ZL. Surfactin-Loaded ĸ-Carrageenan Oligosaccharides Entangled Cellulose Nanofibers as a Versatile Vehicle Against Periodontal Pathogens. Int J Nanomedicine 2020; 15:4021-4047. [PMID: 32606662 PMCID: PMC7293418 DOI: 10.2147/ijn.s238476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Periodontitis is a chronic inflammatory disease associated with microbial accumulation. The purpose of this study was to reuse the agricultural waste to produce cellulose nanofibers (CNF) and further modification of the CNF with κ-carrageenan oligosaccharides (CO) for drug delivery. In addition, this study is focused on the antimicrobial activity of surfactin-loaded CO-CNF towards periodontal pathogens. MATERIALS AND METHODS A chemo-mechanical method was used to extract the CNF and the modification was done by using CO. The studies were further proceeded by adding different quantities of surfactin [50 mg (50 SNPs), 100 mg (100 SNPs), 200 mg (200 SNPs)] into the carrier (CO-CNF). The obtained materials were characterized, and the antimicrobial activity of surfactin-loaded CO-CNF was evaluated. RESULTS The obtained average size of CNF and CO-CNF after ultrasonication was 263 nm and 330 nm, respectively. Microscopic studies suggested that the CNF has a short diameter with long length and CO became cross-linked to form as beads within the CNF network. The addition of CO improved the degradation temperature, crystallinity, and swelling property of CNF. The material has a controlled drug release, and the entrapment efficiency and loading capacity of the drug were 53.15 ± 2.36% and 36.72 ± 1.24%, respectively. It has antioxidant activity and inhibited the growth of periodontal pathogens such as Streptococcus mutans and Porphyromonas gingivalis by preventing the biofilm formation, reducing the metabolic activity, and promoting the oxidative stress. CONCLUSION The study showed the successful extraction of CNF and modification with CO improved the physical parameters of the CNF. In addition, surfactin-loaded CO-CNF has potential antimicrobial activity against periodontal pathogens. The obtained biomaterial is economically valuable and has great potential for biomedical applications.
Collapse
Affiliation(s)
- Athira Johnson
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Jia-Ling He
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Fanbin Kong
- Department of Food Science and Technology, University of Georgia, GA30602, U.S.A
| | - Yi-Cheng Huang
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Sabu Thomas
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala686560, India
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung20224, Taiwan
| |
Collapse
|
48
|
Influence of operating conditions on proton conductivity of nanocellulose films using two agroindustrial wastes: Sugarcane bagasse and pinewood sawdust. Carbohydr Polym 2020; 238:116171. [DOI: 10.1016/j.carbpol.2020.116171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 12/28/2022]
|
49
|
Ventura-Cruz S, Flores-Alamo N, Tecante A. Preparation of microcrystalline cellulose from residual Rose stems (Rosa spp.) by successive delignification with alkaline hydrogen peroxide. Int J Biol Macromol 2020; 155:324-329. [PMID: 32234444 DOI: 10.1016/j.ijbiomac.2020.03.222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/30/2022]
Abstract
Agricultural residues of Rose flowers (Rosa x hybrida L.) are abundant, cheap, and renewable. These lignocellulosic remains are composed of cellulose, hemicellulose, and lignin. They are an attractive feedstock to produce various value-added products, as microcrystalline cellulose (MCC). The objective of this study was to obtain MCC from residual Rose stems (RS) using a successive alkaline peroxide treatment. X-ray diffraction, Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were used to determine the degree of crystallinity, structure characteristics, thermal properties, and morphology, respectively, of MCC. The properties of RS-MCC were compared with those of commercial MCC. The degree of crystallinity of RS-MCC was 70.21%. The X-ray diffraction patterns reveal the presence of Type I cellulose. FTIR showed the absence of non-cellulosic components, mainly lignin, present in the amorphous regions of the RS fibers. Results are promising for taking advantage of agricultural residues as a source of MCC, which could be used as a reinforcing agent in polymeric matrices.
Collapse
Affiliation(s)
- Sagnite Ventura-Cruz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, CdMx 04510, Mexico
| | - Nicolas Flores-Alamo
- Instituto Tecnológico de Toluca, Av. Instituto Tecnológico S/N, Colonia Agrícola Bellavista, C.P. 52149 Metepec, Estado de México, Mexico
| | - Alberto Tecante
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, CdMx 04510, Mexico.
| |
Collapse
|
50
|
Enzymatic synthesis of highly flexible lignin cross-linked succinyl-chitosan hydrogels reinforced with reed cellulose fibres. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|